• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  FM Driver for Connectivity chip of Texas Instruments.
3  *
4  *  This sub-module of FM driver is common for FM RX and TX
5  *  functionality. This module is responsible for:
6  *  1) Forming group of Channel-8 commands to perform particular
7  *     functionality (eg., frequency set require more than
8  *     one Channel-8 command to be sent to the chip).
9  *  2) Sending each Channel-8 command to the chip and reading
10  *     response back over Shared Transport.
11  *  3) Managing TX and RX Queues and Tasklets.
12  *  4) Handling FM Interrupt packet and taking appropriate action.
13  *  5) Loading FM firmware to the chip (common, FM TX, and FM RX
14  *     firmware files based on mode selection)
15  *
16  *  Copyright (C) 2011 Texas Instruments
17  *  Author: Raja Mani <raja_mani@ti.com>
18  *  Author: Manjunatha Halli <manjunatha_halli@ti.com>
19  *
20  *  This program is free software; you can redistribute it and/or modify
21  *  it under the terms of the GNU General Public License version 2 as
22  *  published by the Free Software Foundation.
23  *
24  *  This program is distributed in the hope that it will be useful,
25  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
26  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  *  GNU General Public License for more details.
28  *
29  *  You should have received a copy of the GNU General Public License
30  *  along with this program; if not, write to the Free Software
31  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
44 
45 /* Region info */
46 static struct region_info region_configs[] = {
47 	/* Europe/US */
48 	{
49 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50 	 .bot_freq = 87500,	/* 87.5 MHz */
51 	 .top_freq = 108000,	/* 108 MHz */
52 	 .fm_band = 0,
53 	 },
54 	/* Japan */
55 	{
56 	 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57 	 .bot_freq = 76000,	/* 76 MHz */
58 	 .top_freq = 90000,	/* 90 MHz */
59 	 .fm_band = 1,
60 	 },
61 };
62 
63 /* Band selection */
64 static u8 default_radio_region;	/* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
67 
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
72 
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
77 
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
104 
105 /*
106  * When FM common module receives interrupt packet, following handlers
107  * will be executed one after another to service the interrupt(s)
108  */
109 enum fmc_irq_handler_index {
110 	FM_SEND_FLAG_GETCMD_IDX,
111 	FM_HANDLE_FLAG_GETCMD_RESP_IDX,
112 
113 	/* HW malfunction irq handler */
114 	FM_HW_MAL_FUNC_IDX,
115 
116 	/* RDS threshold reached irq handler */
117 	FM_RDS_START_IDX,
118 	FM_RDS_SEND_RDS_GETCMD_IDX,
119 	FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120 	FM_RDS_FINISH_IDX,
121 
122 	/* Tune operation ended irq handler */
123 	FM_HW_TUNE_OP_ENDED_IDX,
124 
125 	/* TX power enable irq handler */
126 	FM_HW_POWER_ENB_IDX,
127 
128 	/* Low RSSI irq handler */
129 	FM_LOW_RSSI_START_IDX,
130 	FM_AF_JUMP_SETPI_IDX,
131 	FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132 	FM_AF_JUMP_SETPI_MASK_IDX,
133 	FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134 	FM_AF_JUMP_SET_AF_FREQ_IDX,
135 	FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136 	FM_AF_JUMP_ENABLE_INT_IDX,
137 	FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138 	FM_AF_JUMP_START_AFJUMP_IDX,
139 	FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140 	FM_AF_JUMP_RD_FREQ_IDX,
141 	FM_AF_JUMP_RD_FREQ_RESP_IDX,
142 	FM_LOW_RSSI_FINISH_IDX,
143 
144 	/* Interrupt process post action */
145 	FM_SEND_INTMSK_CMD_IDX,
146 	FM_HANDLE_INTMSK_CMD_RESP_IDX,
147 };
148 
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151 	fm_irq_send_flag_getcmd,
152 	fm_irq_handle_flag_getcmd_resp,
153 	fm_irq_handle_hw_malfunction,
154 	fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155 	fm_irq_send_rdsdata_getcmd,
156 	fm_irq_handle_rdsdata_getcmd_resp,
157 	fm_irq_handle_rds_finish,
158 	fm_irq_handle_tune_op_ended,
159 	fm_irq_handle_power_enb, /* TX power enable irq handler */
160 	fm_irq_handle_low_rssi_start,
161 	fm_irq_afjump_set_pi,
162 	fm_irq_handle_set_pi_resp,
163 	fm_irq_afjump_set_pimask,
164 	fm_irq_handle_set_pimask_resp,
165 	fm_irq_afjump_setfreq,
166 	fm_irq_handle_setfreq_resp,
167 	fm_irq_afjump_enableint,
168 	fm_irq_afjump_enableint_resp,
169 	fm_irq_start_afjump,
170 	fm_irq_handle_start_afjump_resp,
171 	fm_irq_afjump_rd_freq,
172 	fm_irq_afjump_rd_freq_resp,
173 	fm_irq_handle_low_rssi_finish,
174 	fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175 	fm_irq_handle_intmsk_cmd_resp
176 };
177 
178 long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
180 
fm_irq_call(struct fmdev * fmdev)181 static inline void fm_irq_call(struct fmdev *fmdev)
182 {
183 	fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
184 }
185 
186 /* Continue next function in interrupt handler table */
fm_irq_call_stage(struct fmdev * fmdev,u8 stage)187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
188 {
189 	fmdev->irq_info.stage = stage;
190 	fm_irq_call(fmdev);
191 }
192 
fm_irq_timeout_stage(struct fmdev * fmdev,u8 stage)193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
194 {
195 	fmdev->irq_info.stage = stage;
196 	mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
197 }
198 
199 #ifdef FM_DUMP_TXRX_PKT
200  /* To dump outgoing FM Channel-8 packets */
dump_tx_skb_data(struct sk_buff * skb)201 inline void dump_tx_skb_data(struct sk_buff *skb)
202 {
203 	int len, len_org;
204 	u8 index;
205 	struct fm_cmd_msg_hdr *cmd_hdr;
206 
207 	cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208 	printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209 	       fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210 	       cmd_hdr->len, cmd_hdr->op,
211 	       cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
212 
213 	len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214 	if (len_org > 0) {
215 		printk("\n   data(%d): ", cmd_hdr->dlen);
216 		len = min(len_org, 14);
217 		for (index = 0; index < len; index++)
218 			printk("%x ",
219 			       skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220 		printk("%s", (len_org > 14) ? ".." : "");
221 	}
222 	printk("\n");
223 }
224 
225  /* To dump incoming FM Channel-8 packets */
dump_rx_skb_data(struct sk_buff * skb)226 inline void dump_rx_skb_data(struct sk_buff *skb)
227 {
228 	int len, len_org;
229 	u8 index;
230 	struct fm_event_msg_hdr *evt_hdr;
231 
232 	evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233 	printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234 	    "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235 	    evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236 	    (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
237 
238 	len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239 	if (len_org > 0) {
240 		printk("\n   data(%d): ", evt_hdr->dlen);
241 		len = min(len_org, 14);
242 		for (index = 0; index < len; index++)
243 			printk("%x ",
244 			       skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245 		printk("%s", (len_org > 14) ? ".." : "");
246 	}
247 	printk("\n");
248 }
249 #endif
250 
fmc_update_region_info(struct fmdev * fmdev,u8 region_to_set)251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
252 {
253 	fmdev->rx.region = region_configs[region_to_set];
254 }
255 
256 /*
257  * FM common sub-module will schedule this tasklet whenever it receives
258  * FM packet from ST driver.
259  */
recv_tasklet(unsigned long arg)260 static void recv_tasklet(unsigned long arg)
261 {
262 	struct fmdev *fmdev;
263 	struct fm_irq *irq_info;
264 	struct fm_event_msg_hdr *evt_hdr;
265 	struct sk_buff *skb;
266 	u8 num_fm_hci_cmds;
267 	unsigned long flags;
268 
269 	fmdev = (struct fmdev *)arg;
270 	irq_info = &fmdev->irq_info;
271 	/* Process all packets in the RX queue */
272 	while ((skb = skb_dequeue(&fmdev->rx_q))) {
273 		if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274 			fmerr("skb(%p) has only %d bytes, "
275 				"at least need %zu bytes to decode\n", skb,
276 				skb->len, sizeof(struct fm_event_msg_hdr));
277 			kfree_skb(skb);
278 			continue;
279 		}
280 
281 		evt_hdr = (void *)skb->data;
282 		num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
283 
284 		/* FM interrupt packet? */
285 		if (evt_hdr->op == FM_INTERRUPT) {
286 			/* FM interrupt handler started already? */
287 			if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288 				set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289 				if (irq_info->stage != 0) {
290 					fmerr("Inval stage resetting to zero\n");
291 					irq_info->stage = 0;
292 				}
293 
294 				/*
295 				 * Execute first function in interrupt handler
296 				 * table.
297 				 */
298 				irq_info->handlers[irq_info->stage](fmdev);
299 			} else {
300 				set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
301 			}
302 			kfree_skb(skb);
303 		}
304 		/* Anyone waiting for this with completion handler? */
305 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
306 
307 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 			fmdev->resp_skb = skb;
309 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310 			complete(fmdev->resp_comp);
311 
312 			fmdev->resp_comp = NULL;
313 			atomic_set(&fmdev->tx_cnt, 1);
314 		}
315 		/* Is this for interrupt handler? */
316 		else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317 			if (fmdev->resp_skb != NULL)
318 				fmerr("Response SKB ptr not NULL\n");
319 
320 			spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321 			fmdev->resp_skb = skb;
322 			spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
323 
324 			/* Execute interrupt handler where state index points */
325 			irq_info->handlers[irq_info->stage](fmdev);
326 
327 			kfree_skb(skb);
328 			atomic_set(&fmdev->tx_cnt, 1);
329 		} else {
330 			fmerr("Nobody claimed SKB(%p),purging\n", skb);
331 		}
332 
333 		/*
334 		 * Check flow control field. If Num_FM_HCI_Commands field is
335 		 * not zero, schedule FM TX tasklet.
336 		 */
337 		if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338 			if (!skb_queue_empty(&fmdev->tx_q))
339 				tasklet_schedule(&fmdev->tx_task);
340 	}
341 }
342 
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
send_tasklet(unsigned long arg)344 static void send_tasklet(unsigned long arg)
345 {
346 	struct fmdev *fmdev;
347 	struct sk_buff *skb;
348 	int len;
349 
350 	fmdev = (struct fmdev *)arg;
351 
352 	if (!atomic_read(&fmdev->tx_cnt))
353 		return;
354 
355 	/* Check, is there any timeout happened to last transmitted packet */
356 	if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357 		fmerr("TX timeout occurred\n");
358 		atomic_set(&fmdev->tx_cnt, 1);
359 	}
360 
361 	/* Send queued FM TX packets */
362 	skb = skb_dequeue(&fmdev->tx_q);
363 	if (!skb)
364 		return;
365 
366 	atomic_dec(&fmdev->tx_cnt);
367 	fmdev->pre_op = fm_cb(skb)->fm_op;
368 
369 	if (fmdev->resp_comp != NULL)
370 		fmerr("Response completion handler is not NULL\n");
371 
372 	fmdev->resp_comp = fm_cb(skb)->completion;
373 
374 	/* Write FM packet to ST driver */
375 	len = g_st_write(skb);
376 	if (len < 0) {
377 		kfree_skb(skb);
378 		fmdev->resp_comp = NULL;
379 		fmerr("TX tasklet failed to send skb(%p)\n", skb);
380 		atomic_set(&fmdev->tx_cnt, 1);
381 	} else {
382 		fmdev->last_tx_jiffies = jiffies;
383 	}
384 }
385 
386 /*
387  * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388  * transmission
389  */
fm_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,int payload_len,struct completion * wait_completion)390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type,	void *payload,
391 		int payload_len, struct completion *wait_completion)
392 {
393 	struct sk_buff *skb;
394 	struct fm_cmd_msg_hdr *hdr;
395 	int size;
396 
397 	if (fm_op >= FM_INTERRUPT) {
398 		fmerr("Invalid fm opcode - %d\n", fm_op);
399 		return -EINVAL;
400 	}
401 	if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402 		fmerr("Payload data is NULL during fw download\n");
403 		return -EINVAL;
404 	}
405 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406 		size =
407 		    FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408 	else
409 		size = payload_len;
410 
411 	skb = alloc_skb(size, GFP_ATOMIC);
412 	if (!skb) {
413 		fmerr("No memory to create new SKB\n");
414 		return -ENOMEM;
415 	}
416 	/*
417 	 * Don't fill FM header info for the commands which come from
418 	 * FM firmware file.
419 	 */
420 	if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421 			test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422 		/* Fill command header info */
423 		hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424 		hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER;	/* 0x08 */
425 
426 		/* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427 		hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
428 
429 		/* FM opcode */
430 		hdr->op = fm_op;
431 
432 		/* read/write type */
433 		hdr->rd_wr = type;
434 		hdr->dlen = payload_len;
435 		fm_cb(skb)->fm_op = fm_op;
436 
437 		/*
438 		 * If firmware download has finished and the command is
439 		 * not a read command then payload is != NULL - a write
440 		 * command with u16 payload - convert to be16
441 		 */
442 		if (payload != NULL)
443 			*(u16 *)payload = cpu_to_be16(*(u16 *)payload);
444 
445 	} else if (payload != NULL) {
446 		fm_cb(skb)->fm_op = *((u8 *)payload + 2);
447 	}
448 	if (payload != NULL)
449 		memcpy(skb_put(skb, payload_len), payload, payload_len);
450 
451 	fm_cb(skb)->completion = wait_completion;
452 	skb_queue_tail(&fmdev->tx_q, skb);
453 	tasklet_schedule(&fmdev->tx_task);
454 
455 	return 0;
456 }
457 
458 /* Sends FM Channel-8 command to the chip and waits for the response */
fmc_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,unsigned int payload_len,void * response,int * response_len)459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460 		unsigned int payload_len, void *response, int *response_len)
461 {
462 	struct sk_buff *skb;
463 	struct fm_event_msg_hdr *evt_hdr;
464 	unsigned long flags;
465 	int ret;
466 
467 	init_completion(&fmdev->maintask_comp);
468 	ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469 			    &fmdev->maintask_comp);
470 	if (ret)
471 		return ret;
472 
473 	if (!wait_for_completion_timeout(&fmdev->maintask_comp,
474 					 FM_DRV_TX_TIMEOUT)) {
475 		fmerr("Timeout(%d sec),didn't get reg"
476 			   "completion signal from RX tasklet\n",
477 			   jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478 		return -ETIMEDOUT;
479 	}
480 	if (!fmdev->resp_skb) {
481 		fmerr("Response SKB is missing\n");
482 		return -EFAULT;
483 	}
484 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485 	skb = fmdev->resp_skb;
486 	fmdev->resp_skb = NULL;
487 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
488 
489 	evt_hdr = (void *)skb->data;
490 	if (evt_hdr->status != 0) {
491 		fmerr("Received event pkt status(%d) is not zero\n",
492 			   evt_hdr->status);
493 		kfree_skb(skb);
494 		return -EIO;
495 	}
496 	/* Send response data to caller */
497 	if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498 		/* Skip header info and copy only response data */
499 		skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500 		memcpy(response, skb->data, evt_hdr->dlen);
501 		*response_len = evt_hdr->dlen;
502 	} else if (response_len != NULL && evt_hdr->dlen == 0) {
503 		*response_len = 0;
504 	}
505 	kfree_skb(skb);
506 
507 	return 0;
508 }
509 
510 /* --- Helper functions used in FM interrupt handlers ---*/
check_cmdresp_status(struct fmdev * fmdev,struct sk_buff ** skb)511 static inline int check_cmdresp_status(struct fmdev *fmdev,
512 		struct sk_buff **skb)
513 {
514 	struct fm_event_msg_hdr *fm_evt_hdr;
515 	unsigned long flags;
516 
517 	del_timer(&fmdev->irq_info.timer);
518 
519 	spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520 	*skb = fmdev->resp_skb;
521 	fmdev->resp_skb = NULL;
522 	spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
523 
524 	fm_evt_hdr = (void *)(*skb)->data;
525 	if (fm_evt_hdr->status != 0) {
526 		fmerr("irq: opcode %x response status is not zero "
527 				"Initiating irq recovery process\n",
528 				fm_evt_hdr->op);
529 
530 		mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531 		return -1;
532 	}
533 
534 	return 0;
535 }
536 
fm_irq_common_cmd_resp_helper(struct fmdev * fmdev,u8 stage)537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
538 {
539 	struct sk_buff *skb;
540 
541 	if (!check_cmdresp_status(fmdev, &skb))
542 		fm_irq_call_stage(fmdev, stage);
543 }
544 
545 /*
546  * Interrupt process timeout handler.
547  * One of the irq handler did not get proper response from the chip. So take
548  * recovery action here. FM interrupts are disabled in the beginning of
549  * interrupt process. Therefore reset stage index to re-enable default
550  * interrupts. So that next interrupt will be processed as usual.
551  */
int_timeout_handler(unsigned long data)552 static void int_timeout_handler(unsigned long data)
553 {
554 	struct fmdev *fmdev;
555 	struct fm_irq *fmirq;
556 
557 	fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558 	fmdev = (struct fmdev *)data;
559 	fmirq = &fmdev->irq_info;
560 	fmirq->retry++;
561 
562 	if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563 		/* Stop recovery action (interrupt reenable process) and
564 		 * reset stage index & retry count values */
565 		fmirq->stage = 0;
566 		fmirq->retry = 0;
567 		fmerr("Recovery action failed during"
568 				"irq processing, max retry reached\n");
569 		return;
570 	}
571 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
572 }
573 
574 /* --------- FM interrupt handlers ------------*/
fm_irq_send_flag_getcmd(struct fmdev * fmdev)575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
576 {
577 	u16 flag;
578 
579 	/* Send FLAG_GET command , to know the source of interrupt */
580 	if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581 		fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
582 }
583 
fm_irq_handle_flag_getcmd_resp(struct fmdev * fmdev)584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
585 {
586 	struct sk_buff *skb;
587 	struct fm_event_msg_hdr *fm_evt_hdr;
588 
589 	if (check_cmdresp_status(fmdev, &skb))
590 		return;
591 
592 	fm_evt_hdr = (void *)skb->data;
593 
594 	/* Skip header info and copy only response data */
595 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596 	memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
597 
598 	fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag);
599 	fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
600 
601 	/* Continue next function in interrupt handler table */
602 	fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
603 }
604 
fm_irq_handle_hw_malfunction(struct fmdev * fmdev)605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
606 {
607 	if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608 		fmerr("irq: HW MAL int received - do nothing\n");
609 
610 	/* Continue next function in interrupt handler table */
611 	fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
612 }
613 
fm_irq_handle_rds_start(struct fmdev * fmdev)614 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
615 {
616 	if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617 		fmdbg("irq: rds threshold reached\n");
618 		fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619 	} else {
620 		/* Continue next function in interrupt handler table */
621 		fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
622 	}
623 
624 	fm_irq_call(fmdev);
625 }
626 
fm_irq_send_rdsdata_getcmd(struct fmdev * fmdev)627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
628 {
629 	/* Send the command to read RDS data from the chip */
630 	if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
631 			    (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
632 		fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
633 }
634 
635 /* Keeps track of current RX channel AF (Alternate Frequency) */
fm_rx_update_af_cache(struct fmdev * fmdev,u8 af)636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
637 {
638 	struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639 	u8 reg_idx = fmdev->rx.region.fm_band;
640 	u8 index;
641 	u32 freq;
642 
643 	/* First AF indicates the number of AF follows. Reset the list */
644 	if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645 		fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646 		fmdev->rx.stat_info.afcache_size = 0;
647 		fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648 		return;
649 	}
650 
651 	if (af < FM_RDS_MIN_AF)
652 		return;
653 	if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654 		return;
655 	if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656 		return;
657 
658 	freq = fmdev->rx.region.bot_freq + (af * 100);
659 	if (freq == fmdev->rx.freq) {
660 		fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661 				fmdev->rx.freq, freq);
662 		return;
663 	}
664 	/* Do check in AF cache */
665 	for (index = 0; index < stat_info->afcache_size; index++) {
666 		if (stat_info->af_cache[index] == freq)
667 			break;
668 	}
669 	/* Reached the limit of the list - ignore the next AF */
670 	if (index == stat_info->af_list_max) {
671 		fmdbg("AF cache is full\n");
672 		return;
673 	}
674 	/*
675 	 * If we reached the end of the list then this AF is not
676 	 * in the list - add it.
677 	 */
678 	if (index == stat_info->afcache_size) {
679 		fmdbg("Storing AF %d to cache index %d\n", freq, index);
680 		stat_info->af_cache[index] = freq;
681 		stat_info->afcache_size++;
682 	}
683 }
684 
685 /*
686  * Converts RDS buffer data from big endian format
687  * to little endian format.
688  */
fm_rdsparse_swapbytes(struct fmdev * fmdev,struct fm_rdsdata_format * rds_format)689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690 		struct fm_rdsdata_format *rds_format)
691 {
692 	u8 byte1;
693 	u8 index = 0;
694 	u8 *rds_buff;
695 
696 	/*
697 	 * Since in Orca the 2 RDS Data bytes are in little endian and
698 	 * in Dolphin they are in big endian, the parsing of the RDS data
699 	 * is chip dependent
700 	 */
701 	if (fmdev->asci_id != 0x6350) {
702 		rds_buff = &rds_format->data.groupdatabuff.buff[0];
703 		while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
704 			byte1 = rds_buff[index];
705 			rds_buff[index] = rds_buff[index + 1];
706 			rds_buff[index + 1] = byte1;
707 			index += 2;
708 		}
709 	}
710 }
711 
fm_irq_handle_rdsdata_getcmd_resp(struct fmdev * fmdev)712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
713 {
714 	struct sk_buff *skb;
715 	struct fm_rdsdata_format rds_fmt;
716 	struct fm_rds *rds = &fmdev->rx.rds;
717 	unsigned long group_idx, flags;
718 	u8 *rds_data, meta_data, tmpbuf[3];
719 	u8 type, blk_idx;
720 	u16 cur_picode;
721 	u32 rds_len;
722 
723 	if (check_cmdresp_status(fmdev, &skb))
724 		return;
725 
726 	/* Skip header info */
727 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728 	rds_data = skb->data;
729 	rds_len = skb->len;
730 
731 	/* Parse the RDS data */
732 	while (rds_len >= FM_RDS_BLK_SIZE) {
733 		meta_data = rds_data[2];
734 		/* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735 		type = (meta_data & 0x07);
736 
737 		/* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739 		fmdbg("Block index:%d(%s)\n", blk_idx,
740 			   (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
741 
742 		if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743 			break;
744 
745 		if (blk_idx < FM_RDS_BLK_IDX_A || blk_idx > FM_RDS_BLK_IDX_D) {
746 			fmdbg("Block sequence mismatch\n");
747 			rds->last_blk_idx = -1;
748 			break;
749 		}
750 
751 		/* Skip checkword (control) byte and copy only data byte */
752 		memcpy(&rds_fmt.data.groupdatabuff.
753 				buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754 				rds_data, (FM_RDS_BLK_SIZE - 1));
755 
756 		rds->last_blk_idx = blk_idx;
757 
758 		/* If completed a whole group then handle it */
759 		if (blk_idx == FM_RDS_BLK_IDX_D) {
760 			fmdbg("Good block received\n");
761 			fm_rdsparse_swapbytes(fmdev, &rds_fmt);
762 
763 			/*
764 			 * Extract PI code and store in local cache.
765 			 * We need this during AF switch processing.
766 			 */
767 			cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata);
768 			if (fmdev->rx.stat_info.picode != cur_picode)
769 				fmdev->rx.stat_info.picode = cur_picode;
770 
771 			fmdbg("picode:%d\n", cur_picode);
772 
773 			group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774 			fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775 					(group_idx % 2) ? "B" : "A");
776 
777 			group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778 			if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780 				fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
781 			}
782 		}
783 		rds_len -= FM_RDS_BLK_SIZE;
784 		rds_data += FM_RDS_BLK_SIZE;
785 	}
786 
787 	/* Copy raw rds data to internal rds buffer */
788 	rds_data = skb->data;
789 	rds_len = skb->len;
790 
791 	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792 	while (rds_len > 0) {
793 		/*
794 		 * Fill RDS buffer as per V4L2 specification.
795 		 * Store control byte
796 		 */
797 		type = (rds_data[2] & 0x07);
798 		blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799 		tmpbuf[2] = blk_idx;	/* Offset name */
800 		tmpbuf[2] |= blk_idx << 3;	/* Received offset */
801 
802 		/* Store data byte */
803 		tmpbuf[0] = rds_data[0];
804 		tmpbuf[1] = rds_data[1];
805 
806 		memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807 		rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
808 
809 		/* Check for overflow & start over */
810 		if (rds->wr_idx == rds->rd_idx) {
811 			fmdbg("RDS buffer overflow\n");
812 			rds->wr_idx = 0;
813 			rds->rd_idx = 0;
814 			break;
815 		}
816 		rds_len -= FM_RDS_BLK_SIZE;
817 		rds_data += FM_RDS_BLK_SIZE;
818 	}
819 	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
820 
821 	/* Wakeup read queue */
822 	if (rds->wr_idx != rds->rd_idx)
823 		wake_up_interruptible(&rds->read_queue);
824 
825 	fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
826 }
827 
fm_irq_handle_rds_finish(struct fmdev * fmdev)828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
829 {
830 	fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
831 }
832 
fm_irq_handle_tune_op_ended(struct fmdev * fmdev)833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
834 {
835 	if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836 	    irq_info.mask) {
837 		fmdbg("irq: tune ended/bandlimit reached\n");
838 		if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
839 			fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840 		} else {
841 			complete(&fmdev->maintask_comp);
842 			fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
843 		}
844 	} else
845 		fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
846 
847 	fm_irq_call(fmdev);
848 }
849 
fm_irq_handle_power_enb(struct fmdev * fmdev)850 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
851 {
852 	if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853 		fmdbg("irq: Power Enabled/Disabled\n");
854 		complete(&fmdev->maintask_comp);
855 	}
856 
857 	fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
858 }
859 
fm_irq_handle_low_rssi_start(struct fmdev * fmdev)860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
861 {
862 	if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863 	    (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864 	    (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865 	    (fmdev->rx.stat_info.afcache_size != 0)) {
866 		fmdbg("irq: rssi level has fallen below threshold level\n");
867 
868 		/* Disable further low RSSI interrupts */
869 		fmdev->irq_info.mask &= ~FM_LEV_EVENT;
870 
871 		fmdev->rx.afjump_idx = 0;
872 		fmdev->rx.freq_before_jump = fmdev->rx.freq;
873 		fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874 	} else {
875 		/* Continue next function in interrupt handler table */
876 		fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
877 	}
878 
879 	fm_irq_call(fmdev);
880 }
881 
fm_irq_afjump_set_pi(struct fmdev * fmdev)882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
883 {
884 	u16 payload;
885 
886 	/* Set PI code - must be updated if the AF list is not empty */
887 	payload = fmdev->rx.stat_info.picode;
888 	if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
890 }
891 
fm_irq_handle_set_pi_resp(struct fmdev * fmdev)892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
893 {
894 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
895 }
896 
897 /*
898  * Set PI mask.
899  * 0xFFFF = Enable PI code matching
900  * 0x0000 = Disable PI code matching
901  */
fm_irq_afjump_set_pimask(struct fmdev * fmdev)902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
903 {
904 	u16 payload;
905 
906 	payload = 0x0000;
907 	if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
909 }
910 
fm_irq_handle_set_pimask_resp(struct fmdev * fmdev)911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
912 {
913 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
914 }
915 
fm_irq_afjump_setfreq(struct fmdev * fmdev)916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
917 {
918 	u16 frq_index;
919 	u16 payload;
920 
921 	fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922 	frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923 	     fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
924 
925 	payload = frq_index;
926 	if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
928 }
929 
fm_irq_handle_setfreq_resp(struct fmdev * fmdev)930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
931 {
932 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
933 }
934 
fm_irq_afjump_enableint(struct fmdev * fmdev)935 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
936 {
937 	u16 payload;
938 
939 	/* Enable FR (tuning operation ended) interrupt */
940 	payload = FM_FR_EVENT;
941 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
943 }
944 
fm_irq_afjump_enableint_resp(struct fmdev * fmdev)945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
946 {
947 	fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
948 }
949 
fm_irq_start_afjump(struct fmdev * fmdev)950 static void fm_irq_start_afjump(struct fmdev *fmdev)
951 {
952 	u16 payload;
953 
954 	payload = FM_TUNER_AF_JUMP_MODE;
955 	if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956 			sizeof(payload), NULL))
957 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
958 }
959 
fm_irq_handle_start_afjump_resp(struct fmdev * fmdev)960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
961 {
962 	struct sk_buff *skb;
963 
964 	if (check_cmdresp_status(fmdev, &skb))
965 		return;
966 
967 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
968 	set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
969 	clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
970 }
971 
fm_irq_afjump_rd_freq(struct fmdev * fmdev)972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
973 {
974 	u16 payload;
975 
976 	if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977 		fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
978 }
979 
fm_irq_afjump_rd_freq_resp(struct fmdev * fmdev)980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
981 {
982 	struct sk_buff *skb;
983 	u16 read_freq;
984 	u32 curr_freq, jumped_freq;
985 
986 	if (check_cmdresp_status(fmdev, &skb))
987 		return;
988 
989 	/* Skip header info and copy only response data */
990 	skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991 	memcpy(&read_freq, skb->data, sizeof(read_freq));
992 	read_freq = be16_to_cpu(read_freq);
993 	curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
994 
995 	jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
996 
997 	/* If the frequency was changed the jump succeeded */
998 	if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999 		fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000 		fmdev->rx.freq = curr_freq;
1001 		fm_rx_reset_rds_cache(fmdev);
1002 
1003 		/* AF feature is on, enable low level RSSI interrupt */
1004 		if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005 			fmdev->irq_info.mask |= FM_LEV_EVENT;
1006 
1007 		fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008 	} else {		/* jump to the next freq in the AF list */
1009 		fmdev->rx.afjump_idx++;
1010 
1011 		/* If we reached the end of the list - stop searching */
1012 		if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013 			fmdbg("AF switch processing failed\n");
1014 			fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015 		} else {	/* AF List is not over - try next one */
1016 
1017 			fmdbg("Trying next freq in AF cache\n");
1018 			fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1019 		}
1020 	}
1021 	fm_irq_call(fmdev);
1022 }
1023 
fm_irq_handle_low_rssi_finish(struct fmdev * fmdev)1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1025 {
1026 	fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1027 }
1028 
fm_irq_send_intmsk_cmd(struct fmdev * fmdev)1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1030 {
1031 	u16 payload;
1032 
1033 	/* Re-enable FM interrupts */
1034 	payload = fmdev->irq_info.mask;
1035 
1036 	if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037 			sizeof(payload), NULL))
1038 		fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1039 }
1040 
fm_irq_handle_intmsk_cmd_resp(struct fmdev * fmdev)1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1042 {
1043 	struct sk_buff *skb;
1044 
1045 	if (check_cmdresp_status(fmdev, &skb))
1046 		return;
1047 	/*
1048 	 * This is last function in interrupt table to be executed.
1049 	 * So, reset stage index to 0.
1050 	 */
1051 	fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1052 
1053 	/* Start processing any pending interrupt */
1054 	if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1055 		fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056 	else
1057 		clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1058 }
1059 
1060 /* Returns availability of RDS data in internel buffer */
fmc_is_rds_data_available(struct fmdev * fmdev,struct file * file,struct poll_table_struct * pts)1061 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062 				struct poll_table_struct *pts)
1063 {
1064 	poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065 	if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066 		return 0;
1067 
1068 	return -EAGAIN;
1069 }
1070 
1071 /* Copies RDS data from internal buffer to user buffer */
fmc_transfer_rds_from_internal_buff(struct fmdev * fmdev,struct file * file,u8 __user * buf,size_t count)1072 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073 		u8 __user *buf, size_t count)
1074 {
1075 	u32 block_count;
1076 	unsigned long flags;
1077 	int ret;
1078 
1079 	if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1080 		if (file->f_flags & O_NONBLOCK)
1081 			return -EWOULDBLOCK;
1082 
1083 		ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1084 				(fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1085 		if (ret)
1086 			return -EINTR;
1087 	}
1088 
1089 	/* Calculate block count from byte count */
1090 	count /= 3;
1091 	block_count = 0;
1092 	ret = 0;
1093 
1094 	spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1095 
1096 	while (block_count < count) {
1097 		if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx)
1098 			break;
1099 
1100 		if (copy_to_user(buf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1101 					FM_RDS_BLK_SIZE))
1102 			break;
1103 
1104 		fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105 		if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106 			fmdev->rx.rds.rd_idx = 0;
1107 
1108 		block_count++;
1109 		buf += FM_RDS_BLK_SIZE;
1110 		ret += FM_RDS_BLK_SIZE;
1111 	}
1112 	spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1113 	return ret;
1114 }
1115 
fmc_set_freq(struct fmdev * fmdev,u32 freq_to_set)1116 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1117 {
1118 	switch (fmdev->curr_fmmode) {
1119 	case FM_MODE_RX:
1120 		return fm_rx_set_freq(fmdev, freq_to_set);
1121 
1122 	case FM_MODE_TX:
1123 		return fm_tx_set_freq(fmdev, freq_to_set);
1124 
1125 	default:
1126 		return -EINVAL;
1127 	}
1128 }
1129 
fmc_get_freq(struct fmdev * fmdev,u32 * cur_tuned_frq)1130 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1131 {
1132 	if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1133 		fmerr("RX frequency is not set\n");
1134 		return -EPERM;
1135 	}
1136 	if (cur_tuned_frq == NULL) {
1137 		fmerr("Invalid memory\n");
1138 		return -ENOMEM;
1139 	}
1140 
1141 	switch (fmdev->curr_fmmode) {
1142 	case FM_MODE_RX:
1143 		*cur_tuned_frq = fmdev->rx.freq;
1144 		return 0;
1145 
1146 	case FM_MODE_TX:
1147 		*cur_tuned_frq = 0;	/* TODO : Change this later */
1148 		return 0;
1149 
1150 	default:
1151 		return -EINVAL;
1152 	}
1153 
1154 }
1155 
fmc_set_region(struct fmdev * fmdev,u8 region_to_set)1156 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1157 {
1158 	switch (fmdev->curr_fmmode) {
1159 	case FM_MODE_RX:
1160 		return fm_rx_set_region(fmdev, region_to_set);
1161 
1162 	case FM_MODE_TX:
1163 		return fm_tx_set_region(fmdev, region_to_set);
1164 
1165 	default:
1166 		return -EINVAL;
1167 	}
1168 }
1169 
fmc_set_mute_mode(struct fmdev * fmdev,u8 mute_mode_toset)1170 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1171 {
1172 	switch (fmdev->curr_fmmode) {
1173 	case FM_MODE_RX:
1174 		return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1175 
1176 	case FM_MODE_TX:
1177 		return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1178 
1179 	default:
1180 		return -EINVAL;
1181 	}
1182 }
1183 
fmc_set_stereo_mono(struct fmdev * fmdev,u16 mode)1184 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1185 {
1186 	switch (fmdev->curr_fmmode) {
1187 	case FM_MODE_RX:
1188 		return fm_rx_set_stereo_mono(fmdev, mode);
1189 
1190 	case FM_MODE_TX:
1191 		return fm_tx_set_stereo_mono(fmdev, mode);
1192 
1193 	default:
1194 		return -EINVAL;
1195 	}
1196 }
1197 
fmc_set_rds_mode(struct fmdev * fmdev,u8 rds_en_dis)1198 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1199 {
1200 	switch (fmdev->curr_fmmode) {
1201 	case FM_MODE_RX:
1202 		return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1203 
1204 	case FM_MODE_TX:
1205 		return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1206 
1207 	default:
1208 		return -EINVAL;
1209 	}
1210 }
1211 
1212 /* Sends power off command to the chip */
fm_power_down(struct fmdev * fmdev)1213 static int fm_power_down(struct fmdev *fmdev)
1214 {
1215 	u16 payload;
1216 	int ret;
1217 
1218 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1219 		fmerr("FM core is not ready\n");
1220 		return -EPERM;
1221 	}
1222 	if (fmdev->curr_fmmode == FM_MODE_OFF) {
1223 		fmdbg("FM chip is already in OFF state\n");
1224 		return 0;
1225 	}
1226 
1227 	payload = 0x0;
1228 	ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1229 		sizeof(payload), NULL, NULL);
1230 	if (ret < 0)
1231 		return ret;
1232 
1233 	return fmc_release(fmdev);
1234 }
1235 
1236 /* Reads init command from FM firmware file and loads to the chip */
fm_download_firmware(struct fmdev * fmdev,const u8 * fw_name)1237 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1238 {
1239 	const struct firmware *fw_entry;
1240 	struct bts_header *fw_header;
1241 	struct bts_action *action;
1242 	struct bts_action_delay *delay;
1243 	u8 *fw_data;
1244 	int ret, fw_len, cmd_cnt;
1245 
1246 	cmd_cnt = 0;
1247 	set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1248 
1249 	ret = request_firmware(&fw_entry, fw_name,
1250 				&fmdev->radio_dev->dev);
1251 	if (ret < 0) {
1252 		fmerr("Unable to read firmware(%s) content\n", fw_name);
1253 		return ret;
1254 	}
1255 	fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size);
1256 
1257 	fw_data = (void *)fw_entry->data;
1258 	fw_len = fw_entry->size;
1259 
1260 	fw_header = (struct bts_header *)fw_data;
1261 	if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1262 		fmerr("%s not a legal TI firmware file\n", fw_name);
1263 		ret = -EINVAL;
1264 		goto rel_fw;
1265 	}
1266 	fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1267 
1268 	/* Skip file header info , we already verified it */
1269 	fw_data += sizeof(struct bts_header);
1270 	fw_len -= sizeof(struct bts_header);
1271 
1272 	while (fw_data && fw_len > 0) {
1273 		action = (struct bts_action *)fw_data;
1274 
1275 		switch (action->type) {
1276 		case ACTION_SEND_COMMAND:	/* Send */
1277 			if (fmc_send_cmd(fmdev, 0, 0, action->data,
1278 						action->size, NULL, NULL))
1279 				goto rel_fw;
1280 
1281 			cmd_cnt++;
1282 			break;
1283 
1284 		case ACTION_DELAY:	/* Delay */
1285 			delay = (struct bts_action_delay *)action->data;
1286 			mdelay(delay->msec);
1287 			break;
1288 		}
1289 
1290 		fw_data += (sizeof(struct bts_action) + (action->size));
1291 		fw_len -= (sizeof(struct bts_action) + (action->size));
1292 	}
1293 	fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1294 rel_fw:
1295 	release_firmware(fw_entry);
1296 	clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1297 
1298 	return ret;
1299 }
1300 
1301 /* Loads default RX configuration to the chip */
load_default_rx_configuration(struct fmdev * fmdev)1302 static int load_default_rx_configuration(struct fmdev *fmdev)
1303 {
1304 	int ret;
1305 
1306 	ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1307 	if (ret < 0)
1308 		return ret;
1309 
1310 	return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1311 }
1312 
1313 /* Does FM power on sequence */
fm_power_up(struct fmdev * fmdev,u8 mode)1314 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1315 {
1316 	u16 payload, asic_id, asic_ver;
1317 	int resp_len, ret;
1318 	u8 fw_name[50];
1319 
1320 	if (mode >= FM_MODE_ENTRY_MAX) {
1321 		fmerr("Invalid firmware download option\n");
1322 		return -EINVAL;
1323 	}
1324 
1325 	/*
1326 	 * Initialize FM common module. FM GPIO toggling is
1327 	 * taken care in Shared Transport driver.
1328 	 */
1329 	ret = fmc_prepare(fmdev);
1330 	if (ret < 0) {
1331 		fmerr("Unable to prepare FM Common\n");
1332 		return ret;
1333 	}
1334 
1335 	payload = FM_ENABLE;
1336 	if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1337 			sizeof(payload), NULL, NULL))
1338 		goto rel;
1339 
1340 	/* Allow the chip to settle down in Channel-8 mode */
1341 	msleep(20);
1342 
1343 	if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1344 			sizeof(asic_id), &asic_id, &resp_len))
1345 		goto rel;
1346 
1347 	if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1348 			sizeof(asic_ver), &asic_ver, &resp_len))
1349 		goto rel;
1350 
1351 	fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1352 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1353 
1354 	sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1355 		be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1356 
1357 	ret = fm_download_firmware(fmdev, fw_name);
1358 	if (ret < 0) {
1359 		fmdbg("Failed to download firmware file %s\n", fw_name);
1360 		goto rel;
1361 	}
1362 	sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1363 			FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1364 			be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1365 
1366 	ret = fm_download_firmware(fmdev, fw_name);
1367 	if (ret < 0) {
1368 		fmdbg("Failed to download firmware file %s\n", fw_name);
1369 		goto rel;
1370 	} else
1371 		return ret;
1372 rel:
1373 	return fmc_release(fmdev);
1374 }
1375 
1376 /* Set FM Modes(TX, RX, OFF) */
fmc_set_mode(struct fmdev * fmdev,u8 fm_mode)1377 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1378 {
1379 	int ret = 0;
1380 
1381 	if (fm_mode >= FM_MODE_ENTRY_MAX) {
1382 		fmerr("Invalid FM mode\n");
1383 		return -EINVAL;
1384 	}
1385 	if (fmdev->curr_fmmode == fm_mode) {
1386 		fmdbg("Already fm is in mode(%d)\n", fm_mode);
1387 		return ret;
1388 	}
1389 
1390 	switch (fm_mode) {
1391 	case FM_MODE_OFF:	/* OFF Mode */
1392 		ret = fm_power_down(fmdev);
1393 		if (ret < 0) {
1394 			fmerr("Failed to set OFF mode\n");
1395 			return ret;
1396 		}
1397 		break;
1398 
1399 	case FM_MODE_TX:	/* TX Mode */
1400 	case FM_MODE_RX:	/* RX Mode */
1401 		/* Power down before switching to TX or RX mode */
1402 		if (fmdev->curr_fmmode != FM_MODE_OFF) {
1403 			ret = fm_power_down(fmdev);
1404 			if (ret < 0) {
1405 				fmerr("Failed to set OFF mode\n");
1406 				return ret;
1407 			}
1408 			msleep(30);
1409 		}
1410 		ret = fm_power_up(fmdev, fm_mode);
1411 		if (ret < 0) {
1412 			fmerr("Failed to load firmware\n");
1413 			return ret;
1414 		}
1415 	}
1416 	fmdev->curr_fmmode = fm_mode;
1417 
1418 	/* Set default configuration */
1419 	if (fmdev->curr_fmmode == FM_MODE_RX) {
1420 		fmdbg("Loading default rx configuration..\n");
1421 		ret = load_default_rx_configuration(fmdev);
1422 		if (ret < 0)
1423 			fmerr("Failed to load default values\n");
1424 	}
1425 
1426 	return ret;
1427 }
1428 
1429 /* Returns current FM mode (TX, RX, OFF) */
fmc_get_mode(struct fmdev * fmdev,u8 * fmmode)1430 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1431 {
1432 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1433 		fmerr("FM core is not ready\n");
1434 		return -EPERM;
1435 	}
1436 	if (fmmode == NULL) {
1437 		fmerr("Invalid memory\n");
1438 		return -ENOMEM;
1439 	}
1440 
1441 	*fmmode = fmdev->curr_fmmode;
1442 	return 0;
1443 }
1444 
1445 /* Called by ST layer when FM packet is available */
fm_st_receive(void * arg,struct sk_buff * skb)1446 static long fm_st_receive(void *arg, struct sk_buff *skb)
1447 {
1448 	struct fmdev *fmdev;
1449 
1450 	fmdev = (struct fmdev *)arg;
1451 
1452 	if (skb == NULL) {
1453 		fmerr("Invalid SKB received from ST\n");
1454 		return -EFAULT;
1455 	}
1456 
1457 	if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1458 		fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1459 		return -EINVAL;
1460 	}
1461 
1462 	memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1463 	skb_queue_tail(&fmdev->rx_q, skb);
1464 	tasklet_schedule(&fmdev->rx_task);
1465 
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Called by ST layer to indicate protocol registration completion
1471  * status.
1472  */
fm_st_reg_comp_cb(void * arg,char data)1473 static void fm_st_reg_comp_cb(void *arg, char data)
1474 {
1475 	struct fmdev *fmdev;
1476 
1477 	fmdev = (struct fmdev *)arg;
1478 	fmdev->streg_cbdata = data;
1479 	complete(&wait_for_fmdrv_reg_comp);
1480 }
1481 
1482 /*
1483  * This function will be called from FM V4L2 open function.
1484  * Register with ST driver and initialize driver data.
1485  */
fmc_prepare(struct fmdev * fmdev)1486 int fmc_prepare(struct fmdev *fmdev)
1487 {
1488 	static struct st_proto_s fm_st_proto;
1489 	int ret;
1490 
1491 	if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1492 		fmdbg("FM Core is already up\n");
1493 		return 0;
1494 	}
1495 
1496 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1497 	fm_st_proto.recv = fm_st_receive;
1498 	fm_st_proto.match_packet = NULL;
1499 	fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1500 	fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1501 	fm_st_proto.priv_data = fmdev;
1502 	fm_st_proto.chnl_id = 0x08;
1503 	fm_st_proto.max_frame_size = 0xff;
1504 	fm_st_proto.hdr_len = 1;
1505 	fm_st_proto.offset_len_in_hdr = 0;
1506 	fm_st_proto.len_size = 1;
1507 	fm_st_proto.reserve = 1;
1508 
1509 	ret = st_register(&fm_st_proto);
1510 	if (ret == -EINPROGRESS) {
1511 		init_completion(&wait_for_fmdrv_reg_comp);
1512 		fmdev->streg_cbdata = -EINPROGRESS;
1513 		fmdbg("%s waiting for ST reg completion signal\n", __func__);
1514 
1515 		if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1516 						 FM_ST_REG_TIMEOUT)) {
1517 			fmerr("Timeout(%d sec), didn't get reg "
1518 					"completion signal from ST\n",
1519 					jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1520 			return -ETIMEDOUT;
1521 		}
1522 		if (fmdev->streg_cbdata != 0) {
1523 			fmerr("ST reg comp CB called with error "
1524 					"status %d\n", fmdev->streg_cbdata);
1525 			return -EAGAIN;
1526 		}
1527 
1528 		ret = 0;
1529 	} else if (ret == -1) {
1530 		fmerr("st_register failed %d\n", ret);
1531 		return -EAGAIN;
1532 	}
1533 
1534 	if (fm_st_proto.write != NULL) {
1535 		g_st_write = fm_st_proto.write;
1536 	} else {
1537 		fmerr("Failed to get ST write func pointer\n");
1538 		ret = st_unregister(&fm_st_proto);
1539 		if (ret < 0)
1540 			fmerr("st_unregister failed %d\n", ret);
1541 		return -EAGAIN;
1542 	}
1543 
1544 	spin_lock_init(&fmdev->rds_buff_lock);
1545 	spin_lock_init(&fmdev->resp_skb_lock);
1546 
1547 	/* Initialize TX queue and TX tasklet */
1548 	skb_queue_head_init(&fmdev->tx_q);
1549 	tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1550 
1551 	/* Initialize RX Queue and RX tasklet */
1552 	skb_queue_head_init(&fmdev->rx_q);
1553 	tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1554 
1555 	fmdev->irq_info.stage = 0;
1556 	atomic_set(&fmdev->tx_cnt, 1);
1557 	fmdev->resp_comp = NULL;
1558 
1559 	init_timer(&fmdev->irq_info.timer);
1560 	fmdev->irq_info.timer.function = &int_timeout_handler;
1561 	fmdev->irq_info.timer.data = (unsigned long)fmdev;
1562 	/*TODO: add FM_STIC_EVENT later */
1563 	fmdev->irq_info.mask = FM_MAL_EVENT;
1564 
1565 	/* Region info */
1566 	memcpy(&fmdev->rx.region, &region_configs[default_radio_region],
1567 			sizeof(struct region_info));
1568 
1569 	fmdev->rx.mute_mode = FM_MUTE_OFF;
1570 	fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1571 	fmdev->rx.rds.flag = FM_RDS_DISABLE;
1572 	fmdev->rx.freq = FM_UNDEFINED_FREQ;
1573 	fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1574 	fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1575 	fmdev->irq_info.retry = 0;
1576 
1577 	fm_rx_reset_rds_cache(fmdev);
1578 	init_waitqueue_head(&fmdev->rx.rds.read_queue);
1579 
1580 	fm_rx_reset_station_info(fmdev);
1581 	set_bit(FM_CORE_READY, &fmdev->flag);
1582 
1583 	return ret;
1584 }
1585 
1586 /*
1587  * This function will be called from FM V4L2 release function.
1588  * Unregister from ST driver.
1589  */
fmc_release(struct fmdev * fmdev)1590 int fmc_release(struct fmdev *fmdev)
1591 {
1592 	static struct st_proto_s fm_st_proto;
1593 	int ret;
1594 
1595 	if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1596 		fmdbg("FM Core is already down\n");
1597 		return 0;
1598 	}
1599 	/* Service pending read */
1600 	wake_up_interruptible(&fmdev->rx.rds.read_queue);
1601 
1602 	tasklet_kill(&fmdev->tx_task);
1603 	tasklet_kill(&fmdev->rx_task);
1604 
1605 	skb_queue_purge(&fmdev->tx_q);
1606 	skb_queue_purge(&fmdev->rx_q);
1607 
1608 	fmdev->resp_comp = NULL;
1609 	fmdev->rx.freq = 0;
1610 
1611 	memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1612 	fm_st_proto.chnl_id = 0x08;
1613 
1614 	ret = st_unregister(&fm_st_proto);
1615 
1616 	if (ret < 0)
1617 		fmerr("Failed to de-register FM from ST %d\n", ret);
1618 	else
1619 		fmdbg("Successfully unregistered from ST\n");
1620 
1621 	clear_bit(FM_CORE_READY, &fmdev->flag);
1622 	return ret;
1623 }
1624 
1625 /*
1626  * Module init function. Ask FM V4L module to register video device.
1627  * Allocate memory for FM driver context and RX RDS buffer.
1628  */
fm_drv_init(void)1629 static int __init fm_drv_init(void)
1630 {
1631 	struct fmdev *fmdev = NULL;
1632 	int ret = -ENOMEM;
1633 
1634 	fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1635 
1636 	fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1637 	if (NULL == fmdev) {
1638 		fmerr("Can't allocate operation structure memory\n");
1639 		return ret;
1640 	}
1641 	fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1642 	fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1643 	if (NULL == fmdev->rx.rds.buff) {
1644 		fmerr("Can't allocate rds ring buffer\n");
1645 		goto rel_dev;
1646 	}
1647 
1648 	ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1649 	if (ret < 0)
1650 		goto rel_rdsbuf;
1651 
1652 	fmdev->irq_info.handlers = int_handler_table;
1653 	fmdev->curr_fmmode = FM_MODE_OFF;
1654 	fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1655 	fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1656 	return ret;
1657 
1658 rel_rdsbuf:
1659 	kfree(fmdev->rx.rds.buff);
1660 rel_dev:
1661 	kfree(fmdev);
1662 
1663 	return ret;
1664 }
1665 
1666 /* Module exit function. Ask FM V4L module to unregister video device */
fm_drv_exit(void)1667 static void __exit fm_drv_exit(void)
1668 {
1669 	struct fmdev *fmdev = NULL;
1670 
1671 	fmdev = fm_v4l2_deinit_video_device();
1672 	if (fmdev != NULL) {
1673 		kfree(fmdev->rx.rds.buff);
1674 		kfree(fmdev);
1675 	}
1676 }
1677 
1678 module_init(fm_drv_init);
1679 module_exit(fm_drv_exit);
1680 
1681 /* ------------- Module Info ------------- */
1682 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1683 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1684 MODULE_VERSION(FM_DRV_VERSION);
1685 MODULE_LICENSE("GPL");
1686