1 /*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/idr.h>
30 #include <linux/jiffies.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/timer.h>
38 #include <linux/types.h>
39 #include <linux/workqueue.h>
40
41 #include <asm/byteorder.h>
42
43 #include "core.h"
44
45 #define HEADER_PRI(pri) ((pri) << 0)
46 #define HEADER_TCODE(tcode) ((tcode) << 4)
47 #define HEADER_RETRY(retry) ((retry) << 8)
48 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
49 #define HEADER_DESTINATION(destination) ((destination) << 16)
50 #define HEADER_SOURCE(source) ((source) << 16)
51 #define HEADER_RCODE(rcode) ((rcode) << 12)
52 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
53 #define HEADER_DATA_LENGTH(length) ((length) << 16)
54 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
55
56 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
57 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
58 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
59 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
60 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
61 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
62 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
63 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
64
65 #define HEADER_DESTINATION_IS_BROADCAST(q) \
66 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
67
68 #define PHY_PACKET_CONFIG 0x0
69 #define PHY_PACKET_LINK_ON 0x1
70 #define PHY_PACKET_SELF_ID 0x2
71
72 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
73 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
74 #define PHY_IDENTIFIER(id) ((id) << 30)
75
76 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)77 static int try_cancel_split_timeout(struct fw_transaction *t)
78 {
79 if (t->is_split_transaction)
80 return del_timer(&t->split_timeout_timer);
81 else
82 return 1;
83 }
84
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)85 static int close_transaction(struct fw_transaction *transaction,
86 struct fw_card *card, int rcode)
87 {
88 struct fw_transaction *t;
89 unsigned long flags;
90
91 spin_lock_irqsave(&card->lock, flags);
92 list_for_each_entry(t, &card->transaction_list, link) {
93 if (t == transaction) {
94 if (!try_cancel_split_timeout(t)) {
95 spin_unlock_irqrestore(&card->lock, flags);
96 goto timed_out;
97 }
98 list_del_init(&t->link);
99 card->tlabel_mask &= ~(1ULL << t->tlabel);
100 break;
101 }
102 }
103 spin_unlock_irqrestore(&card->lock, flags);
104
105 if (&t->link != &card->transaction_list) {
106 t->callback(card, rcode, NULL, 0, t->callback_data);
107 return 0;
108 }
109
110 timed_out:
111 return -ENOENT;
112 }
113
114 /*
115 * Only valid for transactions that are potentially pending (ie have
116 * been sent).
117 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)118 int fw_cancel_transaction(struct fw_card *card,
119 struct fw_transaction *transaction)
120 {
121 /*
122 * Cancel the packet transmission if it's still queued. That
123 * will call the packet transmission callback which cancels
124 * the transaction.
125 */
126
127 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
128 return 0;
129
130 /*
131 * If the request packet has already been sent, we need to see
132 * if the transaction is still pending and remove it in that case.
133 */
134
135 return close_transaction(transaction, card, RCODE_CANCELLED);
136 }
137 EXPORT_SYMBOL(fw_cancel_transaction);
138
split_transaction_timeout_callback(unsigned long data)139 static void split_transaction_timeout_callback(unsigned long data)
140 {
141 struct fw_transaction *t = (struct fw_transaction *)data;
142 struct fw_card *card = t->card;
143 unsigned long flags;
144
145 spin_lock_irqsave(&card->lock, flags);
146 if (list_empty(&t->link)) {
147 spin_unlock_irqrestore(&card->lock, flags);
148 return;
149 }
150 list_del(&t->link);
151 card->tlabel_mask &= ~(1ULL << t->tlabel);
152 spin_unlock_irqrestore(&card->lock, flags);
153
154 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
155 }
156
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)157 static void start_split_transaction_timeout(struct fw_transaction *t,
158 struct fw_card *card)
159 {
160 unsigned long flags;
161
162 spin_lock_irqsave(&card->lock, flags);
163
164 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
165 spin_unlock_irqrestore(&card->lock, flags);
166 return;
167 }
168
169 t->is_split_transaction = true;
170 mod_timer(&t->split_timeout_timer,
171 jiffies + card->split_timeout_jiffies);
172
173 spin_unlock_irqrestore(&card->lock, flags);
174 }
175
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)176 static void transmit_complete_callback(struct fw_packet *packet,
177 struct fw_card *card, int status)
178 {
179 struct fw_transaction *t =
180 container_of(packet, struct fw_transaction, packet);
181
182 switch (status) {
183 case ACK_COMPLETE:
184 close_transaction(t, card, RCODE_COMPLETE);
185 break;
186 case ACK_PENDING:
187 start_split_transaction_timeout(t, card);
188 break;
189 case ACK_BUSY_X:
190 case ACK_BUSY_A:
191 case ACK_BUSY_B:
192 close_transaction(t, card, RCODE_BUSY);
193 break;
194 case ACK_DATA_ERROR:
195 close_transaction(t, card, RCODE_DATA_ERROR);
196 break;
197 case ACK_TYPE_ERROR:
198 close_transaction(t, card, RCODE_TYPE_ERROR);
199 break;
200 default:
201 /*
202 * In this case the ack is really a juju specific
203 * rcode, so just forward that to the callback.
204 */
205 close_transaction(t, card, status);
206 break;
207 }
208 }
209
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)210 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
211 int destination_id, int source_id, int generation, int speed,
212 unsigned long long offset, void *payload, size_t length)
213 {
214 int ext_tcode;
215
216 if (tcode == TCODE_STREAM_DATA) {
217 packet->header[0] =
218 HEADER_DATA_LENGTH(length) |
219 destination_id |
220 HEADER_TCODE(TCODE_STREAM_DATA);
221 packet->header_length = 4;
222 packet->payload = payload;
223 packet->payload_length = length;
224
225 goto common;
226 }
227
228 if (tcode > 0x10) {
229 ext_tcode = tcode & ~0x10;
230 tcode = TCODE_LOCK_REQUEST;
231 } else
232 ext_tcode = 0;
233
234 packet->header[0] =
235 HEADER_RETRY(RETRY_X) |
236 HEADER_TLABEL(tlabel) |
237 HEADER_TCODE(tcode) |
238 HEADER_DESTINATION(destination_id);
239 packet->header[1] =
240 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
241 packet->header[2] =
242 offset;
243
244 switch (tcode) {
245 case TCODE_WRITE_QUADLET_REQUEST:
246 packet->header[3] = *(u32 *)payload;
247 packet->header_length = 16;
248 packet->payload_length = 0;
249 break;
250
251 case TCODE_LOCK_REQUEST:
252 case TCODE_WRITE_BLOCK_REQUEST:
253 packet->header[3] =
254 HEADER_DATA_LENGTH(length) |
255 HEADER_EXTENDED_TCODE(ext_tcode);
256 packet->header_length = 16;
257 packet->payload = payload;
258 packet->payload_length = length;
259 break;
260
261 case TCODE_READ_QUADLET_REQUEST:
262 packet->header_length = 12;
263 packet->payload_length = 0;
264 break;
265
266 case TCODE_READ_BLOCK_REQUEST:
267 packet->header[3] =
268 HEADER_DATA_LENGTH(length) |
269 HEADER_EXTENDED_TCODE(ext_tcode);
270 packet->header_length = 16;
271 packet->payload_length = 0;
272 break;
273
274 default:
275 WARN(1, "wrong tcode %d\n", tcode);
276 }
277 common:
278 packet->speed = speed;
279 packet->generation = generation;
280 packet->ack = 0;
281 packet->payload_mapped = false;
282 }
283
allocate_tlabel(struct fw_card * card)284 static int allocate_tlabel(struct fw_card *card)
285 {
286 int tlabel;
287
288 tlabel = card->current_tlabel;
289 while (card->tlabel_mask & (1ULL << tlabel)) {
290 tlabel = (tlabel + 1) & 0x3f;
291 if (tlabel == card->current_tlabel)
292 return -EBUSY;
293 }
294
295 card->current_tlabel = (tlabel + 1) & 0x3f;
296 card->tlabel_mask |= 1ULL << tlabel;
297
298 return tlabel;
299 }
300
301 /**
302 * fw_send_request() - submit a request packet for transmission
303 * @card: interface to send the request at
304 * @t: transaction instance to which the request belongs
305 * @tcode: transaction code
306 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
307 * @generation: bus generation in which request and response are valid
308 * @speed: transmission speed
309 * @offset: 48bit wide offset into destination's address space
310 * @payload: data payload for the request subaction
311 * @length: length of the payload, in bytes
312 * @callback: function to be called when the transaction is completed
313 * @callback_data: data to be passed to the transaction completion callback
314 *
315 * Submit a request packet into the asynchronous request transmission queue.
316 * Can be called from atomic context. If you prefer a blocking API, use
317 * fw_run_transaction() in a context that can sleep.
318 *
319 * In case of lock requests, specify one of the firewire-core specific %TCODE_
320 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
321 *
322 * Make sure that the value in @destination_id is not older than the one in
323 * @generation. Otherwise the request is in danger to be sent to a wrong node.
324 *
325 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
326 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
327 * It will contain tag, channel, and sy data instead of a node ID then.
328 *
329 * The payload buffer at @data is going to be DMA-mapped except in case of
330 * @length <= 8 or of local (loopback) requests. Hence make sure that the
331 * buffer complies with the restrictions of the streaming DMA mapping API.
332 * @payload must not be freed before the @callback is called.
333 *
334 * In case of request types without payload, @data is NULL and @length is 0.
335 *
336 * After the transaction is completed successfully or unsuccessfully, the
337 * @callback will be called. Among its parameters is the response code which
338 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
339 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
340 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
341 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
342 * generation, or missing ACK respectively.
343 *
344 * Note some timing corner cases: fw_send_request() may complete much earlier
345 * than when the request packet actually hits the wire. On the other hand,
346 * transaction completion and hence execution of @callback may happen even
347 * before fw_send_request() returns.
348 */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)349 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
350 int destination_id, int generation, int speed,
351 unsigned long long offset, void *payload, size_t length,
352 fw_transaction_callback_t callback, void *callback_data)
353 {
354 unsigned long flags;
355 int tlabel;
356
357 /*
358 * Allocate tlabel from the bitmap and put the transaction on
359 * the list while holding the card spinlock.
360 */
361
362 spin_lock_irqsave(&card->lock, flags);
363
364 tlabel = allocate_tlabel(card);
365 if (tlabel < 0) {
366 spin_unlock_irqrestore(&card->lock, flags);
367 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
368 return;
369 }
370
371 t->node_id = destination_id;
372 t->tlabel = tlabel;
373 t->card = card;
374 t->is_split_transaction = false;
375 setup_timer(&t->split_timeout_timer,
376 split_transaction_timeout_callback, (unsigned long)t);
377 t->callback = callback;
378 t->callback_data = callback_data;
379
380 fw_fill_request(&t->packet, tcode, t->tlabel,
381 destination_id, card->node_id, generation,
382 speed, offset, payload, length);
383 t->packet.callback = transmit_complete_callback;
384
385 list_add_tail(&t->link, &card->transaction_list);
386
387 spin_unlock_irqrestore(&card->lock, flags);
388
389 card->driver->send_request(card, &t->packet);
390 }
391 EXPORT_SYMBOL(fw_send_request);
392
393 struct transaction_callback_data {
394 struct completion done;
395 void *payload;
396 int rcode;
397 };
398
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)399 static void transaction_callback(struct fw_card *card, int rcode,
400 void *payload, size_t length, void *data)
401 {
402 struct transaction_callback_data *d = data;
403
404 if (rcode == RCODE_COMPLETE)
405 memcpy(d->payload, payload, length);
406 d->rcode = rcode;
407 complete(&d->done);
408 }
409
410 /**
411 * fw_run_transaction() - send request and sleep until transaction is completed
412 *
413 * Returns the RCODE. See fw_send_request() for parameter documentation.
414 * Unlike fw_send_request(), @data points to the payload of the request or/and
415 * to the payload of the response. DMA mapping restrictions apply to outbound
416 * request payloads of >= 8 bytes but not to inbound response payloads.
417 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)418 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
419 int generation, int speed, unsigned long long offset,
420 void *payload, size_t length)
421 {
422 struct transaction_callback_data d;
423 struct fw_transaction t;
424
425 init_timer_on_stack(&t.split_timeout_timer);
426 init_completion(&d.done);
427 d.payload = payload;
428 fw_send_request(card, &t, tcode, destination_id, generation, speed,
429 offset, payload, length, transaction_callback, &d);
430 wait_for_completion(&d.done);
431 destroy_timer_on_stack(&t.split_timeout_timer);
432
433 return d.rcode;
434 }
435 EXPORT_SYMBOL(fw_run_transaction);
436
437 static DEFINE_MUTEX(phy_config_mutex);
438 static DECLARE_COMPLETION(phy_config_done);
439
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)440 static void transmit_phy_packet_callback(struct fw_packet *packet,
441 struct fw_card *card, int status)
442 {
443 complete(&phy_config_done);
444 }
445
446 static struct fw_packet phy_config_packet = {
447 .header_length = 12,
448 .header[0] = TCODE_LINK_INTERNAL << 4,
449 .payload_length = 0,
450 .speed = SCODE_100,
451 .callback = transmit_phy_packet_callback,
452 };
453
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)454 void fw_send_phy_config(struct fw_card *card,
455 int node_id, int generation, int gap_count)
456 {
457 long timeout = DIV_ROUND_UP(HZ, 10);
458 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
459
460 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
461 data |= PHY_CONFIG_ROOT_ID(node_id);
462
463 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
464 gap_count = card->driver->read_phy_reg(card, 1);
465 if (gap_count < 0)
466 return;
467
468 gap_count &= 63;
469 if (gap_count == 63)
470 return;
471 }
472 data |= PHY_CONFIG_GAP_COUNT(gap_count);
473
474 mutex_lock(&phy_config_mutex);
475
476 phy_config_packet.header[1] = data;
477 phy_config_packet.header[2] = ~data;
478 phy_config_packet.generation = generation;
479 INIT_COMPLETION(phy_config_done);
480
481 card->driver->send_request(card, &phy_config_packet);
482 wait_for_completion_timeout(&phy_config_done, timeout);
483
484 mutex_unlock(&phy_config_mutex);
485 }
486
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)487 static struct fw_address_handler *lookup_overlapping_address_handler(
488 struct list_head *list, unsigned long long offset, size_t length)
489 {
490 struct fw_address_handler *handler;
491
492 list_for_each_entry(handler, list, link) {
493 if (handler->offset < offset + length &&
494 offset < handler->offset + handler->length)
495 return handler;
496 }
497
498 return NULL;
499 }
500
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)501 static bool is_enclosing_handler(struct fw_address_handler *handler,
502 unsigned long long offset, size_t length)
503 {
504 return handler->offset <= offset &&
505 offset + length <= handler->offset + handler->length;
506 }
507
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)508 static struct fw_address_handler *lookup_enclosing_address_handler(
509 struct list_head *list, unsigned long long offset, size_t length)
510 {
511 struct fw_address_handler *handler;
512
513 list_for_each_entry(handler, list, link) {
514 if (is_enclosing_handler(handler, offset, length))
515 return handler;
516 }
517
518 return NULL;
519 }
520
521 static DEFINE_SPINLOCK(address_handler_lock);
522 static LIST_HEAD(address_handler_list);
523
524 const struct fw_address_region fw_high_memory_region =
525 { .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
526 EXPORT_SYMBOL(fw_high_memory_region);
527
528 #if 0
529 const struct fw_address_region fw_low_memory_region =
530 { .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
531 const struct fw_address_region fw_private_region =
532 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
533 const struct fw_address_region fw_csr_region =
534 { .start = CSR_REGISTER_BASE,
535 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
536 const struct fw_address_region fw_unit_space_region =
537 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
538 #endif /* 0 */
539
is_in_fcp_region(u64 offset,size_t length)540 static bool is_in_fcp_region(u64 offset, size_t length)
541 {
542 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
543 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
544 }
545
546 /**
547 * fw_core_add_address_handler() - register for incoming requests
548 * @handler: callback
549 * @region: region in the IEEE 1212 node space address range
550 *
551 * region->start, ->end, and handler->length have to be quadlet-aligned.
552 *
553 * When a request is received that falls within the specified address range,
554 * the specified callback is invoked. The parameters passed to the callback
555 * give the details of the particular request.
556 *
557 * Return value: 0 on success, non-zero otherwise.
558 *
559 * The start offset of the handler's address region is determined by
560 * fw_core_add_address_handler() and is returned in handler->offset.
561 *
562 * Address allocations are exclusive, except for the FCP registers.
563 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)564 int fw_core_add_address_handler(struct fw_address_handler *handler,
565 const struct fw_address_region *region)
566 {
567 struct fw_address_handler *other;
568 int ret = -EBUSY;
569
570 if (region->start & 0xffff000000000003ULL ||
571 region->start >= region->end ||
572 region->end > 0x0001000000000000ULL ||
573 handler->length & 3 ||
574 handler->length == 0)
575 return -EINVAL;
576
577 spin_lock_bh(&address_handler_lock);
578
579 handler->offset = region->start;
580 while (handler->offset + handler->length <= region->end) {
581 if (is_in_fcp_region(handler->offset, handler->length))
582 other = NULL;
583 else
584 other = lookup_overlapping_address_handler
585 (&address_handler_list,
586 handler->offset, handler->length);
587 if (other != NULL) {
588 handler->offset += other->length;
589 } else {
590 list_add_tail(&handler->link, &address_handler_list);
591 ret = 0;
592 break;
593 }
594 }
595
596 spin_unlock_bh(&address_handler_lock);
597
598 return ret;
599 }
600 EXPORT_SYMBOL(fw_core_add_address_handler);
601
602 /**
603 * fw_core_remove_address_handler() - unregister an address handler
604 *
605 * When fw_core_remove_address_handler() returns, @handler->callback() is
606 * guaranteed to not run on any CPU anymore.
607 */
fw_core_remove_address_handler(struct fw_address_handler * handler)608 void fw_core_remove_address_handler(struct fw_address_handler *handler)
609 {
610 spin_lock_bh(&address_handler_lock);
611 list_del(&handler->link);
612 spin_unlock_bh(&address_handler_lock);
613 }
614 EXPORT_SYMBOL(fw_core_remove_address_handler);
615
616 struct fw_request {
617 struct fw_packet response;
618 u32 request_header[4];
619 int ack;
620 u32 length;
621 u32 data[0];
622 };
623
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)624 static void free_response_callback(struct fw_packet *packet,
625 struct fw_card *card, int status)
626 {
627 struct fw_request *request;
628
629 request = container_of(packet, struct fw_request, response);
630 kfree(request);
631 }
632
fw_get_response_length(struct fw_request * r)633 int fw_get_response_length(struct fw_request *r)
634 {
635 int tcode, ext_tcode, data_length;
636
637 tcode = HEADER_GET_TCODE(r->request_header[0]);
638
639 switch (tcode) {
640 case TCODE_WRITE_QUADLET_REQUEST:
641 case TCODE_WRITE_BLOCK_REQUEST:
642 return 0;
643
644 case TCODE_READ_QUADLET_REQUEST:
645 return 4;
646
647 case TCODE_READ_BLOCK_REQUEST:
648 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
649 return data_length;
650
651 case TCODE_LOCK_REQUEST:
652 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
653 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
654 switch (ext_tcode) {
655 case EXTCODE_FETCH_ADD:
656 case EXTCODE_LITTLE_ADD:
657 return data_length;
658 default:
659 return data_length / 2;
660 }
661
662 default:
663 WARN(1, "wrong tcode %d\n", tcode);
664 return 0;
665 }
666 }
667
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)668 void fw_fill_response(struct fw_packet *response, u32 *request_header,
669 int rcode, void *payload, size_t length)
670 {
671 int tcode, tlabel, extended_tcode, source, destination;
672
673 tcode = HEADER_GET_TCODE(request_header[0]);
674 tlabel = HEADER_GET_TLABEL(request_header[0]);
675 source = HEADER_GET_DESTINATION(request_header[0]);
676 destination = HEADER_GET_SOURCE(request_header[1]);
677 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
678
679 response->header[0] =
680 HEADER_RETRY(RETRY_1) |
681 HEADER_TLABEL(tlabel) |
682 HEADER_DESTINATION(destination);
683 response->header[1] =
684 HEADER_SOURCE(source) |
685 HEADER_RCODE(rcode);
686 response->header[2] = 0;
687
688 switch (tcode) {
689 case TCODE_WRITE_QUADLET_REQUEST:
690 case TCODE_WRITE_BLOCK_REQUEST:
691 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
692 response->header_length = 12;
693 response->payload_length = 0;
694 break;
695
696 case TCODE_READ_QUADLET_REQUEST:
697 response->header[0] |=
698 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
699 if (payload != NULL)
700 response->header[3] = *(u32 *)payload;
701 else
702 response->header[3] = 0;
703 response->header_length = 16;
704 response->payload_length = 0;
705 break;
706
707 case TCODE_READ_BLOCK_REQUEST:
708 case TCODE_LOCK_REQUEST:
709 response->header[0] |= HEADER_TCODE(tcode + 2);
710 response->header[3] =
711 HEADER_DATA_LENGTH(length) |
712 HEADER_EXTENDED_TCODE(extended_tcode);
713 response->header_length = 16;
714 response->payload = payload;
715 response->payload_length = length;
716 break;
717
718 default:
719 WARN(1, "wrong tcode %d\n", tcode);
720 }
721
722 response->payload_mapped = false;
723 }
724 EXPORT_SYMBOL(fw_fill_response);
725
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)726 static u32 compute_split_timeout_timestamp(struct fw_card *card,
727 u32 request_timestamp)
728 {
729 unsigned int cycles;
730 u32 timestamp;
731
732 cycles = card->split_timeout_cycles;
733 cycles += request_timestamp & 0x1fff;
734
735 timestamp = request_timestamp & ~0x1fff;
736 timestamp += (cycles / 8000) << 13;
737 timestamp |= cycles % 8000;
738
739 return timestamp;
740 }
741
allocate_request(struct fw_card * card,struct fw_packet * p)742 static struct fw_request *allocate_request(struct fw_card *card,
743 struct fw_packet *p)
744 {
745 struct fw_request *request;
746 u32 *data, length;
747 int request_tcode;
748
749 request_tcode = HEADER_GET_TCODE(p->header[0]);
750 switch (request_tcode) {
751 case TCODE_WRITE_QUADLET_REQUEST:
752 data = &p->header[3];
753 length = 4;
754 break;
755
756 case TCODE_WRITE_BLOCK_REQUEST:
757 case TCODE_LOCK_REQUEST:
758 data = p->payload;
759 length = HEADER_GET_DATA_LENGTH(p->header[3]);
760 break;
761
762 case TCODE_READ_QUADLET_REQUEST:
763 data = NULL;
764 length = 4;
765 break;
766
767 case TCODE_READ_BLOCK_REQUEST:
768 data = NULL;
769 length = HEADER_GET_DATA_LENGTH(p->header[3]);
770 break;
771
772 default:
773 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
774 p->header[0], p->header[1], p->header[2]);
775 return NULL;
776 }
777
778 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
779 if (request == NULL)
780 return NULL;
781
782 request->response.speed = p->speed;
783 request->response.timestamp =
784 compute_split_timeout_timestamp(card, p->timestamp);
785 request->response.generation = p->generation;
786 request->response.ack = 0;
787 request->response.callback = free_response_callback;
788 request->ack = p->ack;
789 request->length = length;
790 if (data)
791 memcpy(request->data, data, length);
792
793 memcpy(request->request_header, p->header, sizeof(p->header));
794
795 return request;
796 }
797
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)798 void fw_send_response(struct fw_card *card,
799 struct fw_request *request, int rcode)
800 {
801 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
802 return;
803
804 /* unified transaction or broadcast transaction: don't respond */
805 if (request->ack != ACK_PENDING ||
806 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
807 kfree(request);
808 return;
809 }
810
811 if (rcode == RCODE_COMPLETE)
812 fw_fill_response(&request->response, request->request_header,
813 rcode, request->data,
814 fw_get_response_length(request));
815 else
816 fw_fill_response(&request->response, request->request_header,
817 rcode, NULL, 0);
818
819 card->driver->send_response(card, &request->response);
820 }
821 EXPORT_SYMBOL(fw_send_response);
822
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)823 static void handle_exclusive_region_request(struct fw_card *card,
824 struct fw_packet *p,
825 struct fw_request *request,
826 unsigned long long offset)
827 {
828 struct fw_address_handler *handler;
829 int tcode, destination, source;
830
831 destination = HEADER_GET_DESTINATION(p->header[0]);
832 source = HEADER_GET_SOURCE(p->header[1]);
833 tcode = HEADER_GET_TCODE(p->header[0]);
834 if (tcode == TCODE_LOCK_REQUEST)
835 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
836
837 spin_lock_bh(&address_handler_lock);
838 handler = lookup_enclosing_address_handler(&address_handler_list,
839 offset, request->length);
840 if (handler)
841 handler->address_callback(card, request,
842 tcode, destination, source,
843 p->generation, offset,
844 request->data, request->length,
845 handler->callback_data);
846 spin_unlock_bh(&address_handler_lock);
847
848 if (!handler)
849 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
850 }
851
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)852 static void handle_fcp_region_request(struct fw_card *card,
853 struct fw_packet *p,
854 struct fw_request *request,
855 unsigned long long offset)
856 {
857 struct fw_address_handler *handler;
858 int tcode, destination, source;
859
860 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
861 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
862 request->length > 0x200) {
863 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
864
865 return;
866 }
867
868 tcode = HEADER_GET_TCODE(p->header[0]);
869 destination = HEADER_GET_DESTINATION(p->header[0]);
870 source = HEADER_GET_SOURCE(p->header[1]);
871
872 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
873 tcode != TCODE_WRITE_BLOCK_REQUEST) {
874 fw_send_response(card, request, RCODE_TYPE_ERROR);
875
876 return;
877 }
878
879 spin_lock_bh(&address_handler_lock);
880 list_for_each_entry(handler, &address_handler_list, link) {
881 if (is_enclosing_handler(handler, offset, request->length))
882 handler->address_callback(card, NULL, tcode,
883 destination, source,
884 p->generation, offset,
885 request->data,
886 request->length,
887 handler->callback_data);
888 }
889 spin_unlock_bh(&address_handler_lock);
890
891 fw_send_response(card, request, RCODE_COMPLETE);
892 }
893
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)894 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
895 {
896 struct fw_request *request;
897 unsigned long long offset;
898
899 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
900 return;
901
902 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
903 fw_cdev_handle_phy_packet(card, p);
904 return;
905 }
906
907 request = allocate_request(card, p);
908 if (request == NULL) {
909 /* FIXME: send statically allocated busy packet. */
910 return;
911 }
912
913 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
914 p->header[2];
915
916 if (!is_in_fcp_region(offset, request->length))
917 handle_exclusive_region_request(card, p, request, offset);
918 else
919 handle_fcp_region_request(card, p, request, offset);
920
921 }
922 EXPORT_SYMBOL(fw_core_handle_request);
923
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)924 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
925 {
926 struct fw_transaction *t;
927 unsigned long flags;
928 u32 *data;
929 size_t data_length;
930 int tcode, tlabel, source, rcode;
931
932 tcode = HEADER_GET_TCODE(p->header[0]);
933 tlabel = HEADER_GET_TLABEL(p->header[0]);
934 source = HEADER_GET_SOURCE(p->header[1]);
935 rcode = HEADER_GET_RCODE(p->header[1]);
936
937 spin_lock_irqsave(&card->lock, flags);
938 list_for_each_entry(t, &card->transaction_list, link) {
939 if (t->node_id == source && t->tlabel == tlabel) {
940 if (!try_cancel_split_timeout(t)) {
941 spin_unlock_irqrestore(&card->lock, flags);
942 goto timed_out;
943 }
944 list_del_init(&t->link);
945 card->tlabel_mask &= ~(1ULL << t->tlabel);
946 break;
947 }
948 }
949 spin_unlock_irqrestore(&card->lock, flags);
950
951 if (&t->link == &card->transaction_list) {
952 timed_out:
953 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
954 source, tlabel);
955 return;
956 }
957
958 /*
959 * FIXME: sanity check packet, is length correct, does tcodes
960 * and addresses match.
961 */
962
963 switch (tcode) {
964 case TCODE_READ_QUADLET_RESPONSE:
965 data = (u32 *) &p->header[3];
966 data_length = 4;
967 break;
968
969 case TCODE_WRITE_RESPONSE:
970 data = NULL;
971 data_length = 0;
972 break;
973
974 case TCODE_READ_BLOCK_RESPONSE:
975 case TCODE_LOCK_RESPONSE:
976 data = p->payload;
977 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
978 break;
979
980 default:
981 /* Should never happen, this is just to shut up gcc. */
982 data = NULL;
983 data_length = 0;
984 break;
985 }
986
987 /*
988 * The response handler may be executed while the request handler
989 * is still pending. Cancel the request handler.
990 */
991 card->driver->cancel_packet(card, &t->packet);
992
993 t->callback(card, rcode, data, data_length, t->callback_data);
994 }
995 EXPORT_SYMBOL(fw_core_handle_response);
996
997 static const struct fw_address_region topology_map_region =
998 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
999 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1000
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1001 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1002 int tcode, int destination, int source, int generation,
1003 unsigned long long offset, void *payload, size_t length,
1004 void *callback_data)
1005 {
1006 int start;
1007
1008 if (!TCODE_IS_READ_REQUEST(tcode)) {
1009 fw_send_response(card, request, RCODE_TYPE_ERROR);
1010 return;
1011 }
1012
1013 if ((offset & 3) > 0 || (length & 3) > 0) {
1014 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1015 return;
1016 }
1017
1018 start = (offset - topology_map_region.start) / 4;
1019 memcpy(payload, &card->topology_map[start], length);
1020
1021 fw_send_response(card, request, RCODE_COMPLETE);
1022 }
1023
1024 static struct fw_address_handler topology_map = {
1025 .length = 0x400,
1026 .address_callback = handle_topology_map,
1027 };
1028
1029 static const struct fw_address_region registers_region =
1030 { .start = CSR_REGISTER_BASE,
1031 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1032
update_split_timeout(struct fw_card * card)1033 static void update_split_timeout(struct fw_card *card)
1034 {
1035 unsigned int cycles;
1036
1037 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1038
1039 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1040 cycles = clamp(cycles, 800u, 3u * 8000u);
1041
1042 card->split_timeout_cycles = cycles;
1043 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1044 }
1045
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1046 static void handle_registers(struct fw_card *card, struct fw_request *request,
1047 int tcode, int destination, int source, int generation,
1048 unsigned long long offset, void *payload, size_t length,
1049 void *callback_data)
1050 {
1051 int reg = offset & ~CSR_REGISTER_BASE;
1052 __be32 *data = payload;
1053 int rcode = RCODE_COMPLETE;
1054 unsigned long flags;
1055
1056 switch (reg) {
1057 case CSR_PRIORITY_BUDGET:
1058 if (!card->priority_budget_implemented) {
1059 rcode = RCODE_ADDRESS_ERROR;
1060 break;
1061 }
1062 /* else fall through */
1063
1064 case CSR_NODE_IDS:
1065 /*
1066 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1067 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1068 */
1069 /* fall through */
1070
1071 case CSR_STATE_CLEAR:
1072 case CSR_STATE_SET:
1073 case CSR_CYCLE_TIME:
1074 case CSR_BUS_TIME:
1075 case CSR_BUSY_TIMEOUT:
1076 if (tcode == TCODE_READ_QUADLET_REQUEST)
1077 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1078 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1079 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1080 else
1081 rcode = RCODE_TYPE_ERROR;
1082 break;
1083
1084 case CSR_RESET_START:
1085 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1086 card->driver->write_csr(card, CSR_STATE_CLEAR,
1087 CSR_STATE_BIT_ABDICATE);
1088 else
1089 rcode = RCODE_TYPE_ERROR;
1090 break;
1091
1092 case CSR_SPLIT_TIMEOUT_HI:
1093 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1094 *data = cpu_to_be32(card->split_timeout_hi);
1095 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1096 spin_lock_irqsave(&card->lock, flags);
1097 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1098 update_split_timeout(card);
1099 spin_unlock_irqrestore(&card->lock, flags);
1100 } else {
1101 rcode = RCODE_TYPE_ERROR;
1102 }
1103 break;
1104
1105 case CSR_SPLIT_TIMEOUT_LO:
1106 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1107 *data = cpu_to_be32(card->split_timeout_lo);
1108 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1109 spin_lock_irqsave(&card->lock, flags);
1110 card->split_timeout_lo =
1111 be32_to_cpu(*data) & 0xfff80000;
1112 update_split_timeout(card);
1113 spin_unlock_irqrestore(&card->lock, flags);
1114 } else {
1115 rcode = RCODE_TYPE_ERROR;
1116 }
1117 break;
1118
1119 case CSR_MAINT_UTILITY:
1120 if (tcode == TCODE_READ_QUADLET_REQUEST)
1121 *data = card->maint_utility_register;
1122 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1123 card->maint_utility_register = *data;
1124 else
1125 rcode = RCODE_TYPE_ERROR;
1126 break;
1127
1128 case CSR_BROADCAST_CHANNEL:
1129 if (tcode == TCODE_READ_QUADLET_REQUEST)
1130 *data = cpu_to_be32(card->broadcast_channel);
1131 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1132 card->broadcast_channel =
1133 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1134 BROADCAST_CHANNEL_INITIAL;
1135 else
1136 rcode = RCODE_TYPE_ERROR;
1137 break;
1138
1139 case CSR_BUS_MANAGER_ID:
1140 case CSR_BANDWIDTH_AVAILABLE:
1141 case CSR_CHANNELS_AVAILABLE_HI:
1142 case CSR_CHANNELS_AVAILABLE_LO:
1143 /*
1144 * FIXME: these are handled by the OHCI hardware and
1145 * the stack never sees these request. If we add
1146 * support for a new type of controller that doesn't
1147 * handle this in hardware we need to deal with these
1148 * transactions.
1149 */
1150 BUG();
1151 break;
1152
1153 default:
1154 rcode = RCODE_ADDRESS_ERROR;
1155 break;
1156 }
1157
1158 fw_send_response(card, request, rcode);
1159 }
1160
1161 static struct fw_address_handler registers = {
1162 .length = 0x400,
1163 .address_callback = handle_registers,
1164 };
1165
1166 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1167 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1168 MODULE_LICENSE("GPL");
1169
1170 static const u32 vendor_textual_descriptor[] = {
1171 /* textual descriptor leaf () */
1172 0x00060000,
1173 0x00000000,
1174 0x00000000,
1175 0x4c696e75, /* L i n u */
1176 0x78204669, /* x F i */
1177 0x72657769, /* r e w i */
1178 0x72650000, /* r e */
1179 };
1180
1181 static const u32 model_textual_descriptor[] = {
1182 /* model descriptor leaf () */
1183 0x00030000,
1184 0x00000000,
1185 0x00000000,
1186 0x4a756a75, /* J u j u */
1187 };
1188
1189 static struct fw_descriptor vendor_id_descriptor = {
1190 .length = ARRAY_SIZE(vendor_textual_descriptor),
1191 .immediate = 0x03d00d1e,
1192 .key = 0x81000000,
1193 .data = vendor_textual_descriptor,
1194 };
1195
1196 static struct fw_descriptor model_id_descriptor = {
1197 .length = ARRAY_SIZE(model_textual_descriptor),
1198 .immediate = 0x17000001,
1199 .key = 0x81000000,
1200 .data = model_textual_descriptor,
1201 };
1202
fw_core_init(void)1203 static int __init fw_core_init(void)
1204 {
1205 int ret;
1206
1207 fw_workqueue = alloc_workqueue("firewire",
1208 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1209 if (!fw_workqueue)
1210 return -ENOMEM;
1211
1212 ret = bus_register(&fw_bus_type);
1213 if (ret < 0) {
1214 destroy_workqueue(fw_workqueue);
1215 return ret;
1216 }
1217
1218 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1219 if (fw_cdev_major < 0) {
1220 bus_unregister(&fw_bus_type);
1221 destroy_workqueue(fw_workqueue);
1222 return fw_cdev_major;
1223 }
1224
1225 fw_core_add_address_handler(&topology_map, &topology_map_region);
1226 fw_core_add_address_handler(®isters, ®isters_region);
1227 fw_core_add_descriptor(&vendor_id_descriptor);
1228 fw_core_add_descriptor(&model_id_descriptor);
1229
1230 return 0;
1231 }
1232
fw_core_cleanup(void)1233 static void __exit fw_core_cleanup(void)
1234 {
1235 unregister_chrdev(fw_cdev_major, "firewire");
1236 bus_unregister(&fw_bus_type);
1237 destroy_workqueue(fw_workqueue);
1238 idr_destroy(&fw_device_idr);
1239 }
1240
1241 module_init(fw_core_init);
1242 module_exit(fw_core_cleanup);
1243