• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 	Written 1997-2001 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms of
6 	the GNU General Public License (GPL), incorporated herein by reference.
7 	Drivers based on or derived from this code fall under the GPL and must
8 	retain the authorship, copyright and license notice.  This file is not
9 	a complete program and may only be used when the entire operating
10 	system is licensed under the GPL.
11 
12 	This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 	It also supports the Symbios Logic version of the same chip core.
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 	Support and updates available at
21 	http://www.scyld.com/network/yellowfin.html
22 	[link no longer provides useful info -jgarzik]
23 
24 */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #define DRV_NAME	"yellowfin"
29 #define DRV_VERSION	"2.1"
30 #define DRV_RELDATE	"Sep 11, 2006"
31 
32 /* The user-configurable values.
33    These may be modified when a driver module is loaded.*/
34 
35 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE			/* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; 			/* Constrained by errata */
43 static int fifo_cfg = 0x0020;				/* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW)					/* A future perfect board :->.  */
45 static int dma_ctrl = 0x00CAC277;			/* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; 			/* Constrained by errata */
49 static const int fifo_cfg = 0x0020;				/* Bypass external Tx FIFO. */
50 #endif
51 
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53    Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55 
56 /* Used to pass the media type, etc.
57    No media types are currently defined.  These exist for driver
58    interoperability.
59 */
60 #define MAX_UNITS 8				/* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63 
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66 
67 /* Operational parameters that are set at compile time. */
68 
69 /* Keep the ring sizes a power of two for efficiency.
70    Making the Tx ring too long decreases the effectiveness of channel
71    bonding and packet priority.
72    There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE	16
74 #define TX_QUEUE_SIZE	12		/* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE	64
76 #define STATUS_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE		2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE		RX_RING_SIZE*sizeof(struct yellowfin_desc)
79 
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT  (2*HZ)
83 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
84 
85 #define yellowfin_debug debug
86 
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/init.h>
96 #include <linux/mii.h>
97 #include <linux/netdevice.h>
98 #include <linux/etherdevice.h>
99 #include <linux/skbuff.h>
100 #include <linux/ethtool.h>
101 #include <linux/crc32.h>
102 #include <linux/bitops.h>
103 #include <asm/uaccess.h>
104 #include <asm/processor.h>		/* Processor type for cache alignment. */
105 #include <asm/unaligned.h>
106 #include <asm/io.h>
107 
108 /* These identify the driver base version and may not be removed. */
109 static const char version[] __devinitconst =
110   KERN_INFO DRV_NAME ".c:v1.05  1/09/2001  Written by Donald Becker <becker@scyld.com>\n"
111   "  (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
112 
113 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
114 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
115 MODULE_LICENSE("GPL");
116 
117 module_param(max_interrupt_work, int, 0);
118 module_param(mtu, int, 0);
119 module_param(debug, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param_array(options, int, NULL, 0);
122 module_param_array(full_duplex, int, NULL, 0);
123 module_param(gx_fix, int, 0);
124 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
125 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
126 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
127 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
128 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
129 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
130 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
131 
132 /*
133 				Theory of Operation
134 
135 I. Board Compatibility
136 
137 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
138 Ethernet adapter.  The G-NIC 64-bit PCI card is supported, as well as the
139 Symbios 53C885E dual function chip.
140 
141 II. Board-specific settings
142 
143 PCI bus devices are configured by the system at boot time, so no jumpers
144 need to be set on the board.  The system BIOS preferably should assign the
145 PCI INTA signal to an otherwise unused system IRQ line.
146 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
147 interrupt lines.
148 
149 III. Driver operation
150 
151 IIIa. Ring buffers
152 
153 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
154 This is a descriptor list scheme similar to that used by the EEPro100 and
155 Tulip.  This driver uses two statically allocated fixed-size descriptor lists
156 formed into rings by a branch from the final descriptor to the beginning of
157 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
158 
159 The driver allocates full frame size skbuffs for the Rx ring buffers at
160 open() time and passes the skb->data field to the Yellowfin as receive data
161 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
162 a fresh skbuff is allocated and the frame is copied to the new skbuff.
163 When the incoming frame is larger, the skbuff is passed directly up the
164 protocol stack and replaced by a newly allocated skbuff.
165 
166 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
167 using a full-sized skbuff for small frames vs. the copying costs of larger
168 frames.  For small frames the copying cost is negligible (esp. considering
169 that we are pre-loading the cache with immediately useful header
170 information).  For large frames the copying cost is non-trivial, and the
171 larger copy might flush the cache of useful data.
172 
173 IIIC. Synchronization
174 
175 The driver runs as two independent, single-threaded flows of control.  One
176 is the send-packet routine, which enforces single-threaded use by the
177 dev->tbusy flag.  The other thread is the interrupt handler, which is single
178 threaded by the hardware and other software.
179 
180 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
181 flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
182 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
183 the 'yp->tx_full' flag.
184 
185 The interrupt handler has exclusive control over the Rx ring and records stats
186 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
187 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
188 clears both the tx_full and tbusy flags.
189 
190 IV. Notes
191 
192 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
193 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
194 and an AlphaStation to verifty the Alpha port!
195 
196 IVb. References
197 
198 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
199 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
200    Data Manual v3.0
201 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
202 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
203 
204 IVc. Errata
205 
206 See Packet Engines confidential appendix (prototype chips only).
207 */
208 
209 
210 
211 enum capability_flags {
212 	HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
213 	HasMACAddrBug=32, /* Only on early revs.  */
214 	DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
215 };
216 
217 /* The PCI I/O space extent. */
218 enum {
219 	YELLOWFIN_SIZE	= 0x100,
220 };
221 
222 struct pci_id_info {
223         const char *name;
224         struct match_info {
225                 int     pci, pci_mask, subsystem, subsystem_mask;
226                 int revision, revision_mask;                            /* Only 8 bits. */
227         } id;
228         int drv_flags;                          /* Driver use, intended as capability flags. */
229 };
230 
231 static const struct pci_id_info pci_id_tbl[] = {
232 	{"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
233 	 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
234 	{"Symbios SYM83C885", { 0x07011000, 0xffffffff},
235 	  HasMII | DontUseEeprom },
236 	{ }
237 };
238 
239 static DEFINE_PCI_DEVICE_TABLE(yellowfin_pci_tbl) = {
240 	{ 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
241 	{ 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
242 	{ }
243 };
244 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
245 
246 
247 /* Offsets to the Yellowfin registers.  Various sizes and alignments. */
248 enum yellowfin_offsets {
249 	TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
250 	TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
251 	RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
252 	RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
253 	EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
254 	ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
255 	Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
256 	MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
257 	MII_Status=0xAE,
258 	RxDepth=0xB8, FlowCtrl=0xBC,
259 	AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
260 	EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
261 	EEFeature=0xF5,
262 };
263 
264 /* The Yellowfin Rx and Tx buffer descriptors.
265    Elements are written as 32 bit for endian portability. */
266 struct yellowfin_desc {
267 	__le32 dbdma_cmd;
268 	__le32 addr;
269 	__le32 branch_addr;
270 	__le32 result_status;
271 };
272 
273 struct tx_status_words {
274 #ifdef __BIG_ENDIAN
275 	u16 tx_errs;
276 	u16 tx_cnt;
277 	u16 paused;
278 	u16 total_tx_cnt;
279 #else  /* Little endian chips. */
280 	u16 tx_cnt;
281 	u16 tx_errs;
282 	u16 total_tx_cnt;
283 	u16 paused;
284 #endif /* __BIG_ENDIAN */
285 };
286 
287 /* Bits in yellowfin_desc.cmd */
288 enum desc_cmd_bits {
289 	CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
290 	CMD_NOP=0x60000000, CMD_STOP=0x70000000,
291 	BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
292 	BRANCH_IFTRUE=0x040000,
293 };
294 
295 /* Bits in yellowfin_desc.status */
296 enum desc_status_bits { RX_EOP=0x0040, };
297 
298 /* Bits in the interrupt status/mask registers. */
299 enum intr_status_bits {
300 	IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
301 	IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
302 	IntrEarlyRx=0x100, IntrWakeup=0x200, };
303 
304 #define PRIV_ALIGN	31 	/* Required alignment mask */
305 #define MII_CNT		4
306 struct yellowfin_private {
307 	/* Descriptor rings first for alignment.
308 	   Tx requires a second descriptor for status. */
309 	struct yellowfin_desc *rx_ring;
310 	struct yellowfin_desc *tx_ring;
311 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
312 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
313 	dma_addr_t rx_ring_dma;
314 	dma_addr_t tx_ring_dma;
315 
316 	struct tx_status_words *tx_status;
317 	dma_addr_t tx_status_dma;
318 
319 	struct timer_list timer;	/* Media selection timer. */
320 	/* Frequently used and paired value: keep adjacent for cache effect. */
321 	int chip_id, drv_flags;
322 	struct pci_dev *pci_dev;
323 	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
324 	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
325 	struct tx_status_words *tx_tail_desc;
326 	unsigned int cur_tx, dirty_tx;
327 	int tx_threshold;
328 	unsigned int tx_full:1;				/* The Tx queue is full. */
329 	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
330 	unsigned int duplex_lock:1;
331 	unsigned int medialock:1;			/* Do not sense media. */
332 	unsigned int default_port:4;		/* Last dev->if_port value. */
333 	/* MII transceiver section. */
334 	int mii_cnt;						/* MII device addresses. */
335 	u16 advertising;					/* NWay media advertisement */
336 	unsigned char phys[MII_CNT];		/* MII device addresses, only first one used */
337 	spinlock_t lock;
338 	void __iomem *base;
339 };
340 
341 static int read_eeprom(void __iomem *ioaddr, int location);
342 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
343 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345 static int yellowfin_open(struct net_device *dev);
346 static void yellowfin_timer(unsigned long data);
347 static void yellowfin_tx_timeout(struct net_device *dev);
348 static int yellowfin_init_ring(struct net_device *dev);
349 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
350 					struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
357 
358 static const struct net_device_ops netdev_ops = {
359 	.ndo_open 		= yellowfin_open,
360 	.ndo_stop 		= yellowfin_close,
361 	.ndo_start_xmit 	= yellowfin_start_xmit,
362 	.ndo_set_rx_mode	= set_rx_mode,
363 	.ndo_change_mtu		= eth_change_mtu,
364 	.ndo_validate_addr	= eth_validate_addr,
365 	.ndo_set_mac_address 	= eth_mac_addr,
366 	.ndo_do_ioctl 		= netdev_ioctl,
367 	.ndo_tx_timeout 	= yellowfin_tx_timeout,
368 };
369 
yellowfin_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)370 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
371 					const struct pci_device_id *ent)
372 {
373 	struct net_device *dev;
374 	struct yellowfin_private *np;
375 	int irq;
376 	int chip_idx = ent->driver_data;
377 	static int find_cnt;
378 	void __iomem *ioaddr;
379 	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380 	int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381         void *ring_space;
382         dma_addr_t ring_dma;
383 #ifdef USE_IO_OPS
384 	int bar = 0;
385 #else
386 	int bar = 1;
387 #endif
388 
389 /* when built into the kernel, we only print version if device is found */
390 #ifndef MODULE
391 	static int printed_version;
392 	if (!printed_version++)
393 		printk(version);
394 #endif
395 
396 	i = pci_enable_device(pdev);
397 	if (i) return i;
398 
399 	dev = alloc_etherdev(sizeof(*np));
400 	if (!dev)
401 		return -ENOMEM;
402 
403 	SET_NETDEV_DEV(dev, &pdev->dev);
404 
405 	np = netdev_priv(dev);
406 
407 	if (pci_request_regions(pdev, DRV_NAME))
408 		goto err_out_free_netdev;
409 
410 	pci_set_master (pdev);
411 
412 	ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
413 	if (!ioaddr)
414 		goto err_out_free_res;
415 
416 	irq = pdev->irq;
417 
418 	if (drv_flags & DontUseEeprom)
419 		for (i = 0; i < 6; i++)
420 			dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
421 	else {
422 		int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
423 		for (i = 0; i < 6; i++)
424 			dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
425 	}
426 
427 	/* Reset the chip. */
428 	iowrite32(0x80000000, ioaddr + DMACtrl);
429 
430 	dev->base_addr = (unsigned long)ioaddr;
431 	dev->irq = irq;
432 
433 	pci_set_drvdata(pdev, dev);
434 	spin_lock_init(&np->lock);
435 
436 	np->pci_dev = pdev;
437 	np->chip_id = chip_idx;
438 	np->drv_flags = drv_flags;
439 	np->base = ioaddr;
440 
441 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
442 	if (!ring_space)
443 		goto err_out_cleardev;
444 	np->tx_ring = ring_space;
445 	np->tx_ring_dma = ring_dma;
446 
447 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
448 	if (!ring_space)
449 		goto err_out_unmap_tx;
450 	np->rx_ring = ring_space;
451 	np->rx_ring_dma = ring_dma;
452 
453 	ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
454 	if (!ring_space)
455 		goto err_out_unmap_rx;
456 	np->tx_status = ring_space;
457 	np->tx_status_dma = ring_dma;
458 
459 	if (dev->mem_start)
460 		option = dev->mem_start;
461 
462 	/* The lower four bits are the media type. */
463 	if (option > 0) {
464 		if (option & 0x200)
465 			np->full_duplex = 1;
466 		np->default_port = option & 15;
467 		if (np->default_port)
468 			np->medialock = 1;
469 	}
470 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
471 		np->full_duplex = 1;
472 
473 	if (np->full_duplex)
474 		np->duplex_lock = 1;
475 
476 	/* The Yellowfin-specific entries in the device structure. */
477 	dev->netdev_ops = &netdev_ops;
478 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
479 	dev->watchdog_timeo = TX_TIMEOUT;
480 
481 	if (mtu)
482 		dev->mtu = mtu;
483 
484 	i = register_netdev(dev);
485 	if (i)
486 		goto err_out_unmap_status;
487 
488 	netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
489 		    pci_id_tbl[chip_idx].name,
490 		    ioread32(ioaddr + ChipRev), ioaddr,
491 		    dev->dev_addr, irq);
492 
493 	if (np->drv_flags & HasMII) {
494 		int phy, phy_idx = 0;
495 		for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
496 			int mii_status = mdio_read(ioaddr, phy, 1);
497 			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
498 				np->phys[phy_idx++] = phy;
499 				np->advertising = mdio_read(ioaddr, phy, 4);
500 				netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
501 					    phy, mii_status, np->advertising);
502 			}
503 		}
504 		np->mii_cnt = phy_idx;
505 	}
506 
507 	find_cnt++;
508 
509 	return 0;
510 
511 err_out_unmap_status:
512         pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
513 		np->tx_status_dma);
514 err_out_unmap_rx:
515         pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
516 err_out_unmap_tx:
517         pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
518 err_out_cleardev:
519 	pci_set_drvdata(pdev, NULL);
520 	pci_iounmap(pdev, ioaddr);
521 err_out_free_res:
522 	pci_release_regions(pdev);
523 err_out_free_netdev:
524 	free_netdev (dev);
525 	return -ENODEV;
526 }
527 
read_eeprom(void __iomem * ioaddr,int location)528 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
529 {
530 	int bogus_cnt = 10000;		/* Typical 33Mhz: 1050 ticks */
531 
532 	iowrite8(location, ioaddr + EEAddr);
533 	iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
534 	while ((ioread8(ioaddr + EEStatus) & 0x80)  &&  --bogus_cnt > 0)
535 		;
536 	return ioread8(ioaddr + EERead);
537 }
538 
539 /* MII Managemen Data I/O accesses.
540    These routines assume the MDIO controller is idle, and do not exit until
541    the command is finished. */
542 
mdio_read(void __iomem * ioaddr,int phy_id,int location)543 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
544 {
545 	int i;
546 
547 	iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
548 	iowrite16(1, ioaddr + MII_Cmd);
549 	for (i = 10000; i >= 0; i--)
550 		if ((ioread16(ioaddr + MII_Status) & 1) == 0)
551 			break;
552 	return ioread16(ioaddr + MII_Rd_Data);
553 }
554 
mdio_write(void __iomem * ioaddr,int phy_id,int location,int value)555 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
556 {
557 	int i;
558 
559 	iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
560 	iowrite16(value, ioaddr + MII_Wr_Data);
561 
562 	/* Wait for the command to finish. */
563 	for (i = 10000; i >= 0; i--)
564 		if ((ioread16(ioaddr + MII_Status) & 1) == 0)
565 			break;
566 }
567 
568 
yellowfin_open(struct net_device * dev)569 static int yellowfin_open(struct net_device *dev)
570 {
571 	struct yellowfin_private *yp = netdev_priv(dev);
572 	void __iomem *ioaddr = yp->base;
573 	int i, ret;
574 
575 	/* Reset the chip. */
576 	iowrite32(0x80000000, ioaddr + DMACtrl);
577 
578 	ret = request_irq(dev->irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
579 	if (ret)
580 		return ret;
581 
582 	if (yellowfin_debug > 1)
583 		netdev_printk(KERN_DEBUG, dev, "%s() irq %d\n",
584 			      __func__, dev->irq);
585 
586 	ret = yellowfin_init_ring(dev);
587 	if (ret) {
588 		free_irq(dev->irq, dev);
589 		return ret;
590 	}
591 
592 	iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
593 	iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
594 
595 	for (i = 0; i < 6; i++)
596 		iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
597 
598 	/* Set up various condition 'select' registers.
599 	   There are no options here. */
600 	iowrite32(0x00800080, ioaddr + TxIntrSel); 	/* Interrupt on Tx abort */
601 	iowrite32(0x00800080, ioaddr + TxBranchSel);	/* Branch on Tx abort */
602 	iowrite32(0x00400040, ioaddr + TxWaitSel); 	/* Wait on Tx status */
603 	iowrite32(0x00400040, ioaddr + RxIntrSel);	/* Interrupt on Rx done */
604 	iowrite32(0x00400040, ioaddr + RxBranchSel);	/* Branch on Rx error */
605 	iowrite32(0x00400040, ioaddr + RxWaitSel);	/* Wait on Rx done */
606 
607 	/* Initialize other registers: with so many this eventually this will
608 	   converted to an offset/value list. */
609 	iowrite32(dma_ctrl, ioaddr + DMACtrl);
610 	iowrite16(fifo_cfg, ioaddr + FIFOcfg);
611 	/* Enable automatic generation of flow control frames, period 0xffff. */
612 	iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
613 
614 	yp->tx_threshold = 32;
615 	iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
616 
617 	if (dev->if_port == 0)
618 		dev->if_port = yp->default_port;
619 
620 	netif_start_queue(dev);
621 
622 	/* Setting the Rx mode will start the Rx process. */
623 	if (yp->drv_flags & IsGigabit) {
624 		/* We are always in full-duplex mode with gigabit! */
625 		yp->full_duplex = 1;
626 		iowrite16(0x01CF, ioaddr + Cnfg);
627 	} else {
628 		iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
629 		iowrite16(0x1018, ioaddr + FrameGap1);
630 		iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
631 	}
632 	set_rx_mode(dev);
633 
634 	/* Enable interrupts by setting the interrupt mask. */
635 	iowrite16(0x81ff, ioaddr + IntrEnb);			/* See enum intr_status_bits */
636 	iowrite16(0x0000, ioaddr + EventStatus);		/* Clear non-interrupting events */
637 	iowrite32(0x80008000, ioaddr + RxCtrl);		/* Start Rx and Tx channels. */
638 	iowrite32(0x80008000, ioaddr + TxCtrl);
639 
640 	if (yellowfin_debug > 2) {
641 		netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
642 	}
643 
644 	/* Set the timer to check for link beat. */
645 	init_timer(&yp->timer);
646 	yp->timer.expires = jiffies + 3*HZ;
647 	yp->timer.data = (unsigned long)dev;
648 	yp->timer.function = yellowfin_timer;				/* timer handler */
649 	add_timer(&yp->timer);
650 
651 	return 0;
652 }
653 
yellowfin_timer(unsigned long data)654 static void yellowfin_timer(unsigned long data)
655 {
656 	struct net_device *dev = (struct net_device *)data;
657 	struct yellowfin_private *yp = netdev_priv(dev);
658 	void __iomem *ioaddr = yp->base;
659 	int next_tick = 60*HZ;
660 
661 	if (yellowfin_debug > 3) {
662 		netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
663 			      ioread16(ioaddr + IntrStatus));
664 	}
665 
666 	if (yp->mii_cnt) {
667 		int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
668 		int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
669 		int negotiated = lpa & yp->advertising;
670 		if (yellowfin_debug > 1)
671 			netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
672 				      yp->phys[0], bmsr, lpa);
673 
674 		yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
675 
676 		iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
677 
678 		if (bmsr & BMSR_LSTATUS)
679 			next_tick = 60*HZ;
680 		else
681 			next_tick = 3*HZ;
682 	}
683 
684 	yp->timer.expires = jiffies + next_tick;
685 	add_timer(&yp->timer);
686 }
687 
yellowfin_tx_timeout(struct net_device * dev)688 static void yellowfin_tx_timeout(struct net_device *dev)
689 {
690 	struct yellowfin_private *yp = netdev_priv(dev);
691 	void __iomem *ioaddr = yp->base;
692 
693 	netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
694 		    yp->cur_tx, yp->dirty_tx,
695 		    ioread32(ioaddr + TxStatus),
696 		    ioread32(ioaddr + RxStatus));
697 
698 	/* Note: these should be KERN_DEBUG. */
699 	if (yellowfin_debug) {
700 		int i;
701 		pr_warning("  Rx ring %p: ", yp->rx_ring);
702 		for (i = 0; i < RX_RING_SIZE; i++)
703 			pr_cont(" %08x", yp->rx_ring[i].result_status);
704 		pr_cont("\n");
705 		pr_warning("  Tx ring %p: ", yp->tx_ring);
706 		for (i = 0; i < TX_RING_SIZE; i++)
707 			pr_cont(" %04x /%08x",
708 			       yp->tx_status[i].tx_errs,
709 			       yp->tx_ring[i].result_status);
710 		pr_cont("\n");
711 	}
712 
713 	/* If the hardware is found to hang regularly, we will update the code
714 	   to reinitialize the chip here. */
715 	dev->if_port = 0;
716 
717 	/* Wake the potentially-idle transmit channel. */
718 	iowrite32(0x10001000, yp->base + TxCtrl);
719 	if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
720 		netif_wake_queue (dev);		/* Typical path */
721 
722 	dev->trans_start = jiffies; /* prevent tx timeout */
723 	dev->stats.tx_errors++;
724 }
725 
726 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
yellowfin_init_ring(struct net_device * dev)727 static int yellowfin_init_ring(struct net_device *dev)
728 {
729 	struct yellowfin_private *yp = netdev_priv(dev);
730 	int i, j;
731 
732 	yp->tx_full = 0;
733 	yp->cur_rx = yp->cur_tx = 0;
734 	yp->dirty_tx = 0;
735 
736 	yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
737 
738 	for (i = 0; i < RX_RING_SIZE; i++) {
739 		yp->rx_ring[i].dbdma_cmd =
740 			cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
741 		yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
742 			((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
743 	}
744 
745 	for (i = 0; i < RX_RING_SIZE; i++) {
746 		struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
747 		yp->rx_skbuff[i] = skb;
748 		if (skb == NULL)
749 			break;
750 		skb_reserve(skb, 2);	/* 16 byte align the IP header. */
751 		yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
752 			skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
753 	}
754 	if (i != RX_RING_SIZE) {
755 		for (j = 0; j < i; j++)
756 			dev_kfree_skb(yp->rx_skbuff[j]);
757 		return -ENOMEM;
758 	}
759 	yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
760 	yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
761 
762 #define NO_TXSTATS
763 #ifdef NO_TXSTATS
764 	/* In this mode the Tx ring needs only a single descriptor. */
765 	for (i = 0; i < TX_RING_SIZE; i++) {
766 		yp->tx_skbuff[i] = NULL;
767 		yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
768 		yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
769 			((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
770 	}
771 	/* Wrap ring */
772 	yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
773 #else
774 {
775 	/* Tx ring needs a pair of descriptors, the second for the status. */
776 	for (i = 0; i < TX_RING_SIZE; i++) {
777 		j = 2*i;
778 		yp->tx_skbuff[i] = 0;
779 		/* Branch on Tx error. */
780 		yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
781 		yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
782 			(j+1)*sizeof(struct yellowfin_desc));
783 		j++;
784 		if (yp->flags & FullTxStatus) {
785 			yp->tx_ring[j].dbdma_cmd =
786 				cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
787 			yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
788 			yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
789 				i*sizeof(struct tx_status_words));
790 		} else {
791 			/* Symbios chips write only tx_errs word. */
792 			yp->tx_ring[j].dbdma_cmd =
793 				cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
794 			yp->tx_ring[j].request_cnt = 2;
795 			/* Om pade ummmmm... */
796 			yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
797 				i*sizeof(struct tx_status_words) +
798 				&(yp->tx_status[0].tx_errs) -
799 				&(yp->tx_status[0]));
800 		}
801 		yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
802 			((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
803 	}
804 	/* Wrap ring */
805 	yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
806 }
807 #endif
808 	yp->tx_tail_desc = &yp->tx_status[0];
809 	return 0;
810 }
811 
yellowfin_start_xmit(struct sk_buff * skb,struct net_device * dev)812 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
813 					struct net_device *dev)
814 {
815 	struct yellowfin_private *yp = netdev_priv(dev);
816 	unsigned entry;
817 	int len = skb->len;
818 
819 	netif_stop_queue (dev);
820 
821 	/* Note: Ordering is important here, set the field with the
822 	   "ownership" bit last, and only then increment cur_tx. */
823 
824 	/* Calculate the next Tx descriptor entry. */
825 	entry = yp->cur_tx % TX_RING_SIZE;
826 
827 	if (gx_fix) {	/* Note: only works for paddable protocols e.g.  IP. */
828 		int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
829 		/* Fix GX chipset errata. */
830 		if (cacheline_end > 24  || cacheline_end == 0) {
831 			len = skb->len + 32 - cacheline_end + 1;
832 			if (skb_padto(skb, len)) {
833 				yp->tx_skbuff[entry] = NULL;
834 				netif_wake_queue(dev);
835 				return NETDEV_TX_OK;
836 			}
837 		}
838 	}
839 	yp->tx_skbuff[entry] = skb;
840 
841 #ifdef NO_TXSTATS
842 	yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
843 		skb->data, len, PCI_DMA_TODEVICE));
844 	yp->tx_ring[entry].result_status = 0;
845 	if (entry >= TX_RING_SIZE-1) {
846 		/* New stop command. */
847 		yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
848 		yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
849 			cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
850 	} else {
851 		yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
852 		yp->tx_ring[entry].dbdma_cmd =
853 			cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
854 	}
855 	yp->cur_tx++;
856 #else
857 	yp->tx_ring[entry<<1].request_cnt = len;
858 	yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
859 		skb->data, len, PCI_DMA_TODEVICE));
860 	/* The input_last (status-write) command is constant, but we must
861 	   rewrite the subsequent 'stop' command. */
862 
863 	yp->cur_tx++;
864 	{
865 		unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
866 		yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
867 	}
868 	/* Final step -- overwrite the old 'stop' command. */
869 
870 	yp->tx_ring[entry<<1].dbdma_cmd =
871 		cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
872 					  CMD_TX_PKT | BRANCH_IFTRUE) | len);
873 #endif
874 
875 	/* Non-x86 Todo: explicitly flush cache lines here. */
876 
877 	/* Wake the potentially-idle transmit channel. */
878 	iowrite32(0x10001000, yp->base + TxCtrl);
879 
880 	if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
881 		netif_start_queue (dev);		/* Typical path */
882 	else
883 		yp->tx_full = 1;
884 
885 	if (yellowfin_debug > 4) {
886 		netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
887 			      yp->cur_tx, entry);
888 	}
889 	return NETDEV_TX_OK;
890 }
891 
892 /* The interrupt handler does all of the Rx thread work and cleans up
893    after the Tx thread. */
yellowfin_interrupt(int irq,void * dev_instance)894 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
895 {
896 	struct net_device *dev = dev_instance;
897 	struct yellowfin_private *yp;
898 	void __iomem *ioaddr;
899 	int boguscnt = max_interrupt_work;
900 	unsigned int handled = 0;
901 
902 	yp = netdev_priv(dev);
903 	ioaddr = yp->base;
904 
905 	spin_lock (&yp->lock);
906 
907 	do {
908 		u16 intr_status = ioread16(ioaddr + IntrClear);
909 
910 		if (yellowfin_debug > 4)
911 			netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
912 				      intr_status);
913 
914 		if (intr_status == 0)
915 			break;
916 		handled = 1;
917 
918 		if (intr_status & (IntrRxDone | IntrEarlyRx)) {
919 			yellowfin_rx(dev);
920 			iowrite32(0x10001000, ioaddr + RxCtrl);		/* Wake Rx engine. */
921 		}
922 
923 #ifdef NO_TXSTATS
924 		for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
925 			int entry = yp->dirty_tx % TX_RING_SIZE;
926 			struct sk_buff *skb;
927 
928 			if (yp->tx_ring[entry].result_status == 0)
929 				break;
930 			skb = yp->tx_skbuff[entry];
931 			dev->stats.tx_packets++;
932 			dev->stats.tx_bytes += skb->len;
933 			/* Free the original skb. */
934 			pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
935 				skb->len, PCI_DMA_TODEVICE);
936 			dev_kfree_skb_irq(skb);
937 			yp->tx_skbuff[entry] = NULL;
938 		}
939 		if (yp->tx_full &&
940 		    yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
941 			/* The ring is no longer full, clear tbusy. */
942 			yp->tx_full = 0;
943 			netif_wake_queue(dev);
944 		}
945 #else
946 		if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
947 			unsigned dirty_tx = yp->dirty_tx;
948 
949 			for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
950 				 dirty_tx++) {
951 				/* Todo: optimize this. */
952 				int entry = dirty_tx % TX_RING_SIZE;
953 				u16 tx_errs = yp->tx_status[entry].tx_errs;
954 				struct sk_buff *skb;
955 
956 #ifndef final_version
957 				if (yellowfin_debug > 5)
958 					netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
959 						      entry,
960 						      yp->tx_status[entry].tx_cnt,
961 						      yp->tx_status[entry].tx_errs,
962 						      yp->tx_status[entry].total_tx_cnt,
963 						      yp->tx_status[entry].paused);
964 #endif
965 				if (tx_errs == 0)
966 					break;	/* It still hasn't been Txed */
967 				skb = yp->tx_skbuff[entry];
968 				if (tx_errs & 0xF810) {
969 					/* There was an major error, log it. */
970 #ifndef final_version
971 					if (yellowfin_debug > 1)
972 						netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
973 							      tx_errs);
974 #endif
975 					dev->stats.tx_errors++;
976 					if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
977 					if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
978 					if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
979 					if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
980 				} else {
981 #ifndef final_version
982 					if (yellowfin_debug > 4)
983 						netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
984 							      tx_errs);
985 #endif
986 					dev->stats.tx_bytes += skb->len;
987 					dev->stats.collisions += tx_errs & 15;
988 					dev->stats.tx_packets++;
989 				}
990 				/* Free the original skb. */
991 				pci_unmap_single(yp->pci_dev,
992 					yp->tx_ring[entry<<1].addr, skb->len,
993 					PCI_DMA_TODEVICE);
994 				dev_kfree_skb_irq(skb);
995 				yp->tx_skbuff[entry] = 0;
996 				/* Mark status as empty. */
997 				yp->tx_status[entry].tx_errs = 0;
998 			}
999 
1000 #ifndef final_version
1001 			if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1002 				netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
1003 					   dirty_tx, yp->cur_tx, yp->tx_full);
1004 				dirty_tx += TX_RING_SIZE;
1005 			}
1006 #endif
1007 
1008 			if (yp->tx_full &&
1009 			    yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1010 				/* The ring is no longer full, clear tbusy. */
1011 				yp->tx_full = 0;
1012 				netif_wake_queue(dev);
1013 			}
1014 
1015 			yp->dirty_tx = dirty_tx;
1016 			yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1017 		}
1018 #endif
1019 
1020 		/* Log errors and other uncommon events. */
1021 		if (intr_status & 0x2ee)	/* Abnormal error summary. */
1022 			yellowfin_error(dev, intr_status);
1023 
1024 		if (--boguscnt < 0) {
1025 			netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1026 				    intr_status);
1027 			break;
1028 		}
1029 	} while (1);
1030 
1031 	if (yellowfin_debug > 3)
1032 		netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1033 			      ioread16(ioaddr + IntrStatus));
1034 
1035 	spin_unlock (&yp->lock);
1036 	return IRQ_RETVAL(handled);
1037 }
1038 
1039 /* This routine is logically part of the interrupt handler, but separated
1040    for clarity and better register allocation. */
yellowfin_rx(struct net_device * dev)1041 static int yellowfin_rx(struct net_device *dev)
1042 {
1043 	struct yellowfin_private *yp = netdev_priv(dev);
1044 	int entry = yp->cur_rx % RX_RING_SIZE;
1045 	int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1046 
1047 	if (yellowfin_debug > 4) {
1048 		printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1049 			   entry, yp->rx_ring[entry].result_status);
1050 		printk(KERN_DEBUG "   #%d desc. %08x %08x %08x\n",
1051 			   entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1052 			   yp->rx_ring[entry].result_status);
1053 	}
1054 
1055 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1056 	while (1) {
1057 		struct yellowfin_desc *desc = &yp->rx_ring[entry];
1058 		struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1059 		s16 frame_status;
1060 		u16 desc_status;
1061 		int data_size;
1062 		u8 *buf_addr;
1063 
1064 		if(!desc->result_status)
1065 			break;
1066 		pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1067 			yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1068 		desc_status = le32_to_cpu(desc->result_status) >> 16;
1069 		buf_addr = rx_skb->data;
1070 		data_size = (le32_to_cpu(desc->dbdma_cmd) -
1071 			le32_to_cpu(desc->result_status)) & 0xffff;
1072 		frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1073 		if (yellowfin_debug > 4)
1074 			printk(KERN_DEBUG "  %s() status was %04x\n",
1075 			       __func__, frame_status);
1076 		if (--boguscnt < 0)
1077 			break;
1078 		if ( ! (desc_status & RX_EOP)) {
1079 			if (data_size != 0)
1080 				netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1081 					    desc_status, data_size);
1082 			dev->stats.rx_length_errors++;
1083 		} else if ((yp->drv_flags & IsGigabit)  &&  (frame_status & 0x0038)) {
1084 			/* There was a error. */
1085 			if (yellowfin_debug > 3)
1086 				printk(KERN_DEBUG "  %s() Rx error was %04x\n",
1087 				       __func__, frame_status);
1088 			dev->stats.rx_errors++;
1089 			if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1090 			if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1091 			if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1092 			if (frame_status < 0) dev->stats.rx_dropped++;
1093 		} else if ( !(yp->drv_flags & IsGigabit)  &&
1094 				   ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1095 			u8 status1 = buf_addr[data_size-2];
1096 			u8 status2 = buf_addr[data_size-1];
1097 			dev->stats.rx_errors++;
1098 			if (status1 & 0xC0) dev->stats.rx_length_errors++;
1099 			if (status2 & 0x03) dev->stats.rx_frame_errors++;
1100 			if (status2 & 0x04) dev->stats.rx_crc_errors++;
1101 			if (status2 & 0x80) dev->stats.rx_dropped++;
1102 #ifdef YF_PROTOTYPE		/* Support for prototype hardware errata. */
1103 		} else if ((yp->flags & HasMACAddrBug)  &&
1104 			memcmp(le32_to_cpu(yp->rx_ring_dma +
1105 				entry*sizeof(struct yellowfin_desc)),
1106 				dev->dev_addr, 6) != 0 &&
1107 			memcmp(le32_to_cpu(yp->rx_ring_dma +
1108 				entry*sizeof(struct yellowfin_desc)),
1109 				"\377\377\377\377\377\377", 6) != 0) {
1110 			if (bogus_rx++ == 0)
1111 				netdev_warn(dev, "Bad frame to %pM\n",
1112 					    buf_addr);
1113 #endif
1114 		} else {
1115 			struct sk_buff *skb;
1116 			int pkt_len = data_size -
1117 				(yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1118 			/* To verify: Yellowfin Length should omit the CRC! */
1119 
1120 #ifndef final_version
1121 			if (yellowfin_debug > 4)
1122 				printk(KERN_DEBUG "  %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1123 				       __func__, pkt_len, data_size, boguscnt);
1124 #endif
1125 			/* Check if the packet is long enough to just pass up the skbuff
1126 			   without copying to a properly sized skbuff. */
1127 			if (pkt_len > rx_copybreak) {
1128 				skb_put(skb = rx_skb, pkt_len);
1129 				pci_unmap_single(yp->pci_dev,
1130 					le32_to_cpu(yp->rx_ring[entry].addr),
1131 					yp->rx_buf_sz,
1132 					PCI_DMA_FROMDEVICE);
1133 				yp->rx_skbuff[entry] = NULL;
1134 			} else {
1135 				skb = netdev_alloc_skb(dev, pkt_len + 2);
1136 				if (skb == NULL)
1137 					break;
1138 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1139 				skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1140 				skb_put(skb, pkt_len);
1141 				pci_dma_sync_single_for_device(yp->pci_dev,
1142 								le32_to_cpu(desc->addr),
1143 								yp->rx_buf_sz,
1144 								PCI_DMA_FROMDEVICE);
1145 			}
1146 			skb->protocol = eth_type_trans(skb, dev);
1147 			netif_rx(skb);
1148 			dev->stats.rx_packets++;
1149 			dev->stats.rx_bytes += pkt_len;
1150 		}
1151 		entry = (++yp->cur_rx) % RX_RING_SIZE;
1152 	}
1153 
1154 	/* Refill the Rx ring buffers. */
1155 	for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1156 		entry = yp->dirty_rx % RX_RING_SIZE;
1157 		if (yp->rx_skbuff[entry] == NULL) {
1158 			struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1159 			if (skb == NULL)
1160 				break;				/* Better luck next round. */
1161 			yp->rx_skbuff[entry] = skb;
1162 			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1163 			yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1164 				skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1165 		}
1166 		yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1167 		yp->rx_ring[entry].result_status = 0;	/* Clear complete bit. */
1168 		if (entry != 0)
1169 			yp->rx_ring[entry - 1].dbdma_cmd =
1170 				cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1171 		else
1172 			yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1173 				cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1174 							| yp->rx_buf_sz);
1175 	}
1176 
1177 	return 0;
1178 }
1179 
yellowfin_error(struct net_device * dev,int intr_status)1180 static void yellowfin_error(struct net_device *dev, int intr_status)
1181 {
1182 	netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1183 	/* Hmmmmm, it's not clear what to do here. */
1184 	if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1185 		dev->stats.tx_errors++;
1186 	if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1187 		dev->stats.rx_errors++;
1188 }
1189 
yellowfin_close(struct net_device * dev)1190 static int yellowfin_close(struct net_device *dev)
1191 {
1192 	struct yellowfin_private *yp = netdev_priv(dev);
1193 	void __iomem *ioaddr = yp->base;
1194 	int i;
1195 
1196 	netif_stop_queue (dev);
1197 
1198 	if (yellowfin_debug > 1) {
1199 		netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1200 			      ioread16(ioaddr + TxStatus),
1201 			      ioread16(ioaddr + RxStatus),
1202 			      ioread16(ioaddr + IntrStatus));
1203 		netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1204 			      yp->cur_tx, yp->dirty_tx,
1205 			      yp->cur_rx, yp->dirty_rx);
1206 	}
1207 
1208 	/* Disable interrupts by clearing the interrupt mask. */
1209 	iowrite16(0x0000, ioaddr + IntrEnb);
1210 
1211 	/* Stop the chip's Tx and Rx processes. */
1212 	iowrite32(0x80000000, ioaddr + RxCtrl);
1213 	iowrite32(0x80000000, ioaddr + TxCtrl);
1214 
1215 	del_timer(&yp->timer);
1216 
1217 #if defined(__i386__)
1218 	if (yellowfin_debug > 2) {
1219 		printk(KERN_DEBUG "  Tx ring at %08llx:\n",
1220 				(unsigned long long)yp->tx_ring_dma);
1221 		for (i = 0; i < TX_RING_SIZE*2; i++)
1222 			printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1223 				   ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1224 				   i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1225 				   yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1226 		printk(KERN_DEBUG "  Tx status %p:\n", yp->tx_status);
1227 		for (i = 0; i < TX_RING_SIZE; i++)
1228 			printk(KERN_DEBUG "   #%d status %04x %04x %04x %04x\n",
1229 				   i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1230 				   yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1231 
1232 		printk(KERN_DEBUG "  Rx ring %08llx:\n",
1233 				(unsigned long long)yp->rx_ring_dma);
1234 		for (i = 0; i < RX_RING_SIZE; i++) {
1235 			printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1236 				   ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1237 				   i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1238 				   yp->rx_ring[i].result_status);
1239 			if (yellowfin_debug > 6) {
1240 				if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1241 					int j;
1242 
1243 					printk(KERN_DEBUG);
1244 					for (j = 0; j < 0x50; j++)
1245 						pr_cont(" %04x",
1246 							get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1247 					pr_cont("\n");
1248 				}
1249 			}
1250 		}
1251 	}
1252 #endif /* __i386__ debugging only */
1253 
1254 	free_irq(dev->irq, dev);
1255 
1256 	/* Free all the skbuffs in the Rx queue. */
1257 	for (i = 0; i < RX_RING_SIZE; i++) {
1258 		yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1259 		yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1260 		if (yp->rx_skbuff[i]) {
1261 			dev_kfree_skb(yp->rx_skbuff[i]);
1262 		}
1263 		yp->rx_skbuff[i] = NULL;
1264 	}
1265 	for (i = 0; i < TX_RING_SIZE; i++) {
1266 		if (yp->tx_skbuff[i])
1267 			dev_kfree_skb(yp->tx_skbuff[i]);
1268 		yp->tx_skbuff[i] = NULL;
1269 	}
1270 
1271 #ifdef YF_PROTOTYPE			/* Support for prototype hardware errata. */
1272 	if (yellowfin_debug > 0) {
1273 		netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1274 			      bogus_rx);
1275 	}
1276 #endif
1277 
1278 	return 0;
1279 }
1280 
1281 /* Set or clear the multicast filter for this adaptor. */
1282 
set_rx_mode(struct net_device * dev)1283 static void set_rx_mode(struct net_device *dev)
1284 {
1285 	struct yellowfin_private *yp = netdev_priv(dev);
1286 	void __iomem *ioaddr = yp->base;
1287 	u16 cfg_value = ioread16(ioaddr + Cnfg);
1288 
1289 	/* Stop the Rx process to change any value. */
1290 	iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1291 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1292 		iowrite16(0x000F, ioaddr + AddrMode);
1293 	} else if ((netdev_mc_count(dev) > 64) ||
1294 		   (dev->flags & IFF_ALLMULTI)) {
1295 		/* Too many to filter well, or accept all multicasts. */
1296 		iowrite16(0x000B, ioaddr + AddrMode);
1297 	} else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1298 		struct netdev_hw_addr *ha;
1299 		u16 hash_table[4];
1300 		int i;
1301 
1302 		memset(hash_table, 0, sizeof(hash_table));
1303 		netdev_for_each_mc_addr(ha, dev) {
1304 			unsigned int bit;
1305 
1306 			/* Due to a bug in the early chip versions, multiple filter
1307 			   slots must be set for each address. */
1308 			if (yp->drv_flags & HasMulticastBug) {
1309 				bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1310 				hash_table[bit >> 4] |= (1 << bit);
1311 				bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1312 				hash_table[bit >> 4] |= (1 << bit);
1313 				bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1314 				hash_table[bit >> 4] |= (1 << bit);
1315 			}
1316 			bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1317 			hash_table[bit >> 4] |= (1 << bit);
1318 		}
1319 		/* Copy the hash table to the chip. */
1320 		for (i = 0; i < 4; i++)
1321 			iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1322 		iowrite16(0x0003, ioaddr + AddrMode);
1323 	} else {					/* Normal, unicast/broadcast-only mode. */
1324 		iowrite16(0x0001, ioaddr + AddrMode);
1325 	}
1326 	/* Restart the Rx process. */
1327 	iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1328 }
1329 
yellowfin_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1330 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1331 {
1332 	struct yellowfin_private *np = netdev_priv(dev);
1333 	strcpy(info->driver, DRV_NAME);
1334 	strcpy(info->version, DRV_VERSION);
1335 	strcpy(info->bus_info, pci_name(np->pci_dev));
1336 }
1337 
1338 static const struct ethtool_ops ethtool_ops = {
1339 	.get_drvinfo = yellowfin_get_drvinfo
1340 };
1341 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1342 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1343 {
1344 	struct yellowfin_private *np = netdev_priv(dev);
1345 	void __iomem *ioaddr = np->base;
1346 	struct mii_ioctl_data *data = if_mii(rq);
1347 
1348 	switch(cmd) {
1349 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1350 		data->phy_id = np->phys[0] & 0x1f;
1351 		/* Fall Through */
1352 
1353 	case SIOCGMIIREG:		/* Read MII PHY register. */
1354 		data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1355 		return 0;
1356 
1357 	case SIOCSMIIREG:		/* Write MII PHY register. */
1358 		if (data->phy_id == np->phys[0]) {
1359 			u16 value = data->val_in;
1360 			switch (data->reg_num) {
1361 			case 0:
1362 				/* Check for autonegotiation on or reset. */
1363 				np->medialock = (value & 0x9000) ? 0 : 1;
1364 				if (np->medialock)
1365 					np->full_duplex = (value & 0x0100) ? 1 : 0;
1366 				break;
1367 			case 4: np->advertising = value; break;
1368 			}
1369 			/* Perhaps check_duplex(dev), depending on chip semantics. */
1370 		}
1371 		mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1372 		return 0;
1373 	default:
1374 		return -EOPNOTSUPP;
1375 	}
1376 }
1377 
1378 
yellowfin_remove_one(struct pci_dev * pdev)1379 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1380 {
1381 	struct net_device *dev = pci_get_drvdata(pdev);
1382 	struct yellowfin_private *np;
1383 
1384 	BUG_ON(!dev);
1385 	np = netdev_priv(dev);
1386 
1387         pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1388 		np->tx_status_dma);
1389 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1390 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1391 	unregister_netdev (dev);
1392 
1393 	pci_iounmap(pdev, np->base);
1394 
1395 	pci_release_regions (pdev);
1396 
1397 	free_netdev (dev);
1398 	pci_set_drvdata(pdev, NULL);
1399 }
1400 
1401 
1402 static struct pci_driver yellowfin_driver = {
1403 	.name		= DRV_NAME,
1404 	.id_table	= yellowfin_pci_tbl,
1405 	.probe		= yellowfin_init_one,
1406 	.remove		= __devexit_p(yellowfin_remove_one),
1407 };
1408 
1409 
yellowfin_init(void)1410 static int __init yellowfin_init (void)
1411 {
1412 /* when a module, this is printed whether or not devices are found in probe */
1413 #ifdef MODULE
1414 	printk(version);
1415 #endif
1416 	return pci_register_driver(&yellowfin_driver);
1417 }
1418 
1419 
yellowfin_cleanup(void)1420 static void __exit yellowfin_cleanup (void)
1421 {
1422 	pci_unregister_driver (&yellowfin_driver);
1423 }
1424 
1425 
1426 module_init(yellowfin_init);
1427 module_exit(yellowfin_cleanup);
1428