• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  arch/s390/mm/fault.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Hartmut Penner (hp@de.ibm.com)
7  *               Ulrich Weigand (uweigand@de.ibm.com)
8  *
9  *  Derived from "arch/i386/mm/fault.c"
10  *    Copyright (C) 1995  Linus Torvalds
11  */
12 
13 #include <linux/kernel_stat.h>
14 #include <linux/perf_event.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/module.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/pgtable.h>
36 #include <asm/irq.h>
37 #include <asm/mmu_context.h>
38 #include <asm/facility.h>
39 #include "../kernel/entry.h"
40 
41 #ifndef CONFIG_64BIT
42 #define __FAIL_ADDR_MASK 0x7ffff000
43 #define __SUBCODE_MASK 0x0200
44 #define __PF_RES_FIELD 0ULL
45 #else /* CONFIG_64BIT */
46 #define __FAIL_ADDR_MASK -4096L
47 #define __SUBCODE_MASK 0x0600
48 #define __PF_RES_FIELD 0x8000000000000000ULL
49 #endif /* CONFIG_64BIT */
50 
51 #define VM_FAULT_BADCONTEXT	0x010000
52 #define VM_FAULT_BADMAP		0x020000
53 #define VM_FAULT_BADACCESS	0x040000
54 
55 static unsigned long store_indication;
56 
fault_init(void)57 void fault_init(void)
58 {
59 	if (test_facility(2) && test_facility(75))
60 		store_indication = 0xc00;
61 }
62 
notify_page_fault(struct pt_regs * regs)63 static inline int notify_page_fault(struct pt_regs *regs)
64 {
65 	int ret = 0;
66 
67 	/* kprobe_running() needs smp_processor_id() */
68 	if (kprobes_built_in() && !user_mode(regs)) {
69 		preempt_disable();
70 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
71 			ret = 1;
72 		preempt_enable();
73 	}
74 	return ret;
75 }
76 
77 
78 /*
79  * Unlock any spinlocks which will prevent us from getting the
80  * message out.
81  */
bust_spinlocks(int yes)82 void bust_spinlocks(int yes)
83 {
84 	if (yes) {
85 		oops_in_progress = 1;
86 	} else {
87 		int loglevel_save = console_loglevel;
88 		console_unblank();
89 		oops_in_progress = 0;
90 		/*
91 		 * OK, the message is on the console.  Now we call printk()
92 		 * without oops_in_progress set so that printk will give klogd
93 		 * a poke.  Hold onto your hats...
94 		 */
95 		console_loglevel = 15;
96 		printk(" ");
97 		console_loglevel = loglevel_save;
98 	}
99 }
100 
101 /*
102  * Returns the address space associated with the fault.
103  * Returns 0 for kernel space and 1 for user space.
104  */
user_space_fault(unsigned long trans_exc_code)105 static inline int user_space_fault(unsigned long trans_exc_code)
106 {
107 	/*
108 	 * The lowest two bits of the translation exception
109 	 * identification indicate which paging table was used.
110 	 */
111 	trans_exc_code &= 3;
112 	if (trans_exc_code == 2)
113 		/* Access via secondary space, set_fs setting decides */
114 		return current->thread.mm_segment.ar4;
115 	if (user_mode == HOME_SPACE_MODE)
116 		/* User space if the access has been done via home space. */
117 		return trans_exc_code == 3;
118 	/*
119 	 * If the user space is not the home space the kernel runs in home
120 	 * space. Access via secondary space has already been covered,
121 	 * access via primary space or access register is from user space
122 	 * and access via home space is from the kernel.
123 	 */
124 	return trans_exc_code != 3;
125 }
126 
report_user_fault(struct pt_regs * regs,long signr)127 static inline void report_user_fault(struct pt_regs *regs, long signr)
128 {
129 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
130 		return;
131 	if (!unhandled_signal(current, signr))
132 		return;
133 	if (!printk_ratelimit())
134 		return;
135 	printk(KERN_ALERT "User process fault: interruption code 0x%X ",
136 	       regs->int_code);
137 	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
138 	printk(KERN_CONT "\n");
139 	printk(KERN_ALERT "failing address: %lX\n",
140 	       regs->int_parm_long & __FAIL_ADDR_MASK);
141 	show_regs(regs);
142 }
143 
144 /*
145  * Send SIGSEGV to task.  This is an external routine
146  * to keep the stack usage of do_page_fault small.
147  */
do_sigsegv(struct pt_regs * regs,int si_code)148 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
149 {
150 	struct siginfo si;
151 
152 	report_user_fault(regs, SIGSEGV);
153 	si.si_signo = SIGSEGV;
154 	si.si_code = si_code;
155 	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
156 	force_sig_info(SIGSEGV, &si, current);
157 }
158 
do_no_context(struct pt_regs * regs)159 static noinline void do_no_context(struct pt_regs *regs)
160 {
161 	const struct exception_table_entry *fixup;
162 	unsigned long address;
163 
164 	/* Are we prepared to handle this kernel fault?  */
165 	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
166 	if (fixup) {
167 		regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
168 		return;
169 	}
170 
171 	/*
172 	 * Oops. The kernel tried to access some bad page. We'll have to
173 	 * terminate things with extreme prejudice.
174 	 */
175 	address = regs->int_parm_long & __FAIL_ADDR_MASK;
176 	if (!user_space_fault(regs->int_parm_long))
177 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
178 		       " at virtual kernel address %p\n", (void *)address);
179 	else
180 		printk(KERN_ALERT "Unable to handle kernel paging request"
181 		       " at virtual user address %p\n", (void *)address);
182 
183 	die(regs, "Oops");
184 	do_exit(SIGKILL);
185 }
186 
do_low_address(struct pt_regs * regs)187 static noinline void do_low_address(struct pt_regs *regs)
188 {
189 	/* Low-address protection hit in kernel mode means
190 	   NULL pointer write access in kernel mode.  */
191 	if (regs->psw.mask & PSW_MASK_PSTATE) {
192 		/* Low-address protection hit in user mode 'cannot happen'. */
193 		die (regs, "Low-address protection");
194 		do_exit(SIGKILL);
195 	}
196 
197 	do_no_context(regs);
198 }
199 
do_sigbus(struct pt_regs * regs)200 static noinline void do_sigbus(struct pt_regs *regs)
201 {
202 	struct task_struct *tsk = current;
203 	struct siginfo si;
204 
205 	/*
206 	 * Send a sigbus, regardless of whether we were in kernel
207 	 * or user mode.
208 	 */
209 	si.si_signo = SIGBUS;
210 	si.si_errno = 0;
211 	si.si_code = BUS_ADRERR;
212 	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
213 	force_sig_info(SIGBUS, &si, tsk);
214 }
215 
do_fault_error(struct pt_regs * regs,int fault)216 static noinline void do_fault_error(struct pt_regs *regs, int fault)
217 {
218 	int si_code;
219 
220 	switch (fault) {
221 	case VM_FAULT_BADACCESS:
222 	case VM_FAULT_BADMAP:
223 		/* Bad memory access. Check if it is kernel or user space. */
224 		if (regs->psw.mask & PSW_MASK_PSTATE) {
225 			/* User mode accesses just cause a SIGSEGV */
226 			si_code = (fault == VM_FAULT_BADMAP) ?
227 				SEGV_MAPERR : SEGV_ACCERR;
228 			do_sigsegv(regs, si_code);
229 			return;
230 		}
231 	case VM_FAULT_BADCONTEXT:
232 		do_no_context(regs);
233 		break;
234 	default: /* fault & VM_FAULT_ERROR */
235 		if (fault & VM_FAULT_OOM) {
236 			if (!(regs->psw.mask & PSW_MASK_PSTATE))
237 				do_no_context(regs);
238 			else
239 				pagefault_out_of_memory();
240 		} else if (fault & VM_FAULT_SIGBUS) {
241 			/* Kernel mode? Handle exceptions or die */
242 			if (!(regs->psw.mask & PSW_MASK_PSTATE))
243 				do_no_context(regs);
244 			else
245 				do_sigbus(regs);
246 		} else
247 			BUG();
248 		break;
249 	}
250 }
251 
252 /*
253  * This routine handles page faults.  It determines the address,
254  * and the problem, and then passes it off to one of the appropriate
255  * routines.
256  *
257  * interruption code (int_code):
258  *   04       Protection           ->  Write-Protection  (suprression)
259  *   10       Segment translation  ->  Not present       (nullification)
260  *   11       Page translation     ->  Not present       (nullification)
261  *   3b       Region third trans.  ->  Not present       (nullification)
262  */
do_exception(struct pt_regs * regs,int access)263 static inline int do_exception(struct pt_regs *regs, int access)
264 {
265 	struct task_struct *tsk;
266 	struct mm_struct *mm;
267 	struct vm_area_struct *vma;
268 	unsigned long trans_exc_code;
269 	unsigned long address;
270 	unsigned int flags;
271 	int fault;
272 
273 	if (notify_page_fault(regs))
274 		return 0;
275 
276 	tsk = current;
277 	mm = tsk->mm;
278 	trans_exc_code = regs->int_parm_long;
279 
280 	/*
281 	 * Verify that the fault happened in user space, that
282 	 * we are not in an interrupt and that there is a
283 	 * user context.
284 	 */
285 	fault = VM_FAULT_BADCONTEXT;
286 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
287 		goto out;
288 
289 	address = trans_exc_code & __FAIL_ADDR_MASK;
290 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
291 	flags = FAULT_FLAG_ALLOW_RETRY;
292 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
293 		flags |= FAULT_FLAG_WRITE;
294 	down_read(&mm->mmap_sem);
295 
296 #ifdef CONFIG_PGSTE
297 	if (test_tsk_thread_flag(current, TIF_SIE) && S390_lowcore.gmap) {
298 		address = __gmap_fault(address,
299 				     (struct gmap *) S390_lowcore.gmap);
300 		if (address == -EFAULT) {
301 			fault = VM_FAULT_BADMAP;
302 			goto out_up;
303 		}
304 		if (address == -ENOMEM) {
305 			fault = VM_FAULT_OOM;
306 			goto out_up;
307 		}
308 	}
309 #endif
310 
311 retry:
312 	fault = VM_FAULT_BADMAP;
313 	vma = find_vma(mm, address);
314 	if (!vma)
315 		goto out_up;
316 
317 	if (unlikely(vma->vm_start > address)) {
318 		if (!(vma->vm_flags & VM_GROWSDOWN))
319 			goto out_up;
320 		if (expand_stack(vma, address))
321 			goto out_up;
322 	}
323 
324 	/*
325 	 * Ok, we have a good vm_area for this memory access, so
326 	 * we can handle it..
327 	 */
328 	fault = VM_FAULT_BADACCESS;
329 	if (unlikely(!(vma->vm_flags & access)))
330 		goto out_up;
331 
332 	if (is_vm_hugetlb_page(vma))
333 		address &= HPAGE_MASK;
334 	/*
335 	 * If for any reason at all we couldn't handle the fault,
336 	 * make sure we exit gracefully rather than endlessly redo
337 	 * the fault.
338 	 */
339 	fault = handle_mm_fault(mm, vma, address, flags);
340 	if (unlikely(fault & VM_FAULT_ERROR))
341 		goto out_up;
342 
343 	/*
344 	 * Major/minor page fault accounting is only done on the
345 	 * initial attempt. If we go through a retry, it is extremely
346 	 * likely that the page will be found in page cache at that point.
347 	 */
348 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
349 		if (fault & VM_FAULT_MAJOR) {
350 			tsk->maj_flt++;
351 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
352 				      regs, address);
353 		} else {
354 			tsk->min_flt++;
355 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
356 				      regs, address);
357 		}
358 		if (fault & VM_FAULT_RETRY) {
359 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
360 			 * of starvation. */
361 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
362 			down_read(&mm->mmap_sem);
363 			goto retry;
364 		}
365 	}
366 	/*
367 	 * The instruction that caused the program check will
368 	 * be repeated. Don't signal single step via SIGTRAP.
369 	 */
370 	clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
371 	fault = 0;
372 out_up:
373 	up_read(&mm->mmap_sem);
374 out:
375 	return fault;
376 }
377 
do_protection_exception(struct pt_regs * regs)378 void __kprobes do_protection_exception(struct pt_regs *regs)
379 {
380 	unsigned long trans_exc_code;
381 	int fault;
382 
383 	trans_exc_code = regs->int_parm_long;
384 	/* Protection exception is suppressing, decrement psw address. */
385 	regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
386 	/*
387 	 * Check for low-address protection.  This needs to be treated
388 	 * as a special case because the translation exception code
389 	 * field is not guaranteed to contain valid data in this case.
390 	 */
391 	if (unlikely(!(trans_exc_code & 4))) {
392 		do_low_address(regs);
393 		return;
394 	}
395 	fault = do_exception(regs, VM_WRITE);
396 	if (unlikely(fault))
397 		do_fault_error(regs, fault);
398 }
399 
do_dat_exception(struct pt_regs * regs)400 void __kprobes do_dat_exception(struct pt_regs *regs)
401 {
402 	int access, fault;
403 
404 	access = VM_READ | VM_EXEC | VM_WRITE;
405 	fault = do_exception(regs, access);
406 	if (unlikely(fault))
407 		do_fault_error(regs, fault);
408 }
409 
410 #ifdef CONFIG_64BIT
do_asce_exception(struct pt_regs * regs)411 void __kprobes do_asce_exception(struct pt_regs *regs)
412 {
413 	struct mm_struct *mm = current->mm;
414 	struct vm_area_struct *vma;
415 	unsigned long trans_exc_code;
416 
417 	trans_exc_code = regs->int_parm_long;
418 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
419 		goto no_context;
420 
421 	down_read(&mm->mmap_sem);
422 	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
423 	up_read(&mm->mmap_sem);
424 
425 	if (vma) {
426 		update_mm(mm, current);
427 		return;
428 	}
429 
430 	/* User mode accesses just cause a SIGSEGV */
431 	if (regs->psw.mask & PSW_MASK_PSTATE) {
432 		do_sigsegv(regs, SEGV_MAPERR);
433 		return;
434 	}
435 
436 no_context:
437 	do_no_context(regs);
438 }
439 #endif
440 
__handle_fault(unsigned long uaddr,unsigned long pgm_int_code,int write)441 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
442 {
443 	struct pt_regs regs;
444 	int access, fault;
445 
446 	/* Emulate a uaccess fault from kernel mode. */
447 	regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
448 	if (!irqs_disabled())
449 		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
450 	regs.psw.addr = (unsigned long) __builtin_return_address(0);
451 	regs.psw.addr |= PSW_ADDR_AMODE;
452 	regs.int_code = pgm_int_code;
453 	regs.int_parm_long = (uaddr & PAGE_MASK) | 2;
454 	access = write ? VM_WRITE : VM_READ;
455 	fault = do_exception(&regs, access);
456 	/*
457 	 * Since the fault happened in kernel mode while performing a uaccess
458 	 * all we need to do now is emulating a fixup in case "fault" is not
459 	 * zero.
460 	 * For the calling uaccess functions this results always in -EFAULT.
461 	 */
462 	return fault ? -EFAULT : 0;
463 }
464 
465 #ifdef CONFIG_PFAULT
466 /*
467  * 'pfault' pseudo page faults routines.
468  */
469 static int pfault_disable;
470 
nopfault(char * str)471 static int __init nopfault(char *str)
472 {
473 	pfault_disable = 1;
474 	return 1;
475 }
476 
477 __setup("nopfault", nopfault);
478 
479 struct pfault_refbk {
480 	u16 refdiagc;
481 	u16 reffcode;
482 	u16 refdwlen;
483 	u16 refversn;
484 	u64 refgaddr;
485 	u64 refselmk;
486 	u64 refcmpmk;
487 	u64 reserved;
488 } __attribute__ ((packed, aligned(8)));
489 
pfault_init(void)490 int pfault_init(void)
491 {
492 	struct pfault_refbk refbk = {
493 		.refdiagc = 0x258,
494 		.reffcode = 0,
495 		.refdwlen = 5,
496 		.refversn = 2,
497 		.refgaddr = __LC_CURRENT_PID,
498 		.refselmk = 1ULL << 48,
499 		.refcmpmk = 1ULL << 48,
500 		.reserved = __PF_RES_FIELD };
501         int rc;
502 
503 	if (pfault_disable)
504 		return -1;
505 	asm volatile(
506 		"	diag	%1,%0,0x258\n"
507 		"0:	j	2f\n"
508 		"1:	la	%0,8\n"
509 		"2:\n"
510 		EX_TABLE(0b,1b)
511 		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
512         return rc;
513 }
514 
pfault_fini(void)515 void pfault_fini(void)
516 {
517 	struct pfault_refbk refbk = {
518 		.refdiagc = 0x258,
519 		.reffcode = 1,
520 		.refdwlen = 5,
521 		.refversn = 2,
522 	};
523 
524 	if (pfault_disable)
525 		return;
526 	asm volatile(
527 		"	diag	%0,0,0x258\n"
528 		"0:\n"
529 		EX_TABLE(0b,0b)
530 		: : "a" (&refbk), "m" (refbk) : "cc");
531 }
532 
533 static DEFINE_SPINLOCK(pfault_lock);
534 static LIST_HEAD(pfault_list);
535 
pfault_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)536 static void pfault_interrupt(struct ext_code ext_code,
537 			     unsigned int param32, unsigned long param64)
538 {
539 	struct task_struct *tsk;
540 	__u16 subcode;
541 	pid_t pid;
542 
543 	/*
544 	 * Get the external interruption subcode & pfault
545 	 * initial/completion signal bit. VM stores this
546 	 * in the 'cpu address' field associated with the
547          * external interrupt.
548 	 */
549 	subcode = ext_code.subcode;
550 	if ((subcode & 0xff00) != __SUBCODE_MASK)
551 		return;
552 	kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
553 	if (subcode & 0x0080) {
554 		/* Get the token (= pid of the affected task). */
555 		pid = sizeof(void *) == 4 ? param32 : param64;
556 		rcu_read_lock();
557 		tsk = find_task_by_pid_ns(pid, &init_pid_ns);
558 		if (tsk)
559 			get_task_struct(tsk);
560 		rcu_read_unlock();
561 		if (!tsk)
562 			return;
563 	} else {
564 		tsk = current;
565 	}
566 	spin_lock(&pfault_lock);
567 	if (subcode & 0x0080) {
568 		/* signal bit is set -> a page has been swapped in by VM */
569 		if (tsk->thread.pfault_wait == 1) {
570 			/* Initial interrupt was faster than the completion
571 			 * interrupt. pfault_wait is valid. Set pfault_wait
572 			 * back to zero and wake up the process. This can
573 			 * safely be done because the task is still sleeping
574 			 * and can't produce new pfaults. */
575 			tsk->thread.pfault_wait = 0;
576 			list_del(&tsk->thread.list);
577 			wake_up_process(tsk);
578 			put_task_struct(tsk);
579 		} else {
580 			/* Completion interrupt was faster than initial
581 			 * interrupt. Set pfault_wait to -1 so the initial
582 			 * interrupt doesn't put the task to sleep.
583 			 * If the task is not running, ignore the completion
584 			 * interrupt since it must be a leftover of a PFAULT
585 			 * CANCEL operation which didn't remove all pending
586 			 * completion interrupts. */
587 			if (tsk->state == TASK_RUNNING)
588 				tsk->thread.pfault_wait = -1;
589 		}
590 		put_task_struct(tsk);
591 	} else {
592 		/* signal bit not set -> a real page is missing. */
593 		if (tsk->thread.pfault_wait == 1) {
594 			/* Already on the list with a reference: put to sleep */
595 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
596 			set_tsk_need_resched(tsk);
597 		} else if (tsk->thread.pfault_wait == -1) {
598 			/* Completion interrupt was faster than the initial
599 			 * interrupt (pfault_wait == -1). Set pfault_wait
600 			 * back to zero and exit. */
601 			tsk->thread.pfault_wait = 0;
602 		} else {
603 			/* Initial interrupt arrived before completion
604 			 * interrupt. Let the task sleep.
605 			 * An extra task reference is needed since a different
606 			 * cpu may set the task state to TASK_RUNNING again
607 			 * before the scheduler is reached. */
608 			get_task_struct(tsk);
609 			tsk->thread.pfault_wait = 1;
610 			list_add(&tsk->thread.list, &pfault_list);
611 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
612 			set_tsk_need_resched(tsk);
613 		}
614 	}
615 	spin_unlock(&pfault_lock);
616 }
617 
pfault_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)618 static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
619 				       unsigned long action, void *hcpu)
620 {
621 	struct thread_struct *thread, *next;
622 	struct task_struct *tsk;
623 
624 	switch (action) {
625 	case CPU_DEAD:
626 	case CPU_DEAD_FROZEN:
627 		spin_lock_irq(&pfault_lock);
628 		list_for_each_entry_safe(thread, next, &pfault_list, list) {
629 			thread->pfault_wait = 0;
630 			list_del(&thread->list);
631 			tsk = container_of(thread, struct task_struct, thread);
632 			wake_up_process(tsk);
633 			put_task_struct(tsk);
634 		}
635 		spin_unlock_irq(&pfault_lock);
636 		break;
637 	default:
638 		break;
639 	}
640 	return NOTIFY_OK;
641 }
642 
pfault_irq_init(void)643 static int __init pfault_irq_init(void)
644 {
645 	int rc;
646 
647 	rc = register_external_interrupt(0x2603, pfault_interrupt);
648 	if (rc)
649 		goto out_extint;
650 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
651 	if (rc)
652 		goto out_pfault;
653 	service_subclass_irq_register();
654 	hotcpu_notifier(pfault_cpu_notify, 0);
655 	return 0;
656 
657 out_pfault:
658 	unregister_external_interrupt(0x2603, pfault_interrupt);
659 out_extint:
660 	pfault_disable = 1;
661 	return rc;
662 }
663 early_initcall(pfault_irq_init);
664 
665 #endif /* CONFIG_PFAULT */
666