• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36 
37 #ifdef CONFIG_UBIFS_FS_DEBUG
38 
39 static DEFINE_SPINLOCK(dbg_lock);
40 
get_key_fmt(int fmt)41 static const char *get_key_fmt(int fmt)
42 {
43 	switch (fmt) {
44 	case UBIFS_SIMPLE_KEY_FMT:
45 		return "simple";
46 	default:
47 		return "unknown/invalid format";
48 	}
49 }
50 
get_key_hash(int hash)51 static const char *get_key_hash(int hash)
52 {
53 	switch (hash) {
54 	case UBIFS_KEY_HASH_R5:
55 		return "R5";
56 	case UBIFS_KEY_HASH_TEST:
57 		return "test";
58 	default:
59 		return "unknown/invalid name hash";
60 	}
61 }
62 
get_key_type(int type)63 static const char *get_key_type(int type)
64 {
65 	switch (type) {
66 	case UBIFS_INO_KEY:
67 		return "inode";
68 	case UBIFS_DENT_KEY:
69 		return "direntry";
70 	case UBIFS_XENT_KEY:
71 		return "xentry";
72 	case UBIFS_DATA_KEY:
73 		return "data";
74 	case UBIFS_TRUN_KEY:
75 		return "truncate";
76 	default:
77 		return "unknown/invalid key";
78 	}
79 }
80 
get_dent_type(int type)81 static const char *get_dent_type(int type)
82 {
83 	switch (type) {
84 	case UBIFS_ITYPE_REG:
85 		return "file";
86 	case UBIFS_ITYPE_DIR:
87 		return "dir";
88 	case UBIFS_ITYPE_LNK:
89 		return "symlink";
90 	case UBIFS_ITYPE_BLK:
91 		return "blkdev";
92 	case UBIFS_ITYPE_CHR:
93 		return "char dev";
94 	case UBIFS_ITYPE_FIFO:
95 		return "fifo";
96 	case UBIFS_ITYPE_SOCK:
97 		return "socket";
98 	default:
99 		return "unknown/invalid type";
100 	}
101 }
102 
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)103 const char *dbg_snprintf_key(const struct ubifs_info *c,
104 			     const union ubifs_key *key, char *buffer, int len)
105 {
106 	char *p = buffer;
107 	int type = key_type(c, key);
108 
109 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
110 		switch (type) {
111 		case UBIFS_INO_KEY:
112 			len -= snprintf(p, len, "(%lu, %s)",
113 					(unsigned long)key_inum(c, key),
114 					get_key_type(type));
115 			break;
116 		case UBIFS_DENT_KEY:
117 		case UBIFS_XENT_KEY:
118 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
119 					(unsigned long)key_inum(c, key),
120 					get_key_type(type), key_hash(c, key));
121 			break;
122 		case UBIFS_DATA_KEY:
123 			len -= snprintf(p, len, "(%lu, %s, %u)",
124 					(unsigned long)key_inum(c, key),
125 					get_key_type(type), key_block(c, key));
126 			break;
127 		case UBIFS_TRUN_KEY:
128 			len -= snprintf(p, len, "(%lu, %s)",
129 					(unsigned long)key_inum(c, key),
130 					get_key_type(type));
131 			break;
132 		default:
133 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
134 					key->u32[0], key->u32[1]);
135 		}
136 	} else
137 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
138 	ubifs_assert(len > 0);
139 	return p;
140 }
141 
dbg_ntype(int type)142 const char *dbg_ntype(int type)
143 {
144 	switch (type) {
145 	case UBIFS_PAD_NODE:
146 		return "padding node";
147 	case UBIFS_SB_NODE:
148 		return "superblock node";
149 	case UBIFS_MST_NODE:
150 		return "master node";
151 	case UBIFS_REF_NODE:
152 		return "reference node";
153 	case UBIFS_INO_NODE:
154 		return "inode node";
155 	case UBIFS_DENT_NODE:
156 		return "direntry node";
157 	case UBIFS_XENT_NODE:
158 		return "xentry node";
159 	case UBIFS_DATA_NODE:
160 		return "data node";
161 	case UBIFS_TRUN_NODE:
162 		return "truncate node";
163 	case UBIFS_IDX_NODE:
164 		return "indexing node";
165 	case UBIFS_CS_NODE:
166 		return "commit start node";
167 	case UBIFS_ORPH_NODE:
168 		return "orphan node";
169 	default:
170 		return "unknown node";
171 	}
172 }
173 
dbg_gtype(int type)174 static const char *dbg_gtype(int type)
175 {
176 	switch (type) {
177 	case UBIFS_NO_NODE_GROUP:
178 		return "no node group";
179 	case UBIFS_IN_NODE_GROUP:
180 		return "in node group";
181 	case UBIFS_LAST_OF_NODE_GROUP:
182 		return "last of node group";
183 	default:
184 		return "unknown";
185 	}
186 }
187 
dbg_cstate(int cmt_state)188 const char *dbg_cstate(int cmt_state)
189 {
190 	switch (cmt_state) {
191 	case COMMIT_RESTING:
192 		return "commit resting";
193 	case COMMIT_BACKGROUND:
194 		return "background commit requested";
195 	case COMMIT_REQUIRED:
196 		return "commit required";
197 	case COMMIT_RUNNING_BACKGROUND:
198 		return "BACKGROUND commit running";
199 	case COMMIT_RUNNING_REQUIRED:
200 		return "commit running and required";
201 	case COMMIT_BROKEN:
202 		return "broken commit";
203 	default:
204 		return "unknown commit state";
205 	}
206 }
207 
dbg_jhead(int jhead)208 const char *dbg_jhead(int jhead)
209 {
210 	switch (jhead) {
211 	case GCHD:
212 		return "0 (GC)";
213 	case BASEHD:
214 		return "1 (base)";
215 	case DATAHD:
216 		return "2 (data)";
217 	default:
218 		return "unknown journal head";
219 	}
220 }
221 
dump_ch(const struct ubifs_ch * ch)222 static void dump_ch(const struct ubifs_ch *ch)
223 {
224 	printk(KERN_ERR "\tmagic          %#x\n", le32_to_cpu(ch->magic));
225 	printk(KERN_ERR "\tcrc            %#x\n", le32_to_cpu(ch->crc));
226 	printk(KERN_ERR "\tnode_type      %d (%s)\n", ch->node_type,
227 	       dbg_ntype(ch->node_type));
228 	printk(KERN_ERR "\tgroup_type     %d (%s)\n", ch->group_type,
229 	       dbg_gtype(ch->group_type));
230 	printk(KERN_ERR "\tsqnum          %llu\n",
231 	       (unsigned long long)le64_to_cpu(ch->sqnum));
232 	printk(KERN_ERR "\tlen            %u\n", le32_to_cpu(ch->len));
233 }
234 
dbg_dump_inode(struct ubifs_info * c,const struct inode * inode)235 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
236 {
237 	const struct ubifs_inode *ui = ubifs_inode(inode);
238 	struct qstr nm = { .name = NULL };
239 	union ubifs_key key;
240 	struct ubifs_dent_node *dent, *pdent = NULL;
241 	int count = 2;
242 
243 	printk(KERN_ERR "Dump in-memory inode:");
244 	printk(KERN_ERR "\tinode          %lu\n", inode->i_ino);
245 	printk(KERN_ERR "\tsize           %llu\n",
246 	       (unsigned long long)i_size_read(inode));
247 	printk(KERN_ERR "\tnlink          %u\n", inode->i_nlink);
248 	printk(KERN_ERR "\tuid            %u\n", (unsigned int)inode->i_uid);
249 	printk(KERN_ERR "\tgid            %u\n", (unsigned int)inode->i_gid);
250 	printk(KERN_ERR "\tatime          %u.%u\n",
251 	       (unsigned int)inode->i_atime.tv_sec,
252 	       (unsigned int)inode->i_atime.tv_nsec);
253 	printk(KERN_ERR "\tmtime          %u.%u\n",
254 	       (unsigned int)inode->i_mtime.tv_sec,
255 	       (unsigned int)inode->i_mtime.tv_nsec);
256 	printk(KERN_ERR "\tctime          %u.%u\n",
257 	       (unsigned int)inode->i_ctime.tv_sec,
258 	       (unsigned int)inode->i_ctime.tv_nsec);
259 	printk(KERN_ERR "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
260 	printk(KERN_ERR "\txattr_size     %u\n", ui->xattr_size);
261 	printk(KERN_ERR "\txattr_cnt      %u\n", ui->xattr_cnt);
262 	printk(KERN_ERR "\txattr_names    %u\n", ui->xattr_names);
263 	printk(KERN_ERR "\tdirty          %u\n", ui->dirty);
264 	printk(KERN_ERR "\txattr          %u\n", ui->xattr);
265 	printk(KERN_ERR "\tbulk_read      %u\n", ui->xattr);
266 	printk(KERN_ERR "\tsynced_i_size  %llu\n",
267 	       (unsigned long long)ui->synced_i_size);
268 	printk(KERN_ERR "\tui_size        %llu\n",
269 	       (unsigned long long)ui->ui_size);
270 	printk(KERN_ERR "\tflags          %d\n", ui->flags);
271 	printk(KERN_ERR "\tcompr_type     %d\n", ui->compr_type);
272 	printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read);
273 	printk(KERN_ERR "\tread_in_a_row  %lu\n", ui->read_in_a_row);
274 	printk(KERN_ERR "\tdata_len       %d\n", ui->data_len);
275 
276 	if (!S_ISDIR(inode->i_mode))
277 		return;
278 
279 	printk(KERN_ERR "List of directory entries:\n");
280 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
281 
282 	lowest_dent_key(c, &key, inode->i_ino);
283 	while (1) {
284 		dent = ubifs_tnc_next_ent(c, &key, &nm);
285 		if (IS_ERR(dent)) {
286 			if (PTR_ERR(dent) != -ENOENT)
287 				printk(KERN_ERR "error %ld\n", PTR_ERR(dent));
288 			break;
289 		}
290 
291 		printk(KERN_ERR "\t%d: %s (%s)\n",
292 		       count++, dent->name, get_dent_type(dent->type));
293 
294 		nm.name = dent->name;
295 		nm.len = le16_to_cpu(dent->nlen);
296 		kfree(pdent);
297 		pdent = dent;
298 		key_read(c, &dent->key, &key);
299 	}
300 	kfree(pdent);
301 }
302 
dbg_dump_node(const struct ubifs_info * c,const void * node)303 void dbg_dump_node(const struct ubifs_info *c, const void *node)
304 {
305 	int i, n;
306 	union ubifs_key key;
307 	const struct ubifs_ch *ch = node;
308 	char key_buf[DBG_KEY_BUF_LEN];
309 
310 	if (dbg_is_tst_rcvry(c))
311 		return;
312 
313 	/* If the magic is incorrect, just hexdump the first bytes */
314 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
315 		printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ);
316 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
317 			       (void *)node, UBIFS_CH_SZ, 1);
318 		return;
319 	}
320 
321 	spin_lock(&dbg_lock);
322 	dump_ch(node);
323 
324 	switch (ch->node_type) {
325 	case UBIFS_PAD_NODE:
326 	{
327 		const struct ubifs_pad_node *pad = node;
328 
329 		printk(KERN_ERR "\tpad_len        %u\n",
330 		       le32_to_cpu(pad->pad_len));
331 		break;
332 	}
333 	case UBIFS_SB_NODE:
334 	{
335 		const struct ubifs_sb_node *sup = node;
336 		unsigned int sup_flags = le32_to_cpu(sup->flags);
337 
338 		printk(KERN_ERR "\tkey_hash       %d (%s)\n",
339 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
340 		printk(KERN_ERR "\tkey_fmt        %d (%s)\n",
341 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
342 		printk(KERN_ERR "\tflags          %#x\n", sup_flags);
343 		printk(KERN_ERR "\t  big_lpt      %u\n",
344 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
345 		printk(KERN_ERR "\t  space_fixup  %u\n",
346 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
347 		printk(KERN_ERR "\tmin_io_size    %u\n",
348 		       le32_to_cpu(sup->min_io_size));
349 		printk(KERN_ERR "\tleb_size       %u\n",
350 		       le32_to_cpu(sup->leb_size));
351 		printk(KERN_ERR "\tleb_cnt        %u\n",
352 		       le32_to_cpu(sup->leb_cnt));
353 		printk(KERN_ERR "\tmax_leb_cnt    %u\n",
354 		       le32_to_cpu(sup->max_leb_cnt));
355 		printk(KERN_ERR "\tmax_bud_bytes  %llu\n",
356 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
357 		printk(KERN_ERR "\tlog_lebs       %u\n",
358 		       le32_to_cpu(sup->log_lebs));
359 		printk(KERN_ERR "\tlpt_lebs       %u\n",
360 		       le32_to_cpu(sup->lpt_lebs));
361 		printk(KERN_ERR "\torph_lebs      %u\n",
362 		       le32_to_cpu(sup->orph_lebs));
363 		printk(KERN_ERR "\tjhead_cnt      %u\n",
364 		       le32_to_cpu(sup->jhead_cnt));
365 		printk(KERN_ERR "\tfanout         %u\n",
366 		       le32_to_cpu(sup->fanout));
367 		printk(KERN_ERR "\tlsave_cnt      %u\n",
368 		       le32_to_cpu(sup->lsave_cnt));
369 		printk(KERN_ERR "\tdefault_compr  %u\n",
370 		       (int)le16_to_cpu(sup->default_compr));
371 		printk(KERN_ERR "\trp_size        %llu\n",
372 		       (unsigned long long)le64_to_cpu(sup->rp_size));
373 		printk(KERN_ERR "\trp_uid         %u\n",
374 		       le32_to_cpu(sup->rp_uid));
375 		printk(KERN_ERR "\trp_gid         %u\n",
376 		       le32_to_cpu(sup->rp_gid));
377 		printk(KERN_ERR "\tfmt_version    %u\n",
378 		       le32_to_cpu(sup->fmt_version));
379 		printk(KERN_ERR "\ttime_gran      %u\n",
380 		       le32_to_cpu(sup->time_gran));
381 		printk(KERN_ERR "\tUUID           %pUB\n",
382 		       sup->uuid);
383 		break;
384 	}
385 	case UBIFS_MST_NODE:
386 	{
387 		const struct ubifs_mst_node *mst = node;
388 
389 		printk(KERN_ERR "\thighest_inum   %llu\n",
390 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
391 		printk(KERN_ERR "\tcommit number  %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
393 		printk(KERN_ERR "\tflags          %#x\n",
394 		       le32_to_cpu(mst->flags));
395 		printk(KERN_ERR "\tlog_lnum       %u\n",
396 		       le32_to_cpu(mst->log_lnum));
397 		printk(KERN_ERR "\troot_lnum      %u\n",
398 		       le32_to_cpu(mst->root_lnum));
399 		printk(KERN_ERR "\troot_offs      %u\n",
400 		       le32_to_cpu(mst->root_offs));
401 		printk(KERN_ERR "\troot_len       %u\n",
402 		       le32_to_cpu(mst->root_len));
403 		printk(KERN_ERR "\tgc_lnum        %u\n",
404 		       le32_to_cpu(mst->gc_lnum));
405 		printk(KERN_ERR "\tihead_lnum     %u\n",
406 		       le32_to_cpu(mst->ihead_lnum));
407 		printk(KERN_ERR "\tihead_offs     %u\n",
408 		       le32_to_cpu(mst->ihead_offs));
409 		printk(KERN_ERR "\tindex_size     %llu\n",
410 		       (unsigned long long)le64_to_cpu(mst->index_size));
411 		printk(KERN_ERR "\tlpt_lnum       %u\n",
412 		       le32_to_cpu(mst->lpt_lnum));
413 		printk(KERN_ERR "\tlpt_offs       %u\n",
414 		       le32_to_cpu(mst->lpt_offs));
415 		printk(KERN_ERR "\tnhead_lnum     %u\n",
416 		       le32_to_cpu(mst->nhead_lnum));
417 		printk(KERN_ERR "\tnhead_offs     %u\n",
418 		       le32_to_cpu(mst->nhead_offs));
419 		printk(KERN_ERR "\tltab_lnum      %u\n",
420 		       le32_to_cpu(mst->ltab_lnum));
421 		printk(KERN_ERR "\tltab_offs      %u\n",
422 		       le32_to_cpu(mst->ltab_offs));
423 		printk(KERN_ERR "\tlsave_lnum     %u\n",
424 		       le32_to_cpu(mst->lsave_lnum));
425 		printk(KERN_ERR "\tlsave_offs     %u\n",
426 		       le32_to_cpu(mst->lsave_offs));
427 		printk(KERN_ERR "\tlscan_lnum     %u\n",
428 		       le32_to_cpu(mst->lscan_lnum));
429 		printk(KERN_ERR "\tleb_cnt        %u\n",
430 		       le32_to_cpu(mst->leb_cnt));
431 		printk(KERN_ERR "\tempty_lebs     %u\n",
432 		       le32_to_cpu(mst->empty_lebs));
433 		printk(KERN_ERR "\tidx_lebs       %u\n",
434 		       le32_to_cpu(mst->idx_lebs));
435 		printk(KERN_ERR "\ttotal_free     %llu\n",
436 		       (unsigned long long)le64_to_cpu(mst->total_free));
437 		printk(KERN_ERR "\ttotal_dirty    %llu\n",
438 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
439 		printk(KERN_ERR "\ttotal_used     %llu\n",
440 		       (unsigned long long)le64_to_cpu(mst->total_used));
441 		printk(KERN_ERR "\ttotal_dead     %llu\n",
442 		       (unsigned long long)le64_to_cpu(mst->total_dead));
443 		printk(KERN_ERR "\ttotal_dark     %llu\n",
444 		       (unsigned long long)le64_to_cpu(mst->total_dark));
445 		break;
446 	}
447 	case UBIFS_REF_NODE:
448 	{
449 		const struct ubifs_ref_node *ref = node;
450 
451 		printk(KERN_ERR "\tlnum           %u\n",
452 		       le32_to_cpu(ref->lnum));
453 		printk(KERN_ERR "\toffs           %u\n",
454 		       le32_to_cpu(ref->offs));
455 		printk(KERN_ERR "\tjhead          %u\n",
456 		       le32_to_cpu(ref->jhead));
457 		break;
458 	}
459 	case UBIFS_INO_NODE:
460 	{
461 		const struct ubifs_ino_node *ino = node;
462 
463 		key_read(c, &ino->key, &key);
464 		printk(KERN_ERR "\tkey            %s\n",
465 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
466 		printk(KERN_ERR "\tcreat_sqnum    %llu\n",
467 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
468 		printk(KERN_ERR "\tsize           %llu\n",
469 		       (unsigned long long)le64_to_cpu(ino->size));
470 		printk(KERN_ERR "\tnlink          %u\n",
471 		       le32_to_cpu(ino->nlink));
472 		printk(KERN_ERR "\tatime          %lld.%u\n",
473 		       (long long)le64_to_cpu(ino->atime_sec),
474 		       le32_to_cpu(ino->atime_nsec));
475 		printk(KERN_ERR "\tmtime          %lld.%u\n",
476 		       (long long)le64_to_cpu(ino->mtime_sec),
477 		       le32_to_cpu(ino->mtime_nsec));
478 		printk(KERN_ERR "\tctime          %lld.%u\n",
479 		       (long long)le64_to_cpu(ino->ctime_sec),
480 		       le32_to_cpu(ino->ctime_nsec));
481 		printk(KERN_ERR "\tuid            %u\n",
482 		       le32_to_cpu(ino->uid));
483 		printk(KERN_ERR "\tgid            %u\n",
484 		       le32_to_cpu(ino->gid));
485 		printk(KERN_ERR "\tmode           %u\n",
486 		       le32_to_cpu(ino->mode));
487 		printk(KERN_ERR "\tflags          %#x\n",
488 		       le32_to_cpu(ino->flags));
489 		printk(KERN_ERR "\txattr_cnt      %u\n",
490 		       le32_to_cpu(ino->xattr_cnt));
491 		printk(KERN_ERR "\txattr_size     %u\n",
492 		       le32_to_cpu(ino->xattr_size));
493 		printk(KERN_ERR "\txattr_names    %u\n",
494 		       le32_to_cpu(ino->xattr_names));
495 		printk(KERN_ERR "\tcompr_type     %#x\n",
496 		       (int)le16_to_cpu(ino->compr_type));
497 		printk(KERN_ERR "\tdata len       %u\n",
498 		       le32_to_cpu(ino->data_len));
499 		break;
500 	}
501 	case UBIFS_DENT_NODE:
502 	case UBIFS_XENT_NODE:
503 	{
504 		const struct ubifs_dent_node *dent = node;
505 		int nlen = le16_to_cpu(dent->nlen);
506 
507 		key_read(c, &dent->key, &key);
508 		printk(KERN_ERR "\tkey            %s\n",
509 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
510 		printk(KERN_ERR "\tinum           %llu\n",
511 		       (unsigned long long)le64_to_cpu(dent->inum));
512 		printk(KERN_ERR "\ttype           %d\n", (int)dent->type);
513 		printk(KERN_ERR "\tnlen           %d\n", nlen);
514 		printk(KERN_ERR "\tname           ");
515 
516 		if (nlen > UBIFS_MAX_NLEN)
517 			printk(KERN_ERR "(bad name length, not printing, "
518 					  "bad or corrupted node)");
519 		else {
520 			for (i = 0; i < nlen && dent->name[i]; i++)
521 				printk(KERN_CONT "%c", dent->name[i]);
522 		}
523 		printk(KERN_CONT "\n");
524 
525 		break;
526 	}
527 	case UBIFS_DATA_NODE:
528 	{
529 		const struct ubifs_data_node *dn = node;
530 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
531 
532 		key_read(c, &dn->key, &key);
533 		printk(KERN_ERR "\tkey            %s\n",
534 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
535 		printk(KERN_ERR "\tsize           %u\n",
536 		       le32_to_cpu(dn->size));
537 		printk(KERN_ERR "\tcompr_typ      %d\n",
538 		       (int)le16_to_cpu(dn->compr_type));
539 		printk(KERN_ERR "\tdata size      %d\n",
540 		       dlen);
541 		printk(KERN_ERR "\tdata:\n");
542 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
543 			       (void *)&dn->data, dlen, 0);
544 		break;
545 	}
546 	case UBIFS_TRUN_NODE:
547 	{
548 		const struct ubifs_trun_node *trun = node;
549 
550 		printk(KERN_ERR "\tinum           %u\n",
551 		       le32_to_cpu(trun->inum));
552 		printk(KERN_ERR "\told_size       %llu\n",
553 		       (unsigned long long)le64_to_cpu(trun->old_size));
554 		printk(KERN_ERR "\tnew_size       %llu\n",
555 		       (unsigned long long)le64_to_cpu(trun->new_size));
556 		break;
557 	}
558 	case UBIFS_IDX_NODE:
559 	{
560 		const struct ubifs_idx_node *idx = node;
561 
562 		n = le16_to_cpu(idx->child_cnt);
563 		printk(KERN_ERR "\tchild_cnt      %d\n", n);
564 		printk(KERN_ERR "\tlevel          %d\n",
565 		       (int)le16_to_cpu(idx->level));
566 		printk(KERN_ERR "\tBranches:\n");
567 
568 		for (i = 0; i < n && i < c->fanout - 1; i++) {
569 			const struct ubifs_branch *br;
570 
571 			br = ubifs_idx_branch(c, idx, i);
572 			key_read(c, &br->key, &key);
573 			printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n",
574 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
575 			       le32_to_cpu(br->len),
576 			       dbg_snprintf_key(c, &key, key_buf,
577 						DBG_KEY_BUF_LEN));
578 		}
579 		break;
580 	}
581 	case UBIFS_CS_NODE:
582 		break;
583 	case UBIFS_ORPH_NODE:
584 	{
585 		const struct ubifs_orph_node *orph = node;
586 
587 		printk(KERN_ERR "\tcommit number  %llu\n",
588 		       (unsigned long long)
589 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
590 		printk(KERN_ERR "\tlast node flag %llu\n",
591 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
592 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
593 		printk(KERN_ERR "\t%d orphan inode numbers:\n", n);
594 		for (i = 0; i < n; i++)
595 			printk(KERN_ERR "\t  ino %llu\n",
596 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
597 		break;
598 	}
599 	default:
600 		printk(KERN_ERR "node type %d was not recognized\n",
601 		       (int)ch->node_type);
602 	}
603 	spin_unlock(&dbg_lock);
604 }
605 
dbg_dump_budget_req(const struct ubifs_budget_req * req)606 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
607 {
608 	spin_lock(&dbg_lock);
609 	printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n",
610 	       req->new_ino, req->dirtied_ino);
611 	printk(KERN_ERR "\tnew_ino_d   %d, dirtied_ino_d %d\n",
612 	       req->new_ino_d, req->dirtied_ino_d);
613 	printk(KERN_ERR "\tnew_page    %d, dirtied_page %d\n",
614 	       req->new_page, req->dirtied_page);
615 	printk(KERN_ERR "\tnew_dent    %d, mod_dent     %d\n",
616 	       req->new_dent, req->mod_dent);
617 	printk(KERN_ERR "\tidx_growth  %d\n", req->idx_growth);
618 	printk(KERN_ERR "\tdata_growth %d dd_growth     %d\n",
619 	       req->data_growth, req->dd_growth);
620 	spin_unlock(&dbg_lock);
621 }
622 
dbg_dump_lstats(const struct ubifs_lp_stats * lst)623 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
624 {
625 	spin_lock(&dbg_lock);
626 	printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, "
627 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
628 	printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, "
629 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
630 	       lst->total_dirty);
631 	printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, "
632 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
633 	       lst->total_dead);
634 	spin_unlock(&dbg_lock);
635 }
636 
dbg_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)637 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
638 {
639 	int i;
640 	struct rb_node *rb;
641 	struct ubifs_bud *bud;
642 	struct ubifs_gced_idx_leb *idx_gc;
643 	long long available, outstanding, free;
644 
645 	spin_lock(&c->space_lock);
646 	spin_lock(&dbg_lock);
647 	printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, "
648 	       "total budget sum %lld\n", current->pid,
649 	       bi->data_growth + bi->dd_growth,
650 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
651 	printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, "
652 	       "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
653 	       bi->idx_growth);
654 	printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, "
655 	       "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
656 	       bi->uncommitted_idx);
657 	printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
658 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
659 	printk(KERN_ERR "\tnospace %u, nospace_rp %u\n",
660 	       bi->nospace, bi->nospace_rp);
661 	printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
662 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
663 
664 	if (bi != &c->bi)
665 		/*
666 		 * If we are dumping saved budgeting data, do not print
667 		 * additional information which is about the current state, not
668 		 * the old one which corresponded to the saved budgeting data.
669 		 */
670 		goto out_unlock;
671 
672 	printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
673 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
674 	printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
675 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
676 	       atomic_long_read(&c->dirty_zn_cnt),
677 	       atomic_long_read(&c->clean_zn_cnt));
678 	printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n",
679 	       c->gc_lnum, c->ihead_lnum);
680 
681 	/* If we are in R/O mode, journal heads do not exist */
682 	if (c->jheads)
683 		for (i = 0; i < c->jhead_cnt; i++)
684 			printk(KERN_ERR "\tjhead %s\t LEB %d\n",
685 			       dbg_jhead(c->jheads[i].wbuf.jhead),
686 			       c->jheads[i].wbuf.lnum);
687 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
688 		bud = rb_entry(rb, struct ubifs_bud, rb);
689 		printk(KERN_ERR "\tbud LEB %d\n", bud->lnum);
690 	}
691 	list_for_each_entry(bud, &c->old_buds, list)
692 		printk(KERN_ERR "\told bud LEB %d\n", bud->lnum);
693 	list_for_each_entry(idx_gc, &c->idx_gc, list)
694 		printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n",
695 		       idx_gc->lnum, idx_gc->unmap);
696 	printk(KERN_ERR "\tcommit state %d\n", c->cmt_state);
697 
698 	/* Print budgeting predictions */
699 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
700 	outstanding = c->bi.data_growth + c->bi.dd_growth;
701 	free = ubifs_get_free_space_nolock(c);
702 	printk(KERN_ERR "Budgeting predictions:\n");
703 	printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n",
704 	       available, outstanding, free);
705 out_unlock:
706 	spin_unlock(&dbg_lock);
707 	spin_unlock(&c->space_lock);
708 }
709 
dbg_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)710 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
711 {
712 	int i, spc, dark = 0, dead = 0;
713 	struct rb_node *rb;
714 	struct ubifs_bud *bud;
715 
716 	spc = lp->free + lp->dirty;
717 	if (spc < c->dead_wm)
718 		dead = spc;
719 	else
720 		dark = ubifs_calc_dark(c, spc);
721 
722 	if (lp->flags & LPROPS_INDEX)
723 		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
724 		       "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
725 		       lp->dirty, c->leb_size - spc, spc, lp->flags);
726 	else
727 		printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d "
728 		       "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
729 		       "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
730 		       c->leb_size - spc, spc, dark, dead,
731 		       (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
732 
733 	if (lp->flags & LPROPS_TAKEN) {
734 		if (lp->flags & LPROPS_INDEX)
735 			printk(KERN_CONT "index, taken");
736 		else
737 			printk(KERN_CONT "taken");
738 	} else {
739 		const char *s;
740 
741 		if (lp->flags & LPROPS_INDEX) {
742 			switch (lp->flags & LPROPS_CAT_MASK) {
743 			case LPROPS_DIRTY_IDX:
744 				s = "dirty index";
745 				break;
746 			case LPROPS_FRDI_IDX:
747 				s = "freeable index";
748 				break;
749 			default:
750 				s = "index";
751 			}
752 		} else {
753 			switch (lp->flags & LPROPS_CAT_MASK) {
754 			case LPROPS_UNCAT:
755 				s = "not categorized";
756 				break;
757 			case LPROPS_DIRTY:
758 				s = "dirty";
759 				break;
760 			case LPROPS_FREE:
761 				s = "free";
762 				break;
763 			case LPROPS_EMPTY:
764 				s = "empty";
765 				break;
766 			case LPROPS_FREEABLE:
767 				s = "freeable";
768 				break;
769 			default:
770 				s = NULL;
771 				break;
772 			}
773 		}
774 		printk(KERN_CONT "%s", s);
775 	}
776 
777 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
778 		bud = rb_entry(rb, struct ubifs_bud, rb);
779 		if (bud->lnum == lp->lnum) {
780 			int head = 0;
781 			for (i = 0; i < c->jhead_cnt; i++) {
782 				/*
783 				 * Note, if we are in R/O mode or in the middle
784 				 * of mounting/re-mounting, the write-buffers do
785 				 * not exist.
786 				 */
787 				if (c->jheads &&
788 				    lp->lnum == c->jheads[i].wbuf.lnum) {
789 					printk(KERN_CONT ", jhead %s",
790 					       dbg_jhead(i));
791 					head = 1;
792 				}
793 			}
794 			if (!head)
795 				printk(KERN_CONT ", bud of jhead %s",
796 				       dbg_jhead(bud->jhead));
797 		}
798 	}
799 	if (lp->lnum == c->gc_lnum)
800 		printk(KERN_CONT ", GC LEB");
801 	printk(KERN_CONT ")\n");
802 }
803 
dbg_dump_lprops(struct ubifs_info * c)804 void dbg_dump_lprops(struct ubifs_info *c)
805 {
806 	int lnum, err;
807 	struct ubifs_lprops lp;
808 	struct ubifs_lp_stats lst;
809 
810 	printk(KERN_ERR "(pid %d) start dumping LEB properties\n",
811 	       current->pid);
812 	ubifs_get_lp_stats(c, &lst);
813 	dbg_dump_lstats(&lst);
814 
815 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
816 		err = ubifs_read_one_lp(c, lnum, &lp);
817 		if (err)
818 			ubifs_err("cannot read lprops for LEB %d", lnum);
819 
820 		dbg_dump_lprop(c, &lp);
821 	}
822 	printk(KERN_ERR "(pid %d) finish dumping LEB properties\n",
823 	       current->pid);
824 }
825 
dbg_dump_lpt_info(struct ubifs_info * c)826 void dbg_dump_lpt_info(struct ubifs_info *c)
827 {
828 	int i;
829 
830 	spin_lock(&dbg_lock);
831 	printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid);
832 	printk(KERN_ERR "\tlpt_sz:        %lld\n", c->lpt_sz);
833 	printk(KERN_ERR "\tpnode_sz:      %d\n", c->pnode_sz);
834 	printk(KERN_ERR "\tnnode_sz:      %d\n", c->nnode_sz);
835 	printk(KERN_ERR "\tltab_sz:       %d\n", c->ltab_sz);
836 	printk(KERN_ERR "\tlsave_sz:      %d\n", c->lsave_sz);
837 	printk(KERN_ERR "\tbig_lpt:       %d\n", c->big_lpt);
838 	printk(KERN_ERR "\tlpt_hght:      %d\n", c->lpt_hght);
839 	printk(KERN_ERR "\tpnode_cnt:     %d\n", c->pnode_cnt);
840 	printk(KERN_ERR "\tnnode_cnt:     %d\n", c->nnode_cnt);
841 	printk(KERN_ERR "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
842 	printk(KERN_ERR "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
843 	printk(KERN_ERR "\tlsave_cnt:     %d\n", c->lsave_cnt);
844 	printk(KERN_ERR "\tspace_bits:    %d\n", c->space_bits);
845 	printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
846 	printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
847 	printk(KERN_ERR "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
848 	printk(KERN_ERR "\tpcnt_bits:     %d\n", c->pcnt_bits);
849 	printk(KERN_ERR "\tlnum_bits:     %d\n", c->lnum_bits);
850 	printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
851 	printk(KERN_ERR "\tLPT head is at %d:%d\n",
852 	       c->nhead_lnum, c->nhead_offs);
853 	printk(KERN_ERR "\tLPT ltab is at %d:%d\n",
854 	       c->ltab_lnum, c->ltab_offs);
855 	if (c->big_lpt)
856 		printk(KERN_ERR "\tLPT lsave is at %d:%d\n",
857 		       c->lsave_lnum, c->lsave_offs);
858 	for (i = 0; i < c->lpt_lebs; i++)
859 		printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d "
860 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
861 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
862 	spin_unlock(&dbg_lock);
863 }
864 
dbg_dump_sleb(const struct ubifs_info * c,const struct ubifs_scan_leb * sleb,int offs)865 void dbg_dump_sleb(const struct ubifs_info *c,
866 		   const struct ubifs_scan_leb *sleb, int offs)
867 {
868 	struct ubifs_scan_node *snod;
869 
870 	printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n",
871 	       current->pid, sleb->lnum, offs);
872 
873 	list_for_each_entry(snod, &sleb->nodes, list) {
874 		cond_resched();
875 		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum,
876 		       snod->offs, snod->len);
877 		dbg_dump_node(c, snod->node);
878 	}
879 }
880 
dbg_dump_leb(const struct ubifs_info * c,int lnum)881 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
882 {
883 	struct ubifs_scan_leb *sleb;
884 	struct ubifs_scan_node *snod;
885 	void *buf;
886 
887 	if (dbg_is_tst_rcvry(c))
888 		return;
889 
890 	printk(KERN_ERR "(pid %d) start dumping LEB %d\n",
891 	       current->pid, lnum);
892 
893 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
894 	if (!buf) {
895 		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
896 		return;
897 	}
898 
899 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
900 	if (IS_ERR(sleb)) {
901 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
902 		goto out;
903 	}
904 
905 	printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum,
906 	       sleb->nodes_cnt, sleb->endpt);
907 
908 	list_for_each_entry(snod, &sleb->nodes, list) {
909 		cond_resched();
910 		printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum,
911 		       snod->offs, snod->len);
912 		dbg_dump_node(c, snod->node);
913 	}
914 
915 	printk(KERN_ERR "(pid %d) finish dumping LEB %d\n",
916 	       current->pid, lnum);
917 	ubifs_scan_destroy(sleb);
918 
919 out:
920 	vfree(buf);
921 	return;
922 }
923 
dbg_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)924 void dbg_dump_znode(const struct ubifs_info *c,
925 		    const struct ubifs_znode *znode)
926 {
927 	int n;
928 	const struct ubifs_zbranch *zbr;
929 	char key_buf[DBG_KEY_BUF_LEN];
930 
931 	spin_lock(&dbg_lock);
932 	if (znode->parent)
933 		zbr = &znode->parent->zbranch[znode->iip];
934 	else
935 		zbr = &c->zroot;
936 
937 	printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
938 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
939 	       zbr->len, znode->parent, znode->iip, znode->level,
940 	       znode->child_cnt, znode->flags);
941 
942 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
943 		spin_unlock(&dbg_lock);
944 		return;
945 	}
946 
947 	printk(KERN_ERR "zbranches:\n");
948 	for (n = 0; n < znode->child_cnt; n++) {
949 		zbr = &znode->zbranch[n];
950 		if (znode->level > 0)
951 			printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key "
952 					  "%s\n", n, zbr->znode, zbr->lnum,
953 					  zbr->offs, zbr->len,
954 					  dbg_snprintf_key(c, &zbr->key,
955 							   key_buf,
956 							   DBG_KEY_BUF_LEN));
957 		else
958 			printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key "
959 					  "%s\n", n, zbr->znode, zbr->lnum,
960 					  zbr->offs, zbr->len,
961 					  dbg_snprintf_key(c, &zbr->key,
962 							   key_buf,
963 							   DBG_KEY_BUF_LEN));
964 	}
965 	spin_unlock(&dbg_lock);
966 }
967 
dbg_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)968 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
969 {
970 	int i;
971 
972 	printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n",
973 	       current->pid, cat, heap->cnt);
974 	for (i = 0; i < heap->cnt; i++) {
975 		struct ubifs_lprops *lprops = heap->arr[i];
976 
977 		printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d "
978 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
979 		       lprops->free, lprops->dirty, lprops->flags);
980 	}
981 	printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid);
982 }
983 
dbg_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)984 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
985 		    struct ubifs_nnode *parent, int iip)
986 {
987 	int i;
988 
989 	printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid);
990 	printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n",
991 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
992 	printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n",
993 	       pnode->flags, iip, pnode->level, pnode->num);
994 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
995 		struct ubifs_lprops *lp = &pnode->lprops[i];
996 
997 		printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n",
998 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
999 	}
1000 }
1001 
dbg_dump_tnc(struct ubifs_info * c)1002 void dbg_dump_tnc(struct ubifs_info *c)
1003 {
1004 	struct ubifs_znode *znode;
1005 	int level;
1006 
1007 	printk(KERN_ERR "\n");
1008 	printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid);
1009 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
1010 	level = znode->level;
1011 	printk(KERN_ERR "== Level %d ==\n", level);
1012 	while (znode) {
1013 		if (level != znode->level) {
1014 			level = znode->level;
1015 			printk(KERN_ERR "== Level %d ==\n", level);
1016 		}
1017 		dbg_dump_znode(c, znode);
1018 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1019 	}
1020 	printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid);
1021 }
1022 
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1023 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1024 		      void *priv)
1025 {
1026 	dbg_dump_znode(c, znode);
1027 	return 0;
1028 }
1029 
1030 /**
1031  * dbg_dump_index - dump the on-flash index.
1032  * @c: UBIFS file-system description object
1033  *
1034  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1035  * which dumps only in-memory znodes and does not read znodes which from flash.
1036  */
dbg_dump_index(struct ubifs_info * c)1037 void dbg_dump_index(struct ubifs_info *c)
1038 {
1039 	dbg_walk_index(c, NULL, dump_znode, NULL);
1040 }
1041 
1042 /**
1043  * dbg_save_space_info - save information about flash space.
1044  * @c: UBIFS file-system description object
1045  *
1046  * This function saves information about UBIFS free space, dirty space, etc, in
1047  * order to check it later.
1048  */
dbg_save_space_info(struct ubifs_info * c)1049 void dbg_save_space_info(struct ubifs_info *c)
1050 {
1051 	struct ubifs_debug_info *d = c->dbg;
1052 	int freeable_cnt;
1053 
1054 	spin_lock(&c->space_lock);
1055 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1056 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1057 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
1058 
1059 	/*
1060 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1061 	 * affects the free space calculations, and UBIFS might not know about
1062 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1063 	 * only when we read their lprops, and we do this only lazily, upon the
1064 	 * need. So at any given point of time @c->freeable_cnt might be not
1065 	 * exactly accurate.
1066 	 *
1067 	 * Just one example about the issue we hit when we did not zero
1068 	 * @c->freeable_cnt.
1069 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1070 	 *    amount of free space in @d->saved_free
1071 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1072 	 *    information from flash, where we cache LEBs from various
1073 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1074 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1075 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1076 	 *    -> 'ubifs_add_to_cat()').
1077 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1078 	 *    becomes %1.
1079 	 * 4. We calculate the amount of free space when the re-mount is
1080 	 *    finished in 'dbg_check_space_info()' and it does not match
1081 	 *    @d->saved_free.
1082 	 */
1083 	freeable_cnt = c->freeable_cnt;
1084 	c->freeable_cnt = 0;
1085 	d->saved_free = ubifs_get_free_space_nolock(c);
1086 	c->freeable_cnt = freeable_cnt;
1087 	spin_unlock(&c->space_lock);
1088 }
1089 
1090 /**
1091  * dbg_check_space_info - check flash space information.
1092  * @c: UBIFS file-system description object
1093  *
1094  * This function compares current flash space information with the information
1095  * which was saved when the 'dbg_save_space_info()' function was called.
1096  * Returns zero if the information has not changed, and %-EINVAL it it has
1097  * changed.
1098  */
dbg_check_space_info(struct ubifs_info * c)1099 int dbg_check_space_info(struct ubifs_info *c)
1100 {
1101 	struct ubifs_debug_info *d = c->dbg;
1102 	struct ubifs_lp_stats lst;
1103 	long long free;
1104 	int freeable_cnt;
1105 
1106 	spin_lock(&c->space_lock);
1107 	freeable_cnt = c->freeable_cnt;
1108 	c->freeable_cnt = 0;
1109 	free = ubifs_get_free_space_nolock(c);
1110 	c->freeable_cnt = freeable_cnt;
1111 	spin_unlock(&c->space_lock);
1112 
1113 	if (free != d->saved_free) {
1114 		ubifs_err("free space changed from %lld to %lld",
1115 			  d->saved_free, free);
1116 		goto out;
1117 	}
1118 
1119 	return 0;
1120 
1121 out:
1122 	ubifs_msg("saved lprops statistics dump");
1123 	dbg_dump_lstats(&d->saved_lst);
1124 	ubifs_msg("saved budgeting info dump");
1125 	dbg_dump_budg(c, &d->saved_bi);
1126 	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1127 	ubifs_msg("current lprops statistics dump");
1128 	ubifs_get_lp_stats(c, &lst);
1129 	dbg_dump_lstats(&lst);
1130 	ubifs_msg("current budgeting info dump");
1131 	dbg_dump_budg(c, &c->bi);
1132 	dump_stack();
1133 	return -EINVAL;
1134 }
1135 
1136 /**
1137  * dbg_check_synced_i_size - check synchronized inode size.
1138  * @c: UBIFS file-system description object
1139  * @inode: inode to check
1140  *
1141  * If inode is clean, synchronized inode size has to be equivalent to current
1142  * inode size. This function has to be called only for locked inodes (@i_mutex
1143  * has to be locked). Returns %0 if synchronized inode size if correct, and
1144  * %-EINVAL if not.
1145  */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1146 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1147 {
1148 	int err = 0;
1149 	struct ubifs_inode *ui = ubifs_inode(inode);
1150 
1151 	if (!dbg_is_chk_gen(c))
1152 		return 0;
1153 	if (!S_ISREG(inode->i_mode))
1154 		return 0;
1155 
1156 	mutex_lock(&ui->ui_mutex);
1157 	spin_lock(&ui->ui_lock);
1158 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1159 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1160 			  "is clean", ui->ui_size, ui->synced_i_size);
1161 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1162 			  inode->i_mode, i_size_read(inode));
1163 		dbg_dump_stack();
1164 		err = -EINVAL;
1165 	}
1166 	spin_unlock(&ui->ui_lock);
1167 	mutex_unlock(&ui->ui_mutex);
1168 	return err;
1169 }
1170 
1171 /*
1172  * dbg_check_dir - check directory inode size and link count.
1173  * @c: UBIFS file-system description object
1174  * @dir: the directory to calculate size for
1175  * @size: the result is returned here
1176  *
1177  * This function makes sure that directory size and link count are correct.
1178  * Returns zero in case of success and a negative error code in case of
1179  * failure.
1180  *
1181  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1182  * calling this function.
1183  */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1184 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1185 {
1186 	unsigned int nlink = 2;
1187 	union ubifs_key key;
1188 	struct ubifs_dent_node *dent, *pdent = NULL;
1189 	struct qstr nm = { .name = NULL };
1190 	loff_t size = UBIFS_INO_NODE_SZ;
1191 
1192 	if (!dbg_is_chk_gen(c))
1193 		return 0;
1194 
1195 	if (!S_ISDIR(dir->i_mode))
1196 		return 0;
1197 
1198 	lowest_dent_key(c, &key, dir->i_ino);
1199 	while (1) {
1200 		int err;
1201 
1202 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1203 		if (IS_ERR(dent)) {
1204 			err = PTR_ERR(dent);
1205 			if (err == -ENOENT)
1206 				break;
1207 			return err;
1208 		}
1209 
1210 		nm.name = dent->name;
1211 		nm.len = le16_to_cpu(dent->nlen);
1212 		size += CALC_DENT_SIZE(nm.len);
1213 		if (dent->type == UBIFS_ITYPE_DIR)
1214 			nlink += 1;
1215 		kfree(pdent);
1216 		pdent = dent;
1217 		key_read(c, &dent->key, &key);
1218 	}
1219 	kfree(pdent);
1220 
1221 	if (i_size_read(dir) != size) {
1222 		ubifs_err("directory inode %lu has size %llu, "
1223 			  "but calculated size is %llu", dir->i_ino,
1224 			  (unsigned long long)i_size_read(dir),
1225 			  (unsigned long long)size);
1226 		dbg_dump_inode(c, dir);
1227 		dump_stack();
1228 		return -EINVAL;
1229 	}
1230 	if (dir->i_nlink != nlink) {
1231 		ubifs_err("directory inode %lu has nlink %u, but calculated "
1232 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1233 		dbg_dump_inode(c, dir);
1234 		dump_stack();
1235 		return -EINVAL;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1243  * @c: UBIFS file-system description object
1244  * @zbr1: first zbranch
1245  * @zbr2: following zbranch
1246  *
1247  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1248  * names of the direntries/xentries which are referred by the keys. This
1249  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1250  * sure the name of direntry/xentry referred by @zbr1 is less than
1251  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1252  * and a negative error code in case of failure.
1253  */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1254 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1255 			       struct ubifs_zbranch *zbr2)
1256 {
1257 	int err, nlen1, nlen2, cmp;
1258 	struct ubifs_dent_node *dent1, *dent2;
1259 	union ubifs_key key;
1260 	char key_buf[DBG_KEY_BUF_LEN];
1261 
1262 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1263 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1264 	if (!dent1)
1265 		return -ENOMEM;
1266 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1267 	if (!dent2) {
1268 		err = -ENOMEM;
1269 		goto out_free;
1270 	}
1271 
1272 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1273 	if (err)
1274 		goto out_free;
1275 	err = ubifs_validate_entry(c, dent1);
1276 	if (err)
1277 		goto out_free;
1278 
1279 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1280 	if (err)
1281 		goto out_free;
1282 	err = ubifs_validate_entry(c, dent2);
1283 	if (err)
1284 		goto out_free;
1285 
1286 	/* Make sure node keys are the same as in zbranch */
1287 	err = 1;
1288 	key_read(c, &dent1->key, &key);
1289 	if (keys_cmp(c, &zbr1->key, &key)) {
1290 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1291 			zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1292 						     DBG_KEY_BUF_LEN));
1293 		dbg_err("but it should have key %s according to tnc",
1294 			dbg_snprintf_key(c, &zbr1->key, key_buf,
1295 					 DBG_KEY_BUF_LEN));
1296 		dbg_dump_node(c, dent1);
1297 		goto out_free;
1298 	}
1299 
1300 	key_read(c, &dent2->key, &key);
1301 	if (keys_cmp(c, &zbr2->key, &key)) {
1302 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1303 			zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1304 						     DBG_KEY_BUF_LEN));
1305 		dbg_err("but it should have key %s according to tnc",
1306 			dbg_snprintf_key(c, &zbr2->key, key_buf,
1307 					 DBG_KEY_BUF_LEN));
1308 		dbg_dump_node(c, dent2);
1309 		goto out_free;
1310 	}
1311 
1312 	nlen1 = le16_to_cpu(dent1->nlen);
1313 	nlen2 = le16_to_cpu(dent2->nlen);
1314 
1315 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1316 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1317 		err = 0;
1318 		goto out_free;
1319 	}
1320 	if (cmp == 0 && nlen1 == nlen2)
1321 		dbg_err("2 xent/dent nodes with the same name");
1322 	else
1323 		dbg_err("bad order of colliding key %s",
1324 			dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1325 
1326 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1327 	dbg_dump_node(c, dent1);
1328 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1329 	dbg_dump_node(c, dent2);
1330 
1331 out_free:
1332 	kfree(dent2);
1333 	kfree(dent1);
1334 	return err;
1335 }
1336 
1337 /**
1338  * dbg_check_znode - check if znode is all right.
1339  * @c: UBIFS file-system description object
1340  * @zbr: zbranch which points to this znode
1341  *
1342  * This function makes sure that znode referred to by @zbr is all right.
1343  * Returns zero if it is, and %-EINVAL if it is not.
1344  */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1345 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1346 {
1347 	struct ubifs_znode *znode = zbr->znode;
1348 	struct ubifs_znode *zp = znode->parent;
1349 	int n, err, cmp;
1350 
1351 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1352 		err = 1;
1353 		goto out;
1354 	}
1355 	if (znode->level < 0) {
1356 		err = 2;
1357 		goto out;
1358 	}
1359 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1360 		err = 3;
1361 		goto out;
1362 	}
1363 
1364 	if (zbr->len == 0)
1365 		/* Only dirty zbranch may have no on-flash nodes */
1366 		if (!ubifs_zn_dirty(znode)) {
1367 			err = 4;
1368 			goto out;
1369 		}
1370 
1371 	if (ubifs_zn_dirty(znode)) {
1372 		/*
1373 		 * If znode is dirty, its parent has to be dirty as well. The
1374 		 * order of the operation is important, so we have to have
1375 		 * memory barriers.
1376 		 */
1377 		smp_mb();
1378 		if (zp && !ubifs_zn_dirty(zp)) {
1379 			/*
1380 			 * The dirty flag is atomic and is cleared outside the
1381 			 * TNC mutex, so znode's dirty flag may now have
1382 			 * been cleared. The child is always cleared before the
1383 			 * parent, so we just need to check again.
1384 			 */
1385 			smp_mb();
1386 			if (ubifs_zn_dirty(znode)) {
1387 				err = 5;
1388 				goto out;
1389 			}
1390 		}
1391 	}
1392 
1393 	if (zp) {
1394 		const union ubifs_key *min, *max;
1395 
1396 		if (znode->level != zp->level - 1) {
1397 			err = 6;
1398 			goto out;
1399 		}
1400 
1401 		/* Make sure the 'parent' pointer in our znode is correct */
1402 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1403 		if (!err) {
1404 			/* This zbranch does not exist in the parent */
1405 			err = 7;
1406 			goto out;
1407 		}
1408 
1409 		if (znode->iip >= zp->child_cnt) {
1410 			err = 8;
1411 			goto out;
1412 		}
1413 
1414 		if (znode->iip != n) {
1415 			/* This may happen only in case of collisions */
1416 			if (keys_cmp(c, &zp->zbranch[n].key,
1417 				     &zp->zbranch[znode->iip].key)) {
1418 				err = 9;
1419 				goto out;
1420 			}
1421 			n = znode->iip;
1422 		}
1423 
1424 		/*
1425 		 * Make sure that the first key in our znode is greater than or
1426 		 * equal to the key in the pointing zbranch.
1427 		 */
1428 		min = &zbr->key;
1429 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1430 		if (cmp == 1) {
1431 			err = 10;
1432 			goto out;
1433 		}
1434 
1435 		if (n + 1 < zp->child_cnt) {
1436 			max = &zp->zbranch[n + 1].key;
1437 
1438 			/*
1439 			 * Make sure the last key in our znode is less or
1440 			 * equivalent than the key in the zbranch which goes
1441 			 * after our pointing zbranch.
1442 			 */
1443 			cmp = keys_cmp(c, max,
1444 				&znode->zbranch[znode->child_cnt - 1].key);
1445 			if (cmp == -1) {
1446 				err = 11;
1447 				goto out;
1448 			}
1449 		}
1450 	} else {
1451 		/* This may only be root znode */
1452 		if (zbr != &c->zroot) {
1453 			err = 12;
1454 			goto out;
1455 		}
1456 	}
1457 
1458 	/*
1459 	 * Make sure that next key is greater or equivalent then the previous
1460 	 * one.
1461 	 */
1462 	for (n = 1; n < znode->child_cnt; n++) {
1463 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1464 			       &znode->zbranch[n].key);
1465 		if (cmp > 0) {
1466 			err = 13;
1467 			goto out;
1468 		}
1469 		if (cmp == 0) {
1470 			/* This can only be keys with colliding hash */
1471 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1472 				err = 14;
1473 				goto out;
1474 			}
1475 
1476 			if (znode->level != 0 || c->replaying)
1477 				continue;
1478 
1479 			/*
1480 			 * Colliding keys should follow binary order of
1481 			 * corresponding xentry/dentry names.
1482 			 */
1483 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1484 						  &znode->zbranch[n]);
1485 			if (err < 0)
1486 				return err;
1487 			if (err) {
1488 				err = 15;
1489 				goto out;
1490 			}
1491 		}
1492 	}
1493 
1494 	for (n = 0; n < znode->child_cnt; n++) {
1495 		if (!znode->zbranch[n].znode &&
1496 		    (znode->zbranch[n].lnum == 0 ||
1497 		     znode->zbranch[n].len == 0)) {
1498 			err = 16;
1499 			goto out;
1500 		}
1501 
1502 		if (znode->zbranch[n].lnum != 0 &&
1503 		    znode->zbranch[n].len == 0) {
1504 			err = 17;
1505 			goto out;
1506 		}
1507 
1508 		if (znode->zbranch[n].lnum == 0 &&
1509 		    znode->zbranch[n].len != 0) {
1510 			err = 18;
1511 			goto out;
1512 		}
1513 
1514 		if (znode->zbranch[n].lnum == 0 &&
1515 		    znode->zbranch[n].offs != 0) {
1516 			err = 19;
1517 			goto out;
1518 		}
1519 
1520 		if (znode->level != 0 && znode->zbranch[n].znode)
1521 			if (znode->zbranch[n].znode->parent != znode) {
1522 				err = 20;
1523 				goto out;
1524 			}
1525 	}
1526 
1527 	return 0;
1528 
1529 out:
1530 	ubifs_err("failed, error %d", err);
1531 	ubifs_msg("dump of the znode");
1532 	dbg_dump_znode(c, znode);
1533 	if (zp) {
1534 		ubifs_msg("dump of the parent znode");
1535 		dbg_dump_znode(c, zp);
1536 	}
1537 	dump_stack();
1538 	return -EINVAL;
1539 }
1540 
1541 /**
1542  * dbg_check_tnc - check TNC tree.
1543  * @c: UBIFS file-system description object
1544  * @extra: do extra checks that are possible at start commit
1545  *
1546  * This function traverses whole TNC tree and checks every znode. Returns zero
1547  * if everything is all right and %-EINVAL if something is wrong with TNC.
1548  */
dbg_check_tnc(struct ubifs_info * c,int extra)1549 int dbg_check_tnc(struct ubifs_info *c, int extra)
1550 {
1551 	struct ubifs_znode *znode;
1552 	long clean_cnt = 0, dirty_cnt = 0;
1553 	int err, last;
1554 
1555 	if (!dbg_is_chk_index(c))
1556 		return 0;
1557 
1558 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1559 	if (!c->zroot.znode)
1560 		return 0;
1561 
1562 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1563 	while (1) {
1564 		struct ubifs_znode *prev;
1565 		struct ubifs_zbranch *zbr;
1566 
1567 		if (!znode->parent)
1568 			zbr = &c->zroot;
1569 		else
1570 			zbr = &znode->parent->zbranch[znode->iip];
1571 
1572 		err = dbg_check_znode(c, zbr);
1573 		if (err)
1574 			return err;
1575 
1576 		if (extra) {
1577 			if (ubifs_zn_dirty(znode))
1578 				dirty_cnt += 1;
1579 			else
1580 				clean_cnt += 1;
1581 		}
1582 
1583 		prev = znode;
1584 		znode = ubifs_tnc_postorder_next(znode);
1585 		if (!znode)
1586 			break;
1587 
1588 		/*
1589 		 * If the last key of this znode is equivalent to the first key
1590 		 * of the next znode (collision), then check order of the keys.
1591 		 */
1592 		last = prev->child_cnt - 1;
1593 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1594 		    !keys_cmp(c, &prev->zbranch[last].key,
1595 			      &znode->zbranch[0].key)) {
1596 			err = dbg_check_key_order(c, &prev->zbranch[last],
1597 						  &znode->zbranch[0]);
1598 			if (err < 0)
1599 				return err;
1600 			if (err) {
1601 				ubifs_msg("first znode");
1602 				dbg_dump_znode(c, prev);
1603 				ubifs_msg("second znode");
1604 				dbg_dump_znode(c, znode);
1605 				return -EINVAL;
1606 			}
1607 		}
1608 	}
1609 
1610 	if (extra) {
1611 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1612 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1613 				  atomic_long_read(&c->clean_zn_cnt),
1614 				  clean_cnt);
1615 			return -EINVAL;
1616 		}
1617 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1618 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1619 				  atomic_long_read(&c->dirty_zn_cnt),
1620 				  dirty_cnt);
1621 			return -EINVAL;
1622 		}
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /**
1629  * dbg_walk_index - walk the on-flash index.
1630  * @c: UBIFS file-system description object
1631  * @leaf_cb: called for each leaf node
1632  * @znode_cb: called for each indexing node
1633  * @priv: private data which is passed to callbacks
1634  *
1635  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1636  * node and @znode_cb for each indexing node. Returns zero in case of success
1637  * and a negative error code in case of failure.
1638  *
1639  * It would be better if this function removed every znode it pulled to into
1640  * the TNC, so that the behavior more closely matched the non-debugging
1641  * behavior.
1642  */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1643 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1644 		   dbg_znode_callback znode_cb, void *priv)
1645 {
1646 	int err;
1647 	struct ubifs_zbranch *zbr;
1648 	struct ubifs_znode *znode, *child;
1649 
1650 	mutex_lock(&c->tnc_mutex);
1651 	/* If the root indexing node is not in TNC - pull it */
1652 	if (!c->zroot.znode) {
1653 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1654 		if (IS_ERR(c->zroot.znode)) {
1655 			err = PTR_ERR(c->zroot.znode);
1656 			c->zroot.znode = NULL;
1657 			goto out_unlock;
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * We are going to traverse the indexing tree in the postorder manner.
1663 	 * Go down and find the leftmost indexing node where we are going to
1664 	 * start from.
1665 	 */
1666 	znode = c->zroot.znode;
1667 	while (znode->level > 0) {
1668 		zbr = &znode->zbranch[0];
1669 		child = zbr->znode;
1670 		if (!child) {
1671 			child = ubifs_load_znode(c, zbr, znode, 0);
1672 			if (IS_ERR(child)) {
1673 				err = PTR_ERR(child);
1674 				goto out_unlock;
1675 			}
1676 			zbr->znode = child;
1677 		}
1678 
1679 		znode = child;
1680 	}
1681 
1682 	/* Iterate over all indexing nodes */
1683 	while (1) {
1684 		int idx;
1685 
1686 		cond_resched();
1687 
1688 		if (znode_cb) {
1689 			err = znode_cb(c, znode, priv);
1690 			if (err) {
1691 				ubifs_err("znode checking function returned "
1692 					  "error %d", err);
1693 				dbg_dump_znode(c, znode);
1694 				goto out_dump;
1695 			}
1696 		}
1697 		if (leaf_cb && znode->level == 0) {
1698 			for (idx = 0; idx < znode->child_cnt; idx++) {
1699 				zbr = &znode->zbranch[idx];
1700 				err = leaf_cb(c, zbr, priv);
1701 				if (err) {
1702 					ubifs_err("leaf checking function "
1703 						  "returned error %d, for leaf "
1704 						  "at LEB %d:%d",
1705 						  err, zbr->lnum, zbr->offs);
1706 					goto out_dump;
1707 				}
1708 			}
1709 		}
1710 
1711 		if (!znode->parent)
1712 			break;
1713 
1714 		idx = znode->iip + 1;
1715 		znode = znode->parent;
1716 		if (idx < znode->child_cnt) {
1717 			/* Switch to the next index in the parent */
1718 			zbr = &znode->zbranch[idx];
1719 			child = zbr->znode;
1720 			if (!child) {
1721 				child = ubifs_load_znode(c, zbr, znode, idx);
1722 				if (IS_ERR(child)) {
1723 					err = PTR_ERR(child);
1724 					goto out_unlock;
1725 				}
1726 				zbr->znode = child;
1727 			}
1728 			znode = child;
1729 		} else
1730 			/*
1731 			 * This is the last child, switch to the parent and
1732 			 * continue.
1733 			 */
1734 			continue;
1735 
1736 		/* Go to the lowest leftmost znode in the new sub-tree */
1737 		while (znode->level > 0) {
1738 			zbr = &znode->zbranch[0];
1739 			child = zbr->znode;
1740 			if (!child) {
1741 				child = ubifs_load_znode(c, zbr, znode, 0);
1742 				if (IS_ERR(child)) {
1743 					err = PTR_ERR(child);
1744 					goto out_unlock;
1745 				}
1746 				zbr->znode = child;
1747 			}
1748 			znode = child;
1749 		}
1750 	}
1751 
1752 	mutex_unlock(&c->tnc_mutex);
1753 	return 0;
1754 
1755 out_dump:
1756 	if (znode->parent)
1757 		zbr = &znode->parent->zbranch[znode->iip];
1758 	else
1759 		zbr = &c->zroot;
1760 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1761 	dbg_dump_znode(c, znode);
1762 out_unlock:
1763 	mutex_unlock(&c->tnc_mutex);
1764 	return err;
1765 }
1766 
1767 /**
1768  * add_size - add znode size to partially calculated index size.
1769  * @c: UBIFS file-system description object
1770  * @znode: znode to add size for
1771  * @priv: partially calculated index size
1772  *
1773  * This is a helper function for 'dbg_check_idx_size()' which is called for
1774  * every indexing node and adds its size to the 'long long' variable pointed to
1775  * by @priv.
1776  */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1777 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1778 {
1779 	long long *idx_size = priv;
1780 	int add;
1781 
1782 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1783 	add = ALIGN(add, 8);
1784 	*idx_size += add;
1785 	return 0;
1786 }
1787 
1788 /**
1789  * dbg_check_idx_size - check index size.
1790  * @c: UBIFS file-system description object
1791  * @idx_size: size to check
1792  *
1793  * This function walks the UBIFS index, calculates its size and checks that the
1794  * size is equivalent to @idx_size. Returns zero in case of success and a
1795  * negative error code in case of failure.
1796  */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1797 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1798 {
1799 	int err;
1800 	long long calc = 0;
1801 
1802 	if (!dbg_is_chk_index(c))
1803 		return 0;
1804 
1805 	err = dbg_walk_index(c, NULL, add_size, &calc);
1806 	if (err) {
1807 		ubifs_err("error %d while walking the index", err);
1808 		return err;
1809 	}
1810 
1811 	if (calc != idx_size) {
1812 		ubifs_err("index size check failed: calculated size is %lld, "
1813 			  "should be %lld", calc, idx_size);
1814 		dump_stack();
1815 		return -EINVAL;
1816 	}
1817 
1818 	return 0;
1819 }
1820 
1821 /**
1822  * struct fsck_inode - information about an inode used when checking the file-system.
1823  * @rb: link in the RB-tree of inodes
1824  * @inum: inode number
1825  * @mode: inode type, permissions, etc
1826  * @nlink: inode link count
1827  * @xattr_cnt: count of extended attributes
1828  * @references: how many directory/xattr entries refer this inode (calculated
1829  *              while walking the index)
1830  * @calc_cnt: for directory inode count of child directories
1831  * @size: inode size (read from on-flash inode)
1832  * @xattr_sz: summary size of all extended attributes (read from on-flash
1833  *            inode)
1834  * @calc_sz: for directories calculated directory size
1835  * @calc_xcnt: count of extended attributes
1836  * @calc_xsz: calculated summary size of all extended attributes
1837  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1838  *             inode (read from on-flash inode)
1839  * @calc_xnms: calculated sum of lengths of all extended attribute names
1840  */
1841 struct fsck_inode {
1842 	struct rb_node rb;
1843 	ino_t inum;
1844 	umode_t mode;
1845 	unsigned int nlink;
1846 	unsigned int xattr_cnt;
1847 	int references;
1848 	int calc_cnt;
1849 	long long size;
1850 	unsigned int xattr_sz;
1851 	long long calc_sz;
1852 	long long calc_xcnt;
1853 	long long calc_xsz;
1854 	unsigned int xattr_nms;
1855 	long long calc_xnms;
1856 };
1857 
1858 /**
1859  * struct fsck_data - private FS checking information.
1860  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1861  */
1862 struct fsck_data {
1863 	struct rb_root inodes;
1864 };
1865 
1866 /**
1867  * add_inode - add inode information to RB-tree of inodes.
1868  * @c: UBIFS file-system description object
1869  * @fsckd: FS checking information
1870  * @ino: raw UBIFS inode to add
1871  *
1872  * This is a helper function for 'check_leaf()' which adds information about
1873  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1874  * case of success and a negative error code in case of failure.
1875  */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1876 static struct fsck_inode *add_inode(struct ubifs_info *c,
1877 				    struct fsck_data *fsckd,
1878 				    struct ubifs_ino_node *ino)
1879 {
1880 	struct rb_node **p, *parent = NULL;
1881 	struct fsck_inode *fscki;
1882 	ino_t inum = key_inum_flash(c, &ino->key);
1883 	struct inode *inode;
1884 	struct ubifs_inode *ui;
1885 
1886 	p = &fsckd->inodes.rb_node;
1887 	while (*p) {
1888 		parent = *p;
1889 		fscki = rb_entry(parent, struct fsck_inode, rb);
1890 		if (inum < fscki->inum)
1891 			p = &(*p)->rb_left;
1892 		else if (inum > fscki->inum)
1893 			p = &(*p)->rb_right;
1894 		else
1895 			return fscki;
1896 	}
1897 
1898 	if (inum > c->highest_inum) {
1899 		ubifs_err("too high inode number, max. is %lu",
1900 			  (unsigned long)c->highest_inum);
1901 		return ERR_PTR(-EINVAL);
1902 	}
1903 
1904 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1905 	if (!fscki)
1906 		return ERR_PTR(-ENOMEM);
1907 
1908 	inode = ilookup(c->vfs_sb, inum);
1909 
1910 	fscki->inum = inum;
1911 	/*
1912 	 * If the inode is present in the VFS inode cache, use it instead of
1913 	 * the on-flash inode which might be out-of-date. E.g., the size might
1914 	 * be out-of-date. If we do not do this, the following may happen, for
1915 	 * example:
1916 	 *   1. A power cut happens
1917 	 *   2. We mount the file-system R/O, the replay process fixes up the
1918 	 *      inode size in the VFS cache, but on on-flash.
1919 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1920 	 *      size.
1921 	 */
1922 	if (!inode) {
1923 		fscki->nlink = le32_to_cpu(ino->nlink);
1924 		fscki->size = le64_to_cpu(ino->size);
1925 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1926 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1927 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1928 		fscki->mode = le32_to_cpu(ino->mode);
1929 	} else {
1930 		ui = ubifs_inode(inode);
1931 		fscki->nlink = inode->i_nlink;
1932 		fscki->size = inode->i_size;
1933 		fscki->xattr_cnt = ui->xattr_cnt;
1934 		fscki->xattr_sz = ui->xattr_size;
1935 		fscki->xattr_nms = ui->xattr_names;
1936 		fscki->mode = inode->i_mode;
1937 		iput(inode);
1938 	}
1939 
1940 	if (S_ISDIR(fscki->mode)) {
1941 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1942 		fscki->calc_cnt = 2;
1943 	}
1944 
1945 	rb_link_node(&fscki->rb, parent, p);
1946 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1947 
1948 	return fscki;
1949 }
1950 
1951 /**
1952  * search_inode - search inode in the RB-tree of inodes.
1953  * @fsckd: FS checking information
1954  * @inum: inode number to search
1955  *
1956  * This is a helper function for 'check_leaf()' which searches inode @inum in
1957  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1958  * the inode was not found.
1959  */
search_inode(struct fsck_data * fsckd,ino_t inum)1960 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1961 {
1962 	struct rb_node *p;
1963 	struct fsck_inode *fscki;
1964 
1965 	p = fsckd->inodes.rb_node;
1966 	while (p) {
1967 		fscki = rb_entry(p, struct fsck_inode, rb);
1968 		if (inum < fscki->inum)
1969 			p = p->rb_left;
1970 		else if (inum > fscki->inum)
1971 			p = p->rb_right;
1972 		else
1973 			return fscki;
1974 	}
1975 	return NULL;
1976 }
1977 
1978 /**
1979  * read_add_inode - read inode node and add it to RB-tree of inodes.
1980  * @c: UBIFS file-system description object
1981  * @fsckd: FS checking information
1982  * @inum: inode number to read
1983  *
1984  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1985  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1986  * information pointer in case of success and a negative error code in case of
1987  * failure.
1988  */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1989 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1990 					 struct fsck_data *fsckd, ino_t inum)
1991 {
1992 	int n, err;
1993 	union ubifs_key key;
1994 	struct ubifs_znode *znode;
1995 	struct ubifs_zbranch *zbr;
1996 	struct ubifs_ino_node *ino;
1997 	struct fsck_inode *fscki;
1998 
1999 	fscki = search_inode(fsckd, inum);
2000 	if (fscki)
2001 		return fscki;
2002 
2003 	ino_key_init(c, &key, inum);
2004 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2005 	if (!err) {
2006 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
2007 		return ERR_PTR(-ENOENT);
2008 	} else if (err < 0) {
2009 		ubifs_err("error %d while looking up inode %lu",
2010 			  err, (unsigned long)inum);
2011 		return ERR_PTR(err);
2012 	}
2013 
2014 	zbr = &znode->zbranch[n];
2015 	if (zbr->len < UBIFS_INO_NODE_SZ) {
2016 		ubifs_err("bad node %lu node length %d",
2017 			  (unsigned long)inum, zbr->len);
2018 		return ERR_PTR(-EINVAL);
2019 	}
2020 
2021 	ino = kmalloc(zbr->len, GFP_NOFS);
2022 	if (!ino)
2023 		return ERR_PTR(-ENOMEM);
2024 
2025 	err = ubifs_tnc_read_node(c, zbr, ino);
2026 	if (err) {
2027 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2028 			  zbr->lnum, zbr->offs, err);
2029 		kfree(ino);
2030 		return ERR_PTR(err);
2031 	}
2032 
2033 	fscki = add_inode(c, fsckd, ino);
2034 	kfree(ino);
2035 	if (IS_ERR(fscki)) {
2036 		ubifs_err("error %ld while adding inode %lu node",
2037 			  PTR_ERR(fscki), (unsigned long)inum);
2038 		return fscki;
2039 	}
2040 
2041 	return fscki;
2042 }
2043 
2044 /**
2045  * check_leaf - check leaf node.
2046  * @c: UBIFS file-system description object
2047  * @zbr: zbranch of the leaf node to check
2048  * @priv: FS checking information
2049  *
2050  * This is a helper function for 'dbg_check_filesystem()' which is called for
2051  * every single leaf node while walking the indexing tree. It checks that the
2052  * leaf node referred from the indexing tree exists, has correct CRC, and does
2053  * some other basic validation. This function is also responsible for building
2054  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2055  * calculates reference count, size, etc for each inode in order to later
2056  * compare them to the information stored inside the inodes and detect possible
2057  * inconsistencies. Returns zero in case of success and a negative error code
2058  * in case of failure.
2059  */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)2060 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2061 		      void *priv)
2062 {
2063 	ino_t inum;
2064 	void *node;
2065 	struct ubifs_ch *ch;
2066 	int err, type = key_type(c, &zbr->key);
2067 	struct fsck_inode *fscki;
2068 
2069 	if (zbr->len < UBIFS_CH_SZ) {
2070 		ubifs_err("bad leaf length %d (LEB %d:%d)",
2071 			  zbr->len, zbr->lnum, zbr->offs);
2072 		return -EINVAL;
2073 	}
2074 
2075 	node = kmalloc(zbr->len, GFP_NOFS);
2076 	if (!node)
2077 		return -ENOMEM;
2078 
2079 	err = ubifs_tnc_read_node(c, zbr, node);
2080 	if (err) {
2081 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2082 			  zbr->lnum, zbr->offs, err);
2083 		goto out_free;
2084 	}
2085 
2086 	/* If this is an inode node, add it to RB-tree of inodes */
2087 	if (type == UBIFS_INO_KEY) {
2088 		fscki = add_inode(c, priv, node);
2089 		if (IS_ERR(fscki)) {
2090 			err = PTR_ERR(fscki);
2091 			ubifs_err("error %d while adding inode node", err);
2092 			goto out_dump;
2093 		}
2094 		goto out;
2095 	}
2096 
2097 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2098 	    type != UBIFS_DATA_KEY) {
2099 		ubifs_err("unexpected node type %d at LEB %d:%d",
2100 			  type, zbr->lnum, zbr->offs);
2101 		err = -EINVAL;
2102 		goto out_free;
2103 	}
2104 
2105 	ch = node;
2106 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2107 		ubifs_err("too high sequence number, max. is %llu",
2108 			  c->max_sqnum);
2109 		err = -EINVAL;
2110 		goto out_dump;
2111 	}
2112 
2113 	if (type == UBIFS_DATA_KEY) {
2114 		long long blk_offs;
2115 		struct ubifs_data_node *dn = node;
2116 
2117 		/*
2118 		 * Search the inode node this data node belongs to and insert
2119 		 * it to the RB-tree of inodes.
2120 		 */
2121 		inum = key_inum_flash(c, &dn->key);
2122 		fscki = read_add_inode(c, priv, inum);
2123 		if (IS_ERR(fscki)) {
2124 			err = PTR_ERR(fscki);
2125 			ubifs_err("error %d while processing data node and "
2126 				  "trying to find inode node %lu",
2127 				  err, (unsigned long)inum);
2128 			goto out_dump;
2129 		}
2130 
2131 		/* Make sure the data node is within inode size */
2132 		blk_offs = key_block_flash(c, &dn->key);
2133 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2134 		blk_offs += le32_to_cpu(dn->size);
2135 		if (blk_offs > fscki->size) {
2136 			ubifs_err("data node at LEB %d:%d is not within inode "
2137 				  "size %lld", zbr->lnum, zbr->offs,
2138 				  fscki->size);
2139 			err = -EINVAL;
2140 			goto out_dump;
2141 		}
2142 	} else {
2143 		int nlen;
2144 		struct ubifs_dent_node *dent = node;
2145 		struct fsck_inode *fscki1;
2146 
2147 		err = ubifs_validate_entry(c, dent);
2148 		if (err)
2149 			goto out_dump;
2150 
2151 		/*
2152 		 * Search the inode node this entry refers to and the parent
2153 		 * inode node and insert them to the RB-tree of inodes.
2154 		 */
2155 		inum = le64_to_cpu(dent->inum);
2156 		fscki = read_add_inode(c, priv, inum);
2157 		if (IS_ERR(fscki)) {
2158 			err = PTR_ERR(fscki);
2159 			ubifs_err("error %d while processing entry node and "
2160 				  "trying to find inode node %lu",
2161 				  err, (unsigned long)inum);
2162 			goto out_dump;
2163 		}
2164 
2165 		/* Count how many direntries or xentries refers this inode */
2166 		fscki->references += 1;
2167 
2168 		inum = key_inum_flash(c, &dent->key);
2169 		fscki1 = read_add_inode(c, priv, inum);
2170 		if (IS_ERR(fscki1)) {
2171 			err = PTR_ERR(fscki1);
2172 			ubifs_err("error %d while processing entry node and "
2173 				  "trying to find parent inode node %lu",
2174 				  err, (unsigned long)inum);
2175 			goto out_dump;
2176 		}
2177 
2178 		nlen = le16_to_cpu(dent->nlen);
2179 		if (type == UBIFS_XENT_KEY) {
2180 			fscki1->calc_xcnt += 1;
2181 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2182 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2183 			fscki1->calc_xnms += nlen;
2184 		} else {
2185 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2186 			if (dent->type == UBIFS_ITYPE_DIR)
2187 				fscki1->calc_cnt += 1;
2188 		}
2189 	}
2190 
2191 out:
2192 	kfree(node);
2193 	return 0;
2194 
2195 out_dump:
2196 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2197 	dbg_dump_node(c, node);
2198 out_free:
2199 	kfree(node);
2200 	return err;
2201 }
2202 
2203 /**
2204  * free_inodes - free RB-tree of inodes.
2205  * @fsckd: FS checking information
2206  */
free_inodes(struct fsck_data * fsckd)2207 static void free_inodes(struct fsck_data *fsckd)
2208 {
2209 	struct rb_node *this = fsckd->inodes.rb_node;
2210 	struct fsck_inode *fscki;
2211 
2212 	while (this) {
2213 		if (this->rb_left)
2214 			this = this->rb_left;
2215 		else if (this->rb_right)
2216 			this = this->rb_right;
2217 		else {
2218 			fscki = rb_entry(this, struct fsck_inode, rb);
2219 			this = rb_parent(this);
2220 			if (this) {
2221 				if (this->rb_left == &fscki->rb)
2222 					this->rb_left = NULL;
2223 				else
2224 					this->rb_right = NULL;
2225 			}
2226 			kfree(fscki);
2227 		}
2228 	}
2229 }
2230 
2231 /**
2232  * check_inodes - checks all inodes.
2233  * @c: UBIFS file-system description object
2234  * @fsckd: FS checking information
2235  *
2236  * This is a helper function for 'dbg_check_filesystem()' which walks the
2237  * RB-tree of inodes after the index scan has been finished, and checks that
2238  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2239  * %-EINVAL if not, and a negative error code in case of failure.
2240  */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2241 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2242 {
2243 	int n, err;
2244 	union ubifs_key key;
2245 	struct ubifs_znode *znode;
2246 	struct ubifs_zbranch *zbr;
2247 	struct ubifs_ino_node *ino;
2248 	struct fsck_inode *fscki;
2249 	struct rb_node *this = rb_first(&fsckd->inodes);
2250 
2251 	while (this) {
2252 		fscki = rb_entry(this, struct fsck_inode, rb);
2253 		this = rb_next(this);
2254 
2255 		if (S_ISDIR(fscki->mode)) {
2256 			/*
2257 			 * Directories have to have exactly one reference (they
2258 			 * cannot have hardlinks), although root inode is an
2259 			 * exception.
2260 			 */
2261 			if (fscki->inum != UBIFS_ROOT_INO &&
2262 			    fscki->references != 1) {
2263 				ubifs_err("directory inode %lu has %d "
2264 					  "direntries which refer it, but "
2265 					  "should be 1",
2266 					  (unsigned long)fscki->inum,
2267 					  fscki->references);
2268 				goto out_dump;
2269 			}
2270 			if (fscki->inum == UBIFS_ROOT_INO &&
2271 			    fscki->references != 0) {
2272 				ubifs_err("root inode %lu has non-zero (%d) "
2273 					  "direntries which refer it",
2274 					  (unsigned long)fscki->inum,
2275 					  fscki->references);
2276 				goto out_dump;
2277 			}
2278 			if (fscki->calc_sz != fscki->size) {
2279 				ubifs_err("directory inode %lu size is %lld, "
2280 					  "but calculated size is %lld",
2281 					  (unsigned long)fscki->inum,
2282 					  fscki->size, fscki->calc_sz);
2283 				goto out_dump;
2284 			}
2285 			if (fscki->calc_cnt != fscki->nlink) {
2286 				ubifs_err("directory inode %lu nlink is %d, "
2287 					  "but calculated nlink is %d",
2288 					  (unsigned long)fscki->inum,
2289 					  fscki->nlink, fscki->calc_cnt);
2290 				goto out_dump;
2291 			}
2292 		} else {
2293 			if (fscki->references != fscki->nlink) {
2294 				ubifs_err("inode %lu nlink is %d, but "
2295 					  "calculated nlink is %d",
2296 					  (unsigned long)fscki->inum,
2297 					  fscki->nlink, fscki->references);
2298 				goto out_dump;
2299 			}
2300 		}
2301 		if (fscki->xattr_sz != fscki->calc_xsz) {
2302 			ubifs_err("inode %lu has xattr size %u, but "
2303 				  "calculated size is %lld",
2304 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2305 				  fscki->calc_xsz);
2306 			goto out_dump;
2307 		}
2308 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2309 			ubifs_err("inode %lu has %u xattrs, but "
2310 				  "calculated count is %lld",
2311 				  (unsigned long)fscki->inum,
2312 				  fscki->xattr_cnt, fscki->calc_xcnt);
2313 			goto out_dump;
2314 		}
2315 		if (fscki->xattr_nms != fscki->calc_xnms) {
2316 			ubifs_err("inode %lu has xattr names' size %u, but "
2317 				  "calculated names' size is %lld",
2318 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2319 				  fscki->calc_xnms);
2320 			goto out_dump;
2321 		}
2322 	}
2323 
2324 	return 0;
2325 
2326 out_dump:
2327 	/* Read the bad inode and dump it */
2328 	ino_key_init(c, &key, fscki->inum);
2329 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2330 	if (!err) {
2331 		ubifs_err("inode %lu not found in index",
2332 			  (unsigned long)fscki->inum);
2333 		return -ENOENT;
2334 	} else if (err < 0) {
2335 		ubifs_err("error %d while looking up inode %lu",
2336 			  err, (unsigned long)fscki->inum);
2337 		return err;
2338 	}
2339 
2340 	zbr = &znode->zbranch[n];
2341 	ino = kmalloc(zbr->len, GFP_NOFS);
2342 	if (!ino)
2343 		return -ENOMEM;
2344 
2345 	err = ubifs_tnc_read_node(c, zbr, ino);
2346 	if (err) {
2347 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2348 			  zbr->lnum, zbr->offs, err);
2349 		kfree(ino);
2350 		return err;
2351 	}
2352 
2353 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2354 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2355 	dbg_dump_node(c, ino);
2356 	kfree(ino);
2357 	return -EINVAL;
2358 }
2359 
2360 /**
2361  * dbg_check_filesystem - check the file-system.
2362  * @c: UBIFS file-system description object
2363  *
2364  * This function checks the file system, namely:
2365  * o makes sure that all leaf nodes exist and their CRCs are correct;
2366  * o makes sure inode nlink, size, xattr size/count are correct (for all
2367  *   inodes).
2368  *
2369  * The function reads whole indexing tree and all nodes, so it is pretty
2370  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2371  * not, and a negative error code in case of failure.
2372  */
dbg_check_filesystem(struct ubifs_info * c)2373 int dbg_check_filesystem(struct ubifs_info *c)
2374 {
2375 	int err;
2376 	struct fsck_data fsckd;
2377 
2378 	if (!dbg_is_chk_fs(c))
2379 		return 0;
2380 
2381 	fsckd.inodes = RB_ROOT;
2382 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2383 	if (err)
2384 		goto out_free;
2385 
2386 	err = check_inodes(c, &fsckd);
2387 	if (err)
2388 		goto out_free;
2389 
2390 	free_inodes(&fsckd);
2391 	return 0;
2392 
2393 out_free:
2394 	ubifs_err("file-system check failed with error %d", err);
2395 	dump_stack();
2396 	free_inodes(&fsckd);
2397 	return err;
2398 }
2399 
2400 /**
2401  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2402  * @c: UBIFS file-system description object
2403  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2404  *
2405  * This function returns zero if the list of data nodes is sorted correctly,
2406  * and %-EINVAL if not.
2407  */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2408 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2409 {
2410 	struct list_head *cur;
2411 	struct ubifs_scan_node *sa, *sb;
2412 
2413 	if (!dbg_is_chk_gen(c))
2414 		return 0;
2415 
2416 	for (cur = head->next; cur->next != head; cur = cur->next) {
2417 		ino_t inuma, inumb;
2418 		uint32_t blka, blkb;
2419 
2420 		cond_resched();
2421 		sa = container_of(cur, struct ubifs_scan_node, list);
2422 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2423 
2424 		if (sa->type != UBIFS_DATA_NODE) {
2425 			ubifs_err("bad node type %d", sa->type);
2426 			dbg_dump_node(c, sa->node);
2427 			return -EINVAL;
2428 		}
2429 		if (sb->type != UBIFS_DATA_NODE) {
2430 			ubifs_err("bad node type %d", sb->type);
2431 			dbg_dump_node(c, sb->node);
2432 			return -EINVAL;
2433 		}
2434 
2435 		inuma = key_inum(c, &sa->key);
2436 		inumb = key_inum(c, &sb->key);
2437 
2438 		if (inuma < inumb)
2439 			continue;
2440 		if (inuma > inumb) {
2441 			ubifs_err("larger inum %lu goes before inum %lu",
2442 				  (unsigned long)inuma, (unsigned long)inumb);
2443 			goto error_dump;
2444 		}
2445 
2446 		blka = key_block(c, &sa->key);
2447 		blkb = key_block(c, &sb->key);
2448 
2449 		if (blka > blkb) {
2450 			ubifs_err("larger block %u goes before %u", blka, blkb);
2451 			goto error_dump;
2452 		}
2453 		if (blka == blkb) {
2454 			ubifs_err("two data nodes for the same block");
2455 			goto error_dump;
2456 		}
2457 	}
2458 
2459 	return 0;
2460 
2461 error_dump:
2462 	dbg_dump_node(c, sa->node);
2463 	dbg_dump_node(c, sb->node);
2464 	return -EINVAL;
2465 }
2466 
2467 /**
2468  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2469  * @c: UBIFS file-system description object
2470  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2471  *
2472  * This function returns zero if the list of non-data nodes is sorted correctly,
2473  * and %-EINVAL if not.
2474  */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2475 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2476 {
2477 	struct list_head *cur;
2478 	struct ubifs_scan_node *sa, *sb;
2479 
2480 	if (!dbg_is_chk_gen(c))
2481 		return 0;
2482 
2483 	for (cur = head->next; cur->next != head; cur = cur->next) {
2484 		ino_t inuma, inumb;
2485 		uint32_t hasha, hashb;
2486 
2487 		cond_resched();
2488 		sa = container_of(cur, struct ubifs_scan_node, list);
2489 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2490 
2491 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2492 		    sa->type != UBIFS_XENT_NODE) {
2493 			ubifs_err("bad node type %d", sa->type);
2494 			dbg_dump_node(c, sa->node);
2495 			return -EINVAL;
2496 		}
2497 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2498 		    sa->type != UBIFS_XENT_NODE) {
2499 			ubifs_err("bad node type %d", sb->type);
2500 			dbg_dump_node(c, sb->node);
2501 			return -EINVAL;
2502 		}
2503 
2504 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2505 			ubifs_err("non-inode node goes before inode node");
2506 			goto error_dump;
2507 		}
2508 
2509 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2510 			continue;
2511 
2512 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2513 			/* Inode nodes are sorted in descending size order */
2514 			if (sa->len < sb->len) {
2515 				ubifs_err("smaller inode node goes first");
2516 				goto error_dump;
2517 			}
2518 			continue;
2519 		}
2520 
2521 		/*
2522 		 * This is either a dentry or xentry, which should be sorted in
2523 		 * ascending (parent ino, hash) order.
2524 		 */
2525 		inuma = key_inum(c, &sa->key);
2526 		inumb = key_inum(c, &sb->key);
2527 
2528 		if (inuma < inumb)
2529 			continue;
2530 		if (inuma > inumb) {
2531 			ubifs_err("larger inum %lu goes before inum %lu",
2532 				  (unsigned long)inuma, (unsigned long)inumb);
2533 			goto error_dump;
2534 		}
2535 
2536 		hasha = key_block(c, &sa->key);
2537 		hashb = key_block(c, &sb->key);
2538 
2539 		if (hasha > hashb) {
2540 			ubifs_err("larger hash %u goes before %u",
2541 				  hasha, hashb);
2542 			goto error_dump;
2543 		}
2544 	}
2545 
2546 	return 0;
2547 
2548 error_dump:
2549 	ubifs_msg("dumping first node");
2550 	dbg_dump_node(c, sa->node);
2551 	ubifs_msg("dumping second node");
2552 	dbg_dump_node(c, sb->node);
2553 	return -EINVAL;
2554 	return 0;
2555 }
2556 
chance(unsigned int n,unsigned int out_of)2557 static inline int chance(unsigned int n, unsigned int out_of)
2558 {
2559 	return !!((random32() % out_of) + 1 <= n);
2560 
2561 }
2562 
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2563 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2564 {
2565 	struct ubifs_debug_info *d = c->dbg;
2566 
2567 	ubifs_assert(dbg_is_tst_rcvry(c));
2568 
2569 	if (!d->pc_cnt) {
2570 		/* First call - decide delay to the power cut */
2571 		if (chance(1, 2)) {
2572 			unsigned long delay;
2573 
2574 			if (chance(1, 2)) {
2575 				d->pc_delay = 1;
2576 				/* Fail withing 1 minute */
2577 				delay = random32() % 60000;
2578 				d->pc_timeout = jiffies;
2579 				d->pc_timeout += msecs_to_jiffies(delay);
2580 				ubifs_warn("failing after %lums", delay);
2581 			} else {
2582 				d->pc_delay = 2;
2583 				delay = random32() % 10000;
2584 				/* Fail within 10000 operations */
2585 				d->pc_cnt_max = delay;
2586 				ubifs_warn("failing after %lu calls", delay);
2587 			}
2588 		}
2589 
2590 		d->pc_cnt += 1;
2591 	}
2592 
2593 	/* Determine if failure delay has expired */
2594 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2595 			return 0;
2596 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2597 			return 0;
2598 
2599 	if (lnum == UBIFS_SB_LNUM) {
2600 		if (write && chance(1, 2))
2601 			return 0;
2602 		if (chance(19, 20))
2603 			return 0;
2604 		ubifs_warn("failing in super block LEB %d", lnum);
2605 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2606 		if (chance(19, 20))
2607 			return 0;
2608 		ubifs_warn("failing in master LEB %d", lnum);
2609 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2610 		if (write && chance(99, 100))
2611 			return 0;
2612 		if (chance(399, 400))
2613 			return 0;
2614 		ubifs_warn("failing in log LEB %d", lnum);
2615 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2616 		if (write && chance(7, 8))
2617 			return 0;
2618 		if (chance(19, 20))
2619 			return 0;
2620 		ubifs_warn("failing in LPT LEB %d", lnum);
2621 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2622 		if (write && chance(1, 2))
2623 			return 0;
2624 		if (chance(9, 10))
2625 			return 0;
2626 		ubifs_warn("failing in orphan LEB %d", lnum);
2627 	} else if (lnum == c->ihead_lnum) {
2628 		if (chance(99, 100))
2629 			return 0;
2630 		ubifs_warn("failing in index head LEB %d", lnum);
2631 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2632 		if (chance(9, 10))
2633 			return 0;
2634 		ubifs_warn("failing in GC head LEB %d", lnum);
2635 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2636 		   !ubifs_search_bud(c, lnum)) {
2637 		if (chance(19, 20))
2638 			return 0;
2639 		ubifs_warn("failing in non-bud LEB %d", lnum);
2640 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2641 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2642 		if (chance(999, 1000))
2643 			return 0;
2644 		ubifs_warn("failing in bud LEB %d commit running", lnum);
2645 	} else {
2646 		if (chance(9999, 10000))
2647 			return 0;
2648 		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2649 	}
2650 
2651 	d->pc_happened = 1;
2652 	ubifs_warn("========== Power cut emulated ==========");
2653 	dump_stack();
2654 	return 1;
2655 }
2656 
cut_data(const void * buf,unsigned int len)2657 static void cut_data(const void *buf, unsigned int len)
2658 {
2659 	unsigned int from, to, i, ffs = chance(1, 2);
2660 	unsigned char *p = (void *)buf;
2661 
2662 	from = random32() % (len + 1);
2663 	if (chance(1, 2))
2664 		to = random32() % (len - from + 1);
2665 	else
2666 		to = len;
2667 
2668 	if (from < to)
2669 		ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2670 			   ffs ? "0xFFs" : "random data");
2671 
2672 	if (ffs)
2673 		for (i = from; i < to; i++)
2674 			p[i] = 0xFF;
2675 	else
2676 		for (i = from; i < to; i++)
2677 			p[i] = random32() % 0x100;
2678 }
2679 
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len,int dtype)2680 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2681 		  int offs, int len, int dtype)
2682 {
2683 	int err, failing;
2684 
2685 	if (c->dbg->pc_happened)
2686 		return -EROFS;
2687 
2688 	failing = power_cut_emulated(c, lnum, 1);
2689 	if (failing)
2690 		cut_data(buf, len);
2691 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2692 	if (err)
2693 		return err;
2694 	if (failing)
2695 		return -EROFS;
2696 	return 0;
2697 }
2698 
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len,int dtype)2699 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2700 		   int len, int dtype)
2701 {
2702 	int err;
2703 
2704 	if (c->dbg->pc_happened)
2705 		return -EROFS;
2706 	if (power_cut_emulated(c, lnum, 1))
2707 		return -EROFS;
2708 	err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2709 	if (err)
2710 		return err;
2711 	if (power_cut_emulated(c, lnum, 1))
2712 		return -EROFS;
2713 	return 0;
2714 }
2715 
dbg_leb_unmap(struct ubifs_info * c,int lnum)2716 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2717 {
2718 	int err;
2719 
2720 	if (c->dbg->pc_happened)
2721 		return -EROFS;
2722 	if (power_cut_emulated(c, lnum, 0))
2723 		return -EROFS;
2724 	err = ubi_leb_unmap(c->ubi, lnum);
2725 	if (err)
2726 		return err;
2727 	if (power_cut_emulated(c, lnum, 0))
2728 		return -EROFS;
2729 	return 0;
2730 }
2731 
dbg_leb_map(struct ubifs_info * c,int lnum,int dtype)2732 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2733 {
2734 	int err;
2735 
2736 	if (c->dbg->pc_happened)
2737 		return -EROFS;
2738 	if (power_cut_emulated(c, lnum, 0))
2739 		return -EROFS;
2740 	err = ubi_leb_map(c->ubi, lnum, dtype);
2741 	if (err)
2742 		return err;
2743 	if (power_cut_emulated(c, lnum, 0))
2744 		return -EROFS;
2745 	return 0;
2746 }
2747 
2748 /*
2749  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2750  * contain the stuff specific to particular file-system mounts.
2751  */
2752 static struct dentry *dfs_rootdir;
2753 
dfs_file_open(struct inode * inode,struct file * file)2754 static int dfs_file_open(struct inode *inode, struct file *file)
2755 {
2756 	file->private_data = inode->i_private;
2757 	return nonseekable_open(inode, file);
2758 }
2759 
2760 /**
2761  * provide_user_output - provide output to the user reading a debugfs file.
2762  * @val: boolean value for the answer
2763  * @u: the buffer to store the answer at
2764  * @count: size of the buffer
2765  * @ppos: position in the @u output buffer
2766  *
2767  * This is a simple helper function which stores @val boolean value in the user
2768  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2769  * bytes written to @u in case of success and a negative error code in case of
2770  * failure.
2771  */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2772 static int provide_user_output(int val, char __user *u, size_t count,
2773 			       loff_t *ppos)
2774 {
2775 	char buf[3];
2776 
2777 	if (val)
2778 		buf[0] = '1';
2779 	else
2780 		buf[0] = '0';
2781 	buf[1] = '\n';
2782 	buf[2] = 0x00;
2783 
2784 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2785 }
2786 
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2787 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2788 			     loff_t *ppos)
2789 {
2790 	struct dentry *dent = file->f_path.dentry;
2791 	struct ubifs_info *c = file->private_data;
2792 	struct ubifs_debug_info *d = c->dbg;
2793 	int val;
2794 
2795 	if (dent == d->dfs_chk_gen)
2796 		val = d->chk_gen;
2797 	else if (dent == d->dfs_chk_index)
2798 		val = d->chk_index;
2799 	else if (dent == d->dfs_chk_orph)
2800 		val = d->chk_orph;
2801 	else if (dent == d->dfs_chk_lprops)
2802 		val = d->chk_lprops;
2803 	else if (dent == d->dfs_chk_fs)
2804 		val = d->chk_fs;
2805 	else if (dent == d->dfs_tst_rcvry)
2806 		val = d->tst_rcvry;
2807 	else
2808 		return -EINVAL;
2809 
2810 	return provide_user_output(val, u, count, ppos);
2811 }
2812 
2813 /**
2814  * interpret_user_input - interpret user debugfs file input.
2815  * @u: user-provided buffer with the input
2816  * @count: buffer size
2817  *
2818  * This is a helper function which interpret user input to a boolean UBIFS
2819  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2820  * in case of failure.
2821  */
interpret_user_input(const char __user * u,size_t count)2822 static int interpret_user_input(const char __user *u, size_t count)
2823 {
2824 	size_t buf_size;
2825 	char buf[8];
2826 
2827 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2828 	if (copy_from_user(buf, u, buf_size))
2829 		return -EFAULT;
2830 
2831 	if (buf[0] == '1')
2832 		return 1;
2833 	else if (buf[0] == '0')
2834 		return 0;
2835 
2836 	return -EINVAL;
2837 }
2838 
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2839 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2840 			      size_t count, loff_t *ppos)
2841 {
2842 	struct ubifs_info *c = file->private_data;
2843 	struct ubifs_debug_info *d = c->dbg;
2844 	struct dentry *dent = file->f_path.dentry;
2845 	int val;
2846 
2847 	/*
2848 	 * TODO: this is racy - the file-system might have already been
2849 	 * unmounted and we'd oops in this case. The plan is to fix it with
2850 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2851 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2852 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2853 	 * superblocks and fine the one with the same UUID, and take the
2854 	 * locking right.
2855 	 *
2856 	 * The other way to go suggested by Al Viro is to create a separate
2857 	 * 'ubifs-debug' file-system instead.
2858 	 */
2859 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2860 		dbg_dump_lprops(c);
2861 		return count;
2862 	}
2863 	if (file->f_path.dentry == d->dfs_dump_budg) {
2864 		dbg_dump_budg(c, &c->bi);
2865 		return count;
2866 	}
2867 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2868 		mutex_lock(&c->tnc_mutex);
2869 		dbg_dump_tnc(c);
2870 		mutex_unlock(&c->tnc_mutex);
2871 		return count;
2872 	}
2873 
2874 	val = interpret_user_input(u, count);
2875 	if (val < 0)
2876 		return val;
2877 
2878 	if (dent == d->dfs_chk_gen)
2879 		d->chk_gen = val;
2880 	else if (dent == d->dfs_chk_index)
2881 		d->chk_index = val;
2882 	else if (dent == d->dfs_chk_orph)
2883 		d->chk_orph = val;
2884 	else if (dent == d->dfs_chk_lprops)
2885 		d->chk_lprops = val;
2886 	else if (dent == d->dfs_chk_fs)
2887 		d->chk_fs = val;
2888 	else if (dent == d->dfs_tst_rcvry)
2889 		d->tst_rcvry = val;
2890 	else
2891 		return -EINVAL;
2892 
2893 	return count;
2894 }
2895 
2896 static const struct file_operations dfs_fops = {
2897 	.open = dfs_file_open,
2898 	.read = dfs_file_read,
2899 	.write = dfs_file_write,
2900 	.owner = THIS_MODULE,
2901 	.llseek = no_llseek,
2902 };
2903 
2904 /**
2905  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2906  * @c: UBIFS file-system description object
2907  *
2908  * This function creates all debugfs files for this instance of UBIFS. Returns
2909  * zero in case of success and a negative error code in case of failure.
2910  *
2911  * Note, the only reason we have not merged this function with the
2912  * 'ubifs_debugging_init()' function is because it is better to initialize
2913  * debugfs interfaces at the very end of the mount process, and remove them at
2914  * the very beginning of the mount process.
2915  */
dbg_debugfs_init_fs(struct ubifs_info * c)2916 int dbg_debugfs_init_fs(struct ubifs_info *c)
2917 {
2918 	int err, n;
2919 	const char *fname;
2920 	struct dentry *dent;
2921 	struct ubifs_debug_info *d = c->dbg;
2922 
2923 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2924 		     c->vi.ubi_num, c->vi.vol_id);
2925 	if (n == UBIFS_DFS_DIR_LEN) {
2926 		/* The array size is too small */
2927 		fname = UBIFS_DFS_DIR_NAME;
2928 		dent = ERR_PTR(-EINVAL);
2929 		goto out;
2930 	}
2931 
2932 	fname = d->dfs_dir_name;
2933 	dent = debugfs_create_dir(fname, dfs_rootdir);
2934 	if (IS_ERR_OR_NULL(dent))
2935 		goto out;
2936 	d->dfs_dir = dent;
2937 
2938 	fname = "dump_lprops";
2939 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2940 	if (IS_ERR_OR_NULL(dent))
2941 		goto out_remove;
2942 	d->dfs_dump_lprops = dent;
2943 
2944 	fname = "dump_budg";
2945 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2946 	if (IS_ERR_OR_NULL(dent))
2947 		goto out_remove;
2948 	d->dfs_dump_budg = dent;
2949 
2950 	fname = "dump_tnc";
2951 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2952 	if (IS_ERR_OR_NULL(dent))
2953 		goto out_remove;
2954 	d->dfs_dump_tnc = dent;
2955 
2956 	fname = "chk_general";
2957 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2958 				   &dfs_fops);
2959 	if (IS_ERR_OR_NULL(dent))
2960 		goto out_remove;
2961 	d->dfs_chk_gen = dent;
2962 
2963 	fname = "chk_index";
2964 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2965 				   &dfs_fops);
2966 	if (IS_ERR_OR_NULL(dent))
2967 		goto out_remove;
2968 	d->dfs_chk_index = dent;
2969 
2970 	fname = "chk_orphans";
2971 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2972 				   &dfs_fops);
2973 	if (IS_ERR_OR_NULL(dent))
2974 		goto out_remove;
2975 	d->dfs_chk_orph = dent;
2976 
2977 	fname = "chk_lprops";
2978 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2979 				   &dfs_fops);
2980 	if (IS_ERR_OR_NULL(dent))
2981 		goto out_remove;
2982 	d->dfs_chk_lprops = dent;
2983 
2984 	fname = "chk_fs";
2985 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2986 				   &dfs_fops);
2987 	if (IS_ERR_OR_NULL(dent))
2988 		goto out_remove;
2989 	d->dfs_chk_fs = dent;
2990 
2991 	fname = "tst_recovery";
2992 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2993 				   &dfs_fops);
2994 	if (IS_ERR_OR_NULL(dent))
2995 		goto out_remove;
2996 	d->dfs_tst_rcvry = dent;
2997 
2998 	return 0;
2999 
3000 out_remove:
3001 	debugfs_remove_recursive(d->dfs_dir);
3002 out:
3003 	err = dent ? PTR_ERR(dent) : -ENODEV;
3004 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3005 		  fname, err);
3006 	return err;
3007 }
3008 
3009 /**
3010  * dbg_debugfs_exit_fs - remove all debugfs files.
3011  * @c: UBIFS file-system description object
3012  */
dbg_debugfs_exit_fs(struct ubifs_info * c)3013 void dbg_debugfs_exit_fs(struct ubifs_info *c)
3014 {
3015 	debugfs_remove_recursive(c->dbg->dfs_dir);
3016 }
3017 
3018 struct ubifs_global_debug_info ubifs_dbg;
3019 
3020 static struct dentry *dfs_chk_gen;
3021 static struct dentry *dfs_chk_index;
3022 static struct dentry *dfs_chk_orph;
3023 static struct dentry *dfs_chk_lprops;
3024 static struct dentry *dfs_chk_fs;
3025 static struct dentry *dfs_tst_rcvry;
3026 
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)3027 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3028 				    size_t count, loff_t *ppos)
3029 {
3030 	struct dentry *dent = file->f_path.dentry;
3031 	int val;
3032 
3033 	if (dent == dfs_chk_gen)
3034 		val = ubifs_dbg.chk_gen;
3035 	else if (dent == dfs_chk_index)
3036 		val = ubifs_dbg.chk_index;
3037 	else if (dent == dfs_chk_orph)
3038 		val = ubifs_dbg.chk_orph;
3039 	else if (dent == dfs_chk_lprops)
3040 		val = ubifs_dbg.chk_lprops;
3041 	else if (dent == dfs_chk_fs)
3042 		val = ubifs_dbg.chk_fs;
3043 	else if (dent == dfs_tst_rcvry)
3044 		val = ubifs_dbg.tst_rcvry;
3045 	else
3046 		return -EINVAL;
3047 
3048 	return provide_user_output(val, u, count, ppos);
3049 }
3050 
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)3051 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3052 				     size_t count, loff_t *ppos)
3053 {
3054 	struct dentry *dent = file->f_path.dentry;
3055 	int val;
3056 
3057 	val = interpret_user_input(u, count);
3058 	if (val < 0)
3059 		return val;
3060 
3061 	if (dent == dfs_chk_gen)
3062 		ubifs_dbg.chk_gen = val;
3063 	else if (dent == dfs_chk_index)
3064 		ubifs_dbg.chk_index = val;
3065 	else if (dent == dfs_chk_orph)
3066 		ubifs_dbg.chk_orph = val;
3067 	else if (dent == dfs_chk_lprops)
3068 		ubifs_dbg.chk_lprops = val;
3069 	else if (dent == dfs_chk_fs)
3070 		ubifs_dbg.chk_fs = val;
3071 	else if (dent == dfs_tst_rcvry)
3072 		ubifs_dbg.tst_rcvry = val;
3073 	else
3074 		return -EINVAL;
3075 
3076 	return count;
3077 }
3078 
3079 static const struct file_operations dfs_global_fops = {
3080 	.read = dfs_global_file_read,
3081 	.write = dfs_global_file_write,
3082 	.owner = THIS_MODULE,
3083 	.llseek = no_llseek,
3084 };
3085 
3086 /**
3087  * dbg_debugfs_init - initialize debugfs file-system.
3088  *
3089  * UBIFS uses debugfs file-system to expose various debugging knobs to
3090  * user-space. This function creates "ubifs" directory in the debugfs
3091  * file-system. Returns zero in case of success and a negative error code in
3092  * case of failure.
3093  */
dbg_debugfs_init(void)3094 int dbg_debugfs_init(void)
3095 {
3096 	int err;
3097 	const char *fname;
3098 	struct dentry *dent;
3099 
3100 	fname = "ubifs";
3101 	dent = debugfs_create_dir(fname, NULL);
3102 	if (IS_ERR_OR_NULL(dent))
3103 		goto out;
3104 	dfs_rootdir = dent;
3105 
3106 	fname = "chk_general";
3107 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3108 				   &dfs_global_fops);
3109 	if (IS_ERR_OR_NULL(dent))
3110 		goto out_remove;
3111 	dfs_chk_gen = dent;
3112 
3113 	fname = "chk_index";
3114 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3115 				   &dfs_global_fops);
3116 	if (IS_ERR_OR_NULL(dent))
3117 		goto out_remove;
3118 	dfs_chk_index = dent;
3119 
3120 	fname = "chk_orphans";
3121 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3122 				   &dfs_global_fops);
3123 	if (IS_ERR_OR_NULL(dent))
3124 		goto out_remove;
3125 	dfs_chk_orph = dent;
3126 
3127 	fname = "chk_lprops";
3128 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3129 				   &dfs_global_fops);
3130 	if (IS_ERR_OR_NULL(dent))
3131 		goto out_remove;
3132 	dfs_chk_lprops = dent;
3133 
3134 	fname = "chk_fs";
3135 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3136 				   &dfs_global_fops);
3137 	if (IS_ERR_OR_NULL(dent))
3138 		goto out_remove;
3139 	dfs_chk_fs = dent;
3140 
3141 	fname = "tst_recovery";
3142 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3143 				   &dfs_global_fops);
3144 	if (IS_ERR_OR_NULL(dent))
3145 		goto out_remove;
3146 	dfs_tst_rcvry = dent;
3147 
3148 	return 0;
3149 
3150 out_remove:
3151 	debugfs_remove_recursive(dfs_rootdir);
3152 out:
3153 	err = dent ? PTR_ERR(dent) : -ENODEV;
3154 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3155 		  fname, err);
3156 	return err;
3157 }
3158 
3159 /**
3160  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3161  */
dbg_debugfs_exit(void)3162 void dbg_debugfs_exit(void)
3163 {
3164 	debugfs_remove_recursive(dfs_rootdir);
3165 }
3166 
3167 /**
3168  * ubifs_debugging_init - initialize UBIFS debugging.
3169  * @c: UBIFS file-system description object
3170  *
3171  * This function initializes debugging-related data for the file system.
3172  * Returns zero in case of success and a negative error code in case of
3173  * failure.
3174  */
ubifs_debugging_init(struct ubifs_info * c)3175 int ubifs_debugging_init(struct ubifs_info *c)
3176 {
3177 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3178 	if (!c->dbg)
3179 		return -ENOMEM;
3180 
3181 	return 0;
3182 }
3183 
3184 /**
3185  * ubifs_debugging_exit - free debugging data.
3186  * @c: UBIFS file-system description object
3187  */
ubifs_debugging_exit(struct ubifs_info * c)3188 void ubifs_debugging_exit(struct ubifs_info *c)
3189 {
3190 	kfree(c->dbg);
3191 }
3192 
3193 #endif /* CONFIG_UBIFS_FS_DEBUG */
3194