• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 
26 #include <asm/addrspace.h>
27 #include <asm/bootinfo.h>
28 #include <asm/bugs.h>
29 #include <asm/cache.h>
30 #include <asm/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/smp-ops.h>
34 #include <asm/prom.h>
35 
36 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
37 
38 EXPORT_SYMBOL(cpu_data);
39 
40 #ifdef CONFIG_VT
41 struct screen_info screen_info;
42 #endif
43 
44 /*
45  * Despite it's name this variable is even if we don't have PCI
46  */
47 unsigned int PCI_DMA_BUS_IS_PHYS;
48 
49 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
50 
51 /*
52  * Setup information
53  *
54  * These are initialized so they are in the .data section
55  */
56 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
57 
58 EXPORT_SYMBOL(mips_machtype);
59 
60 struct boot_mem_map boot_mem_map;
61 
62 static char __initdata command_line[COMMAND_LINE_SIZE];
63 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
64 
65 #ifdef CONFIG_CMDLINE_BOOL
66 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
67 #endif
68 
69 /*
70  * mips_io_port_base is the begin of the address space to which x86 style
71  * I/O ports are mapped.
72  */
73 const unsigned long mips_io_port_base = -1;
74 EXPORT_SYMBOL(mips_io_port_base);
75 
76 static struct resource code_resource = { .name = "Kernel code", };
77 static struct resource data_resource = { .name = "Kernel data", };
78 
add_memory_region(phys_t start,phys_t size,long type)79 void __init add_memory_region(phys_t start, phys_t size, long type)
80 {
81 	int x = boot_mem_map.nr_map;
82 	struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
83 
84 	/* Sanity check */
85 	if (start + size < start) {
86 		pr_warning("Trying to add an invalid memory region, skipped\n");
87 		return;
88 	}
89 
90 	/*
91 	 * Try to merge with previous entry if any.  This is far less than
92 	 * perfect but is sufficient for most real world cases.
93 	 */
94 	if (x && prev->addr + prev->size == start && prev->type == type) {
95 		prev->size += size;
96 		return;
97 	}
98 
99 	if (x == BOOT_MEM_MAP_MAX) {
100 		pr_err("Ooops! Too many entries in the memory map!\n");
101 		return;
102 	}
103 
104 	boot_mem_map.map[x].addr = start;
105 	boot_mem_map.map[x].size = size;
106 	boot_mem_map.map[x].type = type;
107 	boot_mem_map.nr_map++;
108 }
109 
print_memory_map(void)110 static void __init print_memory_map(void)
111 {
112 	int i;
113 	const int field = 2 * sizeof(unsigned long);
114 
115 	for (i = 0; i < boot_mem_map.nr_map; i++) {
116 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
117 		       field, (unsigned long long) boot_mem_map.map[i].size,
118 		       field, (unsigned long long) boot_mem_map.map[i].addr);
119 
120 		switch (boot_mem_map.map[i].type) {
121 		case BOOT_MEM_RAM:
122 			printk(KERN_CONT "(usable)\n");
123 			break;
124 		case BOOT_MEM_INIT_RAM:
125 			printk(KERN_CONT "(usable after init)\n");
126 			break;
127 		case BOOT_MEM_ROM_DATA:
128 			printk(KERN_CONT "(ROM data)\n");
129 			break;
130 		case BOOT_MEM_RESERVED:
131 			printk(KERN_CONT "(reserved)\n");
132 			break;
133 		default:
134 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
135 			break;
136 		}
137 	}
138 }
139 
140 /*
141  * Manage initrd
142  */
143 #ifdef CONFIG_BLK_DEV_INITRD
144 
rd_start_early(char * p)145 static int __init rd_start_early(char *p)
146 {
147 	unsigned long start = memparse(p, &p);
148 
149 #ifdef CONFIG_64BIT
150 	/* Guess if the sign extension was forgotten by bootloader */
151 	if (start < XKPHYS)
152 		start = (int)start;
153 #endif
154 	initrd_start = start;
155 	initrd_end += start;
156 	return 0;
157 }
158 early_param("rd_start", rd_start_early);
159 
rd_size_early(char * p)160 static int __init rd_size_early(char *p)
161 {
162 	initrd_end += memparse(p, &p);
163 	return 0;
164 }
165 early_param("rd_size", rd_size_early);
166 
167 /* it returns the next free pfn after initrd */
init_initrd(void)168 static unsigned long __init init_initrd(void)
169 {
170 	unsigned long end;
171 
172 	/*
173 	 * Board specific code or command line parser should have
174 	 * already set up initrd_start and initrd_end. In these cases
175 	 * perfom sanity checks and use them if all looks good.
176 	 */
177 	if (!initrd_start || initrd_end <= initrd_start)
178 		goto disable;
179 
180 	if (initrd_start & ~PAGE_MASK) {
181 		pr_err("initrd start must be page aligned\n");
182 		goto disable;
183 	}
184 	if (initrd_start < PAGE_OFFSET) {
185 		pr_err("initrd start < PAGE_OFFSET\n");
186 		goto disable;
187 	}
188 
189 	/*
190 	 * Sanitize initrd addresses. For example firmware
191 	 * can't guess if they need to pass them through
192 	 * 64-bits values if the kernel has been built in pure
193 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
194 	 * addresses now, so the code can now safely use __pa().
195 	 */
196 	end = __pa(initrd_end);
197 	initrd_end = (unsigned long)__va(end);
198 	initrd_start = (unsigned long)__va(__pa(initrd_start));
199 
200 	ROOT_DEV = Root_RAM0;
201 	return PFN_UP(end);
202 disable:
203 	initrd_start = 0;
204 	initrd_end = 0;
205 	return 0;
206 }
207 
finalize_initrd(void)208 static void __init finalize_initrd(void)
209 {
210 	unsigned long size = initrd_end - initrd_start;
211 
212 	if (size == 0) {
213 		printk(KERN_INFO "Initrd not found or empty");
214 		goto disable;
215 	}
216 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
217 		printk(KERN_ERR "Initrd extends beyond end of memory");
218 		goto disable;
219 	}
220 
221 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
222 	initrd_below_start_ok = 1;
223 
224 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
225 		initrd_start, size);
226 	return;
227 disable:
228 	printk(KERN_CONT " - disabling initrd\n");
229 	initrd_start = 0;
230 	initrd_end = 0;
231 }
232 
233 #else  /* !CONFIG_BLK_DEV_INITRD */
234 
init_initrd(void)235 static unsigned long __init init_initrd(void)
236 {
237 	return 0;
238 }
239 
240 #define finalize_initrd()	do {} while (0)
241 
242 #endif
243 
244 /*
245  * Initialize the bootmem allocator. It also setup initrd related data
246  * if needed.
247  */
248 #ifdef CONFIG_SGI_IP27
249 
bootmem_init(void)250 static void __init bootmem_init(void)
251 {
252 	init_initrd();
253 	finalize_initrd();
254 }
255 
256 #else  /* !CONFIG_SGI_IP27 */
257 
bootmem_init(void)258 static void __init bootmem_init(void)
259 {
260 	unsigned long reserved_end;
261 	unsigned long mapstart = ~0UL;
262 	unsigned long bootmap_size;
263 	int i;
264 
265 	/*
266 	 * Init any data related to initrd. It's a nop if INITRD is
267 	 * not selected. Once that done we can determine the low bound
268 	 * of usable memory.
269 	 */
270 	reserved_end = max(init_initrd(),
271 			   (unsigned long) PFN_UP(__pa_symbol(&_end)));
272 
273 	/*
274 	 * max_low_pfn is not a number of pages. The number of pages
275 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
276 	 */
277 	min_low_pfn = ~0UL;
278 	max_low_pfn = 0;
279 
280 	/*
281 	 * Find the highest page frame number we have available.
282 	 */
283 	for (i = 0; i < boot_mem_map.nr_map; i++) {
284 		unsigned long start, end;
285 
286 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
287 			continue;
288 
289 		start = PFN_UP(boot_mem_map.map[i].addr);
290 		end = PFN_DOWN(boot_mem_map.map[i].addr
291 				+ boot_mem_map.map[i].size);
292 
293 		if (end > max_low_pfn)
294 			max_low_pfn = end;
295 		if (start < min_low_pfn)
296 			min_low_pfn = start;
297 		if (end <= reserved_end)
298 			continue;
299 		if (start >= mapstart)
300 			continue;
301 		mapstart = max(reserved_end, start);
302 	}
303 
304 	if (min_low_pfn >= max_low_pfn)
305 		panic("Incorrect memory mapping !!!");
306 	if (min_low_pfn > ARCH_PFN_OFFSET) {
307 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
308 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
309 			min_low_pfn - ARCH_PFN_OFFSET);
310 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
311 		pr_info("%lu free pages won't be used\n",
312 			ARCH_PFN_OFFSET - min_low_pfn);
313 	}
314 	min_low_pfn = ARCH_PFN_OFFSET;
315 
316 	/*
317 	 * Determine low and high memory ranges
318 	 */
319 	max_pfn = max_low_pfn;
320 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
321 #ifdef CONFIG_HIGHMEM
322 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
323 		highend_pfn = max_low_pfn;
324 #endif
325 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
326 	}
327 
328 	/*
329 	 * Initialize the boot-time allocator with low memory only.
330 	 */
331 	bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
332 					 min_low_pfn, max_low_pfn);
333 
334 
335 	for (i = 0; i < boot_mem_map.nr_map; i++) {
336 		unsigned long start, end;
337 
338 		start = PFN_UP(boot_mem_map.map[i].addr);
339 		end = PFN_DOWN(boot_mem_map.map[i].addr
340 				+ boot_mem_map.map[i].size);
341 
342 		if (start <= min_low_pfn)
343 			start = min_low_pfn;
344 		if (start >= end)
345 			continue;
346 
347 #ifndef CONFIG_HIGHMEM
348 		if (end > max_low_pfn)
349 			end = max_low_pfn;
350 
351 		/*
352 		 * ... finally, is the area going away?
353 		 */
354 		if (end <= start)
355 			continue;
356 #endif
357 
358 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
359 	}
360 
361 	/*
362 	 * Register fully available low RAM pages with the bootmem allocator.
363 	 */
364 	for (i = 0; i < boot_mem_map.nr_map; i++) {
365 		unsigned long start, end, size;
366 
367 		start = PFN_UP(boot_mem_map.map[i].addr);
368 		end   = PFN_DOWN(boot_mem_map.map[i].addr
369 				    + boot_mem_map.map[i].size);
370 
371 		/*
372 		 * Reserve usable memory.
373 		 */
374 		switch (boot_mem_map.map[i].type) {
375 		case BOOT_MEM_RAM:
376 			break;
377 		case BOOT_MEM_INIT_RAM:
378 			memory_present(0, start, end);
379 			continue;
380 		default:
381 			/* Not usable memory */
382 			continue;
383 		}
384 
385 		/*
386 		 * We are rounding up the start address of usable memory
387 		 * and at the end of the usable range downwards.
388 		 */
389 		if (start >= max_low_pfn)
390 			continue;
391 		if (start < reserved_end)
392 			start = reserved_end;
393 		if (end > max_low_pfn)
394 			end = max_low_pfn;
395 
396 		/*
397 		 * ... finally, is the area going away?
398 		 */
399 		if (end <= start)
400 			continue;
401 		size = end - start;
402 
403 		/* Register lowmem ranges */
404 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
405 		memory_present(0, start, end);
406 	}
407 
408 	/*
409 	 * Reserve the bootmap memory.
410 	 */
411 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
412 
413 	/*
414 	 * Reserve initrd memory if needed.
415 	 */
416 	finalize_initrd();
417 }
418 
419 #endif	/* CONFIG_SGI_IP27 */
420 
421 /*
422  * arch_mem_init - initialize memory management subsystem
423  *
424  *  o plat_mem_setup() detects the memory configuration and will record detected
425  *    memory areas using add_memory_region.
426  *
427  * At this stage the memory configuration of the system is known to the
428  * kernel but generic memory management system is still entirely uninitialized.
429  *
430  *  o bootmem_init()
431  *  o sparse_init()
432  *  o paging_init()
433  *
434  * At this stage the bootmem allocator is ready to use.
435  *
436  * NOTE: historically plat_mem_setup did the entire platform initialization.
437  *       This was rather impractical because it meant plat_mem_setup had to
438  * get away without any kind of memory allocator.  To keep old code from
439  * breaking plat_setup was just renamed to plat_setup and a second platform
440  * initialization hook for anything else was introduced.
441  */
442 
443 static int usermem __initdata;
444 
early_parse_mem(char * p)445 static int __init early_parse_mem(char *p)
446 {
447 	unsigned long start, size;
448 
449 	/*
450 	 * If a user specifies memory size, we
451 	 * blow away any automatically generated
452 	 * size.
453 	 */
454 	if (usermem == 0) {
455 		boot_mem_map.nr_map = 0;
456 		usermem = 1;
457  	}
458 	start = 0;
459 	size = memparse(p, &p);
460 	if (*p == '@')
461 		start = memparse(p + 1, &p);
462 
463 	add_memory_region(start, size, BOOT_MEM_RAM);
464 	return 0;
465 }
466 early_param("mem", early_parse_mem);
467 
arch_mem_init(char ** cmdline_p)468 static void __init arch_mem_init(char **cmdline_p)
469 {
470 	phys_t init_mem, init_end, init_size;
471 
472 	extern void plat_mem_setup(void);
473 
474 	/* call board setup routine */
475 	plat_mem_setup();
476 
477 	init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT;
478 	init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT;
479 	init_size = init_end - init_mem;
480 	if (init_size) {
481 		/* Make sure it is in the boot_mem_map */
482 		int i, found;
483 		found = 0;
484 		for (i = 0; i < boot_mem_map.nr_map; i++) {
485 			if (init_mem >= boot_mem_map.map[i].addr &&
486 			    init_mem < (boot_mem_map.map[i].addr +
487 					boot_mem_map.map[i].size)) {
488 				found = 1;
489 				break;
490 			}
491 		}
492 		if (!found)
493 			add_memory_region(init_mem, init_size,
494 					  BOOT_MEM_INIT_RAM);
495 	}
496 
497 	pr_info("Determined physical RAM map:\n");
498 	print_memory_map();
499 
500 #ifdef CONFIG_CMDLINE_BOOL
501 #ifdef CONFIG_CMDLINE_OVERRIDE
502 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
503 #else
504 	if (builtin_cmdline[0]) {
505 		strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
506 		strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
507 	}
508 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
509 #endif
510 #else
511 	strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
512 #endif
513 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
514 
515 	*cmdline_p = command_line;
516 
517 	parse_early_param();
518 
519 	if (usermem) {
520 		pr_info("User-defined physical RAM map:\n");
521 		print_memory_map();
522 	}
523 
524 	bootmem_init();
525 	device_tree_init();
526 	sparse_init();
527 	plat_swiotlb_setup();
528 	paging_init();
529 }
530 
resource_init(void)531 static void __init resource_init(void)
532 {
533 	int i;
534 
535 	if (UNCAC_BASE != IO_BASE)
536 		return;
537 
538 	code_resource.start = __pa_symbol(&_text);
539 	code_resource.end = __pa_symbol(&_etext) - 1;
540 	data_resource.start = __pa_symbol(&_etext);
541 	data_resource.end = __pa_symbol(&_edata) - 1;
542 
543 	/*
544 	 * Request address space for all standard RAM.
545 	 */
546 	for (i = 0; i < boot_mem_map.nr_map; i++) {
547 		struct resource *res;
548 		unsigned long start, end;
549 
550 		start = boot_mem_map.map[i].addr;
551 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
552 		if (start >= HIGHMEM_START)
553 			continue;
554 		if (end >= HIGHMEM_START)
555 			end = HIGHMEM_START - 1;
556 
557 		res = alloc_bootmem(sizeof(struct resource));
558 		switch (boot_mem_map.map[i].type) {
559 		case BOOT_MEM_RAM:
560 		case BOOT_MEM_INIT_RAM:
561 		case BOOT_MEM_ROM_DATA:
562 			res->name = "System RAM";
563 			break;
564 		case BOOT_MEM_RESERVED:
565 		default:
566 			res->name = "reserved";
567 		}
568 
569 		res->start = start;
570 		res->end = end;
571 
572 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
573 		request_resource(&iomem_resource, res);
574 
575 		/*
576 		 *  We don't know which RAM region contains kernel data,
577 		 *  so we try it repeatedly and let the resource manager
578 		 *  test it.
579 		 */
580 		request_resource(res, &code_resource);
581 		request_resource(res, &data_resource);
582 	}
583 }
584 
setup_arch(char ** cmdline_p)585 void __init setup_arch(char **cmdline_p)
586 {
587 	cpu_probe();
588 	prom_init();
589 
590 #ifdef CONFIG_EARLY_PRINTK
591 	setup_early_printk();
592 #endif
593 	cpu_report();
594 	check_bugs_early();
595 
596 #if defined(CONFIG_VT)
597 #if defined(CONFIG_VGA_CONSOLE)
598 	conswitchp = &vga_con;
599 #elif defined(CONFIG_DUMMY_CONSOLE)
600 	conswitchp = &dummy_con;
601 #endif
602 #endif
603 
604 	arch_mem_init(cmdline_p);
605 
606 	resource_init();
607 	plat_smp_setup();
608 }
609 
610 unsigned long kernelsp[NR_CPUS];
611 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
612 
613 #ifdef CONFIG_DEBUG_FS
614 struct dentry *mips_debugfs_dir;
debugfs_mips(void)615 static int __init debugfs_mips(void)
616 {
617 	struct dentry *d;
618 
619 	d = debugfs_create_dir("mips", NULL);
620 	if (!d)
621 		return -ENOMEM;
622 	mips_debugfs_dir = d;
623 	return 0;
624 }
625 arch_initcall(debugfs_mips);
626 #endif
627