1 /*
2 * FCC driver for Motorola MPC82xx (PQ2).
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * This file is licensed under the terms of the GNU General Public License
11 * version 2. This program is licensed "as is" without any warranty of any
12 * kind, whether express or implied.
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/phy.h>
35 #include <linux/of_device.h>
36 #include <linux/gfp.h>
37
38 #include <asm/immap_cpm2.h>
39 #include <asm/mpc8260.h>
40 #include <asm/cpm2.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/irq.h>
44 #include <asm/uaccess.h>
45
46 #include "fs_enet.h"
47
48 /*************************************************/
49
50 /* FCC access macros */
51
52 /* write, read, set bits, clear bits */
53 #define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v))
54 #define R32(_p, _m) in_be32(&(_p)->_m)
55 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
56 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
57
58 #define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v))
59 #define R16(_p, _m) in_be16(&(_p)->_m)
60 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
61 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
62
63 #define W8(_p, _m, _v) out_8(&(_p)->_m, (_v))
64 #define R8(_p, _m) in_8(&(_p)->_m)
65 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
66 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
67
68 /*************************************************/
69
70 #define FCC_MAX_MULTICAST_ADDRS 64
71
72 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
73 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
74 #define mk_mii_end 0
75
76 #define MAX_CR_CMD_LOOPS 10000
77
fcc_cr_cmd(struct fs_enet_private * fep,u32 op)78 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
79 {
80 const struct fs_platform_info *fpi = fep->fpi;
81
82 return cpm_command(fpi->cp_command, op);
83 }
84
do_pd_setup(struct fs_enet_private * fep)85 static int do_pd_setup(struct fs_enet_private *fep)
86 {
87 struct platform_device *ofdev = to_platform_device(fep->dev);
88 struct fs_platform_info *fpi = fep->fpi;
89 int ret = -EINVAL;
90
91 fep->interrupt = of_irq_to_resource(ofdev->dev.of_node, 0, NULL);
92 if (fep->interrupt == NO_IRQ)
93 goto out;
94
95 fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
96 if (!fep->fcc.fccp)
97 goto out;
98
99 fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
100 if (!fep->fcc.ep)
101 goto out_fccp;
102
103 fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
104 if (!fep->fcc.fcccp)
105 goto out_ep;
106
107 fep->fcc.mem = (void __iomem *)cpm2_immr;
108 fpi->dpram_offset = cpm_dpalloc(128, 32);
109 if (IS_ERR_VALUE(fpi->dpram_offset)) {
110 ret = fpi->dpram_offset;
111 goto out_fcccp;
112 }
113
114 return 0;
115
116 out_fcccp:
117 iounmap(fep->fcc.fcccp);
118 out_ep:
119 iounmap(fep->fcc.ep);
120 out_fccp:
121 iounmap(fep->fcc.fccp);
122 out:
123 return ret;
124 }
125
126 #define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
127 #define FCC_RX_EVENT (FCC_ENET_RXF)
128 #define FCC_TX_EVENT (FCC_ENET_TXB)
129 #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE)
130
setup_data(struct net_device * dev)131 static int setup_data(struct net_device *dev)
132 {
133 struct fs_enet_private *fep = netdev_priv(dev);
134
135 if (do_pd_setup(fep) != 0)
136 return -EINVAL;
137
138 fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
139 fep->ev_rx = FCC_RX_EVENT;
140 fep->ev_tx = FCC_TX_EVENT;
141 fep->ev_err = FCC_ERR_EVENT_MSK;
142
143 return 0;
144 }
145
allocate_bd(struct net_device * dev)146 static int allocate_bd(struct net_device *dev)
147 {
148 struct fs_enet_private *fep = netdev_priv(dev);
149 const struct fs_platform_info *fpi = fep->fpi;
150
151 fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
152 (fpi->tx_ring + fpi->rx_ring) *
153 sizeof(cbd_t), &fep->ring_mem_addr,
154 GFP_KERNEL);
155 if (fep->ring_base == NULL)
156 return -ENOMEM;
157
158 return 0;
159 }
160
free_bd(struct net_device * dev)161 static void free_bd(struct net_device *dev)
162 {
163 struct fs_enet_private *fep = netdev_priv(dev);
164 const struct fs_platform_info *fpi = fep->fpi;
165
166 if (fep->ring_base)
167 dma_free_coherent(fep->dev,
168 (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
169 (void __force *)fep->ring_base, fep->ring_mem_addr);
170 }
171
cleanup_data(struct net_device * dev)172 static void cleanup_data(struct net_device *dev)
173 {
174 /* nothing */
175 }
176
set_promiscuous_mode(struct net_device * dev)177 static void set_promiscuous_mode(struct net_device *dev)
178 {
179 struct fs_enet_private *fep = netdev_priv(dev);
180 fcc_t __iomem *fccp = fep->fcc.fccp;
181
182 S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
183 }
184
set_multicast_start(struct net_device * dev)185 static void set_multicast_start(struct net_device *dev)
186 {
187 struct fs_enet_private *fep = netdev_priv(dev);
188 fcc_enet_t __iomem *ep = fep->fcc.ep;
189
190 W32(ep, fen_gaddrh, 0);
191 W32(ep, fen_gaddrl, 0);
192 }
193
set_multicast_one(struct net_device * dev,const u8 * mac)194 static void set_multicast_one(struct net_device *dev, const u8 *mac)
195 {
196 struct fs_enet_private *fep = netdev_priv(dev);
197 fcc_enet_t __iomem *ep = fep->fcc.ep;
198 u16 taddrh, taddrm, taddrl;
199
200 taddrh = ((u16)mac[5] << 8) | mac[4];
201 taddrm = ((u16)mac[3] << 8) | mac[2];
202 taddrl = ((u16)mac[1] << 8) | mac[0];
203
204 W16(ep, fen_taddrh, taddrh);
205 W16(ep, fen_taddrm, taddrm);
206 W16(ep, fen_taddrl, taddrl);
207 fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
208 }
209
set_multicast_finish(struct net_device * dev)210 static void set_multicast_finish(struct net_device *dev)
211 {
212 struct fs_enet_private *fep = netdev_priv(dev);
213 fcc_t __iomem *fccp = fep->fcc.fccp;
214 fcc_enet_t __iomem *ep = fep->fcc.ep;
215
216 /* clear promiscuous always */
217 C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
218
219 /* if all multi or too many multicasts; just enable all */
220 if ((dev->flags & IFF_ALLMULTI) != 0 ||
221 netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
222
223 W32(ep, fen_gaddrh, 0xffffffff);
224 W32(ep, fen_gaddrl, 0xffffffff);
225 }
226
227 /* read back */
228 fep->fcc.gaddrh = R32(ep, fen_gaddrh);
229 fep->fcc.gaddrl = R32(ep, fen_gaddrl);
230 }
231
set_multicast_list(struct net_device * dev)232 static void set_multicast_list(struct net_device *dev)
233 {
234 struct netdev_hw_addr *ha;
235
236 if ((dev->flags & IFF_PROMISC) == 0) {
237 set_multicast_start(dev);
238 netdev_for_each_mc_addr(ha, dev)
239 set_multicast_one(dev, ha->addr);
240 set_multicast_finish(dev);
241 } else
242 set_promiscuous_mode(dev);
243 }
244
restart(struct net_device * dev)245 static void restart(struct net_device *dev)
246 {
247 struct fs_enet_private *fep = netdev_priv(dev);
248 const struct fs_platform_info *fpi = fep->fpi;
249 fcc_t __iomem *fccp = fep->fcc.fccp;
250 fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
251 fcc_enet_t __iomem *ep = fep->fcc.ep;
252 dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
253 u16 paddrh, paddrm, paddrl;
254 const unsigned char *mac;
255 int i;
256
257 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
258
259 /* clear everything (slow & steady does it) */
260 for (i = 0; i < sizeof(*ep); i++)
261 out_8((u8 __iomem *)ep + i, 0);
262
263 /* get physical address */
264 rx_bd_base_phys = fep->ring_mem_addr;
265 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
266
267 /* point to bds */
268 W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
269 W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
270
271 /* Set maximum bytes per receive buffer.
272 * It must be a multiple of 32.
273 */
274 W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
275
276 W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
277 W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
278
279 /* Allocate space in the reserved FCC area of DPRAM for the
280 * internal buffers. No one uses this space (yet), so we
281 * can do this. Later, we will add resource management for
282 * this area.
283 */
284
285 W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
286 W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
287
288 W16(ep, fen_padptr, fpi->dpram_offset + 64);
289
290 /* fill with special symbol... */
291 memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
292
293 W32(ep, fen_genfcc.fcc_rbptr, 0);
294 W32(ep, fen_genfcc.fcc_tbptr, 0);
295 W32(ep, fen_genfcc.fcc_rcrc, 0);
296 W32(ep, fen_genfcc.fcc_tcrc, 0);
297 W16(ep, fen_genfcc.fcc_res1, 0);
298 W32(ep, fen_genfcc.fcc_res2, 0);
299
300 /* no CAM */
301 W32(ep, fen_camptr, 0);
302
303 /* Set CRC preset and mask */
304 W32(ep, fen_cmask, 0xdebb20e3);
305 W32(ep, fen_cpres, 0xffffffff);
306
307 W32(ep, fen_crcec, 0); /* CRC Error counter */
308 W32(ep, fen_alec, 0); /* alignment error counter */
309 W32(ep, fen_disfc, 0); /* discard frame counter */
310 W16(ep, fen_retlim, 15); /* Retry limit threshold */
311 W16(ep, fen_pper, 0); /* Normal persistence */
312
313 /* set group address */
314 W32(ep, fen_gaddrh, fep->fcc.gaddrh);
315 W32(ep, fen_gaddrl, fep->fcc.gaddrh);
316
317 /* Clear hash filter tables */
318 W32(ep, fen_iaddrh, 0);
319 W32(ep, fen_iaddrl, 0);
320
321 /* Clear the Out-of-sequence TxBD */
322 W16(ep, fen_tfcstat, 0);
323 W16(ep, fen_tfclen, 0);
324 W32(ep, fen_tfcptr, 0);
325
326 W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
327 W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
328
329 /* set address */
330 mac = dev->dev_addr;
331 paddrh = ((u16)mac[5] << 8) | mac[4];
332 paddrm = ((u16)mac[3] << 8) | mac[2];
333 paddrl = ((u16)mac[1] << 8) | mac[0];
334
335 W16(ep, fen_paddrh, paddrh);
336 W16(ep, fen_paddrm, paddrm);
337 W16(ep, fen_paddrl, paddrl);
338
339 W16(ep, fen_taddrh, 0);
340 W16(ep, fen_taddrm, 0);
341 W16(ep, fen_taddrl, 0);
342
343 W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
344 W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
345
346 /* Clear stat counters, in case we ever enable RMON */
347 W32(ep, fen_octc, 0);
348 W32(ep, fen_colc, 0);
349 W32(ep, fen_broc, 0);
350 W32(ep, fen_mulc, 0);
351 W32(ep, fen_uspc, 0);
352 W32(ep, fen_frgc, 0);
353 W32(ep, fen_ospc, 0);
354 W32(ep, fen_jbrc, 0);
355 W32(ep, fen_p64c, 0);
356 W32(ep, fen_p65c, 0);
357 W32(ep, fen_p128c, 0);
358 W32(ep, fen_p256c, 0);
359 W32(ep, fen_p512c, 0);
360 W32(ep, fen_p1024c, 0);
361
362 W16(ep, fen_rfthr, 0); /* Suggested by manual */
363 W16(ep, fen_rfcnt, 0);
364 W16(ep, fen_cftype, 0);
365
366 fs_init_bds(dev);
367
368 /* adjust to speed (for RMII mode) */
369 if (fpi->use_rmii) {
370 if (fep->phydev->speed == 100)
371 C8(fcccp, fcc_gfemr, 0x20);
372 else
373 S8(fcccp, fcc_gfemr, 0x20);
374 }
375
376 fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
377
378 /* clear events */
379 W16(fccp, fcc_fcce, 0xffff);
380
381 /* Enable interrupts we wish to service */
382 W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
383
384 /* Set GFMR to enable Ethernet operating mode */
385 W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
386
387 /* set sync/delimiters */
388 W16(fccp, fcc_fdsr, 0xd555);
389
390 W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
391
392 if (fpi->use_rmii)
393 S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
394
395 /* adjust to duplex mode */
396 if (fep->phydev->duplex)
397 S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
398 else
399 C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
400
401 /* Restore multicast and promiscuous settings */
402 set_multicast_list(dev);
403
404 S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
405 }
406
stop(struct net_device * dev)407 static void stop(struct net_device *dev)
408 {
409 struct fs_enet_private *fep = netdev_priv(dev);
410 fcc_t __iomem *fccp = fep->fcc.fccp;
411
412 /* stop ethernet */
413 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
414
415 /* clear events */
416 W16(fccp, fcc_fcce, 0xffff);
417
418 /* clear interrupt mask */
419 W16(fccp, fcc_fccm, 0);
420
421 fs_cleanup_bds(dev);
422 }
423
napi_clear_rx_event(struct net_device * dev)424 static void napi_clear_rx_event(struct net_device *dev)
425 {
426 struct fs_enet_private *fep = netdev_priv(dev);
427 fcc_t __iomem *fccp = fep->fcc.fccp;
428
429 W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
430 }
431
napi_enable_rx(struct net_device * dev)432 static void napi_enable_rx(struct net_device *dev)
433 {
434 struct fs_enet_private *fep = netdev_priv(dev);
435 fcc_t __iomem *fccp = fep->fcc.fccp;
436
437 S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
438 }
439
napi_disable_rx(struct net_device * dev)440 static void napi_disable_rx(struct net_device *dev)
441 {
442 struct fs_enet_private *fep = netdev_priv(dev);
443 fcc_t __iomem *fccp = fep->fcc.fccp;
444
445 C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
446 }
447
rx_bd_done(struct net_device * dev)448 static void rx_bd_done(struct net_device *dev)
449 {
450 /* nothing */
451 }
452
tx_kickstart(struct net_device * dev)453 static void tx_kickstart(struct net_device *dev)
454 {
455 struct fs_enet_private *fep = netdev_priv(dev);
456 fcc_t __iomem *fccp = fep->fcc.fccp;
457
458 S16(fccp, fcc_ftodr, 0x8000);
459 }
460
get_int_events(struct net_device * dev)461 static u32 get_int_events(struct net_device *dev)
462 {
463 struct fs_enet_private *fep = netdev_priv(dev);
464 fcc_t __iomem *fccp = fep->fcc.fccp;
465
466 return (u32)R16(fccp, fcc_fcce);
467 }
468
clear_int_events(struct net_device * dev,u32 int_events)469 static void clear_int_events(struct net_device *dev, u32 int_events)
470 {
471 struct fs_enet_private *fep = netdev_priv(dev);
472 fcc_t __iomem *fccp = fep->fcc.fccp;
473
474 W16(fccp, fcc_fcce, int_events & 0xffff);
475 }
476
ev_error(struct net_device * dev,u32 int_events)477 static void ev_error(struct net_device *dev, u32 int_events)
478 {
479 struct fs_enet_private *fep = netdev_priv(dev);
480
481 dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
482 }
483
get_regs(struct net_device * dev,void * p,int * sizep)484 static int get_regs(struct net_device *dev, void *p, int *sizep)
485 {
486 struct fs_enet_private *fep = netdev_priv(dev);
487
488 if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
489 return -EINVAL;
490
491 memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
492 p = (char *)p + sizeof(fcc_t);
493
494 memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
495 p = (char *)p + sizeof(fcc_enet_t);
496
497 memcpy_fromio(p, fep->fcc.fcccp, 1);
498 return 0;
499 }
500
get_regs_len(struct net_device * dev)501 static int get_regs_len(struct net_device *dev)
502 {
503 return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
504 }
505
506 /* Some transmit errors cause the transmitter to shut
507 * down. We now issue a restart transmit.
508 * Also, to workaround 8260 device erratum CPM37, we must
509 * disable and then re-enable the transmitterfollowing a
510 * Late Collision, Underrun, or Retry Limit error.
511 * In addition, tbptr may point beyond BDs beyond still marked
512 * as ready due to internal pipelining, so we need to look back
513 * through the BDs and adjust tbptr to point to the last BD
514 * marked as ready. This may result in some buffers being
515 * retransmitted.
516 */
tx_restart(struct net_device * dev)517 static void tx_restart(struct net_device *dev)
518 {
519 struct fs_enet_private *fep = netdev_priv(dev);
520 fcc_t __iomem *fccp = fep->fcc.fccp;
521 const struct fs_platform_info *fpi = fep->fpi;
522 fcc_enet_t __iomem *ep = fep->fcc.ep;
523 cbd_t __iomem *curr_tbptr;
524 cbd_t __iomem *recheck_bd;
525 cbd_t __iomem *prev_bd;
526 cbd_t __iomem *last_tx_bd;
527
528 last_tx_bd = fep->tx_bd_base + (fpi->tx_ring * sizeof(cbd_t));
529
530 /* get the current bd held in TBPTR and scan back from this point */
531 recheck_bd = curr_tbptr = (cbd_t __iomem *)
532 ((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
533 fep->ring_base);
534
535 prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
536
537 /* Move through the bds in reverse, look for the earliest buffer
538 * that is not ready. Adjust TBPTR to the following buffer */
539 while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
540 /* Go back one buffer */
541 recheck_bd = prev_bd;
542
543 /* update the previous buffer */
544 prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
545
546 /* We should never see all bds marked as ready, check anyway */
547 if (recheck_bd == curr_tbptr)
548 break;
549 }
550 /* Now update the TBPTR and dirty flag to the current buffer */
551 W32(ep, fen_genfcc.fcc_tbptr,
552 (uint) (((void *)recheck_bd - fep->ring_base) +
553 fep->ring_mem_addr));
554 fep->dirty_tx = recheck_bd;
555
556 C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
557 udelay(10);
558 S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
559
560 fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
561 }
562
563 /*************************************************************************/
564
565 const struct fs_ops fs_fcc_ops = {
566 .setup_data = setup_data,
567 .cleanup_data = cleanup_data,
568 .set_multicast_list = set_multicast_list,
569 .restart = restart,
570 .stop = stop,
571 .napi_clear_rx_event = napi_clear_rx_event,
572 .napi_enable_rx = napi_enable_rx,
573 .napi_disable_rx = napi_disable_rx,
574 .rx_bd_done = rx_bd_done,
575 .tx_kickstart = tx_kickstart,
576 .get_int_events = get_int_events,
577 .clear_int_events = clear_int_events,
578 .ev_error = ev_error,
579 .get_regs = get_regs,
580 .get_regs_len = get_regs_len,
581 .tx_restart = tx_restart,
582 .allocate_bd = allocate_bd,
583 .free_bd = free_bd,
584 };
585