1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52 {
53 trace_ext4_begin_ordered_truncate(inode, new_size);
54 /*
55 * If jinode is zero, then we never opened the file for
56 * writing, so there's no need to call
57 * jbd2_journal_begin_ordered_truncate() since there's no
58 * outstanding writes we need to flush.
59 */
60 if (!EXT4_I(inode)->jinode)
61 return 0;
62 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
63 EXT4_I(inode)->jinode,
64 new_size);
65 }
66
67 static void ext4_invalidatepage(struct page *page, unsigned long offset);
68 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
69 struct buffer_head *bh_result, int create);
70 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
71 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
72 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
73 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
74 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
75 struct inode *inode, struct page *page, loff_t from,
76 loff_t length, int flags);
77
78 /*
79 * Test whether an inode is a fast symlink.
80 */
ext4_inode_is_fast_symlink(struct inode * inode)81 static int ext4_inode_is_fast_symlink(struct inode *inode)
82 {
83 int ea_blocks = EXT4_I(inode)->i_file_acl ?
84 (inode->i_sb->s_blocksize >> 9) : 0;
85
86 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
87 }
88
89 /*
90 * Restart the transaction associated with *handle. This does a commit,
91 * so before we call here everything must be consistently dirtied against
92 * this transaction.
93 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)94 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
95 int nblocks)
96 {
97 int ret;
98
99 /*
100 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
101 * moment, get_block can be called only for blocks inside i_size since
102 * page cache has been already dropped and writes are blocked by
103 * i_mutex. So we can safely drop the i_data_sem here.
104 */
105 BUG_ON(EXT4_JOURNAL(inode) == NULL);
106 jbd_debug(2, "restarting handle %p\n", handle);
107 up_write(&EXT4_I(inode)->i_data_sem);
108 ret = ext4_journal_restart(handle, nblocks);
109 down_write(&EXT4_I(inode)->i_data_sem);
110 ext4_discard_preallocations(inode);
111
112 return ret;
113 }
114
115 /*
116 * Called at the last iput() if i_nlink is zero.
117 */
ext4_evict_inode(struct inode * inode)118 void ext4_evict_inode(struct inode *inode)
119 {
120 handle_t *handle;
121 int err;
122
123 trace_ext4_evict_inode(inode);
124
125 ext4_ioend_wait(inode);
126
127 if (inode->i_nlink) {
128 /*
129 * When journalling data dirty buffers are tracked only in the
130 * journal. So although mm thinks everything is clean and
131 * ready for reaping the inode might still have some pages to
132 * write in the running transaction or waiting to be
133 * checkpointed. Thus calling jbd2_journal_invalidatepage()
134 * (via truncate_inode_pages()) to discard these buffers can
135 * cause data loss. Also even if we did not discard these
136 * buffers, we would have no way to find them after the inode
137 * is reaped and thus user could see stale data if he tries to
138 * read them before the transaction is checkpointed. So be
139 * careful and force everything to disk here... We use
140 * ei->i_datasync_tid to store the newest transaction
141 * containing inode's data.
142 *
143 * Note that directories do not have this problem because they
144 * don't use page cache.
145 */
146 if (ext4_should_journal_data(inode) &&
147 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
148 inode->i_ino != EXT4_JOURNAL_INO) {
149 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
150 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
151
152 jbd2_log_start_commit(journal, commit_tid);
153 jbd2_log_wait_commit(journal, commit_tid);
154 filemap_write_and_wait(&inode->i_data);
155 }
156 truncate_inode_pages(&inode->i_data, 0);
157 goto no_delete;
158 }
159
160 if (!is_bad_inode(inode))
161 dquot_initialize(inode);
162
163 if (ext4_should_order_data(inode))
164 ext4_begin_ordered_truncate(inode, 0);
165 truncate_inode_pages(&inode->i_data, 0);
166
167 if (is_bad_inode(inode))
168 goto no_delete;
169
170 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
171 if (IS_ERR(handle)) {
172 ext4_std_error(inode->i_sb, PTR_ERR(handle));
173 /*
174 * If we're going to skip the normal cleanup, we still need to
175 * make sure that the in-core orphan linked list is properly
176 * cleaned up.
177 */
178 ext4_orphan_del(NULL, inode);
179 goto no_delete;
180 }
181
182 if (IS_SYNC(inode))
183 ext4_handle_sync(handle);
184 inode->i_size = 0;
185 err = ext4_mark_inode_dirty(handle, inode);
186 if (err) {
187 ext4_warning(inode->i_sb,
188 "couldn't mark inode dirty (err %d)", err);
189 goto stop_handle;
190 }
191 if (inode->i_blocks)
192 ext4_truncate(inode);
193
194 /*
195 * ext4_ext_truncate() doesn't reserve any slop when it
196 * restarts journal transactions; therefore there may not be
197 * enough credits left in the handle to remove the inode from
198 * the orphan list and set the dtime field.
199 */
200 if (!ext4_handle_has_enough_credits(handle, 3)) {
201 err = ext4_journal_extend(handle, 3);
202 if (err > 0)
203 err = ext4_journal_restart(handle, 3);
204 if (err != 0) {
205 ext4_warning(inode->i_sb,
206 "couldn't extend journal (err %d)", err);
207 stop_handle:
208 ext4_journal_stop(handle);
209 ext4_orphan_del(NULL, inode);
210 goto no_delete;
211 }
212 }
213
214 /*
215 * Kill off the orphan record which ext4_truncate created.
216 * AKPM: I think this can be inside the above `if'.
217 * Note that ext4_orphan_del() has to be able to cope with the
218 * deletion of a non-existent orphan - this is because we don't
219 * know if ext4_truncate() actually created an orphan record.
220 * (Well, we could do this if we need to, but heck - it works)
221 */
222 ext4_orphan_del(handle, inode);
223 EXT4_I(inode)->i_dtime = get_seconds();
224
225 /*
226 * One subtle ordering requirement: if anything has gone wrong
227 * (transaction abort, IO errors, whatever), then we can still
228 * do these next steps (the fs will already have been marked as
229 * having errors), but we can't free the inode if the mark_dirty
230 * fails.
231 */
232 if (ext4_mark_inode_dirty(handle, inode))
233 /* If that failed, just do the required in-core inode clear. */
234 ext4_clear_inode(inode);
235 else
236 ext4_free_inode(handle, inode);
237 ext4_journal_stop(handle);
238 return;
239 no_delete:
240 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
241 }
242
243 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)244 qsize_t *ext4_get_reserved_space(struct inode *inode)
245 {
246 return &EXT4_I(inode)->i_reserved_quota;
247 }
248 #endif
249
250 /*
251 * Calculate the number of metadata blocks need to reserve
252 * to allocate a block located at @lblock
253 */
ext4_calc_metadata_amount(struct inode * inode,ext4_lblk_t lblock)254 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
255 {
256 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
257 return ext4_ext_calc_metadata_amount(inode, lblock);
258
259 return ext4_ind_calc_metadata_amount(inode, lblock);
260 }
261
262 /*
263 * Called with i_data_sem down, which is important since we can call
264 * ext4_discard_preallocations() from here.
265 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)266 void ext4_da_update_reserve_space(struct inode *inode,
267 int used, int quota_claim)
268 {
269 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
270 struct ext4_inode_info *ei = EXT4_I(inode);
271
272 spin_lock(&ei->i_block_reservation_lock);
273 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
274 if (unlikely(used > ei->i_reserved_data_blocks)) {
275 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
276 "with only %d reserved data blocks",
277 __func__, inode->i_ino, used,
278 ei->i_reserved_data_blocks);
279 WARN_ON(1);
280 used = ei->i_reserved_data_blocks;
281 }
282
283 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
284 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
285 "with only %d reserved metadata blocks\n", __func__,
286 inode->i_ino, ei->i_allocated_meta_blocks,
287 ei->i_reserved_meta_blocks);
288 WARN_ON(1);
289 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
290 }
291
292 /* Update per-inode reservations */
293 ei->i_reserved_data_blocks -= used;
294 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
295 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
296 used + ei->i_allocated_meta_blocks);
297 ei->i_allocated_meta_blocks = 0;
298
299 if (ei->i_reserved_data_blocks == 0) {
300 /*
301 * We can release all of the reserved metadata blocks
302 * only when we have written all of the delayed
303 * allocation blocks.
304 */
305 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
306 ei->i_reserved_meta_blocks);
307 ei->i_reserved_meta_blocks = 0;
308 ei->i_da_metadata_calc_len = 0;
309 }
310 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
311
312 /* Update quota subsystem for data blocks */
313 if (quota_claim)
314 dquot_claim_block(inode, EXT4_C2B(sbi, used));
315 else {
316 /*
317 * We did fallocate with an offset that is already delayed
318 * allocated. So on delayed allocated writeback we should
319 * not re-claim the quota for fallocated blocks.
320 */
321 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
322 }
323
324 /*
325 * If we have done all the pending block allocations and if
326 * there aren't any writers on the inode, we can discard the
327 * inode's preallocations.
328 */
329 if ((ei->i_reserved_data_blocks == 0) &&
330 (atomic_read(&inode->i_writecount) == 0))
331 ext4_discard_preallocations(inode);
332 }
333
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)334 static int __check_block_validity(struct inode *inode, const char *func,
335 unsigned int line,
336 struct ext4_map_blocks *map)
337 {
338 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
339 map->m_len)) {
340 ext4_error_inode(inode, func, line, map->m_pblk,
341 "lblock %lu mapped to illegal pblock "
342 "(length %d)", (unsigned long) map->m_lblk,
343 map->m_len);
344 return -EIO;
345 }
346 return 0;
347 }
348
349 #define check_block_validity(inode, map) \
350 __check_block_validity((inode), __func__, __LINE__, (map))
351
352 /*
353 * Return the number of contiguous dirty pages in a given inode
354 * starting at page frame idx.
355 */
ext4_num_dirty_pages(struct inode * inode,pgoff_t idx,unsigned int max_pages)356 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
357 unsigned int max_pages)
358 {
359 struct address_space *mapping = inode->i_mapping;
360 pgoff_t index;
361 struct pagevec pvec;
362 pgoff_t num = 0;
363 int i, nr_pages, done = 0;
364
365 if (max_pages == 0)
366 return 0;
367 pagevec_init(&pvec, 0);
368 while (!done) {
369 index = idx;
370 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
371 PAGECACHE_TAG_DIRTY,
372 (pgoff_t)PAGEVEC_SIZE);
373 if (nr_pages == 0)
374 break;
375 for (i = 0; i < nr_pages; i++) {
376 struct page *page = pvec.pages[i];
377 struct buffer_head *bh, *head;
378
379 lock_page(page);
380 if (unlikely(page->mapping != mapping) ||
381 !PageDirty(page) ||
382 PageWriteback(page) ||
383 page->index != idx) {
384 done = 1;
385 unlock_page(page);
386 break;
387 }
388 if (page_has_buffers(page)) {
389 bh = head = page_buffers(page);
390 do {
391 if (!buffer_delay(bh) &&
392 !buffer_unwritten(bh))
393 done = 1;
394 bh = bh->b_this_page;
395 } while (!done && (bh != head));
396 }
397 unlock_page(page);
398 if (done)
399 break;
400 idx++;
401 num++;
402 if (num >= max_pages) {
403 done = 1;
404 break;
405 }
406 }
407 pagevec_release(&pvec);
408 }
409 return num;
410 }
411
412 /*
413 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
414 */
set_buffers_da_mapped(struct inode * inode,struct ext4_map_blocks * map)415 static void set_buffers_da_mapped(struct inode *inode,
416 struct ext4_map_blocks *map)
417 {
418 struct address_space *mapping = inode->i_mapping;
419 struct pagevec pvec;
420 int i, nr_pages;
421 pgoff_t index, end;
422
423 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
424 end = (map->m_lblk + map->m_len - 1) >>
425 (PAGE_CACHE_SHIFT - inode->i_blkbits);
426
427 pagevec_init(&pvec, 0);
428 while (index <= end) {
429 nr_pages = pagevec_lookup(&pvec, mapping, index,
430 min(end - index + 1,
431 (pgoff_t)PAGEVEC_SIZE));
432 if (nr_pages == 0)
433 break;
434 for (i = 0; i < nr_pages; i++) {
435 struct page *page = pvec.pages[i];
436 struct buffer_head *bh, *head;
437
438 if (unlikely(page->mapping != mapping) ||
439 !PageDirty(page))
440 break;
441
442 if (page_has_buffers(page)) {
443 bh = head = page_buffers(page);
444 do {
445 set_buffer_da_mapped(bh);
446 bh = bh->b_this_page;
447 } while (bh != head);
448 }
449 index++;
450 }
451 pagevec_release(&pvec);
452 }
453 }
454
455 /*
456 * The ext4_map_blocks() function tries to look up the requested blocks,
457 * and returns if the blocks are already mapped.
458 *
459 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
460 * and store the allocated blocks in the result buffer head and mark it
461 * mapped.
462 *
463 * If file type is extents based, it will call ext4_ext_map_blocks(),
464 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
465 * based files
466 *
467 * On success, it returns the number of blocks being mapped or allocate.
468 * if create==0 and the blocks are pre-allocated and uninitialized block,
469 * the result buffer head is unmapped. If the create ==1, it will make sure
470 * the buffer head is mapped.
471 *
472 * It returns 0 if plain look up failed (blocks have not been allocated), in
473 * that case, buffer head is unmapped
474 *
475 * It returns the error in case of allocation failure.
476 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)477 int ext4_map_blocks(handle_t *handle, struct inode *inode,
478 struct ext4_map_blocks *map, int flags)
479 {
480 int retval;
481
482 map->m_flags = 0;
483 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
484 "logical block %lu\n", inode->i_ino, flags, map->m_len,
485 (unsigned long) map->m_lblk);
486 /*
487 * Try to see if we can get the block without requesting a new
488 * file system block.
489 */
490 down_read((&EXT4_I(inode)->i_data_sem));
491 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
492 retval = ext4_ext_map_blocks(handle, inode, map, flags &
493 EXT4_GET_BLOCKS_KEEP_SIZE);
494 } else {
495 retval = ext4_ind_map_blocks(handle, inode, map, flags &
496 EXT4_GET_BLOCKS_KEEP_SIZE);
497 }
498 up_read((&EXT4_I(inode)->i_data_sem));
499
500 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
501 int ret = check_block_validity(inode, map);
502 if (ret != 0)
503 return ret;
504 }
505
506 /* If it is only a block(s) look up */
507 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
508 return retval;
509
510 /*
511 * Returns if the blocks have already allocated
512 *
513 * Note that if blocks have been preallocated
514 * ext4_ext_get_block() returns the create = 0
515 * with buffer head unmapped.
516 */
517 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
518 return retval;
519
520 /*
521 * When we call get_blocks without the create flag, the
522 * BH_Unwritten flag could have gotten set if the blocks
523 * requested were part of a uninitialized extent. We need to
524 * clear this flag now that we are committed to convert all or
525 * part of the uninitialized extent to be an initialized
526 * extent. This is because we need to avoid the combination
527 * of BH_Unwritten and BH_Mapped flags being simultaneously
528 * set on the buffer_head.
529 */
530 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
531
532 /*
533 * New blocks allocate and/or writing to uninitialized extent
534 * will possibly result in updating i_data, so we take
535 * the write lock of i_data_sem, and call get_blocks()
536 * with create == 1 flag.
537 */
538 down_write((&EXT4_I(inode)->i_data_sem));
539
540 /*
541 * if the caller is from delayed allocation writeout path
542 * we have already reserved fs blocks for allocation
543 * let the underlying get_block() function know to
544 * avoid double accounting
545 */
546 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
547 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
548 /*
549 * We need to check for EXT4 here because migrate
550 * could have changed the inode type in between
551 */
552 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
553 retval = ext4_ext_map_blocks(handle, inode, map, flags);
554 } else {
555 retval = ext4_ind_map_blocks(handle, inode, map, flags);
556
557 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
558 /*
559 * We allocated new blocks which will result in
560 * i_data's format changing. Force the migrate
561 * to fail by clearing migrate flags
562 */
563 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
564 }
565
566 /*
567 * Update reserved blocks/metadata blocks after successful
568 * block allocation which had been deferred till now. We don't
569 * support fallocate for non extent files. So we can update
570 * reserve space here.
571 */
572 if ((retval > 0) &&
573 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
574 ext4_da_update_reserve_space(inode, retval, 1);
575 }
576 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
577 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
578
579 /* If we have successfully mapped the delayed allocated blocks,
580 * set the BH_Da_Mapped bit on them. Its important to do this
581 * under the protection of i_data_sem.
582 */
583 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
584 set_buffers_da_mapped(inode, map);
585 }
586
587 up_write((&EXT4_I(inode)->i_data_sem));
588 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
589 int ret = check_block_validity(inode, map);
590 if (ret != 0)
591 return ret;
592 }
593 return retval;
594 }
595
596 /* Maximum number of blocks we map for direct IO at once. */
597 #define DIO_MAX_BLOCKS 4096
598
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)599 static int _ext4_get_block(struct inode *inode, sector_t iblock,
600 struct buffer_head *bh, int flags)
601 {
602 handle_t *handle = ext4_journal_current_handle();
603 struct ext4_map_blocks map;
604 int ret = 0, started = 0;
605 int dio_credits;
606
607 map.m_lblk = iblock;
608 map.m_len = bh->b_size >> inode->i_blkbits;
609
610 if (flags && !handle) {
611 /* Direct IO write... */
612 if (map.m_len > DIO_MAX_BLOCKS)
613 map.m_len = DIO_MAX_BLOCKS;
614 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
615 handle = ext4_journal_start(inode, dio_credits);
616 if (IS_ERR(handle)) {
617 ret = PTR_ERR(handle);
618 return ret;
619 }
620 started = 1;
621 }
622
623 ret = ext4_map_blocks(handle, inode, &map, flags);
624 if (ret > 0) {
625 map_bh(bh, inode->i_sb, map.m_pblk);
626 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
627 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
628 ret = 0;
629 }
630 if (started)
631 ext4_journal_stop(handle);
632 return ret;
633 }
634
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)635 int ext4_get_block(struct inode *inode, sector_t iblock,
636 struct buffer_head *bh, int create)
637 {
638 return _ext4_get_block(inode, iblock, bh,
639 create ? EXT4_GET_BLOCKS_CREATE : 0);
640 }
641
642 /*
643 * `handle' can be NULL if create is zero
644 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * errp)645 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
646 ext4_lblk_t block, int create, int *errp)
647 {
648 struct ext4_map_blocks map;
649 struct buffer_head *bh;
650 int fatal = 0, err;
651
652 J_ASSERT(handle != NULL || create == 0);
653
654 map.m_lblk = block;
655 map.m_len = 1;
656 err = ext4_map_blocks(handle, inode, &map,
657 create ? EXT4_GET_BLOCKS_CREATE : 0);
658
659 if (err < 0)
660 *errp = err;
661 if (err <= 0)
662 return NULL;
663 *errp = 0;
664
665 bh = sb_getblk(inode->i_sb, map.m_pblk);
666 if (!bh) {
667 *errp = -EIO;
668 return NULL;
669 }
670 if (map.m_flags & EXT4_MAP_NEW) {
671 J_ASSERT(create != 0);
672 J_ASSERT(handle != NULL);
673
674 /*
675 * Now that we do not always journal data, we should
676 * keep in mind whether this should always journal the
677 * new buffer as metadata. For now, regular file
678 * writes use ext4_get_block instead, so it's not a
679 * problem.
680 */
681 lock_buffer(bh);
682 BUFFER_TRACE(bh, "call get_create_access");
683 fatal = ext4_journal_get_create_access(handle, bh);
684 if (!fatal && !buffer_uptodate(bh)) {
685 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
686 set_buffer_uptodate(bh);
687 }
688 unlock_buffer(bh);
689 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
690 err = ext4_handle_dirty_metadata(handle, inode, bh);
691 if (!fatal)
692 fatal = err;
693 } else {
694 BUFFER_TRACE(bh, "not a new buffer");
695 }
696 if (fatal) {
697 *errp = fatal;
698 brelse(bh);
699 bh = NULL;
700 }
701 return bh;
702 }
703
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create,int * err)704 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
705 ext4_lblk_t block, int create, int *err)
706 {
707 struct buffer_head *bh;
708
709 bh = ext4_getblk(handle, inode, block, create, err);
710 if (!bh)
711 return bh;
712 if (buffer_uptodate(bh))
713 return bh;
714 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
715 wait_on_buffer(bh);
716 if (buffer_uptodate(bh))
717 return bh;
718 put_bh(bh);
719 *err = -EIO;
720 return NULL;
721 }
722
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))723 static int walk_page_buffers(handle_t *handle,
724 struct buffer_head *head,
725 unsigned from,
726 unsigned to,
727 int *partial,
728 int (*fn)(handle_t *handle,
729 struct buffer_head *bh))
730 {
731 struct buffer_head *bh;
732 unsigned block_start, block_end;
733 unsigned blocksize = head->b_size;
734 int err, ret = 0;
735 struct buffer_head *next;
736
737 for (bh = head, block_start = 0;
738 ret == 0 && (bh != head || !block_start);
739 block_start = block_end, bh = next) {
740 next = bh->b_this_page;
741 block_end = block_start + blocksize;
742 if (block_end <= from || block_start >= to) {
743 if (partial && !buffer_uptodate(bh))
744 *partial = 1;
745 continue;
746 }
747 err = (*fn)(handle, bh);
748 if (!ret)
749 ret = err;
750 }
751 return ret;
752 }
753
754 /*
755 * To preserve ordering, it is essential that the hole instantiation and
756 * the data write be encapsulated in a single transaction. We cannot
757 * close off a transaction and start a new one between the ext4_get_block()
758 * and the commit_write(). So doing the jbd2_journal_start at the start of
759 * prepare_write() is the right place.
760 *
761 * Also, this function can nest inside ext4_writepage() ->
762 * block_write_full_page(). In that case, we *know* that ext4_writepage()
763 * has generated enough buffer credits to do the whole page. So we won't
764 * block on the journal in that case, which is good, because the caller may
765 * be PF_MEMALLOC.
766 *
767 * By accident, ext4 can be reentered when a transaction is open via
768 * quota file writes. If we were to commit the transaction while thus
769 * reentered, there can be a deadlock - we would be holding a quota
770 * lock, and the commit would never complete if another thread had a
771 * transaction open and was blocking on the quota lock - a ranking
772 * violation.
773 *
774 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
775 * will _not_ run commit under these circumstances because handle->h_ref
776 * is elevated. We'll still have enough credits for the tiny quotafile
777 * write.
778 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)779 static int do_journal_get_write_access(handle_t *handle,
780 struct buffer_head *bh)
781 {
782 int dirty = buffer_dirty(bh);
783 int ret;
784
785 if (!buffer_mapped(bh) || buffer_freed(bh))
786 return 0;
787 /*
788 * __block_write_begin() could have dirtied some buffers. Clean
789 * the dirty bit as jbd2_journal_get_write_access() could complain
790 * otherwise about fs integrity issues. Setting of the dirty bit
791 * by __block_write_begin() isn't a real problem here as we clear
792 * the bit before releasing a page lock and thus writeback cannot
793 * ever write the buffer.
794 */
795 if (dirty)
796 clear_buffer_dirty(bh);
797 ret = ext4_journal_get_write_access(handle, bh);
798 if (!ret && dirty)
799 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
800 return ret;
801 }
802
803 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
804 struct buffer_head *bh_result, int create);
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)805 static int ext4_write_begin(struct file *file, struct address_space *mapping,
806 loff_t pos, unsigned len, unsigned flags,
807 struct page **pagep, void **fsdata)
808 {
809 struct inode *inode = mapping->host;
810 int ret, needed_blocks;
811 handle_t *handle;
812 int retries = 0;
813 struct page *page;
814 pgoff_t index;
815 unsigned from, to;
816
817 trace_ext4_write_begin(inode, pos, len, flags);
818 /*
819 * Reserve one block more for addition to orphan list in case
820 * we allocate blocks but write fails for some reason
821 */
822 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
823 index = pos >> PAGE_CACHE_SHIFT;
824 from = pos & (PAGE_CACHE_SIZE - 1);
825 to = from + len;
826
827 retry:
828 handle = ext4_journal_start(inode, needed_blocks);
829 if (IS_ERR(handle)) {
830 ret = PTR_ERR(handle);
831 goto out;
832 }
833
834 /* We cannot recurse into the filesystem as the transaction is already
835 * started */
836 flags |= AOP_FLAG_NOFS;
837
838 page = grab_cache_page_write_begin(mapping, index, flags);
839 if (!page) {
840 ext4_journal_stop(handle);
841 ret = -ENOMEM;
842 goto out;
843 }
844 *pagep = page;
845
846 if (ext4_should_dioread_nolock(inode))
847 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
848 else
849 ret = __block_write_begin(page, pos, len, ext4_get_block);
850
851 if (!ret && ext4_should_journal_data(inode)) {
852 ret = walk_page_buffers(handle, page_buffers(page),
853 from, to, NULL, do_journal_get_write_access);
854 }
855
856 if (ret) {
857 unlock_page(page);
858 page_cache_release(page);
859 /*
860 * __block_write_begin may have instantiated a few blocks
861 * outside i_size. Trim these off again. Don't need
862 * i_size_read because we hold i_mutex.
863 *
864 * Add inode to orphan list in case we crash before
865 * truncate finishes
866 */
867 if (pos + len > inode->i_size && ext4_can_truncate(inode))
868 ext4_orphan_add(handle, inode);
869
870 ext4_journal_stop(handle);
871 if (pos + len > inode->i_size) {
872 ext4_truncate_failed_write(inode);
873 /*
874 * If truncate failed early the inode might
875 * still be on the orphan list; we need to
876 * make sure the inode is removed from the
877 * orphan list in that case.
878 */
879 if (inode->i_nlink)
880 ext4_orphan_del(NULL, inode);
881 }
882 }
883
884 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
885 goto retry;
886 out:
887 return ret;
888 }
889
890 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)891 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
892 {
893 if (!buffer_mapped(bh) || buffer_freed(bh))
894 return 0;
895 set_buffer_uptodate(bh);
896 return ext4_handle_dirty_metadata(handle, NULL, bh);
897 }
898
ext4_generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)899 static int ext4_generic_write_end(struct file *file,
900 struct address_space *mapping,
901 loff_t pos, unsigned len, unsigned copied,
902 struct page *page, void *fsdata)
903 {
904 int i_size_changed = 0;
905 struct inode *inode = mapping->host;
906 handle_t *handle = ext4_journal_current_handle();
907
908 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
909
910 /*
911 * No need to use i_size_read() here, the i_size
912 * cannot change under us because we hold i_mutex.
913 *
914 * But it's important to update i_size while still holding page lock:
915 * page writeout could otherwise come in and zero beyond i_size.
916 */
917 if (pos + copied > inode->i_size) {
918 i_size_write(inode, pos + copied);
919 i_size_changed = 1;
920 }
921
922 if (pos + copied > EXT4_I(inode)->i_disksize) {
923 /* We need to mark inode dirty even if
924 * new_i_size is less that inode->i_size
925 * bu greater than i_disksize.(hint delalloc)
926 */
927 ext4_update_i_disksize(inode, (pos + copied));
928 i_size_changed = 1;
929 }
930 unlock_page(page);
931 page_cache_release(page);
932
933 /*
934 * Don't mark the inode dirty under page lock. First, it unnecessarily
935 * makes the holding time of page lock longer. Second, it forces lock
936 * ordering of page lock and transaction start for journaling
937 * filesystems.
938 */
939 if (i_size_changed)
940 ext4_mark_inode_dirty(handle, inode);
941
942 return copied;
943 }
944
945 /*
946 * We need to pick up the new inode size which generic_commit_write gave us
947 * `file' can be NULL - eg, when called from page_symlink().
948 *
949 * ext4 never places buffers on inode->i_mapping->private_list. metadata
950 * buffers are managed internally.
951 */
ext4_ordered_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)952 static int ext4_ordered_write_end(struct file *file,
953 struct address_space *mapping,
954 loff_t pos, unsigned len, unsigned copied,
955 struct page *page, void *fsdata)
956 {
957 handle_t *handle = ext4_journal_current_handle();
958 struct inode *inode = mapping->host;
959 int ret = 0, ret2;
960
961 trace_ext4_ordered_write_end(inode, pos, len, copied);
962 ret = ext4_jbd2_file_inode(handle, inode);
963
964 if (ret == 0) {
965 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
966 page, fsdata);
967 copied = ret2;
968 if (pos + len > inode->i_size && ext4_can_truncate(inode))
969 /* if we have allocated more blocks and copied
970 * less. We will have blocks allocated outside
971 * inode->i_size. So truncate them
972 */
973 ext4_orphan_add(handle, inode);
974 if (ret2 < 0)
975 ret = ret2;
976 } else {
977 unlock_page(page);
978 page_cache_release(page);
979 }
980
981 ret2 = ext4_journal_stop(handle);
982 if (!ret)
983 ret = ret2;
984
985 if (pos + len > inode->i_size) {
986 ext4_truncate_failed_write(inode);
987 /*
988 * If truncate failed early the inode might still be
989 * on the orphan list; we need to make sure the inode
990 * is removed from the orphan list in that case.
991 */
992 if (inode->i_nlink)
993 ext4_orphan_del(NULL, inode);
994 }
995
996
997 return ret ? ret : copied;
998 }
999
ext4_writeback_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1000 static int ext4_writeback_write_end(struct file *file,
1001 struct address_space *mapping,
1002 loff_t pos, unsigned len, unsigned copied,
1003 struct page *page, void *fsdata)
1004 {
1005 handle_t *handle = ext4_journal_current_handle();
1006 struct inode *inode = mapping->host;
1007 int ret = 0, ret2;
1008
1009 trace_ext4_writeback_write_end(inode, pos, len, copied);
1010 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1011 page, fsdata);
1012 copied = ret2;
1013 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1014 /* if we have allocated more blocks and copied
1015 * less. We will have blocks allocated outside
1016 * inode->i_size. So truncate them
1017 */
1018 ext4_orphan_add(handle, inode);
1019
1020 if (ret2 < 0)
1021 ret = ret2;
1022
1023 ret2 = ext4_journal_stop(handle);
1024 if (!ret)
1025 ret = ret2;
1026
1027 if (pos + len > inode->i_size) {
1028 ext4_truncate_failed_write(inode);
1029 /*
1030 * If truncate failed early the inode might still be
1031 * on the orphan list; we need to make sure the inode
1032 * is removed from the orphan list in that case.
1033 */
1034 if (inode->i_nlink)
1035 ext4_orphan_del(NULL, inode);
1036 }
1037
1038 return ret ? ret : copied;
1039 }
1040
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1041 static int ext4_journalled_write_end(struct file *file,
1042 struct address_space *mapping,
1043 loff_t pos, unsigned len, unsigned copied,
1044 struct page *page, void *fsdata)
1045 {
1046 handle_t *handle = ext4_journal_current_handle();
1047 struct inode *inode = mapping->host;
1048 int ret = 0, ret2;
1049 int partial = 0;
1050 unsigned from, to;
1051 loff_t new_i_size;
1052
1053 trace_ext4_journalled_write_end(inode, pos, len, copied);
1054 from = pos & (PAGE_CACHE_SIZE - 1);
1055 to = from + len;
1056
1057 BUG_ON(!ext4_handle_valid(handle));
1058
1059 if (copied < len) {
1060 if (!PageUptodate(page))
1061 copied = 0;
1062 page_zero_new_buffers(page, from+copied, to);
1063 }
1064
1065 ret = walk_page_buffers(handle, page_buffers(page), from,
1066 to, &partial, write_end_fn);
1067 if (!partial)
1068 SetPageUptodate(page);
1069 new_i_size = pos + copied;
1070 if (new_i_size > inode->i_size)
1071 i_size_write(inode, pos+copied);
1072 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1073 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1074 if (new_i_size > EXT4_I(inode)->i_disksize) {
1075 ext4_update_i_disksize(inode, new_i_size);
1076 ret2 = ext4_mark_inode_dirty(handle, inode);
1077 if (!ret)
1078 ret = ret2;
1079 }
1080
1081 unlock_page(page);
1082 page_cache_release(page);
1083 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1084 /* if we have allocated more blocks and copied
1085 * less. We will have blocks allocated outside
1086 * inode->i_size. So truncate them
1087 */
1088 ext4_orphan_add(handle, inode);
1089
1090 ret2 = ext4_journal_stop(handle);
1091 if (!ret)
1092 ret = ret2;
1093 if (pos + len > inode->i_size) {
1094 ext4_truncate_failed_write(inode);
1095 /*
1096 * If truncate failed early the inode might still be
1097 * on the orphan list; we need to make sure the inode
1098 * is removed from the orphan list in that case.
1099 */
1100 if (inode->i_nlink)
1101 ext4_orphan_del(NULL, inode);
1102 }
1103
1104 return ret ? ret : copied;
1105 }
1106
1107 /*
1108 * Reserve a single cluster located at lblock
1109 */
ext4_da_reserve_space(struct inode * inode,ext4_lblk_t lblock)1110 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1111 {
1112 int retries = 0;
1113 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1114 struct ext4_inode_info *ei = EXT4_I(inode);
1115 unsigned int md_needed;
1116 int ret;
1117 ext4_lblk_t save_last_lblock;
1118 int save_len;
1119
1120 /*
1121 * We will charge metadata quota at writeout time; this saves
1122 * us from metadata over-estimation, though we may go over by
1123 * a small amount in the end. Here we just reserve for data.
1124 */
1125 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1126 if (ret)
1127 return ret;
1128
1129 /*
1130 * recalculate the amount of metadata blocks to reserve
1131 * in order to allocate nrblocks
1132 * worse case is one extent per block
1133 */
1134 repeat:
1135 spin_lock(&ei->i_block_reservation_lock);
1136 /*
1137 * ext4_calc_metadata_amount() has side effects, which we have
1138 * to be prepared undo if we fail to claim space.
1139 */
1140 save_len = ei->i_da_metadata_calc_len;
1141 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1142 md_needed = EXT4_NUM_B2C(sbi,
1143 ext4_calc_metadata_amount(inode, lblock));
1144 trace_ext4_da_reserve_space(inode, md_needed);
1145
1146 /*
1147 * We do still charge estimated metadata to the sb though;
1148 * we cannot afford to run out of free blocks.
1149 */
1150 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1151 ei->i_da_metadata_calc_len = save_len;
1152 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1153 spin_unlock(&ei->i_block_reservation_lock);
1154 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1155 yield();
1156 goto repeat;
1157 }
1158 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1159 return -ENOSPC;
1160 }
1161 ei->i_reserved_data_blocks++;
1162 ei->i_reserved_meta_blocks += md_needed;
1163 spin_unlock(&ei->i_block_reservation_lock);
1164
1165 return 0; /* success */
1166 }
1167
ext4_da_release_space(struct inode * inode,int to_free)1168 static void ext4_da_release_space(struct inode *inode, int to_free)
1169 {
1170 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1171 struct ext4_inode_info *ei = EXT4_I(inode);
1172
1173 if (!to_free)
1174 return; /* Nothing to release, exit */
1175
1176 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1177
1178 trace_ext4_da_release_space(inode, to_free);
1179 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1180 /*
1181 * if there aren't enough reserved blocks, then the
1182 * counter is messed up somewhere. Since this
1183 * function is called from invalidate page, it's
1184 * harmless to return without any action.
1185 */
1186 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1187 "ino %lu, to_free %d with only %d reserved "
1188 "data blocks", inode->i_ino, to_free,
1189 ei->i_reserved_data_blocks);
1190 WARN_ON(1);
1191 to_free = ei->i_reserved_data_blocks;
1192 }
1193 ei->i_reserved_data_blocks -= to_free;
1194
1195 if (ei->i_reserved_data_blocks == 0) {
1196 /*
1197 * We can release all of the reserved metadata blocks
1198 * only when we have written all of the delayed
1199 * allocation blocks.
1200 * Note that in case of bigalloc, i_reserved_meta_blocks,
1201 * i_reserved_data_blocks, etc. refer to number of clusters.
1202 */
1203 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1204 ei->i_reserved_meta_blocks);
1205 ei->i_reserved_meta_blocks = 0;
1206 ei->i_da_metadata_calc_len = 0;
1207 }
1208
1209 /* update fs dirty data blocks counter */
1210 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1211
1212 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1213
1214 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1215 }
1216
ext4_da_page_release_reservation(struct page * page,unsigned long offset)1217 static void ext4_da_page_release_reservation(struct page *page,
1218 unsigned long offset)
1219 {
1220 int to_release = 0;
1221 struct buffer_head *head, *bh;
1222 unsigned int curr_off = 0;
1223 struct inode *inode = page->mapping->host;
1224 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1225 int num_clusters;
1226
1227 head = page_buffers(page);
1228 bh = head;
1229 do {
1230 unsigned int next_off = curr_off + bh->b_size;
1231
1232 if ((offset <= curr_off) && (buffer_delay(bh))) {
1233 to_release++;
1234 clear_buffer_delay(bh);
1235 clear_buffer_da_mapped(bh);
1236 }
1237 curr_off = next_off;
1238 } while ((bh = bh->b_this_page) != head);
1239
1240 /* If we have released all the blocks belonging to a cluster, then we
1241 * need to release the reserved space for that cluster. */
1242 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1243 while (num_clusters > 0) {
1244 ext4_fsblk_t lblk;
1245 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1246 ((num_clusters - 1) << sbi->s_cluster_bits);
1247 if (sbi->s_cluster_ratio == 1 ||
1248 !ext4_find_delalloc_cluster(inode, lblk, 1))
1249 ext4_da_release_space(inode, 1);
1250
1251 num_clusters--;
1252 }
1253 }
1254
1255 /*
1256 * Delayed allocation stuff
1257 */
1258
1259 /*
1260 * mpage_da_submit_io - walks through extent of pages and try to write
1261 * them with writepage() call back
1262 *
1263 * @mpd->inode: inode
1264 * @mpd->first_page: first page of the extent
1265 * @mpd->next_page: page after the last page of the extent
1266 *
1267 * By the time mpage_da_submit_io() is called we expect all blocks
1268 * to be allocated. this may be wrong if allocation failed.
1269 *
1270 * As pages are already locked by write_cache_pages(), we can't use it
1271 */
mpage_da_submit_io(struct mpage_da_data * mpd,struct ext4_map_blocks * map)1272 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1273 struct ext4_map_blocks *map)
1274 {
1275 struct pagevec pvec;
1276 unsigned long index, end;
1277 int ret = 0, err, nr_pages, i;
1278 struct inode *inode = mpd->inode;
1279 struct address_space *mapping = inode->i_mapping;
1280 loff_t size = i_size_read(inode);
1281 unsigned int len, block_start;
1282 struct buffer_head *bh, *page_bufs = NULL;
1283 int journal_data = ext4_should_journal_data(inode);
1284 sector_t pblock = 0, cur_logical = 0;
1285 struct ext4_io_submit io_submit;
1286
1287 BUG_ON(mpd->next_page <= mpd->first_page);
1288 memset(&io_submit, 0, sizeof(io_submit));
1289 /*
1290 * We need to start from the first_page to the next_page - 1
1291 * to make sure we also write the mapped dirty buffer_heads.
1292 * If we look at mpd->b_blocknr we would only be looking
1293 * at the currently mapped buffer_heads.
1294 */
1295 index = mpd->first_page;
1296 end = mpd->next_page - 1;
1297
1298 pagevec_init(&pvec, 0);
1299 while (index <= end) {
1300 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1301 if (nr_pages == 0)
1302 break;
1303 for (i = 0; i < nr_pages; i++) {
1304 int commit_write = 0, skip_page = 0;
1305 struct page *page = pvec.pages[i];
1306
1307 index = page->index;
1308 if (index > end)
1309 break;
1310
1311 if (index == size >> PAGE_CACHE_SHIFT)
1312 len = size & ~PAGE_CACHE_MASK;
1313 else
1314 len = PAGE_CACHE_SIZE;
1315 if (map) {
1316 cur_logical = index << (PAGE_CACHE_SHIFT -
1317 inode->i_blkbits);
1318 pblock = map->m_pblk + (cur_logical -
1319 map->m_lblk);
1320 }
1321 index++;
1322
1323 BUG_ON(!PageLocked(page));
1324 BUG_ON(PageWriteback(page));
1325
1326 /*
1327 * If the page does not have buffers (for
1328 * whatever reason), try to create them using
1329 * __block_write_begin. If this fails,
1330 * skip the page and move on.
1331 */
1332 if (!page_has_buffers(page)) {
1333 if (__block_write_begin(page, 0, len,
1334 noalloc_get_block_write)) {
1335 skip_page:
1336 unlock_page(page);
1337 continue;
1338 }
1339 commit_write = 1;
1340 }
1341
1342 bh = page_bufs = page_buffers(page);
1343 block_start = 0;
1344 do {
1345 if (!bh)
1346 goto skip_page;
1347 if (map && (cur_logical >= map->m_lblk) &&
1348 (cur_logical <= (map->m_lblk +
1349 (map->m_len - 1)))) {
1350 if (buffer_delay(bh)) {
1351 clear_buffer_delay(bh);
1352 bh->b_blocknr = pblock;
1353 }
1354 if (buffer_da_mapped(bh))
1355 clear_buffer_da_mapped(bh);
1356 if (buffer_unwritten(bh) ||
1357 buffer_mapped(bh))
1358 BUG_ON(bh->b_blocknr != pblock);
1359 if (map->m_flags & EXT4_MAP_UNINIT)
1360 set_buffer_uninit(bh);
1361 clear_buffer_unwritten(bh);
1362 }
1363
1364 /*
1365 * skip page if block allocation undone and
1366 * block is dirty
1367 */
1368 if (ext4_bh_delay_or_unwritten(NULL, bh))
1369 skip_page = 1;
1370 bh = bh->b_this_page;
1371 block_start += bh->b_size;
1372 cur_logical++;
1373 pblock++;
1374 } while (bh != page_bufs);
1375
1376 if (skip_page)
1377 goto skip_page;
1378
1379 if (commit_write)
1380 /* mark the buffer_heads as dirty & uptodate */
1381 block_commit_write(page, 0, len);
1382
1383 clear_page_dirty_for_io(page);
1384 /*
1385 * Delalloc doesn't support data journalling,
1386 * but eventually maybe we'll lift this
1387 * restriction.
1388 */
1389 if (unlikely(journal_data && PageChecked(page)))
1390 err = __ext4_journalled_writepage(page, len);
1391 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1392 err = ext4_bio_write_page(&io_submit, page,
1393 len, mpd->wbc);
1394 else if (buffer_uninit(page_bufs)) {
1395 ext4_set_bh_endio(page_bufs, inode);
1396 err = block_write_full_page_endio(page,
1397 noalloc_get_block_write,
1398 mpd->wbc, ext4_end_io_buffer_write);
1399 } else
1400 err = block_write_full_page(page,
1401 noalloc_get_block_write, mpd->wbc);
1402
1403 if (!err)
1404 mpd->pages_written++;
1405 /*
1406 * In error case, we have to continue because
1407 * remaining pages are still locked
1408 */
1409 if (ret == 0)
1410 ret = err;
1411 }
1412 pagevec_release(&pvec);
1413 }
1414 ext4_io_submit(&io_submit);
1415 return ret;
1416 }
1417
ext4_da_block_invalidatepages(struct mpage_da_data * mpd)1418 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1419 {
1420 int nr_pages, i;
1421 pgoff_t index, end;
1422 struct pagevec pvec;
1423 struct inode *inode = mpd->inode;
1424 struct address_space *mapping = inode->i_mapping;
1425
1426 index = mpd->first_page;
1427 end = mpd->next_page - 1;
1428
1429 pagevec_init(&pvec, 0);
1430 while (index <= end) {
1431 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1432 if (nr_pages == 0)
1433 break;
1434 for (i = 0; i < nr_pages; i++) {
1435 struct page *page = pvec.pages[i];
1436 if (page->index > end)
1437 break;
1438 BUG_ON(!PageLocked(page));
1439 BUG_ON(PageWriteback(page));
1440 block_invalidatepage(page, 0);
1441 ClearPageUptodate(page);
1442 unlock_page(page);
1443 }
1444 index = pvec.pages[nr_pages - 1]->index + 1;
1445 pagevec_release(&pvec);
1446 }
1447 return;
1448 }
1449
ext4_print_free_blocks(struct inode * inode)1450 static void ext4_print_free_blocks(struct inode *inode)
1451 {
1452 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1453 struct super_block *sb = inode->i_sb;
1454
1455 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1456 EXT4_C2B(EXT4_SB(inode->i_sb),
1457 ext4_count_free_clusters(inode->i_sb)));
1458 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1459 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1460 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1461 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1462 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1463 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1464 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1465 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1466 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1467 EXT4_I(inode)->i_reserved_data_blocks);
1468 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1469 EXT4_I(inode)->i_reserved_meta_blocks);
1470 return;
1471 }
1472
1473 /*
1474 * mpage_da_map_and_submit - go through given space, map them
1475 * if necessary, and then submit them for I/O
1476 *
1477 * @mpd - bh describing space
1478 *
1479 * The function skips space we know is already mapped to disk blocks.
1480 *
1481 */
mpage_da_map_and_submit(struct mpage_da_data * mpd)1482 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1483 {
1484 int err, blks, get_blocks_flags;
1485 struct ext4_map_blocks map, *mapp = NULL;
1486 sector_t next = mpd->b_blocknr;
1487 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1488 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1489 handle_t *handle = NULL;
1490
1491 /*
1492 * If the blocks are mapped already, or we couldn't accumulate
1493 * any blocks, then proceed immediately to the submission stage.
1494 */
1495 if ((mpd->b_size == 0) ||
1496 ((mpd->b_state & (1 << BH_Mapped)) &&
1497 !(mpd->b_state & (1 << BH_Delay)) &&
1498 !(mpd->b_state & (1 << BH_Unwritten))))
1499 goto submit_io;
1500
1501 handle = ext4_journal_current_handle();
1502 BUG_ON(!handle);
1503
1504 /*
1505 * Call ext4_map_blocks() to allocate any delayed allocation
1506 * blocks, or to convert an uninitialized extent to be
1507 * initialized (in the case where we have written into
1508 * one or more preallocated blocks).
1509 *
1510 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1511 * indicate that we are on the delayed allocation path. This
1512 * affects functions in many different parts of the allocation
1513 * call path. This flag exists primarily because we don't
1514 * want to change *many* call functions, so ext4_map_blocks()
1515 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1516 * inode's allocation semaphore is taken.
1517 *
1518 * If the blocks in questions were delalloc blocks, set
1519 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1520 * variables are updated after the blocks have been allocated.
1521 */
1522 map.m_lblk = next;
1523 map.m_len = max_blocks;
1524 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1525 if (ext4_should_dioread_nolock(mpd->inode))
1526 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1527 if (mpd->b_state & (1 << BH_Delay))
1528 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1529
1530 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1531 if (blks < 0) {
1532 struct super_block *sb = mpd->inode->i_sb;
1533
1534 err = blks;
1535 /*
1536 * If get block returns EAGAIN or ENOSPC and there
1537 * appears to be free blocks we will just let
1538 * mpage_da_submit_io() unlock all of the pages.
1539 */
1540 if (err == -EAGAIN)
1541 goto submit_io;
1542
1543 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1544 mpd->retval = err;
1545 goto submit_io;
1546 }
1547
1548 /*
1549 * get block failure will cause us to loop in
1550 * writepages, because a_ops->writepage won't be able
1551 * to make progress. The page will be redirtied by
1552 * writepage and writepages will again try to write
1553 * the same.
1554 */
1555 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1556 ext4_msg(sb, KERN_CRIT,
1557 "delayed block allocation failed for inode %lu "
1558 "at logical offset %llu with max blocks %zd "
1559 "with error %d", mpd->inode->i_ino,
1560 (unsigned long long) next,
1561 mpd->b_size >> mpd->inode->i_blkbits, err);
1562 ext4_msg(sb, KERN_CRIT,
1563 "This should not happen!! Data will be lost\n");
1564 if (err == -ENOSPC)
1565 ext4_print_free_blocks(mpd->inode);
1566 }
1567 /* invalidate all the pages */
1568 ext4_da_block_invalidatepages(mpd);
1569
1570 /* Mark this page range as having been completed */
1571 mpd->io_done = 1;
1572 return;
1573 }
1574 BUG_ON(blks == 0);
1575
1576 mapp = ↦
1577 if (map.m_flags & EXT4_MAP_NEW) {
1578 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1579 int i;
1580
1581 for (i = 0; i < map.m_len; i++)
1582 unmap_underlying_metadata(bdev, map.m_pblk + i);
1583
1584 if (ext4_should_order_data(mpd->inode)) {
1585 err = ext4_jbd2_file_inode(handle, mpd->inode);
1586 if (err) {
1587 /* Only if the journal is aborted */
1588 mpd->retval = err;
1589 goto submit_io;
1590 }
1591 }
1592 }
1593
1594 /*
1595 * Update on-disk size along with block allocation.
1596 */
1597 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1598 if (disksize > i_size_read(mpd->inode))
1599 disksize = i_size_read(mpd->inode);
1600 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1601 ext4_update_i_disksize(mpd->inode, disksize);
1602 err = ext4_mark_inode_dirty(handle, mpd->inode);
1603 if (err)
1604 ext4_error(mpd->inode->i_sb,
1605 "Failed to mark inode %lu dirty",
1606 mpd->inode->i_ino);
1607 }
1608
1609 submit_io:
1610 mpage_da_submit_io(mpd, mapp);
1611 mpd->io_done = 1;
1612 }
1613
1614 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1615 (1 << BH_Delay) | (1 << BH_Unwritten))
1616
1617 /*
1618 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1619 *
1620 * @mpd->lbh - extent of blocks
1621 * @logical - logical number of the block in the file
1622 * @bh - bh of the block (used to access block's state)
1623 *
1624 * the function is used to collect contig. blocks in same state
1625 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,sector_t logical,size_t b_size,unsigned long b_state)1626 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1627 sector_t logical, size_t b_size,
1628 unsigned long b_state)
1629 {
1630 sector_t next;
1631 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1632
1633 /*
1634 * XXX Don't go larger than mballoc is willing to allocate
1635 * This is a stopgap solution. We eventually need to fold
1636 * mpage_da_submit_io() into this function and then call
1637 * ext4_map_blocks() multiple times in a loop
1638 */
1639 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1640 goto flush_it;
1641
1642 /* check if thereserved journal credits might overflow */
1643 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1644 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1645 /*
1646 * With non-extent format we are limited by the journal
1647 * credit available. Total credit needed to insert
1648 * nrblocks contiguous blocks is dependent on the
1649 * nrblocks. So limit nrblocks.
1650 */
1651 goto flush_it;
1652 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1653 EXT4_MAX_TRANS_DATA) {
1654 /*
1655 * Adding the new buffer_head would make it cross the
1656 * allowed limit for which we have journal credit
1657 * reserved. So limit the new bh->b_size
1658 */
1659 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1660 mpd->inode->i_blkbits;
1661 /* we will do mpage_da_submit_io in the next loop */
1662 }
1663 }
1664 /*
1665 * First block in the extent
1666 */
1667 if (mpd->b_size == 0) {
1668 mpd->b_blocknr = logical;
1669 mpd->b_size = b_size;
1670 mpd->b_state = b_state & BH_FLAGS;
1671 return;
1672 }
1673
1674 next = mpd->b_blocknr + nrblocks;
1675 /*
1676 * Can we merge the block to our big extent?
1677 */
1678 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1679 mpd->b_size += b_size;
1680 return;
1681 }
1682
1683 flush_it:
1684 /*
1685 * We couldn't merge the block to our extent, so we
1686 * need to flush current extent and start new one
1687 */
1688 mpage_da_map_and_submit(mpd);
1689 return;
1690 }
1691
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1692 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1693 {
1694 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1695 }
1696
1697 /*
1698 * This function is grabs code from the very beginning of
1699 * ext4_map_blocks, but assumes that the caller is from delayed write
1700 * time. This function looks up the requested blocks and sets the
1701 * buffer delay bit under the protection of i_data_sem.
1702 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1703 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1704 struct ext4_map_blocks *map,
1705 struct buffer_head *bh)
1706 {
1707 int retval;
1708 sector_t invalid_block = ~((sector_t) 0xffff);
1709
1710 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1711 invalid_block = ~0;
1712
1713 map->m_flags = 0;
1714 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1715 "logical block %lu\n", inode->i_ino, map->m_len,
1716 (unsigned long) map->m_lblk);
1717 /*
1718 * Try to see if we can get the block without requesting a new
1719 * file system block.
1720 */
1721 down_read((&EXT4_I(inode)->i_data_sem));
1722 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1723 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1724 else
1725 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1726
1727 if (retval == 0) {
1728 /*
1729 * XXX: __block_prepare_write() unmaps passed block,
1730 * is it OK?
1731 */
1732 /* If the block was allocated from previously allocated cluster,
1733 * then we dont need to reserve it again. */
1734 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1735 retval = ext4_da_reserve_space(inode, iblock);
1736 if (retval)
1737 /* not enough space to reserve */
1738 goto out_unlock;
1739 }
1740
1741 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1742 * and it should not appear on the bh->b_state.
1743 */
1744 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1745
1746 map_bh(bh, inode->i_sb, invalid_block);
1747 set_buffer_new(bh);
1748 set_buffer_delay(bh);
1749 }
1750
1751 out_unlock:
1752 up_read((&EXT4_I(inode)->i_data_sem));
1753
1754 return retval;
1755 }
1756
1757 /*
1758 * This is a special get_blocks_t callback which is used by
1759 * ext4_da_write_begin(). It will either return mapped block or
1760 * reserve space for a single block.
1761 *
1762 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1763 * We also have b_blocknr = -1 and b_bdev initialized properly
1764 *
1765 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1766 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1767 * initialized properly.
1768 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1769 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1770 struct buffer_head *bh, int create)
1771 {
1772 struct ext4_map_blocks map;
1773 int ret = 0;
1774
1775 BUG_ON(create == 0);
1776 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1777
1778 map.m_lblk = iblock;
1779 map.m_len = 1;
1780
1781 /*
1782 * first, we need to know whether the block is allocated already
1783 * preallocated blocks are unmapped but should treated
1784 * the same as allocated blocks.
1785 */
1786 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1787 if (ret <= 0)
1788 return ret;
1789
1790 map_bh(bh, inode->i_sb, map.m_pblk);
1791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1792
1793 if (buffer_unwritten(bh)) {
1794 /* A delayed write to unwritten bh should be marked
1795 * new and mapped. Mapped ensures that we don't do
1796 * get_block multiple times when we write to the same
1797 * offset and new ensures that we do proper zero out
1798 * for partial write.
1799 */
1800 set_buffer_new(bh);
1801 set_buffer_mapped(bh);
1802 }
1803 return 0;
1804 }
1805
1806 /*
1807 * This function is used as a standard get_block_t calback function
1808 * when there is no desire to allocate any blocks. It is used as a
1809 * callback function for block_write_begin() and block_write_full_page().
1810 * These functions should only try to map a single block at a time.
1811 *
1812 * Since this function doesn't do block allocations even if the caller
1813 * requests it by passing in create=1, it is critically important that
1814 * any caller checks to make sure that any buffer heads are returned
1815 * by this function are either all already mapped or marked for
1816 * delayed allocation before calling block_write_full_page(). Otherwise,
1817 * b_blocknr could be left unitialized, and the page write functions will
1818 * be taken by surprise.
1819 */
noalloc_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1820 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1821 struct buffer_head *bh_result, int create)
1822 {
1823 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1824 return _ext4_get_block(inode, iblock, bh_result, 0);
1825 }
1826
bget_one(handle_t * handle,struct buffer_head * bh)1827 static int bget_one(handle_t *handle, struct buffer_head *bh)
1828 {
1829 get_bh(bh);
1830 return 0;
1831 }
1832
bput_one(handle_t * handle,struct buffer_head * bh)1833 static int bput_one(handle_t *handle, struct buffer_head *bh)
1834 {
1835 put_bh(bh);
1836 return 0;
1837 }
1838
__ext4_journalled_writepage(struct page * page,unsigned int len)1839 static int __ext4_journalled_writepage(struct page *page,
1840 unsigned int len)
1841 {
1842 struct address_space *mapping = page->mapping;
1843 struct inode *inode = mapping->host;
1844 struct buffer_head *page_bufs;
1845 handle_t *handle = NULL;
1846 int ret = 0;
1847 int err;
1848
1849 ClearPageChecked(page);
1850 page_bufs = page_buffers(page);
1851 BUG_ON(!page_bufs);
1852 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1853 /* As soon as we unlock the page, it can go away, but we have
1854 * references to buffers so we are safe */
1855 unlock_page(page);
1856
1857 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1858 if (IS_ERR(handle)) {
1859 ret = PTR_ERR(handle);
1860 goto out;
1861 }
1862
1863 BUG_ON(!ext4_handle_valid(handle));
1864
1865 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1866 do_journal_get_write_access);
1867
1868 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1869 write_end_fn);
1870 if (ret == 0)
1871 ret = err;
1872 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1873 err = ext4_journal_stop(handle);
1874 if (!ret)
1875 ret = err;
1876
1877 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1878 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1879 out:
1880 return ret;
1881 }
1882
1883 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1884 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1885
1886 /*
1887 * Note that we don't need to start a transaction unless we're journaling data
1888 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1889 * need to file the inode to the transaction's list in ordered mode because if
1890 * we are writing back data added by write(), the inode is already there and if
1891 * we are writing back data modified via mmap(), no one guarantees in which
1892 * transaction the data will hit the disk. In case we are journaling data, we
1893 * cannot start transaction directly because transaction start ranks above page
1894 * lock so we have to do some magic.
1895 *
1896 * This function can get called via...
1897 * - ext4_da_writepages after taking page lock (have journal handle)
1898 * - journal_submit_inode_data_buffers (no journal handle)
1899 * - shrink_page_list via pdflush (no journal handle)
1900 * - grab_page_cache when doing write_begin (have journal handle)
1901 *
1902 * We don't do any block allocation in this function. If we have page with
1903 * multiple blocks we need to write those buffer_heads that are mapped. This
1904 * is important for mmaped based write. So if we do with blocksize 1K
1905 * truncate(f, 1024);
1906 * a = mmap(f, 0, 4096);
1907 * a[0] = 'a';
1908 * truncate(f, 4096);
1909 * we have in the page first buffer_head mapped via page_mkwrite call back
1910 * but other buffer_heads would be unmapped but dirty (dirty done via the
1911 * do_wp_page). So writepage should write the first block. If we modify
1912 * the mmap area beyond 1024 we will again get a page_fault and the
1913 * page_mkwrite callback will do the block allocation and mark the
1914 * buffer_heads mapped.
1915 *
1916 * We redirty the page if we have any buffer_heads that is either delay or
1917 * unwritten in the page.
1918 *
1919 * We can get recursively called as show below.
1920 *
1921 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1922 * ext4_writepage()
1923 *
1924 * But since we don't do any block allocation we should not deadlock.
1925 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1926 */
ext4_writepage(struct page * page,struct writeback_control * wbc)1927 static int ext4_writepage(struct page *page,
1928 struct writeback_control *wbc)
1929 {
1930 int ret = 0, commit_write = 0;
1931 loff_t size;
1932 unsigned int len;
1933 struct buffer_head *page_bufs = NULL;
1934 struct inode *inode = page->mapping->host;
1935
1936 trace_ext4_writepage(page);
1937 size = i_size_read(inode);
1938 if (page->index == size >> PAGE_CACHE_SHIFT)
1939 len = size & ~PAGE_CACHE_MASK;
1940 else
1941 len = PAGE_CACHE_SIZE;
1942
1943 /*
1944 * If the page does not have buffers (for whatever reason),
1945 * try to create them using __block_write_begin. If this
1946 * fails, redirty the page and move on.
1947 */
1948 if (!page_has_buffers(page)) {
1949 if (__block_write_begin(page, 0, len,
1950 noalloc_get_block_write)) {
1951 redirty_page:
1952 redirty_page_for_writepage(wbc, page);
1953 unlock_page(page);
1954 return 0;
1955 }
1956 commit_write = 1;
1957 }
1958 page_bufs = page_buffers(page);
1959 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1960 ext4_bh_delay_or_unwritten)) {
1961 /*
1962 * We don't want to do block allocation, so redirty
1963 * the page and return. We may reach here when we do
1964 * a journal commit via journal_submit_inode_data_buffers.
1965 * We can also reach here via shrink_page_list but it
1966 * should never be for direct reclaim so warn if that
1967 * happens
1968 */
1969 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1970 PF_MEMALLOC);
1971 goto redirty_page;
1972 }
1973 if (commit_write)
1974 /* now mark the buffer_heads as dirty and uptodate */
1975 block_commit_write(page, 0, len);
1976
1977 if (PageChecked(page) && ext4_should_journal_data(inode))
1978 /*
1979 * It's mmapped pagecache. Add buffers and journal it. There
1980 * doesn't seem much point in redirtying the page here.
1981 */
1982 return __ext4_journalled_writepage(page, len);
1983
1984 if (buffer_uninit(page_bufs)) {
1985 ext4_set_bh_endio(page_bufs, inode);
1986 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1987 wbc, ext4_end_io_buffer_write);
1988 } else
1989 ret = block_write_full_page(page, noalloc_get_block_write,
1990 wbc);
1991
1992 return ret;
1993 }
1994
1995 /*
1996 * This is called via ext4_da_writepages() to
1997 * calculate the total number of credits to reserve to fit
1998 * a single extent allocation into a single transaction,
1999 * ext4_da_writpeages() will loop calling this before
2000 * the block allocation.
2001 */
2002
ext4_da_writepages_trans_blocks(struct inode * inode)2003 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2004 {
2005 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2006
2007 /*
2008 * With non-extent format the journal credit needed to
2009 * insert nrblocks contiguous block is dependent on
2010 * number of contiguous block. So we will limit
2011 * number of contiguous block to a sane value
2012 */
2013 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2014 (max_blocks > EXT4_MAX_TRANS_DATA))
2015 max_blocks = EXT4_MAX_TRANS_DATA;
2016
2017 return ext4_chunk_trans_blocks(inode, max_blocks);
2018 }
2019
2020 /*
2021 * write_cache_pages_da - walk the list of dirty pages of the given
2022 * address space and accumulate pages that need writing, and call
2023 * mpage_da_map_and_submit to map a single contiguous memory region
2024 * and then write them.
2025 */
write_cache_pages_da(struct address_space * mapping,struct writeback_control * wbc,struct mpage_da_data * mpd,pgoff_t * done_index)2026 static int write_cache_pages_da(struct address_space *mapping,
2027 struct writeback_control *wbc,
2028 struct mpage_da_data *mpd,
2029 pgoff_t *done_index)
2030 {
2031 struct buffer_head *bh, *head;
2032 struct inode *inode = mapping->host;
2033 struct pagevec pvec;
2034 unsigned int nr_pages;
2035 sector_t logical;
2036 pgoff_t index, end;
2037 long nr_to_write = wbc->nr_to_write;
2038 int i, tag, ret = 0;
2039
2040 memset(mpd, 0, sizeof(struct mpage_da_data));
2041 mpd->wbc = wbc;
2042 mpd->inode = inode;
2043 pagevec_init(&pvec, 0);
2044 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2045 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2046
2047 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2048 tag = PAGECACHE_TAG_TOWRITE;
2049 else
2050 tag = PAGECACHE_TAG_DIRTY;
2051
2052 *done_index = index;
2053 while (index <= end) {
2054 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2055 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2056 if (nr_pages == 0)
2057 return 0;
2058
2059 for (i = 0; i < nr_pages; i++) {
2060 struct page *page = pvec.pages[i];
2061
2062 /*
2063 * At this point, the page may be truncated or
2064 * invalidated (changing page->mapping to NULL), or
2065 * even swizzled back from swapper_space to tmpfs file
2066 * mapping. However, page->index will not change
2067 * because we have a reference on the page.
2068 */
2069 if (page->index > end)
2070 goto out;
2071
2072 *done_index = page->index + 1;
2073
2074 /*
2075 * If we can't merge this page, and we have
2076 * accumulated an contiguous region, write it
2077 */
2078 if ((mpd->next_page != page->index) &&
2079 (mpd->next_page != mpd->first_page)) {
2080 mpage_da_map_and_submit(mpd);
2081 goto ret_extent_tail;
2082 }
2083
2084 lock_page(page);
2085
2086 /*
2087 * If the page is no longer dirty, or its
2088 * mapping no longer corresponds to inode we
2089 * are writing (which means it has been
2090 * truncated or invalidated), or the page is
2091 * already under writeback and we are not
2092 * doing a data integrity writeback, skip the page
2093 */
2094 if (!PageDirty(page) ||
2095 (PageWriteback(page) &&
2096 (wbc->sync_mode == WB_SYNC_NONE)) ||
2097 unlikely(page->mapping != mapping)) {
2098 unlock_page(page);
2099 continue;
2100 }
2101
2102 wait_on_page_writeback(page);
2103 BUG_ON(PageWriteback(page));
2104
2105 if (mpd->next_page != page->index)
2106 mpd->first_page = page->index;
2107 mpd->next_page = page->index + 1;
2108 logical = (sector_t) page->index <<
2109 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2110
2111 if (!page_has_buffers(page)) {
2112 mpage_add_bh_to_extent(mpd, logical,
2113 PAGE_CACHE_SIZE,
2114 (1 << BH_Dirty) | (1 << BH_Uptodate));
2115 if (mpd->io_done)
2116 goto ret_extent_tail;
2117 } else {
2118 /*
2119 * Page with regular buffer heads,
2120 * just add all dirty ones
2121 */
2122 head = page_buffers(page);
2123 bh = head;
2124 do {
2125 BUG_ON(buffer_locked(bh));
2126 /*
2127 * We need to try to allocate
2128 * unmapped blocks in the same page.
2129 * Otherwise we won't make progress
2130 * with the page in ext4_writepage
2131 */
2132 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2133 mpage_add_bh_to_extent(mpd, logical,
2134 bh->b_size,
2135 bh->b_state);
2136 if (mpd->io_done)
2137 goto ret_extent_tail;
2138 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2139 /*
2140 * mapped dirty buffer. We need
2141 * to update the b_state
2142 * because we look at b_state
2143 * in mpage_da_map_blocks. We
2144 * don't update b_size because
2145 * if we find an unmapped
2146 * buffer_head later we need to
2147 * use the b_state flag of that
2148 * buffer_head.
2149 */
2150 if (mpd->b_size == 0)
2151 mpd->b_state = bh->b_state & BH_FLAGS;
2152 }
2153 logical++;
2154 } while ((bh = bh->b_this_page) != head);
2155 }
2156
2157 if (nr_to_write > 0) {
2158 nr_to_write--;
2159 if (nr_to_write == 0 &&
2160 wbc->sync_mode == WB_SYNC_NONE)
2161 /*
2162 * We stop writing back only if we are
2163 * not doing integrity sync. In case of
2164 * integrity sync we have to keep going
2165 * because someone may be concurrently
2166 * dirtying pages, and we might have
2167 * synced a lot of newly appeared dirty
2168 * pages, but have not synced all of the
2169 * old dirty pages.
2170 */
2171 goto out;
2172 }
2173 }
2174 pagevec_release(&pvec);
2175 cond_resched();
2176 }
2177 return 0;
2178 ret_extent_tail:
2179 ret = MPAGE_DA_EXTENT_TAIL;
2180 out:
2181 pagevec_release(&pvec);
2182 cond_resched();
2183 return ret;
2184 }
2185
2186
ext4_da_writepages(struct address_space * mapping,struct writeback_control * wbc)2187 static int ext4_da_writepages(struct address_space *mapping,
2188 struct writeback_control *wbc)
2189 {
2190 pgoff_t index;
2191 int range_whole = 0;
2192 handle_t *handle = NULL;
2193 struct mpage_da_data mpd;
2194 struct inode *inode = mapping->host;
2195 int pages_written = 0;
2196 unsigned int max_pages;
2197 int range_cyclic, cycled = 1, io_done = 0;
2198 int needed_blocks, ret = 0;
2199 long desired_nr_to_write, nr_to_writebump = 0;
2200 loff_t range_start = wbc->range_start;
2201 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2202 pgoff_t done_index = 0;
2203 pgoff_t end;
2204 struct blk_plug plug;
2205
2206 trace_ext4_da_writepages(inode, wbc);
2207
2208 /*
2209 * No pages to write? This is mainly a kludge to avoid starting
2210 * a transaction for special inodes like journal inode on last iput()
2211 * because that could violate lock ordering on umount
2212 */
2213 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2214 return 0;
2215
2216 /*
2217 * If the filesystem has aborted, it is read-only, so return
2218 * right away instead of dumping stack traces later on that
2219 * will obscure the real source of the problem. We test
2220 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2221 * the latter could be true if the filesystem is mounted
2222 * read-only, and in that case, ext4_da_writepages should
2223 * *never* be called, so if that ever happens, we would want
2224 * the stack trace.
2225 */
2226 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2227 return -EROFS;
2228
2229 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2230 range_whole = 1;
2231
2232 range_cyclic = wbc->range_cyclic;
2233 if (wbc->range_cyclic) {
2234 index = mapping->writeback_index;
2235 if (index)
2236 cycled = 0;
2237 wbc->range_start = index << PAGE_CACHE_SHIFT;
2238 wbc->range_end = LLONG_MAX;
2239 wbc->range_cyclic = 0;
2240 end = -1;
2241 } else {
2242 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2243 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2244 }
2245
2246 /*
2247 * This works around two forms of stupidity. The first is in
2248 * the writeback code, which caps the maximum number of pages
2249 * written to be 1024 pages. This is wrong on multiple
2250 * levels; different architectues have a different page size,
2251 * which changes the maximum amount of data which gets
2252 * written. Secondly, 4 megabytes is way too small. XFS
2253 * forces this value to be 16 megabytes by multiplying
2254 * nr_to_write parameter by four, and then relies on its
2255 * allocator to allocate larger extents to make them
2256 * contiguous. Unfortunately this brings us to the second
2257 * stupidity, which is that ext4's mballoc code only allocates
2258 * at most 2048 blocks. So we force contiguous writes up to
2259 * the number of dirty blocks in the inode, or
2260 * sbi->max_writeback_mb_bump whichever is smaller.
2261 */
2262 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2263 if (!range_cyclic && range_whole) {
2264 if (wbc->nr_to_write == LONG_MAX)
2265 desired_nr_to_write = wbc->nr_to_write;
2266 else
2267 desired_nr_to_write = wbc->nr_to_write * 8;
2268 } else
2269 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2270 max_pages);
2271 if (desired_nr_to_write > max_pages)
2272 desired_nr_to_write = max_pages;
2273
2274 if (wbc->nr_to_write < desired_nr_to_write) {
2275 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2276 wbc->nr_to_write = desired_nr_to_write;
2277 }
2278
2279 retry:
2280 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2281 tag_pages_for_writeback(mapping, index, end);
2282
2283 blk_start_plug(&plug);
2284 while (!ret && wbc->nr_to_write > 0) {
2285
2286 /*
2287 * we insert one extent at a time. So we need
2288 * credit needed for single extent allocation.
2289 * journalled mode is currently not supported
2290 * by delalloc
2291 */
2292 BUG_ON(ext4_should_journal_data(inode));
2293 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2294
2295 /* start a new transaction*/
2296 handle = ext4_journal_start(inode, needed_blocks);
2297 if (IS_ERR(handle)) {
2298 ret = PTR_ERR(handle);
2299 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2300 "%ld pages, ino %lu; err %d", __func__,
2301 wbc->nr_to_write, inode->i_ino, ret);
2302 blk_finish_plug(&plug);
2303 goto out_writepages;
2304 }
2305
2306 /*
2307 * Now call write_cache_pages_da() to find the next
2308 * contiguous region of logical blocks that need
2309 * blocks to be allocated by ext4 and submit them.
2310 */
2311 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2312 /*
2313 * If we have a contiguous extent of pages and we
2314 * haven't done the I/O yet, map the blocks and submit
2315 * them for I/O.
2316 */
2317 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2318 mpage_da_map_and_submit(&mpd);
2319 ret = MPAGE_DA_EXTENT_TAIL;
2320 }
2321 trace_ext4_da_write_pages(inode, &mpd);
2322 wbc->nr_to_write -= mpd.pages_written;
2323
2324 ext4_journal_stop(handle);
2325
2326 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2327 /* commit the transaction which would
2328 * free blocks released in the transaction
2329 * and try again
2330 */
2331 jbd2_journal_force_commit_nested(sbi->s_journal);
2332 ret = 0;
2333 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2334 /*
2335 * Got one extent now try with rest of the pages.
2336 * If mpd.retval is set -EIO, journal is aborted.
2337 * So we don't need to write any more.
2338 */
2339 pages_written += mpd.pages_written;
2340 ret = mpd.retval;
2341 io_done = 1;
2342 } else if (wbc->nr_to_write)
2343 /*
2344 * There is no more writeout needed
2345 * or we requested for a noblocking writeout
2346 * and we found the device congested
2347 */
2348 break;
2349 }
2350 blk_finish_plug(&plug);
2351 if (!io_done && !cycled) {
2352 cycled = 1;
2353 index = 0;
2354 wbc->range_start = index << PAGE_CACHE_SHIFT;
2355 wbc->range_end = mapping->writeback_index - 1;
2356 goto retry;
2357 }
2358
2359 /* Update index */
2360 wbc->range_cyclic = range_cyclic;
2361 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2362 /*
2363 * set the writeback_index so that range_cyclic
2364 * mode will write it back later
2365 */
2366 mapping->writeback_index = done_index;
2367
2368 out_writepages:
2369 wbc->nr_to_write -= nr_to_writebump;
2370 wbc->range_start = range_start;
2371 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2372 return ret;
2373 }
2374
2375 #define FALL_BACK_TO_NONDELALLOC 1
ext4_nonda_switch(struct super_block * sb)2376 static int ext4_nonda_switch(struct super_block *sb)
2377 {
2378 s64 free_blocks, dirty_blocks;
2379 struct ext4_sb_info *sbi = EXT4_SB(sb);
2380
2381 /*
2382 * switch to non delalloc mode if we are running low
2383 * on free block. The free block accounting via percpu
2384 * counters can get slightly wrong with percpu_counter_batch getting
2385 * accumulated on each CPU without updating global counters
2386 * Delalloc need an accurate free block accounting. So switch
2387 * to non delalloc when we are near to error range.
2388 */
2389 free_blocks = EXT4_C2B(sbi,
2390 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2391 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2392 /*
2393 * Start pushing delalloc when 1/2 of free blocks are dirty.
2394 */
2395 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2396 !writeback_in_progress(sb->s_bdi) &&
2397 down_read_trylock(&sb->s_umount)) {
2398 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2399 up_read(&sb->s_umount);
2400 }
2401
2402 if (2 * free_blocks < 3 * dirty_blocks ||
2403 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2404 /*
2405 * free block count is less than 150% of dirty blocks
2406 * or free blocks is less than watermark
2407 */
2408 return 1;
2409 }
2410 return 0;
2411 }
2412
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2413 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2414 loff_t pos, unsigned len, unsigned flags,
2415 struct page **pagep, void **fsdata)
2416 {
2417 int ret, retries = 0;
2418 struct page *page;
2419 pgoff_t index;
2420 struct inode *inode = mapping->host;
2421 handle_t *handle;
2422
2423 index = pos >> PAGE_CACHE_SHIFT;
2424
2425 if (ext4_nonda_switch(inode->i_sb)) {
2426 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2427 return ext4_write_begin(file, mapping, pos,
2428 len, flags, pagep, fsdata);
2429 }
2430 *fsdata = (void *)0;
2431 trace_ext4_da_write_begin(inode, pos, len, flags);
2432 retry:
2433 /*
2434 * With delayed allocation, we don't log the i_disksize update
2435 * if there is delayed block allocation. But we still need
2436 * to journalling the i_disksize update if writes to the end
2437 * of file which has an already mapped buffer.
2438 */
2439 handle = ext4_journal_start(inode, 1);
2440 if (IS_ERR(handle)) {
2441 ret = PTR_ERR(handle);
2442 goto out;
2443 }
2444 /* We cannot recurse into the filesystem as the transaction is already
2445 * started */
2446 flags |= AOP_FLAG_NOFS;
2447
2448 page = grab_cache_page_write_begin(mapping, index, flags);
2449 if (!page) {
2450 ext4_journal_stop(handle);
2451 ret = -ENOMEM;
2452 goto out;
2453 }
2454 *pagep = page;
2455
2456 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2457 if (ret < 0) {
2458 unlock_page(page);
2459 ext4_journal_stop(handle);
2460 page_cache_release(page);
2461 /*
2462 * block_write_begin may have instantiated a few blocks
2463 * outside i_size. Trim these off again. Don't need
2464 * i_size_read because we hold i_mutex.
2465 */
2466 if (pos + len > inode->i_size)
2467 ext4_truncate_failed_write(inode);
2468 }
2469
2470 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2471 goto retry;
2472 out:
2473 return ret;
2474 }
2475
2476 /*
2477 * Check if we should update i_disksize
2478 * when write to the end of file but not require block allocation
2479 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2480 static int ext4_da_should_update_i_disksize(struct page *page,
2481 unsigned long offset)
2482 {
2483 struct buffer_head *bh;
2484 struct inode *inode = page->mapping->host;
2485 unsigned int idx;
2486 int i;
2487
2488 bh = page_buffers(page);
2489 idx = offset >> inode->i_blkbits;
2490
2491 for (i = 0; i < idx; i++)
2492 bh = bh->b_this_page;
2493
2494 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2495 return 0;
2496 return 1;
2497 }
2498
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2499 static int ext4_da_write_end(struct file *file,
2500 struct address_space *mapping,
2501 loff_t pos, unsigned len, unsigned copied,
2502 struct page *page, void *fsdata)
2503 {
2504 struct inode *inode = mapping->host;
2505 int ret = 0, ret2;
2506 handle_t *handle = ext4_journal_current_handle();
2507 loff_t new_i_size;
2508 unsigned long start, end;
2509 int write_mode = (int)(unsigned long)fsdata;
2510
2511 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2512 switch (ext4_inode_journal_mode(inode)) {
2513 case EXT4_INODE_ORDERED_DATA_MODE:
2514 return ext4_ordered_write_end(file, mapping, pos,
2515 len, copied, page, fsdata);
2516 case EXT4_INODE_WRITEBACK_DATA_MODE:
2517 return ext4_writeback_write_end(file, mapping, pos,
2518 len, copied, page, fsdata);
2519 default:
2520 BUG();
2521 }
2522 }
2523
2524 trace_ext4_da_write_end(inode, pos, len, copied);
2525 start = pos & (PAGE_CACHE_SIZE - 1);
2526 end = start + copied - 1;
2527
2528 /*
2529 * generic_write_end() will run mark_inode_dirty() if i_size
2530 * changes. So let's piggyback the i_disksize mark_inode_dirty
2531 * into that.
2532 */
2533
2534 new_i_size = pos + copied;
2535 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2536 if (ext4_da_should_update_i_disksize(page, end)) {
2537 down_write(&EXT4_I(inode)->i_data_sem);
2538 if (new_i_size > EXT4_I(inode)->i_disksize) {
2539 /*
2540 * Updating i_disksize when extending file
2541 * without needing block allocation
2542 */
2543 if (ext4_should_order_data(inode))
2544 ret = ext4_jbd2_file_inode(handle,
2545 inode);
2546
2547 EXT4_I(inode)->i_disksize = new_i_size;
2548 }
2549 up_write(&EXT4_I(inode)->i_data_sem);
2550 /* We need to mark inode dirty even if
2551 * new_i_size is less that inode->i_size
2552 * bu greater than i_disksize.(hint delalloc)
2553 */
2554 ext4_mark_inode_dirty(handle, inode);
2555 }
2556 }
2557 ret2 = generic_write_end(file, mapping, pos, len, copied,
2558 page, fsdata);
2559 copied = ret2;
2560 if (ret2 < 0)
2561 ret = ret2;
2562 ret2 = ext4_journal_stop(handle);
2563 if (!ret)
2564 ret = ret2;
2565
2566 return ret ? ret : copied;
2567 }
2568
ext4_da_invalidatepage(struct page * page,unsigned long offset)2569 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2570 {
2571 /*
2572 * Drop reserved blocks
2573 */
2574 BUG_ON(!PageLocked(page));
2575 if (!page_has_buffers(page))
2576 goto out;
2577
2578 ext4_da_page_release_reservation(page, offset);
2579
2580 out:
2581 ext4_invalidatepage(page, offset);
2582
2583 return;
2584 }
2585
2586 /*
2587 * Force all delayed allocation blocks to be allocated for a given inode.
2588 */
ext4_alloc_da_blocks(struct inode * inode)2589 int ext4_alloc_da_blocks(struct inode *inode)
2590 {
2591 trace_ext4_alloc_da_blocks(inode);
2592
2593 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2594 !EXT4_I(inode)->i_reserved_meta_blocks)
2595 return 0;
2596
2597 /*
2598 * We do something simple for now. The filemap_flush() will
2599 * also start triggering a write of the data blocks, which is
2600 * not strictly speaking necessary (and for users of
2601 * laptop_mode, not even desirable). However, to do otherwise
2602 * would require replicating code paths in:
2603 *
2604 * ext4_da_writepages() ->
2605 * write_cache_pages() ---> (via passed in callback function)
2606 * __mpage_da_writepage() -->
2607 * mpage_add_bh_to_extent()
2608 * mpage_da_map_blocks()
2609 *
2610 * The problem is that write_cache_pages(), located in
2611 * mm/page-writeback.c, marks pages clean in preparation for
2612 * doing I/O, which is not desirable if we're not planning on
2613 * doing I/O at all.
2614 *
2615 * We could call write_cache_pages(), and then redirty all of
2616 * the pages by calling redirty_page_for_writepage() but that
2617 * would be ugly in the extreme. So instead we would need to
2618 * replicate parts of the code in the above functions,
2619 * simplifying them because we wouldn't actually intend to
2620 * write out the pages, but rather only collect contiguous
2621 * logical block extents, call the multi-block allocator, and
2622 * then update the buffer heads with the block allocations.
2623 *
2624 * For now, though, we'll cheat by calling filemap_flush(),
2625 * which will map the blocks, and start the I/O, but not
2626 * actually wait for the I/O to complete.
2627 */
2628 return filemap_flush(inode->i_mapping);
2629 }
2630
2631 /*
2632 * bmap() is special. It gets used by applications such as lilo and by
2633 * the swapper to find the on-disk block of a specific piece of data.
2634 *
2635 * Naturally, this is dangerous if the block concerned is still in the
2636 * journal. If somebody makes a swapfile on an ext4 data-journaling
2637 * filesystem and enables swap, then they may get a nasty shock when the
2638 * data getting swapped to that swapfile suddenly gets overwritten by
2639 * the original zero's written out previously to the journal and
2640 * awaiting writeback in the kernel's buffer cache.
2641 *
2642 * So, if we see any bmap calls here on a modified, data-journaled file,
2643 * take extra steps to flush any blocks which might be in the cache.
2644 */
ext4_bmap(struct address_space * mapping,sector_t block)2645 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2646 {
2647 struct inode *inode = mapping->host;
2648 journal_t *journal;
2649 int err;
2650
2651 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2652 test_opt(inode->i_sb, DELALLOC)) {
2653 /*
2654 * With delalloc we want to sync the file
2655 * so that we can make sure we allocate
2656 * blocks for file
2657 */
2658 filemap_write_and_wait(mapping);
2659 }
2660
2661 if (EXT4_JOURNAL(inode) &&
2662 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2663 /*
2664 * This is a REALLY heavyweight approach, but the use of
2665 * bmap on dirty files is expected to be extremely rare:
2666 * only if we run lilo or swapon on a freshly made file
2667 * do we expect this to happen.
2668 *
2669 * (bmap requires CAP_SYS_RAWIO so this does not
2670 * represent an unprivileged user DOS attack --- we'd be
2671 * in trouble if mortal users could trigger this path at
2672 * will.)
2673 *
2674 * NB. EXT4_STATE_JDATA is not set on files other than
2675 * regular files. If somebody wants to bmap a directory
2676 * or symlink and gets confused because the buffer
2677 * hasn't yet been flushed to disk, they deserve
2678 * everything they get.
2679 */
2680
2681 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2682 journal = EXT4_JOURNAL(inode);
2683 jbd2_journal_lock_updates(journal);
2684 err = jbd2_journal_flush(journal);
2685 jbd2_journal_unlock_updates(journal);
2686
2687 if (err)
2688 return 0;
2689 }
2690
2691 return generic_block_bmap(mapping, block, ext4_get_block);
2692 }
2693
ext4_readpage(struct file * file,struct page * page)2694 static int ext4_readpage(struct file *file, struct page *page)
2695 {
2696 trace_ext4_readpage(page);
2697 return mpage_readpage(page, ext4_get_block);
2698 }
2699
2700 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)2701 ext4_readpages(struct file *file, struct address_space *mapping,
2702 struct list_head *pages, unsigned nr_pages)
2703 {
2704 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2705 }
2706
ext4_invalidatepage_free_endio(struct page * page,unsigned long offset)2707 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2708 {
2709 struct buffer_head *head, *bh;
2710 unsigned int curr_off = 0;
2711
2712 if (!page_has_buffers(page))
2713 return;
2714 head = bh = page_buffers(page);
2715 do {
2716 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2717 && bh->b_private) {
2718 ext4_free_io_end(bh->b_private);
2719 bh->b_private = NULL;
2720 bh->b_end_io = NULL;
2721 }
2722 curr_off = curr_off + bh->b_size;
2723 bh = bh->b_this_page;
2724 } while (bh != head);
2725 }
2726
ext4_invalidatepage(struct page * page,unsigned long offset)2727 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2728 {
2729 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2730
2731 trace_ext4_invalidatepage(page, offset);
2732
2733 /*
2734 * free any io_end structure allocated for buffers to be discarded
2735 */
2736 if (ext4_should_dioread_nolock(page->mapping->host))
2737 ext4_invalidatepage_free_endio(page, offset);
2738 /*
2739 * If it's a full truncate we just forget about the pending dirtying
2740 */
2741 if (offset == 0)
2742 ClearPageChecked(page);
2743
2744 if (journal)
2745 jbd2_journal_invalidatepage(journal, page, offset);
2746 else
2747 block_invalidatepage(page, offset);
2748 }
2749
ext4_releasepage(struct page * page,gfp_t wait)2750 static int ext4_releasepage(struct page *page, gfp_t wait)
2751 {
2752 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2753
2754 trace_ext4_releasepage(page);
2755
2756 WARN_ON(PageChecked(page));
2757 if (!page_has_buffers(page))
2758 return 0;
2759 if (journal)
2760 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2761 else
2762 return try_to_free_buffers(page);
2763 }
2764
2765 /*
2766 * ext4_get_block used when preparing for a DIO write or buffer write.
2767 * We allocate an uinitialized extent if blocks haven't been allocated.
2768 * The extent will be converted to initialized after the IO is complete.
2769 */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2770 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2771 struct buffer_head *bh_result, int create)
2772 {
2773 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2774 inode->i_ino, create);
2775 return _ext4_get_block(inode, iblock, bh_result,
2776 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2777 }
2778
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private,int ret,bool is_async)2779 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2780 ssize_t size, void *private, int ret,
2781 bool is_async)
2782 {
2783 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2784 ext4_io_end_t *io_end = iocb->private;
2785 struct workqueue_struct *wq;
2786 unsigned long flags;
2787 struct ext4_inode_info *ei;
2788
2789 /* if not async direct IO or dio with 0 bytes write, just return */
2790 if (!io_end || !size)
2791 goto out;
2792
2793 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2794 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2795 iocb->private, io_end->inode->i_ino, iocb, offset,
2796 size);
2797
2798 iocb->private = NULL;
2799
2800 /* if not aio dio with unwritten extents, just free io and return */
2801 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2802 ext4_free_io_end(io_end);
2803 out:
2804 if (is_async)
2805 aio_complete(iocb, ret, 0);
2806 inode_dio_done(inode);
2807 return;
2808 }
2809
2810 io_end->offset = offset;
2811 io_end->size = size;
2812 if (is_async) {
2813 io_end->iocb = iocb;
2814 io_end->result = ret;
2815 }
2816 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2817
2818 /* Add the io_end to per-inode completed aio dio list*/
2819 ei = EXT4_I(io_end->inode);
2820 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2821 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2822 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2823
2824 /* queue the work to convert unwritten extents to written */
2825 queue_work(wq, &io_end->work);
2826 }
2827
ext4_end_io_buffer_write(struct buffer_head * bh,int uptodate)2828 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2829 {
2830 ext4_io_end_t *io_end = bh->b_private;
2831 struct workqueue_struct *wq;
2832 struct inode *inode;
2833 unsigned long flags;
2834
2835 if (!test_clear_buffer_uninit(bh) || !io_end)
2836 goto out;
2837
2838 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2839 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2840 "sb umounted, discard end_io request for inode %lu",
2841 io_end->inode->i_ino);
2842 ext4_free_io_end(io_end);
2843 goto out;
2844 }
2845
2846 /*
2847 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2848 * but being more careful is always safe for the future change.
2849 */
2850 inode = io_end->inode;
2851 ext4_set_io_unwritten_flag(inode, io_end);
2852
2853 /* Add the io_end to per-inode completed io list*/
2854 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2855 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2856 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2857
2858 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2859 /* queue the work to convert unwritten extents to written */
2860 queue_work(wq, &io_end->work);
2861 out:
2862 bh->b_private = NULL;
2863 bh->b_end_io = NULL;
2864 clear_buffer_uninit(bh);
2865 end_buffer_async_write(bh, uptodate);
2866 }
2867
ext4_set_bh_endio(struct buffer_head * bh,struct inode * inode)2868 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2869 {
2870 ext4_io_end_t *io_end;
2871 struct page *page = bh->b_page;
2872 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2873 size_t size = bh->b_size;
2874
2875 retry:
2876 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2877 if (!io_end) {
2878 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2879 schedule();
2880 goto retry;
2881 }
2882 io_end->offset = offset;
2883 io_end->size = size;
2884 /*
2885 * We need to hold a reference to the page to make sure it
2886 * doesn't get evicted before ext4_end_io_work() has a chance
2887 * to convert the extent from written to unwritten.
2888 */
2889 io_end->page = page;
2890 get_page(io_end->page);
2891
2892 bh->b_private = io_end;
2893 bh->b_end_io = ext4_end_io_buffer_write;
2894 return 0;
2895 }
2896
2897 /*
2898 * For ext4 extent files, ext4 will do direct-io write to holes,
2899 * preallocated extents, and those write extend the file, no need to
2900 * fall back to buffered IO.
2901 *
2902 * For holes, we fallocate those blocks, mark them as uninitialized
2903 * If those blocks were preallocated, we mark sure they are splited, but
2904 * still keep the range to write as uninitialized.
2905 *
2906 * The unwrritten extents will be converted to written when DIO is completed.
2907 * For async direct IO, since the IO may still pending when return, we
2908 * set up an end_io call back function, which will do the conversion
2909 * when async direct IO completed.
2910 *
2911 * If the O_DIRECT write will extend the file then add this inode to the
2912 * orphan list. So recovery will truncate it back to the original size
2913 * if the machine crashes during the write.
2914 *
2915 */
ext4_ext_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)2916 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2917 const struct iovec *iov, loff_t offset,
2918 unsigned long nr_segs)
2919 {
2920 struct file *file = iocb->ki_filp;
2921 struct inode *inode = file->f_mapping->host;
2922 ssize_t ret;
2923 size_t count = iov_length(iov, nr_segs);
2924
2925 loff_t final_size = offset + count;
2926 if (rw == WRITE && final_size <= inode->i_size) {
2927 /*
2928 * We could direct write to holes and fallocate.
2929 *
2930 * Allocated blocks to fill the hole are marked as uninitialized
2931 * to prevent parallel buffered read to expose the stale data
2932 * before DIO complete the data IO.
2933 *
2934 * As to previously fallocated extents, ext4 get_block
2935 * will just simply mark the buffer mapped but still
2936 * keep the extents uninitialized.
2937 *
2938 * for non AIO case, we will convert those unwritten extents
2939 * to written after return back from blockdev_direct_IO.
2940 *
2941 * for async DIO, the conversion needs to be defered when
2942 * the IO is completed. The ext4 end_io callback function
2943 * will be called to take care of the conversion work.
2944 * Here for async case, we allocate an io_end structure to
2945 * hook to the iocb.
2946 */
2947 iocb->private = NULL;
2948 EXT4_I(inode)->cur_aio_dio = NULL;
2949 if (!is_sync_kiocb(iocb)) {
2950 ext4_io_end_t *io_end =
2951 ext4_init_io_end(inode, GFP_NOFS);
2952 if (!io_end)
2953 return -ENOMEM;
2954 io_end->flag |= EXT4_IO_END_DIRECT;
2955 iocb->private = io_end;
2956 /*
2957 * we save the io structure for current async
2958 * direct IO, so that later ext4_map_blocks()
2959 * could flag the io structure whether there
2960 * is a unwritten extents needs to be converted
2961 * when IO is completed.
2962 */
2963 EXT4_I(inode)->cur_aio_dio = iocb->private;
2964 }
2965
2966 ret = __blockdev_direct_IO(rw, iocb, inode,
2967 inode->i_sb->s_bdev, iov,
2968 offset, nr_segs,
2969 ext4_get_block_write,
2970 ext4_end_io_dio,
2971 NULL,
2972 DIO_LOCKING);
2973 if (iocb->private)
2974 EXT4_I(inode)->cur_aio_dio = NULL;
2975 /*
2976 * The io_end structure takes a reference to the inode,
2977 * that structure needs to be destroyed and the
2978 * reference to the inode need to be dropped, when IO is
2979 * complete, even with 0 byte write, or failed.
2980 *
2981 * In the successful AIO DIO case, the io_end structure will be
2982 * desctroyed and the reference to the inode will be dropped
2983 * after the end_io call back function is called.
2984 *
2985 * In the case there is 0 byte write, or error case, since
2986 * VFS direct IO won't invoke the end_io call back function,
2987 * we need to free the end_io structure here.
2988 */
2989 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2990 ext4_free_io_end(iocb->private);
2991 iocb->private = NULL;
2992 } else if (ret > 0 && ext4_test_inode_state(inode,
2993 EXT4_STATE_DIO_UNWRITTEN)) {
2994 int err;
2995 /*
2996 * for non AIO case, since the IO is already
2997 * completed, we could do the conversion right here
2998 */
2999 err = ext4_convert_unwritten_extents(inode,
3000 offset, ret);
3001 if (err < 0)
3002 ret = err;
3003 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3004 }
3005 return ret;
3006 }
3007
3008 /* for write the the end of file case, we fall back to old way */
3009 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3010 }
3011
ext4_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)3012 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3013 const struct iovec *iov, loff_t offset,
3014 unsigned long nr_segs)
3015 {
3016 struct file *file = iocb->ki_filp;
3017 struct inode *inode = file->f_mapping->host;
3018 ssize_t ret;
3019
3020 /*
3021 * If we are doing data journalling we don't support O_DIRECT
3022 */
3023 if (ext4_should_journal_data(inode))
3024 return 0;
3025
3026 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3027 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3028 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3029 else
3030 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3031 trace_ext4_direct_IO_exit(inode, offset,
3032 iov_length(iov, nr_segs), rw, ret);
3033 return ret;
3034 }
3035
3036 /*
3037 * Pages can be marked dirty completely asynchronously from ext4's journalling
3038 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3039 * much here because ->set_page_dirty is called under VFS locks. The page is
3040 * not necessarily locked.
3041 *
3042 * We cannot just dirty the page and leave attached buffers clean, because the
3043 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3044 * or jbddirty because all the journalling code will explode.
3045 *
3046 * So what we do is to mark the page "pending dirty" and next time writepage
3047 * is called, propagate that into the buffers appropriately.
3048 */
ext4_journalled_set_page_dirty(struct page * page)3049 static int ext4_journalled_set_page_dirty(struct page *page)
3050 {
3051 SetPageChecked(page);
3052 return __set_page_dirty_nobuffers(page);
3053 }
3054
3055 static const struct address_space_operations ext4_ordered_aops = {
3056 .readpage = ext4_readpage,
3057 .readpages = ext4_readpages,
3058 .writepage = ext4_writepage,
3059 .write_begin = ext4_write_begin,
3060 .write_end = ext4_ordered_write_end,
3061 .bmap = ext4_bmap,
3062 .invalidatepage = ext4_invalidatepage,
3063 .releasepage = ext4_releasepage,
3064 .direct_IO = ext4_direct_IO,
3065 .migratepage = buffer_migrate_page,
3066 .is_partially_uptodate = block_is_partially_uptodate,
3067 .error_remove_page = generic_error_remove_page,
3068 };
3069
3070 static const struct address_space_operations ext4_writeback_aops = {
3071 .readpage = ext4_readpage,
3072 .readpages = ext4_readpages,
3073 .writepage = ext4_writepage,
3074 .write_begin = ext4_write_begin,
3075 .write_end = ext4_writeback_write_end,
3076 .bmap = ext4_bmap,
3077 .invalidatepage = ext4_invalidatepage,
3078 .releasepage = ext4_releasepage,
3079 .direct_IO = ext4_direct_IO,
3080 .migratepage = buffer_migrate_page,
3081 .is_partially_uptodate = block_is_partially_uptodate,
3082 .error_remove_page = generic_error_remove_page,
3083 };
3084
3085 static const struct address_space_operations ext4_journalled_aops = {
3086 .readpage = ext4_readpage,
3087 .readpages = ext4_readpages,
3088 .writepage = ext4_writepage,
3089 .write_begin = ext4_write_begin,
3090 .write_end = ext4_journalled_write_end,
3091 .set_page_dirty = ext4_journalled_set_page_dirty,
3092 .bmap = ext4_bmap,
3093 .invalidatepage = ext4_invalidatepage,
3094 .releasepage = ext4_releasepage,
3095 .direct_IO = ext4_direct_IO,
3096 .is_partially_uptodate = block_is_partially_uptodate,
3097 .error_remove_page = generic_error_remove_page,
3098 };
3099
3100 static const struct address_space_operations ext4_da_aops = {
3101 .readpage = ext4_readpage,
3102 .readpages = ext4_readpages,
3103 .writepage = ext4_writepage,
3104 .writepages = ext4_da_writepages,
3105 .write_begin = ext4_da_write_begin,
3106 .write_end = ext4_da_write_end,
3107 .bmap = ext4_bmap,
3108 .invalidatepage = ext4_da_invalidatepage,
3109 .releasepage = ext4_releasepage,
3110 .direct_IO = ext4_direct_IO,
3111 .migratepage = buffer_migrate_page,
3112 .is_partially_uptodate = block_is_partially_uptodate,
3113 .error_remove_page = generic_error_remove_page,
3114 };
3115
ext4_set_aops(struct inode * inode)3116 void ext4_set_aops(struct inode *inode)
3117 {
3118 switch (ext4_inode_journal_mode(inode)) {
3119 case EXT4_INODE_ORDERED_DATA_MODE:
3120 if (test_opt(inode->i_sb, DELALLOC))
3121 inode->i_mapping->a_ops = &ext4_da_aops;
3122 else
3123 inode->i_mapping->a_ops = &ext4_ordered_aops;
3124 break;
3125 case EXT4_INODE_WRITEBACK_DATA_MODE:
3126 if (test_opt(inode->i_sb, DELALLOC))
3127 inode->i_mapping->a_ops = &ext4_da_aops;
3128 else
3129 inode->i_mapping->a_ops = &ext4_writeback_aops;
3130 break;
3131 case EXT4_INODE_JOURNAL_DATA_MODE:
3132 inode->i_mapping->a_ops = &ext4_journalled_aops;
3133 break;
3134 default:
3135 BUG();
3136 }
3137 }
3138
3139
3140 /*
3141 * ext4_discard_partial_page_buffers()
3142 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3143 * This function finds and locks the page containing the offset
3144 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3145 * Calling functions that already have the page locked should call
3146 * ext4_discard_partial_page_buffers_no_lock directly.
3147 */
ext4_discard_partial_page_buffers(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length,int flags)3148 int ext4_discard_partial_page_buffers(handle_t *handle,
3149 struct address_space *mapping, loff_t from,
3150 loff_t length, int flags)
3151 {
3152 struct inode *inode = mapping->host;
3153 struct page *page;
3154 int err = 0;
3155
3156 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3157 mapping_gfp_mask(mapping) & ~__GFP_FS);
3158 if (!page)
3159 return -ENOMEM;
3160
3161 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3162 from, length, flags);
3163
3164 unlock_page(page);
3165 page_cache_release(page);
3166 return err;
3167 }
3168
3169 /*
3170 * ext4_discard_partial_page_buffers_no_lock()
3171 * Zeros a page range of length 'length' starting from offset 'from'.
3172 * Buffer heads that correspond to the block aligned regions of the
3173 * zeroed range will be unmapped. Unblock aligned regions
3174 * will have the corresponding buffer head mapped if needed so that
3175 * that region of the page can be updated with the partial zero out.
3176 *
3177 * This function assumes that the page has already been locked. The
3178 * The range to be discarded must be contained with in the given page.
3179 * If the specified range exceeds the end of the page it will be shortened
3180 * to the end of the page that corresponds to 'from'. This function is
3181 * appropriate for updating a page and it buffer heads to be unmapped and
3182 * zeroed for blocks that have been either released, or are going to be
3183 * released.
3184 *
3185 * handle: The journal handle
3186 * inode: The files inode
3187 * page: A locked page that contains the offset "from"
3188 * from: The starting byte offset (from the begining of the file)
3189 * to begin discarding
3190 * len: The length of bytes to discard
3191 * flags: Optional flags that may be used:
3192 *
3193 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3194 * Only zero the regions of the page whose buffer heads
3195 * have already been unmapped. This flag is appropriate
3196 * for updateing the contents of a page whose blocks may
3197 * have already been released, and we only want to zero
3198 * out the regions that correspond to those released blocks.
3199 *
3200 * Returns zero on sucess or negative on failure.
3201 */
ext4_discard_partial_page_buffers_no_lock(handle_t * handle,struct inode * inode,struct page * page,loff_t from,loff_t length,int flags)3202 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3203 struct inode *inode, struct page *page, loff_t from,
3204 loff_t length, int flags)
3205 {
3206 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3207 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3208 unsigned int blocksize, max, pos;
3209 ext4_lblk_t iblock;
3210 struct buffer_head *bh;
3211 int err = 0;
3212
3213 blocksize = inode->i_sb->s_blocksize;
3214 max = PAGE_CACHE_SIZE - offset;
3215
3216 if (index != page->index)
3217 return -EINVAL;
3218
3219 /*
3220 * correct length if it does not fall between
3221 * 'from' and the end of the page
3222 */
3223 if (length > max || length < 0)
3224 length = max;
3225
3226 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3227
3228 if (!page_has_buffers(page))
3229 create_empty_buffers(page, blocksize, 0);
3230
3231 /* Find the buffer that contains "offset" */
3232 bh = page_buffers(page);
3233 pos = blocksize;
3234 while (offset >= pos) {
3235 bh = bh->b_this_page;
3236 iblock++;
3237 pos += blocksize;
3238 }
3239
3240 pos = offset;
3241 while (pos < offset + length) {
3242 unsigned int end_of_block, range_to_discard;
3243
3244 err = 0;
3245
3246 /* The length of space left to zero and unmap */
3247 range_to_discard = offset + length - pos;
3248
3249 /* The length of space until the end of the block */
3250 end_of_block = blocksize - (pos & (blocksize-1));
3251
3252 /*
3253 * Do not unmap or zero past end of block
3254 * for this buffer head
3255 */
3256 if (range_to_discard > end_of_block)
3257 range_to_discard = end_of_block;
3258
3259
3260 /*
3261 * Skip this buffer head if we are only zeroing unampped
3262 * regions of the page
3263 */
3264 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3265 buffer_mapped(bh))
3266 goto next;
3267
3268 /* If the range is block aligned, unmap */
3269 if (range_to_discard == blocksize) {
3270 clear_buffer_dirty(bh);
3271 bh->b_bdev = NULL;
3272 clear_buffer_mapped(bh);
3273 clear_buffer_req(bh);
3274 clear_buffer_new(bh);
3275 clear_buffer_delay(bh);
3276 clear_buffer_unwritten(bh);
3277 clear_buffer_uptodate(bh);
3278 zero_user(page, pos, range_to_discard);
3279 BUFFER_TRACE(bh, "Buffer discarded");
3280 goto next;
3281 }
3282
3283 /*
3284 * If this block is not completely contained in the range
3285 * to be discarded, then it is not going to be released. Because
3286 * we need to keep this block, we need to make sure this part
3287 * of the page is uptodate before we modify it by writeing
3288 * partial zeros on it.
3289 */
3290 if (!buffer_mapped(bh)) {
3291 /*
3292 * Buffer head must be mapped before we can read
3293 * from the block
3294 */
3295 BUFFER_TRACE(bh, "unmapped");
3296 ext4_get_block(inode, iblock, bh, 0);
3297 /* unmapped? It's a hole - nothing to do */
3298 if (!buffer_mapped(bh)) {
3299 BUFFER_TRACE(bh, "still unmapped");
3300 goto next;
3301 }
3302 }
3303
3304 /* Ok, it's mapped. Make sure it's up-to-date */
3305 if (PageUptodate(page))
3306 set_buffer_uptodate(bh);
3307
3308 if (!buffer_uptodate(bh)) {
3309 err = -EIO;
3310 ll_rw_block(READ, 1, &bh);
3311 wait_on_buffer(bh);
3312 /* Uhhuh. Read error. Complain and punt.*/
3313 if (!buffer_uptodate(bh))
3314 goto next;
3315 }
3316
3317 if (ext4_should_journal_data(inode)) {
3318 BUFFER_TRACE(bh, "get write access");
3319 err = ext4_journal_get_write_access(handle, bh);
3320 if (err)
3321 goto next;
3322 }
3323
3324 zero_user(page, pos, range_to_discard);
3325
3326 err = 0;
3327 if (ext4_should_journal_data(inode)) {
3328 err = ext4_handle_dirty_metadata(handle, inode, bh);
3329 } else
3330 mark_buffer_dirty(bh);
3331
3332 BUFFER_TRACE(bh, "Partial buffer zeroed");
3333 next:
3334 bh = bh->b_this_page;
3335 iblock++;
3336 pos += range_to_discard;
3337 }
3338
3339 return err;
3340 }
3341
ext4_can_truncate(struct inode * inode)3342 int ext4_can_truncate(struct inode *inode)
3343 {
3344 if (S_ISREG(inode->i_mode))
3345 return 1;
3346 if (S_ISDIR(inode->i_mode))
3347 return 1;
3348 if (S_ISLNK(inode->i_mode))
3349 return !ext4_inode_is_fast_symlink(inode);
3350 return 0;
3351 }
3352
3353 /*
3354 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3355 * associated with the given offset and length
3356 *
3357 * @inode: File inode
3358 * @offset: The offset where the hole will begin
3359 * @len: The length of the hole
3360 *
3361 * Returns: 0 on sucess or negative on failure
3362 */
3363
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)3364 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3365 {
3366 struct inode *inode = file->f_path.dentry->d_inode;
3367 if (!S_ISREG(inode->i_mode))
3368 return -EOPNOTSUPP;
3369
3370 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3371 /* TODO: Add support for non extent hole punching */
3372 return -EOPNOTSUPP;
3373 }
3374
3375 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3376 /* TODO: Add support for bigalloc file systems */
3377 return -EOPNOTSUPP;
3378 }
3379
3380 return ext4_ext_punch_hole(file, offset, length);
3381 }
3382
3383 /*
3384 * ext4_truncate()
3385 *
3386 * We block out ext4_get_block() block instantiations across the entire
3387 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3388 * simultaneously on behalf of the same inode.
3389 *
3390 * As we work through the truncate and commit bits of it to the journal there
3391 * is one core, guiding principle: the file's tree must always be consistent on
3392 * disk. We must be able to restart the truncate after a crash.
3393 *
3394 * The file's tree may be transiently inconsistent in memory (although it
3395 * probably isn't), but whenever we close off and commit a journal transaction,
3396 * the contents of (the filesystem + the journal) must be consistent and
3397 * restartable. It's pretty simple, really: bottom up, right to left (although
3398 * left-to-right works OK too).
3399 *
3400 * Note that at recovery time, journal replay occurs *before* the restart of
3401 * truncate against the orphan inode list.
3402 *
3403 * The committed inode has the new, desired i_size (which is the same as
3404 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3405 * that this inode's truncate did not complete and it will again call
3406 * ext4_truncate() to have another go. So there will be instantiated blocks
3407 * to the right of the truncation point in a crashed ext4 filesystem. But
3408 * that's fine - as long as they are linked from the inode, the post-crash
3409 * ext4_truncate() run will find them and release them.
3410 */
ext4_truncate(struct inode * inode)3411 void ext4_truncate(struct inode *inode)
3412 {
3413 trace_ext4_truncate_enter(inode);
3414
3415 if (!ext4_can_truncate(inode))
3416 return;
3417
3418 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3419
3420 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3421 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3422
3423 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3424 ext4_ext_truncate(inode);
3425 else
3426 ext4_ind_truncate(inode);
3427
3428 trace_ext4_truncate_exit(inode);
3429 }
3430
3431 /*
3432 * ext4_get_inode_loc returns with an extra refcount against the inode's
3433 * underlying buffer_head on success. If 'in_mem' is true, we have all
3434 * data in memory that is needed to recreate the on-disk version of this
3435 * inode.
3436 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3437 static int __ext4_get_inode_loc(struct inode *inode,
3438 struct ext4_iloc *iloc, int in_mem)
3439 {
3440 struct ext4_group_desc *gdp;
3441 struct buffer_head *bh;
3442 struct super_block *sb = inode->i_sb;
3443 ext4_fsblk_t block;
3444 int inodes_per_block, inode_offset;
3445
3446 iloc->bh = NULL;
3447 if (!ext4_valid_inum(sb, inode->i_ino))
3448 return -EIO;
3449
3450 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3451 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3452 if (!gdp)
3453 return -EIO;
3454
3455 /*
3456 * Figure out the offset within the block group inode table
3457 */
3458 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3459 inode_offset = ((inode->i_ino - 1) %
3460 EXT4_INODES_PER_GROUP(sb));
3461 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3462 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3463
3464 bh = sb_getblk(sb, block);
3465 if (!bh) {
3466 EXT4_ERROR_INODE_BLOCK(inode, block,
3467 "unable to read itable block");
3468 return -EIO;
3469 }
3470 if (!buffer_uptodate(bh)) {
3471 lock_buffer(bh);
3472
3473 /*
3474 * If the buffer has the write error flag, we have failed
3475 * to write out another inode in the same block. In this
3476 * case, we don't have to read the block because we may
3477 * read the old inode data successfully.
3478 */
3479 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3480 set_buffer_uptodate(bh);
3481
3482 if (buffer_uptodate(bh)) {
3483 /* someone brought it uptodate while we waited */
3484 unlock_buffer(bh);
3485 goto has_buffer;
3486 }
3487
3488 /*
3489 * If we have all information of the inode in memory and this
3490 * is the only valid inode in the block, we need not read the
3491 * block.
3492 */
3493 if (in_mem) {
3494 struct buffer_head *bitmap_bh;
3495 int i, start;
3496
3497 start = inode_offset & ~(inodes_per_block - 1);
3498
3499 /* Is the inode bitmap in cache? */
3500 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3501 if (!bitmap_bh)
3502 goto make_io;
3503
3504 /*
3505 * If the inode bitmap isn't in cache then the
3506 * optimisation may end up performing two reads instead
3507 * of one, so skip it.
3508 */
3509 if (!buffer_uptodate(bitmap_bh)) {
3510 brelse(bitmap_bh);
3511 goto make_io;
3512 }
3513 for (i = start; i < start + inodes_per_block; i++) {
3514 if (i == inode_offset)
3515 continue;
3516 if (ext4_test_bit(i, bitmap_bh->b_data))
3517 break;
3518 }
3519 brelse(bitmap_bh);
3520 if (i == start + inodes_per_block) {
3521 /* all other inodes are free, so skip I/O */
3522 memset(bh->b_data, 0, bh->b_size);
3523 set_buffer_uptodate(bh);
3524 unlock_buffer(bh);
3525 goto has_buffer;
3526 }
3527 }
3528
3529 make_io:
3530 /*
3531 * If we need to do any I/O, try to pre-readahead extra
3532 * blocks from the inode table.
3533 */
3534 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3535 ext4_fsblk_t b, end, table;
3536 unsigned num;
3537
3538 table = ext4_inode_table(sb, gdp);
3539 /* s_inode_readahead_blks is always a power of 2 */
3540 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3541 if (table > b)
3542 b = table;
3543 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3544 num = EXT4_INODES_PER_GROUP(sb);
3545 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3546 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3547 num -= ext4_itable_unused_count(sb, gdp);
3548 table += num / inodes_per_block;
3549 if (end > table)
3550 end = table;
3551 while (b <= end)
3552 sb_breadahead(sb, b++);
3553 }
3554
3555 /*
3556 * There are other valid inodes in the buffer, this inode
3557 * has in-inode xattrs, or we don't have this inode in memory.
3558 * Read the block from disk.
3559 */
3560 trace_ext4_load_inode(inode);
3561 get_bh(bh);
3562 bh->b_end_io = end_buffer_read_sync;
3563 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3564 wait_on_buffer(bh);
3565 if (!buffer_uptodate(bh)) {
3566 EXT4_ERROR_INODE_BLOCK(inode, block,
3567 "unable to read itable block");
3568 brelse(bh);
3569 return -EIO;
3570 }
3571 }
3572 has_buffer:
3573 iloc->bh = bh;
3574 return 0;
3575 }
3576
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)3577 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3578 {
3579 /* We have all inode data except xattrs in memory here. */
3580 return __ext4_get_inode_loc(inode, iloc,
3581 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3582 }
3583
ext4_set_inode_flags(struct inode * inode)3584 void ext4_set_inode_flags(struct inode *inode)
3585 {
3586 unsigned int flags = EXT4_I(inode)->i_flags;
3587
3588 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3589 if (flags & EXT4_SYNC_FL)
3590 inode->i_flags |= S_SYNC;
3591 if (flags & EXT4_APPEND_FL)
3592 inode->i_flags |= S_APPEND;
3593 if (flags & EXT4_IMMUTABLE_FL)
3594 inode->i_flags |= S_IMMUTABLE;
3595 if (flags & EXT4_NOATIME_FL)
3596 inode->i_flags |= S_NOATIME;
3597 if (flags & EXT4_DIRSYNC_FL)
3598 inode->i_flags |= S_DIRSYNC;
3599 }
3600
3601 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)3602 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3603 {
3604 unsigned int vfs_fl;
3605 unsigned long old_fl, new_fl;
3606
3607 do {
3608 vfs_fl = ei->vfs_inode.i_flags;
3609 old_fl = ei->i_flags;
3610 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3611 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3612 EXT4_DIRSYNC_FL);
3613 if (vfs_fl & S_SYNC)
3614 new_fl |= EXT4_SYNC_FL;
3615 if (vfs_fl & S_APPEND)
3616 new_fl |= EXT4_APPEND_FL;
3617 if (vfs_fl & S_IMMUTABLE)
3618 new_fl |= EXT4_IMMUTABLE_FL;
3619 if (vfs_fl & S_NOATIME)
3620 new_fl |= EXT4_NOATIME_FL;
3621 if (vfs_fl & S_DIRSYNC)
3622 new_fl |= EXT4_DIRSYNC_FL;
3623 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3624 }
3625
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)3626 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3627 struct ext4_inode_info *ei)
3628 {
3629 blkcnt_t i_blocks ;
3630 struct inode *inode = &(ei->vfs_inode);
3631 struct super_block *sb = inode->i_sb;
3632
3633 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3634 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3635 /* we are using combined 48 bit field */
3636 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3637 le32_to_cpu(raw_inode->i_blocks_lo);
3638 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3639 /* i_blocks represent file system block size */
3640 return i_blocks << (inode->i_blkbits - 9);
3641 } else {
3642 return i_blocks;
3643 }
3644 } else {
3645 return le32_to_cpu(raw_inode->i_blocks_lo);
3646 }
3647 }
3648
ext4_iget(struct super_block * sb,unsigned long ino)3649 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3650 {
3651 struct ext4_iloc iloc;
3652 struct ext4_inode *raw_inode;
3653 struct ext4_inode_info *ei;
3654 struct inode *inode;
3655 journal_t *journal = EXT4_SB(sb)->s_journal;
3656 long ret;
3657 int block;
3658
3659 inode = iget_locked(sb, ino);
3660 if (!inode)
3661 return ERR_PTR(-ENOMEM);
3662 if (!(inode->i_state & I_NEW))
3663 return inode;
3664
3665 ei = EXT4_I(inode);
3666 iloc.bh = NULL;
3667
3668 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3669 if (ret < 0)
3670 goto bad_inode;
3671 raw_inode = ext4_raw_inode(&iloc);
3672 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3673 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3674 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3675 if (!(test_opt(inode->i_sb, NO_UID32))) {
3676 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3677 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3678 }
3679 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3680
3681 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3682 ei->i_dir_start_lookup = 0;
3683 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3684 /* We now have enough fields to check if the inode was active or not.
3685 * This is needed because nfsd might try to access dead inodes
3686 * the test is that same one that e2fsck uses
3687 * NeilBrown 1999oct15
3688 */
3689 if (inode->i_nlink == 0) {
3690 if (inode->i_mode == 0 ||
3691 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3692 /* this inode is deleted */
3693 ret = -ESTALE;
3694 goto bad_inode;
3695 }
3696 /* The only unlinked inodes we let through here have
3697 * valid i_mode and are being read by the orphan
3698 * recovery code: that's fine, we're about to complete
3699 * the process of deleting those. */
3700 }
3701 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3702 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3703 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3704 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3705 ei->i_file_acl |=
3706 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3707 inode->i_size = ext4_isize(raw_inode);
3708 ei->i_disksize = inode->i_size;
3709 #ifdef CONFIG_QUOTA
3710 ei->i_reserved_quota = 0;
3711 #endif
3712 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3713 ei->i_block_group = iloc.block_group;
3714 ei->i_last_alloc_group = ~0;
3715 /*
3716 * NOTE! The in-memory inode i_data array is in little-endian order
3717 * even on big-endian machines: we do NOT byteswap the block numbers!
3718 */
3719 for (block = 0; block < EXT4_N_BLOCKS; block++)
3720 ei->i_data[block] = raw_inode->i_block[block];
3721 INIT_LIST_HEAD(&ei->i_orphan);
3722
3723 /*
3724 * Set transaction id's of transactions that have to be committed
3725 * to finish f[data]sync. We set them to currently running transaction
3726 * as we cannot be sure that the inode or some of its metadata isn't
3727 * part of the transaction - the inode could have been reclaimed and
3728 * now it is reread from disk.
3729 */
3730 if (journal) {
3731 transaction_t *transaction;
3732 tid_t tid;
3733
3734 read_lock(&journal->j_state_lock);
3735 if (journal->j_running_transaction)
3736 transaction = journal->j_running_transaction;
3737 else
3738 transaction = journal->j_committing_transaction;
3739 if (transaction)
3740 tid = transaction->t_tid;
3741 else
3742 tid = journal->j_commit_sequence;
3743 read_unlock(&journal->j_state_lock);
3744 ei->i_sync_tid = tid;
3745 ei->i_datasync_tid = tid;
3746 }
3747
3748 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3749 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3750 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3751 EXT4_INODE_SIZE(inode->i_sb)) {
3752 ret = -EIO;
3753 goto bad_inode;
3754 }
3755 if (ei->i_extra_isize == 0) {
3756 /* The extra space is currently unused. Use it. */
3757 ei->i_extra_isize = sizeof(struct ext4_inode) -
3758 EXT4_GOOD_OLD_INODE_SIZE;
3759 } else {
3760 __le32 *magic = (void *)raw_inode +
3761 EXT4_GOOD_OLD_INODE_SIZE +
3762 ei->i_extra_isize;
3763 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3764 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3765 }
3766 } else
3767 ei->i_extra_isize = 0;
3768
3769 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3770 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3771 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3772 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3773
3774 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3775 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3776 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3777 inode->i_version |=
3778 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3779 }
3780
3781 ret = 0;
3782 if (ei->i_file_acl &&
3783 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3784 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3785 ei->i_file_acl);
3786 ret = -EIO;
3787 goto bad_inode;
3788 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3789 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3790 (S_ISLNK(inode->i_mode) &&
3791 !ext4_inode_is_fast_symlink(inode)))
3792 /* Validate extent which is part of inode */
3793 ret = ext4_ext_check_inode(inode);
3794 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3795 (S_ISLNK(inode->i_mode) &&
3796 !ext4_inode_is_fast_symlink(inode))) {
3797 /* Validate block references which are part of inode */
3798 ret = ext4_ind_check_inode(inode);
3799 }
3800 if (ret)
3801 goto bad_inode;
3802
3803 if (S_ISREG(inode->i_mode)) {
3804 inode->i_op = &ext4_file_inode_operations;
3805 inode->i_fop = &ext4_file_operations;
3806 ext4_set_aops(inode);
3807 } else if (S_ISDIR(inode->i_mode)) {
3808 inode->i_op = &ext4_dir_inode_operations;
3809 inode->i_fop = &ext4_dir_operations;
3810 } else if (S_ISLNK(inode->i_mode)) {
3811 if (ext4_inode_is_fast_symlink(inode)) {
3812 inode->i_op = &ext4_fast_symlink_inode_operations;
3813 nd_terminate_link(ei->i_data, inode->i_size,
3814 sizeof(ei->i_data) - 1);
3815 } else {
3816 inode->i_op = &ext4_symlink_inode_operations;
3817 ext4_set_aops(inode);
3818 }
3819 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3820 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3821 inode->i_op = &ext4_special_inode_operations;
3822 if (raw_inode->i_block[0])
3823 init_special_inode(inode, inode->i_mode,
3824 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3825 else
3826 init_special_inode(inode, inode->i_mode,
3827 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3828 } else {
3829 ret = -EIO;
3830 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3831 goto bad_inode;
3832 }
3833 brelse(iloc.bh);
3834 ext4_set_inode_flags(inode);
3835 unlock_new_inode(inode);
3836 return inode;
3837
3838 bad_inode:
3839 brelse(iloc.bh);
3840 iget_failed(inode);
3841 return ERR_PTR(ret);
3842 }
3843
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)3844 static int ext4_inode_blocks_set(handle_t *handle,
3845 struct ext4_inode *raw_inode,
3846 struct ext4_inode_info *ei)
3847 {
3848 struct inode *inode = &(ei->vfs_inode);
3849 u64 i_blocks = inode->i_blocks;
3850 struct super_block *sb = inode->i_sb;
3851
3852 if (i_blocks <= ~0U) {
3853 /*
3854 * i_blocks can be represnted in a 32 bit variable
3855 * as multiple of 512 bytes
3856 */
3857 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3858 raw_inode->i_blocks_high = 0;
3859 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3860 return 0;
3861 }
3862 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3863 return -EFBIG;
3864
3865 if (i_blocks <= 0xffffffffffffULL) {
3866 /*
3867 * i_blocks can be represented in a 48 bit variable
3868 * as multiple of 512 bytes
3869 */
3870 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3871 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3872 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3873 } else {
3874 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3875 /* i_block is stored in file system block size */
3876 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3877 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3878 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3879 }
3880 return 0;
3881 }
3882
3883 /*
3884 * Post the struct inode info into an on-disk inode location in the
3885 * buffer-cache. This gobbles the caller's reference to the
3886 * buffer_head in the inode location struct.
3887 *
3888 * The caller must have write access to iloc->bh.
3889 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)3890 static int ext4_do_update_inode(handle_t *handle,
3891 struct inode *inode,
3892 struct ext4_iloc *iloc)
3893 {
3894 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3895 struct ext4_inode_info *ei = EXT4_I(inode);
3896 struct buffer_head *bh = iloc->bh;
3897 int err = 0, rc, block;
3898 int need_datasync = 0;
3899
3900 /* For fields not not tracking in the in-memory inode,
3901 * initialise them to zero for new inodes. */
3902 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3903 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3904
3905 ext4_get_inode_flags(ei);
3906 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3907 if (!(test_opt(inode->i_sb, NO_UID32))) {
3908 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3909 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3910 /*
3911 * Fix up interoperability with old kernels. Otherwise, old inodes get
3912 * re-used with the upper 16 bits of the uid/gid intact
3913 */
3914 if (!ei->i_dtime) {
3915 raw_inode->i_uid_high =
3916 cpu_to_le16(high_16_bits(inode->i_uid));
3917 raw_inode->i_gid_high =
3918 cpu_to_le16(high_16_bits(inode->i_gid));
3919 } else {
3920 raw_inode->i_uid_high = 0;
3921 raw_inode->i_gid_high = 0;
3922 }
3923 } else {
3924 raw_inode->i_uid_low =
3925 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3926 raw_inode->i_gid_low =
3927 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3928 raw_inode->i_uid_high = 0;
3929 raw_inode->i_gid_high = 0;
3930 }
3931 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3932
3933 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3934 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3935 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3936 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3937
3938 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3939 goto out_brelse;
3940 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3941 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3942 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3943 cpu_to_le32(EXT4_OS_HURD))
3944 raw_inode->i_file_acl_high =
3945 cpu_to_le16(ei->i_file_acl >> 32);
3946 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3947 if (ei->i_disksize != ext4_isize(raw_inode)) {
3948 ext4_isize_set(raw_inode, ei->i_disksize);
3949 need_datasync = 1;
3950 }
3951 if (ei->i_disksize > 0x7fffffffULL) {
3952 struct super_block *sb = inode->i_sb;
3953 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3954 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3955 EXT4_SB(sb)->s_es->s_rev_level ==
3956 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3957 /* If this is the first large file
3958 * created, add a flag to the superblock.
3959 */
3960 err = ext4_journal_get_write_access(handle,
3961 EXT4_SB(sb)->s_sbh);
3962 if (err)
3963 goto out_brelse;
3964 ext4_update_dynamic_rev(sb);
3965 EXT4_SET_RO_COMPAT_FEATURE(sb,
3966 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3967 ext4_handle_sync(handle);
3968 err = ext4_handle_dirty_super(handle, sb);
3969 }
3970 }
3971 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3972 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3973 if (old_valid_dev(inode->i_rdev)) {
3974 raw_inode->i_block[0] =
3975 cpu_to_le32(old_encode_dev(inode->i_rdev));
3976 raw_inode->i_block[1] = 0;
3977 } else {
3978 raw_inode->i_block[0] = 0;
3979 raw_inode->i_block[1] =
3980 cpu_to_le32(new_encode_dev(inode->i_rdev));
3981 raw_inode->i_block[2] = 0;
3982 }
3983 } else
3984 for (block = 0; block < EXT4_N_BLOCKS; block++)
3985 raw_inode->i_block[block] = ei->i_data[block];
3986
3987 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3988 if (ei->i_extra_isize) {
3989 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3990 raw_inode->i_version_hi =
3991 cpu_to_le32(inode->i_version >> 32);
3992 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3993 }
3994
3995 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3996 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3997 if (!err)
3998 err = rc;
3999 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4000
4001 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4002 out_brelse:
4003 brelse(bh);
4004 ext4_std_error(inode->i_sb, err);
4005 return err;
4006 }
4007
4008 /*
4009 * ext4_write_inode()
4010 *
4011 * We are called from a few places:
4012 *
4013 * - Within generic_file_write() for O_SYNC files.
4014 * Here, there will be no transaction running. We wait for any running
4015 * trasnaction to commit.
4016 *
4017 * - Within sys_sync(), kupdate and such.
4018 * We wait on commit, if tol to.
4019 *
4020 * - Within prune_icache() (PF_MEMALLOC == true)
4021 * Here we simply return. We can't afford to block kswapd on the
4022 * journal commit.
4023 *
4024 * In all cases it is actually safe for us to return without doing anything,
4025 * because the inode has been copied into a raw inode buffer in
4026 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4027 * knfsd.
4028 *
4029 * Note that we are absolutely dependent upon all inode dirtiers doing the
4030 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4031 * which we are interested.
4032 *
4033 * It would be a bug for them to not do this. The code:
4034 *
4035 * mark_inode_dirty(inode)
4036 * stuff();
4037 * inode->i_size = expr;
4038 *
4039 * is in error because a kswapd-driven write_inode() could occur while
4040 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4041 * will no longer be on the superblock's dirty inode list.
4042 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4043 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4044 {
4045 int err;
4046
4047 if (current->flags & PF_MEMALLOC)
4048 return 0;
4049
4050 if (EXT4_SB(inode->i_sb)->s_journal) {
4051 if (ext4_journal_current_handle()) {
4052 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4053 dump_stack();
4054 return -EIO;
4055 }
4056
4057 if (wbc->sync_mode != WB_SYNC_ALL)
4058 return 0;
4059
4060 err = ext4_force_commit(inode->i_sb);
4061 } else {
4062 struct ext4_iloc iloc;
4063
4064 err = __ext4_get_inode_loc(inode, &iloc, 0);
4065 if (err)
4066 return err;
4067 if (wbc->sync_mode == WB_SYNC_ALL)
4068 sync_dirty_buffer(iloc.bh);
4069 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4070 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4071 "IO error syncing inode");
4072 err = -EIO;
4073 }
4074 brelse(iloc.bh);
4075 }
4076 return err;
4077 }
4078
4079 /*
4080 * ext4_setattr()
4081 *
4082 * Called from notify_change.
4083 *
4084 * We want to trap VFS attempts to truncate the file as soon as
4085 * possible. In particular, we want to make sure that when the VFS
4086 * shrinks i_size, we put the inode on the orphan list and modify
4087 * i_disksize immediately, so that during the subsequent flushing of
4088 * dirty pages and freeing of disk blocks, we can guarantee that any
4089 * commit will leave the blocks being flushed in an unused state on
4090 * disk. (On recovery, the inode will get truncated and the blocks will
4091 * be freed, so we have a strong guarantee that no future commit will
4092 * leave these blocks visible to the user.)
4093 *
4094 * Another thing we have to assure is that if we are in ordered mode
4095 * and inode is still attached to the committing transaction, we must
4096 * we start writeout of all the dirty pages which are being truncated.
4097 * This way we are sure that all the data written in the previous
4098 * transaction are already on disk (truncate waits for pages under
4099 * writeback).
4100 *
4101 * Called with inode->i_mutex down.
4102 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4103 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4104 {
4105 struct inode *inode = dentry->d_inode;
4106 int error, rc = 0;
4107 int orphan = 0;
4108 const unsigned int ia_valid = attr->ia_valid;
4109
4110 error = inode_change_ok(inode, attr);
4111 if (error)
4112 return error;
4113
4114 if (is_quota_modification(inode, attr))
4115 dquot_initialize(inode);
4116 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4117 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4118 handle_t *handle;
4119
4120 /* (user+group)*(old+new) structure, inode write (sb,
4121 * inode block, ? - but truncate inode update has it) */
4122 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4123 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4124 if (IS_ERR(handle)) {
4125 error = PTR_ERR(handle);
4126 goto err_out;
4127 }
4128 error = dquot_transfer(inode, attr);
4129 if (error) {
4130 ext4_journal_stop(handle);
4131 return error;
4132 }
4133 /* Update corresponding info in inode so that everything is in
4134 * one transaction */
4135 if (attr->ia_valid & ATTR_UID)
4136 inode->i_uid = attr->ia_uid;
4137 if (attr->ia_valid & ATTR_GID)
4138 inode->i_gid = attr->ia_gid;
4139 error = ext4_mark_inode_dirty(handle, inode);
4140 ext4_journal_stop(handle);
4141 }
4142
4143 if (attr->ia_valid & ATTR_SIZE) {
4144 inode_dio_wait(inode);
4145
4146 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4147 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4148
4149 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4150 return -EFBIG;
4151 }
4152 }
4153
4154 if (S_ISREG(inode->i_mode) &&
4155 attr->ia_valid & ATTR_SIZE &&
4156 (attr->ia_size < inode->i_size)) {
4157 handle_t *handle;
4158
4159 handle = ext4_journal_start(inode, 3);
4160 if (IS_ERR(handle)) {
4161 error = PTR_ERR(handle);
4162 goto err_out;
4163 }
4164 if (ext4_handle_valid(handle)) {
4165 error = ext4_orphan_add(handle, inode);
4166 orphan = 1;
4167 }
4168 EXT4_I(inode)->i_disksize = attr->ia_size;
4169 rc = ext4_mark_inode_dirty(handle, inode);
4170 if (!error)
4171 error = rc;
4172 ext4_journal_stop(handle);
4173
4174 if (ext4_should_order_data(inode)) {
4175 error = ext4_begin_ordered_truncate(inode,
4176 attr->ia_size);
4177 if (error) {
4178 /* Do as much error cleanup as possible */
4179 handle = ext4_journal_start(inode, 3);
4180 if (IS_ERR(handle)) {
4181 ext4_orphan_del(NULL, inode);
4182 goto err_out;
4183 }
4184 ext4_orphan_del(handle, inode);
4185 orphan = 0;
4186 ext4_journal_stop(handle);
4187 goto err_out;
4188 }
4189 }
4190 }
4191
4192 if (attr->ia_valid & ATTR_SIZE) {
4193 if (attr->ia_size != i_size_read(inode))
4194 truncate_setsize(inode, attr->ia_size);
4195 ext4_truncate(inode);
4196 }
4197
4198 if (!rc) {
4199 setattr_copy(inode, attr);
4200 mark_inode_dirty(inode);
4201 }
4202
4203 /*
4204 * If the call to ext4_truncate failed to get a transaction handle at
4205 * all, we need to clean up the in-core orphan list manually.
4206 */
4207 if (orphan && inode->i_nlink)
4208 ext4_orphan_del(NULL, inode);
4209
4210 if (!rc && (ia_valid & ATTR_MODE))
4211 rc = ext4_acl_chmod(inode);
4212
4213 err_out:
4214 ext4_std_error(inode->i_sb, error);
4215 if (!error)
4216 error = rc;
4217 return error;
4218 }
4219
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4220 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4221 struct kstat *stat)
4222 {
4223 struct inode *inode;
4224 unsigned long long delalloc_blocks;
4225
4226 inode = dentry->d_inode;
4227 generic_fillattr(inode, stat);
4228
4229 /*
4230 * We can't update i_blocks if the block allocation is delayed
4231 * otherwise in the case of system crash before the real block
4232 * allocation is done, we will have i_blocks inconsistent with
4233 * on-disk file blocks.
4234 * We always keep i_blocks updated together with real
4235 * allocation. But to not confuse with user, stat
4236 * will return the blocks that include the delayed allocation
4237 * blocks for this file.
4238 */
4239 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4240
4241 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4242 return 0;
4243 }
4244
ext4_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)4245 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4246 {
4247 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4248 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4249 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4250 }
4251
4252 /*
4253 * Account for index blocks, block groups bitmaps and block group
4254 * descriptor blocks if modify datablocks and index blocks
4255 * worse case, the indexs blocks spread over different block groups
4256 *
4257 * If datablocks are discontiguous, they are possible to spread over
4258 * different block groups too. If they are contiuguous, with flexbg,
4259 * they could still across block group boundary.
4260 *
4261 * Also account for superblock, inode, quota and xattr blocks
4262 */
ext4_meta_trans_blocks(struct inode * inode,int nrblocks,int chunk)4263 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4264 {
4265 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4266 int gdpblocks;
4267 int idxblocks;
4268 int ret = 0;
4269
4270 /*
4271 * How many index blocks need to touch to modify nrblocks?
4272 * The "Chunk" flag indicating whether the nrblocks is
4273 * physically contiguous on disk
4274 *
4275 * For Direct IO and fallocate, they calls get_block to allocate
4276 * one single extent at a time, so they could set the "Chunk" flag
4277 */
4278 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4279
4280 ret = idxblocks;
4281
4282 /*
4283 * Now let's see how many group bitmaps and group descriptors need
4284 * to account
4285 */
4286 groups = idxblocks;
4287 if (chunk)
4288 groups += 1;
4289 else
4290 groups += nrblocks;
4291
4292 gdpblocks = groups;
4293 if (groups > ngroups)
4294 groups = ngroups;
4295 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4296 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4297
4298 /* bitmaps and block group descriptor blocks */
4299 ret += groups + gdpblocks;
4300
4301 /* Blocks for super block, inode, quota and xattr blocks */
4302 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4303
4304 return ret;
4305 }
4306
4307 /*
4308 * Calculate the total number of credits to reserve to fit
4309 * the modification of a single pages into a single transaction,
4310 * which may include multiple chunks of block allocations.
4311 *
4312 * This could be called via ext4_write_begin()
4313 *
4314 * We need to consider the worse case, when
4315 * one new block per extent.
4316 */
ext4_writepage_trans_blocks(struct inode * inode)4317 int ext4_writepage_trans_blocks(struct inode *inode)
4318 {
4319 int bpp = ext4_journal_blocks_per_page(inode);
4320 int ret;
4321
4322 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4323
4324 /* Account for data blocks for journalled mode */
4325 if (ext4_should_journal_data(inode))
4326 ret += bpp;
4327 return ret;
4328 }
4329
4330 /*
4331 * Calculate the journal credits for a chunk of data modification.
4332 *
4333 * This is called from DIO, fallocate or whoever calling
4334 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4335 *
4336 * journal buffers for data blocks are not included here, as DIO
4337 * and fallocate do no need to journal data buffers.
4338 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)4339 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4340 {
4341 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4342 }
4343
4344 /*
4345 * The caller must have previously called ext4_reserve_inode_write().
4346 * Give this, we know that the caller already has write access to iloc->bh.
4347 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4348 int ext4_mark_iloc_dirty(handle_t *handle,
4349 struct inode *inode, struct ext4_iloc *iloc)
4350 {
4351 int err = 0;
4352
4353 if (IS_I_VERSION(inode))
4354 inode_inc_iversion(inode);
4355
4356 /* the do_update_inode consumes one bh->b_count */
4357 get_bh(iloc->bh);
4358
4359 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4360 err = ext4_do_update_inode(handle, inode, iloc);
4361 put_bh(iloc->bh);
4362 return err;
4363 }
4364
4365 /*
4366 * On success, We end up with an outstanding reference count against
4367 * iloc->bh. This _must_ be cleaned up later.
4368 */
4369
4370 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4371 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4372 struct ext4_iloc *iloc)
4373 {
4374 int err;
4375
4376 err = ext4_get_inode_loc(inode, iloc);
4377 if (!err) {
4378 BUFFER_TRACE(iloc->bh, "get_write_access");
4379 err = ext4_journal_get_write_access(handle, iloc->bh);
4380 if (err) {
4381 brelse(iloc->bh);
4382 iloc->bh = NULL;
4383 }
4384 }
4385 ext4_std_error(inode->i_sb, err);
4386 return err;
4387 }
4388
4389 /*
4390 * Expand an inode by new_extra_isize bytes.
4391 * Returns 0 on success or negative error number on failure.
4392 */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)4393 static int ext4_expand_extra_isize(struct inode *inode,
4394 unsigned int new_extra_isize,
4395 struct ext4_iloc iloc,
4396 handle_t *handle)
4397 {
4398 struct ext4_inode *raw_inode;
4399 struct ext4_xattr_ibody_header *header;
4400
4401 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4402 return 0;
4403
4404 raw_inode = ext4_raw_inode(&iloc);
4405
4406 header = IHDR(inode, raw_inode);
4407
4408 /* No extended attributes present */
4409 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4410 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4411 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4412 new_extra_isize);
4413 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4414 return 0;
4415 }
4416
4417 /* try to expand with EAs present */
4418 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4419 raw_inode, handle);
4420 }
4421
4422 /*
4423 * What we do here is to mark the in-core inode as clean with respect to inode
4424 * dirtiness (it may still be data-dirty).
4425 * This means that the in-core inode may be reaped by prune_icache
4426 * without having to perform any I/O. This is a very good thing,
4427 * because *any* task may call prune_icache - even ones which
4428 * have a transaction open against a different journal.
4429 *
4430 * Is this cheating? Not really. Sure, we haven't written the
4431 * inode out, but prune_icache isn't a user-visible syncing function.
4432 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4433 * we start and wait on commits.
4434 *
4435 * Is this efficient/effective? Well, we're being nice to the system
4436 * by cleaning up our inodes proactively so they can be reaped
4437 * without I/O. But we are potentially leaving up to five seconds'
4438 * worth of inodes floating about which prune_icache wants us to
4439 * write out. One way to fix that would be to get prune_icache()
4440 * to do a write_super() to free up some memory. It has the desired
4441 * effect.
4442 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)4443 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4444 {
4445 struct ext4_iloc iloc;
4446 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4447 static unsigned int mnt_count;
4448 int err, ret;
4449
4450 might_sleep();
4451 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4452 err = ext4_reserve_inode_write(handle, inode, &iloc);
4453 if (ext4_handle_valid(handle) &&
4454 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4455 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4456 /*
4457 * We need extra buffer credits since we may write into EA block
4458 * with this same handle. If journal_extend fails, then it will
4459 * only result in a minor loss of functionality for that inode.
4460 * If this is felt to be critical, then e2fsck should be run to
4461 * force a large enough s_min_extra_isize.
4462 */
4463 if ((jbd2_journal_extend(handle,
4464 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4465 ret = ext4_expand_extra_isize(inode,
4466 sbi->s_want_extra_isize,
4467 iloc, handle);
4468 if (ret) {
4469 ext4_set_inode_state(inode,
4470 EXT4_STATE_NO_EXPAND);
4471 if (mnt_count !=
4472 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4473 ext4_warning(inode->i_sb,
4474 "Unable to expand inode %lu. Delete"
4475 " some EAs or run e2fsck.",
4476 inode->i_ino);
4477 mnt_count =
4478 le16_to_cpu(sbi->s_es->s_mnt_count);
4479 }
4480 }
4481 }
4482 }
4483 if (!err)
4484 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4485 return err;
4486 }
4487
4488 /*
4489 * ext4_dirty_inode() is called from __mark_inode_dirty()
4490 *
4491 * We're really interested in the case where a file is being extended.
4492 * i_size has been changed by generic_commit_write() and we thus need
4493 * to include the updated inode in the current transaction.
4494 *
4495 * Also, dquot_alloc_block() will always dirty the inode when blocks
4496 * are allocated to the file.
4497 *
4498 * If the inode is marked synchronous, we don't honour that here - doing
4499 * so would cause a commit on atime updates, which we don't bother doing.
4500 * We handle synchronous inodes at the highest possible level.
4501 */
ext4_dirty_inode(struct inode * inode,int flags)4502 void ext4_dirty_inode(struct inode *inode, int flags)
4503 {
4504 handle_t *handle;
4505
4506 handle = ext4_journal_start(inode, 2);
4507 if (IS_ERR(handle))
4508 goto out;
4509
4510 ext4_mark_inode_dirty(handle, inode);
4511
4512 ext4_journal_stop(handle);
4513 out:
4514 return;
4515 }
4516
4517 #if 0
4518 /*
4519 * Bind an inode's backing buffer_head into this transaction, to prevent
4520 * it from being flushed to disk early. Unlike
4521 * ext4_reserve_inode_write, this leaves behind no bh reference and
4522 * returns no iloc structure, so the caller needs to repeat the iloc
4523 * lookup to mark the inode dirty later.
4524 */
4525 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4526 {
4527 struct ext4_iloc iloc;
4528
4529 int err = 0;
4530 if (handle) {
4531 err = ext4_get_inode_loc(inode, &iloc);
4532 if (!err) {
4533 BUFFER_TRACE(iloc.bh, "get_write_access");
4534 err = jbd2_journal_get_write_access(handle, iloc.bh);
4535 if (!err)
4536 err = ext4_handle_dirty_metadata(handle,
4537 NULL,
4538 iloc.bh);
4539 brelse(iloc.bh);
4540 }
4541 }
4542 ext4_std_error(inode->i_sb, err);
4543 return err;
4544 }
4545 #endif
4546
ext4_change_inode_journal_flag(struct inode * inode,int val)4547 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4548 {
4549 journal_t *journal;
4550 handle_t *handle;
4551 int err;
4552
4553 /*
4554 * We have to be very careful here: changing a data block's
4555 * journaling status dynamically is dangerous. If we write a
4556 * data block to the journal, change the status and then delete
4557 * that block, we risk forgetting to revoke the old log record
4558 * from the journal and so a subsequent replay can corrupt data.
4559 * So, first we make sure that the journal is empty and that
4560 * nobody is changing anything.
4561 */
4562
4563 journal = EXT4_JOURNAL(inode);
4564 if (!journal)
4565 return 0;
4566 if (is_journal_aborted(journal))
4567 return -EROFS;
4568 /* We have to allocate physical blocks for delalloc blocks
4569 * before flushing journal. otherwise delalloc blocks can not
4570 * be allocated any more. even more truncate on delalloc blocks
4571 * could trigger BUG by flushing delalloc blocks in journal.
4572 * There is no delalloc block in non-journal data mode.
4573 */
4574 if (val && test_opt(inode->i_sb, DELALLOC)) {
4575 err = ext4_alloc_da_blocks(inode);
4576 if (err < 0)
4577 return err;
4578 }
4579
4580 jbd2_journal_lock_updates(journal);
4581
4582 /*
4583 * OK, there are no updates running now, and all cached data is
4584 * synced to disk. We are now in a completely consistent state
4585 * which doesn't have anything in the journal, and we know that
4586 * no filesystem updates are running, so it is safe to modify
4587 * the inode's in-core data-journaling state flag now.
4588 */
4589
4590 if (val)
4591 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4592 else {
4593 jbd2_journal_flush(journal);
4594 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4595 }
4596 ext4_set_aops(inode);
4597
4598 jbd2_journal_unlock_updates(journal);
4599
4600 /* Finally we can mark the inode as dirty. */
4601
4602 handle = ext4_journal_start(inode, 1);
4603 if (IS_ERR(handle))
4604 return PTR_ERR(handle);
4605
4606 err = ext4_mark_inode_dirty(handle, inode);
4607 ext4_handle_sync(handle);
4608 ext4_journal_stop(handle);
4609 ext4_std_error(inode->i_sb, err);
4610
4611 return err;
4612 }
4613
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)4614 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4615 {
4616 return !buffer_mapped(bh);
4617 }
4618
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)4619 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4620 {
4621 struct page *page = vmf->page;
4622 loff_t size;
4623 unsigned long len;
4624 int ret;
4625 struct file *file = vma->vm_file;
4626 struct inode *inode = file->f_path.dentry->d_inode;
4627 struct address_space *mapping = inode->i_mapping;
4628 handle_t *handle;
4629 get_block_t *get_block;
4630 int retries = 0;
4631
4632 /*
4633 * This check is racy but catches the common case. We rely on
4634 * __block_page_mkwrite() to do a reliable check.
4635 */
4636 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4637 /* Delalloc case is easy... */
4638 if (test_opt(inode->i_sb, DELALLOC) &&
4639 !ext4_should_journal_data(inode) &&
4640 !ext4_nonda_switch(inode->i_sb)) {
4641 do {
4642 ret = __block_page_mkwrite(vma, vmf,
4643 ext4_da_get_block_prep);
4644 } while (ret == -ENOSPC &&
4645 ext4_should_retry_alloc(inode->i_sb, &retries));
4646 goto out_ret;
4647 }
4648
4649 lock_page(page);
4650 size = i_size_read(inode);
4651 /* Page got truncated from under us? */
4652 if (page->mapping != mapping || page_offset(page) > size) {
4653 unlock_page(page);
4654 ret = VM_FAULT_NOPAGE;
4655 goto out;
4656 }
4657
4658 if (page->index == size >> PAGE_CACHE_SHIFT)
4659 len = size & ~PAGE_CACHE_MASK;
4660 else
4661 len = PAGE_CACHE_SIZE;
4662 /*
4663 * Return if we have all the buffers mapped. This avoids the need to do
4664 * journal_start/journal_stop which can block and take a long time
4665 */
4666 if (page_has_buffers(page)) {
4667 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4668 ext4_bh_unmapped)) {
4669 /* Wait so that we don't change page under IO */
4670 wait_on_page_writeback(page);
4671 ret = VM_FAULT_LOCKED;
4672 goto out;
4673 }
4674 }
4675 unlock_page(page);
4676 /* OK, we need to fill the hole... */
4677 if (ext4_should_dioread_nolock(inode))
4678 get_block = ext4_get_block_write;
4679 else
4680 get_block = ext4_get_block;
4681 retry_alloc:
4682 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4683 if (IS_ERR(handle)) {
4684 ret = VM_FAULT_SIGBUS;
4685 goto out;
4686 }
4687 ret = __block_page_mkwrite(vma, vmf, get_block);
4688 if (!ret && ext4_should_journal_data(inode)) {
4689 if (walk_page_buffers(handle, page_buffers(page), 0,
4690 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4691 unlock_page(page);
4692 ret = VM_FAULT_SIGBUS;
4693 ext4_journal_stop(handle);
4694 goto out;
4695 }
4696 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4697 }
4698 ext4_journal_stop(handle);
4699 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4700 goto retry_alloc;
4701 out_ret:
4702 ret = block_page_mkwrite_return(ret);
4703 out:
4704 return ret;
4705 }
4706