• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40 
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43 
44 #include "core.h"
45 
fw_csr_iterator_init(struct fw_csr_iterator * ci,const u32 * p)46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48 	ci->p = p + 1;
49 	ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52 
fw_csr_iterator_next(struct fw_csr_iterator * ci,int * key,int * value)53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55 	*key = *ci->p >> 24;
56 	*value = *ci->p & 0xffffff;
57 
58 	return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61 
search_leaf(const u32 * directory,int search_key)62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64 	struct fw_csr_iterator ci;
65 	int last_key = 0, key, value;
66 
67 	fw_csr_iterator_init(&ci, directory);
68 	while (fw_csr_iterator_next(&ci, &key, &value)) {
69 		if (last_key == search_key &&
70 		    key == (CSR_DESCRIPTOR | CSR_LEAF))
71 			return ci.p - 1 + value;
72 
73 		last_key = key;
74 	}
75 
76 	return NULL;
77 }
78 
textual_leaf_to_string(const u32 * block,char * buf,size_t size)79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81 	unsigned int quadlets, i;
82 	char c;
83 
84 	if (!size || !buf)
85 		return -EINVAL;
86 
87 	quadlets = min(block[0] >> 16, 256U);
88 	if (quadlets < 2)
89 		return -ENODATA;
90 
91 	if (block[1] != 0 || block[2] != 0)
92 		/* unknown language/character set */
93 		return -ENODATA;
94 
95 	block += 3;
96 	quadlets -= 2;
97 	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98 		c = block[i / 4] >> (24 - 8 * (i % 4));
99 		if (c == '\0')
100 			break;
101 		buf[i] = c;
102 	}
103 	buf[i] = '\0';
104 
105 	return i;
106 }
107 
108 /**
109  * fw_csr_string() - reads a string from the configuration ROM
110  * @directory:	e.g. root directory or unit directory
111  * @key:	the key of the preceding directory entry
112  * @buf:	where to put the string
113  * @size:	size of @buf, in bytes
114  *
115  * The string is taken from a minimal ASCII text descriptor leaf after
116  * the immediate entry with @key.  The string is zero-terminated.
117  * Returns strlen(buf) or a negative error code.
118  */
fw_csr_string(const u32 * directory,int key,char * buf,size_t size)119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121 	const u32 *leaf = search_leaf(directory, key);
122 	if (!leaf)
123 		return -ENOENT;
124 
125 	return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128 
get_ids(const u32 * directory,int * id)129 static void get_ids(const u32 *directory, int *id)
130 {
131 	struct fw_csr_iterator ci;
132 	int key, value;
133 
134 	fw_csr_iterator_init(&ci, directory);
135 	while (fw_csr_iterator_next(&ci, &key, &value)) {
136 		switch (key) {
137 		case CSR_VENDOR:	id[0] = value; break;
138 		case CSR_MODEL:		id[1] = value; break;
139 		case CSR_SPECIFIER_ID:	id[2] = value; break;
140 		case CSR_VERSION:	id[3] = value; break;
141 		}
142 	}
143 }
144 
get_modalias_ids(struct fw_unit * unit,int * id)145 static void get_modalias_ids(struct fw_unit *unit, int *id)
146 {
147 	get_ids(&fw_parent_device(unit)->config_rom[5], id);
148 	get_ids(unit->directory, id);
149 }
150 
match_ids(const struct ieee1394_device_id * id_table,int * id)151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152 {
153 	int match = 0;
154 
155 	if (id[0] == id_table->vendor_id)
156 		match |= IEEE1394_MATCH_VENDOR_ID;
157 	if (id[1] == id_table->model_id)
158 		match |= IEEE1394_MATCH_MODEL_ID;
159 	if (id[2] == id_table->specifier_id)
160 		match |= IEEE1394_MATCH_SPECIFIER_ID;
161 	if (id[3] == id_table->version)
162 		match |= IEEE1394_MATCH_VERSION;
163 
164 	return (match & id_table->match_flags) == id_table->match_flags;
165 }
166 
167 static bool is_fw_unit(struct device *dev);
168 
fw_unit_match(struct device * dev,struct device_driver * drv)169 static int fw_unit_match(struct device *dev, struct device_driver *drv)
170 {
171 	const struct ieee1394_device_id *id_table =
172 			container_of(drv, struct fw_driver, driver)->id_table;
173 	int id[] = {0, 0, 0, 0};
174 
175 	/* We only allow binding to fw_units. */
176 	if (!is_fw_unit(dev))
177 		return 0;
178 
179 	get_modalias_ids(fw_unit(dev), id);
180 
181 	for (; id_table->match_flags != 0; id_table++)
182 		if (match_ids(id_table, id))
183 			return 1;
184 
185 	return 0;
186 }
187 
get_modalias(struct fw_unit * unit,char * buffer,size_t buffer_size)188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189 {
190 	int id[] = {0, 0, 0, 0};
191 
192 	get_modalias_ids(unit, id);
193 
194 	return snprintf(buffer, buffer_size,
195 			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196 			id[0], id[1], id[2], id[3]);
197 }
198 
fw_unit_uevent(struct device * dev,struct kobj_uevent_env * env)199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201 	struct fw_unit *unit = fw_unit(dev);
202 	char modalias[64];
203 
204 	get_modalias(unit, modalias, sizeof(modalias));
205 
206 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 		return -ENOMEM;
208 
209 	return 0;
210 }
211 
212 struct bus_type fw_bus_type = {
213 	.name = "firewire",
214 	.match = fw_unit_match,
215 };
216 EXPORT_SYMBOL(fw_bus_type);
217 
fw_device_enable_phys_dma(struct fw_device * device)218 int fw_device_enable_phys_dma(struct fw_device *device)
219 {
220 	int generation = device->generation;
221 
222 	/* device->node_id, accessed below, must not be older than generation */
223 	smp_rmb();
224 
225 	return device->card->driver->enable_phys_dma(device->card,
226 						     device->node_id,
227 						     generation);
228 }
229 EXPORT_SYMBOL(fw_device_enable_phys_dma);
230 
231 struct config_rom_attribute {
232 	struct device_attribute attr;
233 	u32 key;
234 };
235 
show_immediate(struct device * dev,struct device_attribute * dattr,char * buf)236 static ssize_t show_immediate(struct device *dev,
237 			      struct device_attribute *dattr, char *buf)
238 {
239 	struct config_rom_attribute *attr =
240 		container_of(dattr, struct config_rom_attribute, attr);
241 	struct fw_csr_iterator ci;
242 	const u32 *dir;
243 	int key, value, ret = -ENOENT;
244 
245 	down_read(&fw_device_rwsem);
246 
247 	if (is_fw_unit(dev))
248 		dir = fw_unit(dev)->directory;
249 	else
250 		dir = fw_device(dev)->config_rom + 5;
251 
252 	fw_csr_iterator_init(&ci, dir);
253 	while (fw_csr_iterator_next(&ci, &key, &value))
254 		if (attr->key == key) {
255 			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256 				       "0x%06x\n", value);
257 			break;
258 		}
259 
260 	up_read(&fw_device_rwsem);
261 
262 	return ret;
263 }
264 
265 #define IMMEDIATE_ATTR(name, key)				\
266 	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267 
show_text_leaf(struct device * dev,struct device_attribute * dattr,char * buf)268 static ssize_t show_text_leaf(struct device *dev,
269 			      struct device_attribute *dattr, char *buf)
270 {
271 	struct config_rom_attribute *attr =
272 		container_of(dattr, struct config_rom_attribute, attr);
273 	const u32 *dir;
274 	size_t bufsize;
275 	char dummy_buf[2];
276 	int ret;
277 
278 	down_read(&fw_device_rwsem);
279 
280 	if (is_fw_unit(dev))
281 		dir = fw_unit(dev)->directory;
282 	else
283 		dir = fw_device(dev)->config_rom + 5;
284 
285 	if (buf) {
286 		bufsize = PAGE_SIZE - 1;
287 	} else {
288 		buf = dummy_buf;
289 		bufsize = 1;
290 	}
291 
292 	ret = fw_csr_string(dir, attr->key, buf, bufsize);
293 
294 	if (ret >= 0) {
295 		/* Strip trailing whitespace and add newline. */
296 		while (ret > 0 && isspace(buf[ret - 1]))
297 			ret--;
298 		strcpy(buf + ret, "\n");
299 		ret++;
300 	}
301 
302 	up_read(&fw_device_rwsem);
303 
304 	return ret;
305 }
306 
307 #define TEXT_LEAF_ATTR(name, key)				\
308 	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309 
310 static struct config_rom_attribute config_rom_attributes[] = {
311 	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312 	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313 	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314 	IMMEDIATE_ATTR(version, CSR_VERSION),
315 	IMMEDIATE_ATTR(model, CSR_MODEL),
316 	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317 	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318 	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319 };
320 
init_fw_attribute_group(struct device * dev,struct device_attribute * attrs,struct fw_attribute_group * group)321 static void init_fw_attribute_group(struct device *dev,
322 				    struct device_attribute *attrs,
323 				    struct fw_attribute_group *group)
324 {
325 	struct device_attribute *attr;
326 	int i, j;
327 
328 	for (j = 0; attrs[j].attr.name != NULL; j++)
329 		group->attrs[j] = &attrs[j].attr;
330 
331 	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332 		attr = &config_rom_attributes[i].attr;
333 		if (attr->show(dev, attr, NULL) < 0)
334 			continue;
335 		group->attrs[j++] = &attr->attr;
336 	}
337 
338 	group->attrs[j] = NULL;
339 	group->groups[0] = &group->group;
340 	group->groups[1] = NULL;
341 	group->group.attrs = group->attrs;
342 	dev->groups = (const struct attribute_group **) group->groups;
343 }
344 
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)345 static ssize_t modalias_show(struct device *dev,
346 			     struct device_attribute *attr, char *buf)
347 {
348 	struct fw_unit *unit = fw_unit(dev);
349 	int length;
350 
351 	length = get_modalias(unit, buf, PAGE_SIZE);
352 	strcpy(buf + length, "\n");
353 
354 	return length + 1;
355 }
356 
rom_index_show(struct device * dev,struct device_attribute * attr,char * buf)357 static ssize_t rom_index_show(struct device *dev,
358 			      struct device_attribute *attr, char *buf)
359 {
360 	struct fw_device *device = fw_device(dev->parent);
361 	struct fw_unit *unit = fw_unit(dev);
362 
363 	return snprintf(buf, PAGE_SIZE, "%d\n",
364 			(int)(unit->directory - device->config_rom));
365 }
366 
367 static struct device_attribute fw_unit_attributes[] = {
368 	__ATTR_RO(modalias),
369 	__ATTR_RO(rom_index),
370 	__ATTR_NULL,
371 };
372 
config_rom_show(struct device * dev,struct device_attribute * attr,char * buf)373 static ssize_t config_rom_show(struct device *dev,
374 			       struct device_attribute *attr, char *buf)
375 {
376 	struct fw_device *device = fw_device(dev);
377 	size_t length;
378 
379 	down_read(&fw_device_rwsem);
380 	length = device->config_rom_length * 4;
381 	memcpy(buf, device->config_rom, length);
382 	up_read(&fw_device_rwsem);
383 
384 	return length;
385 }
386 
guid_show(struct device * dev,struct device_attribute * attr,char * buf)387 static ssize_t guid_show(struct device *dev,
388 			 struct device_attribute *attr, char *buf)
389 {
390 	struct fw_device *device = fw_device(dev);
391 	int ret;
392 
393 	down_read(&fw_device_rwsem);
394 	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395 		       device->config_rom[3], device->config_rom[4]);
396 	up_read(&fw_device_rwsem);
397 
398 	return ret;
399 }
400 
units_sprintf(char * buf,const u32 * directory)401 static int units_sprintf(char *buf, const u32 *directory)
402 {
403 	struct fw_csr_iterator ci;
404 	int key, value;
405 	int specifier_id = 0;
406 	int version = 0;
407 
408 	fw_csr_iterator_init(&ci, directory);
409 	while (fw_csr_iterator_next(&ci, &key, &value)) {
410 		switch (key) {
411 		case CSR_SPECIFIER_ID:
412 			specifier_id = value;
413 			break;
414 		case CSR_VERSION:
415 			version = value;
416 			break;
417 		}
418 	}
419 
420 	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
421 }
422 
units_show(struct device * dev,struct device_attribute * attr,char * buf)423 static ssize_t units_show(struct device *dev,
424 			  struct device_attribute *attr, char *buf)
425 {
426 	struct fw_device *device = fw_device(dev);
427 	struct fw_csr_iterator ci;
428 	int key, value, i = 0;
429 
430 	down_read(&fw_device_rwsem);
431 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
432 	while (fw_csr_iterator_next(&ci, &key, &value)) {
433 		if (key != (CSR_UNIT | CSR_DIRECTORY))
434 			continue;
435 		i += units_sprintf(&buf[i], ci.p + value - 1);
436 		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
437 			break;
438 	}
439 	up_read(&fw_device_rwsem);
440 
441 	if (i)
442 		buf[i - 1] = '\n';
443 
444 	return i;
445 }
446 
447 static struct device_attribute fw_device_attributes[] = {
448 	__ATTR_RO(config_rom),
449 	__ATTR_RO(guid),
450 	__ATTR_RO(units),
451 	__ATTR_NULL,
452 };
453 
read_rom(struct fw_device * device,int generation,int index,u32 * data)454 static int read_rom(struct fw_device *device,
455 		    int generation, int index, u32 *data)
456 {
457 	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
458 	int i, rcode;
459 
460 	/* device->node_id, accessed below, must not be older than generation */
461 	smp_rmb();
462 
463 	for (i = 10; i < 100; i += 10) {
464 		rcode = fw_run_transaction(device->card,
465 				TCODE_READ_QUADLET_REQUEST, device->node_id,
466 				generation, device->max_speed, offset, data, 4);
467 		if (rcode != RCODE_BUSY)
468 			break;
469 		msleep(i);
470 	}
471 	be32_to_cpus(data);
472 
473 	return rcode;
474 }
475 
476 #define MAX_CONFIG_ROM_SIZE 256
477 
478 /*
479  * Read the bus info block, perform a speed probe, and read all of the rest of
480  * the config ROM.  We do all this with a cached bus generation.  If the bus
481  * generation changes under us, read_config_rom will fail and get retried.
482  * It's better to start all over in this case because the node from which we
483  * are reading the ROM may have changed the ROM during the reset.
484  */
read_config_rom(struct fw_device * device,int generation)485 static int read_config_rom(struct fw_device *device, int generation)
486 {
487 	struct fw_card *card = device->card;
488 	const u32 *old_rom, *new_rom;
489 	u32 *rom, *stack;
490 	u32 sp, key;
491 	int i, end, length, ret = -1;
492 
493 	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
494 		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
495 	if (rom == NULL)
496 		return -ENOMEM;
497 
498 	stack = &rom[MAX_CONFIG_ROM_SIZE];
499 	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
500 
501 	device->max_speed = SCODE_100;
502 
503 	/* First read the bus info block. */
504 	for (i = 0; i < 5; i++) {
505 		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
506 			goto out;
507 		/*
508 		 * As per IEEE1212 7.2, during power-up, devices can
509 		 * reply with a 0 for the first quadlet of the config
510 		 * rom to indicate that they are booting (for example,
511 		 * if the firmware is on the disk of a external
512 		 * harddisk).  In that case we just fail, and the
513 		 * retry mechanism will try again later.
514 		 */
515 		if (i == 0 && rom[i] == 0)
516 			goto out;
517 	}
518 
519 	device->max_speed = device->node->max_speed;
520 
521 	/*
522 	 * Determine the speed of
523 	 *   - devices with link speed less than PHY speed,
524 	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
525 	 *   - all devices if there are 1394b repeaters.
526 	 * Note, we cannot use the bus info block's link_spd as starting point
527 	 * because some buggy firmwares set it lower than necessary and because
528 	 * 1394-1995 nodes do not have the field.
529 	 */
530 	if ((rom[2] & 0x7) < device->max_speed ||
531 	    device->max_speed == SCODE_BETA ||
532 	    card->beta_repeaters_present) {
533 		u32 dummy;
534 
535 		/* for S1600 and S3200 */
536 		if (device->max_speed == SCODE_BETA)
537 			device->max_speed = card->link_speed;
538 
539 		while (device->max_speed > SCODE_100) {
540 			if (read_rom(device, generation, 0, &dummy) ==
541 			    RCODE_COMPLETE)
542 				break;
543 			device->max_speed--;
544 		}
545 	}
546 
547 	/*
548 	 * Now parse the config rom.  The config rom is a recursive
549 	 * directory structure so we parse it using a stack of
550 	 * references to the blocks that make up the structure.  We
551 	 * push a reference to the root directory on the stack to
552 	 * start things off.
553 	 */
554 	length = i;
555 	sp = 0;
556 	stack[sp++] = 0xc0000005;
557 	while (sp > 0) {
558 		/*
559 		 * Pop the next block reference of the stack.  The
560 		 * lower 24 bits is the offset into the config rom,
561 		 * the upper 8 bits are the type of the reference the
562 		 * block.
563 		 */
564 		key = stack[--sp];
565 		i = key & 0xffffff;
566 		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
567 			goto out;
568 
569 		/* Read header quadlet for the block to get the length. */
570 		if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
571 			goto out;
572 		end = i + (rom[i] >> 16) + 1;
573 		if (end > MAX_CONFIG_ROM_SIZE) {
574 			/*
575 			 * This block extends outside the config ROM which is
576 			 * a firmware bug.  Ignore this whole block, i.e.
577 			 * simply set a fake block length of 0.
578 			 */
579 			fw_err(card, "skipped invalid ROM block %x at %llx\n",
580 			       rom[i],
581 			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
582 			rom[i] = 0;
583 			end = i;
584 		}
585 		i++;
586 
587 		/*
588 		 * Now read in the block.  If this is a directory
589 		 * block, check the entries as we read them to see if
590 		 * it references another block, and push it in that case.
591 		 */
592 		for (; i < end; i++) {
593 			if (read_rom(device, generation, i, &rom[i]) !=
594 			    RCODE_COMPLETE)
595 				goto out;
596 
597 			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
598 				continue;
599 			/*
600 			 * Offset points outside the ROM.  May be a firmware
601 			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
602 			 * 7.7.18).  Simply overwrite this pointer here by a
603 			 * fake immediate entry so that later iterators over
604 			 * the ROM don't have to check offsets all the time.
605 			 */
606 			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
607 				fw_err(card,
608 				       "skipped unsupported ROM entry %x at %llx\n",
609 				       rom[i],
610 				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
611 				rom[i] = 0;
612 				continue;
613 			}
614 			stack[sp++] = i + rom[i];
615 		}
616 		if (length < i)
617 			length = i;
618 	}
619 
620 	old_rom = device->config_rom;
621 	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
622 	if (new_rom == NULL)
623 		goto out;
624 
625 	down_write(&fw_device_rwsem);
626 	device->config_rom = new_rom;
627 	device->config_rom_length = length;
628 	up_write(&fw_device_rwsem);
629 
630 	kfree(old_rom);
631 	ret = 0;
632 	device->max_rec	= rom[2] >> 12 & 0xf;
633 	device->cmc	= rom[2] >> 30 & 1;
634 	device->irmc	= rom[2] >> 31 & 1;
635  out:
636 	kfree(rom);
637 
638 	return ret;
639 }
640 
fw_unit_release(struct device * dev)641 static void fw_unit_release(struct device *dev)
642 {
643 	struct fw_unit *unit = fw_unit(dev);
644 
645 	fw_device_put(fw_parent_device(unit));
646 	kfree(unit);
647 }
648 
649 static struct device_type fw_unit_type = {
650 	.uevent		= fw_unit_uevent,
651 	.release	= fw_unit_release,
652 };
653 
is_fw_unit(struct device * dev)654 static bool is_fw_unit(struct device *dev)
655 {
656 	return dev->type == &fw_unit_type;
657 }
658 
create_units(struct fw_device * device)659 static void create_units(struct fw_device *device)
660 {
661 	struct fw_csr_iterator ci;
662 	struct fw_unit *unit;
663 	int key, value, i;
664 
665 	i = 0;
666 	fw_csr_iterator_init(&ci, &device->config_rom[5]);
667 	while (fw_csr_iterator_next(&ci, &key, &value)) {
668 		if (key != (CSR_UNIT | CSR_DIRECTORY))
669 			continue;
670 
671 		/*
672 		 * Get the address of the unit directory and try to
673 		 * match the drivers id_tables against it.
674 		 */
675 		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
676 		if (unit == NULL) {
677 			fw_err(device->card, "out of memory for unit\n");
678 			continue;
679 		}
680 
681 		unit->directory = ci.p + value - 1;
682 		unit->device.bus = &fw_bus_type;
683 		unit->device.type = &fw_unit_type;
684 		unit->device.parent = &device->device;
685 		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
686 
687 		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
688 				ARRAY_SIZE(fw_unit_attributes) +
689 				ARRAY_SIZE(config_rom_attributes));
690 		init_fw_attribute_group(&unit->device,
691 					fw_unit_attributes,
692 					&unit->attribute_group);
693 
694 		if (device_register(&unit->device) < 0)
695 			goto skip_unit;
696 
697 		fw_device_get(device);
698 		continue;
699 
700 	skip_unit:
701 		kfree(unit);
702 	}
703 }
704 
shutdown_unit(struct device * device,void * data)705 static int shutdown_unit(struct device *device, void *data)
706 {
707 	device_unregister(device);
708 
709 	return 0;
710 }
711 
712 /*
713  * fw_device_rwsem acts as dual purpose mutex:
714  *   - serializes accesses to fw_device_idr,
715  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
716  *     fw_unit.directory, unless those accesses happen at safe occasions
717  */
718 DECLARE_RWSEM(fw_device_rwsem);
719 
720 DEFINE_IDR(fw_device_idr);
721 int fw_cdev_major;
722 
fw_device_get_by_devt(dev_t devt)723 struct fw_device *fw_device_get_by_devt(dev_t devt)
724 {
725 	struct fw_device *device;
726 
727 	down_read(&fw_device_rwsem);
728 	device = idr_find(&fw_device_idr, MINOR(devt));
729 	if (device)
730 		fw_device_get(device);
731 	up_read(&fw_device_rwsem);
732 
733 	return device;
734 }
735 
736 struct workqueue_struct *fw_workqueue;
737 EXPORT_SYMBOL(fw_workqueue);
738 
fw_schedule_device_work(struct fw_device * device,unsigned long delay)739 static void fw_schedule_device_work(struct fw_device *device,
740 				    unsigned long delay)
741 {
742 	queue_delayed_work(fw_workqueue, &device->work, delay);
743 }
744 
745 /*
746  * These defines control the retry behavior for reading the config
747  * rom.  It shouldn't be necessary to tweak these; if the device
748  * doesn't respond to a config rom read within 10 seconds, it's not
749  * going to respond at all.  As for the initial delay, a lot of
750  * devices will be able to respond within half a second after bus
751  * reset.  On the other hand, it's not really worth being more
752  * aggressive than that, since it scales pretty well; if 10 devices
753  * are plugged in, they're all getting read within one second.
754  */
755 
756 #define MAX_RETRIES	10
757 #define RETRY_DELAY	(3 * HZ)
758 #define INITIAL_DELAY	(HZ / 2)
759 #define SHUTDOWN_DELAY	(2 * HZ)
760 
fw_device_shutdown(struct work_struct * work)761 static void fw_device_shutdown(struct work_struct *work)
762 {
763 	struct fw_device *device =
764 		container_of(work, struct fw_device, work.work);
765 	int minor = MINOR(device->device.devt);
766 
767 	if (time_before64(get_jiffies_64(),
768 			  device->card->reset_jiffies + SHUTDOWN_DELAY)
769 	    && !list_empty(&device->card->link)) {
770 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
771 		return;
772 	}
773 
774 	if (atomic_cmpxchg(&device->state,
775 			   FW_DEVICE_GONE,
776 			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
777 		return;
778 
779 	fw_device_cdev_remove(device);
780 	device_for_each_child(&device->device, NULL, shutdown_unit);
781 	device_unregister(&device->device);
782 
783 	down_write(&fw_device_rwsem);
784 	idr_remove(&fw_device_idr, minor);
785 	up_write(&fw_device_rwsem);
786 
787 	fw_device_put(device);
788 }
789 
fw_device_release(struct device * dev)790 static void fw_device_release(struct device *dev)
791 {
792 	struct fw_device *device = fw_device(dev);
793 	struct fw_card *card = device->card;
794 	unsigned long flags;
795 
796 	/*
797 	 * Take the card lock so we don't set this to NULL while a
798 	 * FW_NODE_UPDATED callback is being handled or while the
799 	 * bus manager work looks at this node.
800 	 */
801 	spin_lock_irqsave(&card->lock, flags);
802 	device->node->data = NULL;
803 	spin_unlock_irqrestore(&card->lock, flags);
804 
805 	fw_node_put(device->node);
806 	kfree(device->config_rom);
807 	kfree(device);
808 	fw_card_put(card);
809 }
810 
811 static struct device_type fw_device_type = {
812 	.release = fw_device_release,
813 };
814 
is_fw_device(struct device * dev)815 static bool is_fw_device(struct device *dev)
816 {
817 	return dev->type == &fw_device_type;
818 }
819 
update_unit(struct device * dev,void * data)820 static int update_unit(struct device *dev, void *data)
821 {
822 	struct fw_unit *unit = fw_unit(dev);
823 	struct fw_driver *driver = (struct fw_driver *)dev->driver;
824 
825 	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
826 		device_lock(dev);
827 		driver->update(unit);
828 		device_unlock(dev);
829 	}
830 
831 	return 0;
832 }
833 
fw_device_update(struct work_struct * work)834 static void fw_device_update(struct work_struct *work)
835 {
836 	struct fw_device *device =
837 		container_of(work, struct fw_device, work.work);
838 
839 	fw_device_cdev_update(device);
840 	device_for_each_child(&device->device, NULL, update_unit);
841 }
842 
843 /*
844  * If a device was pending for deletion because its node went away but its
845  * bus info block and root directory header matches that of a newly discovered
846  * device, revive the existing fw_device.
847  * The newly allocated fw_device becomes obsolete instead.
848  */
lookup_existing_device(struct device * dev,void * data)849 static int lookup_existing_device(struct device *dev, void *data)
850 {
851 	struct fw_device *old = fw_device(dev);
852 	struct fw_device *new = data;
853 	struct fw_card *card = new->card;
854 	int match = 0;
855 
856 	if (!is_fw_device(dev))
857 		return 0;
858 
859 	down_read(&fw_device_rwsem); /* serialize config_rom access */
860 	spin_lock_irq(&card->lock);  /* serialize node access */
861 
862 	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
863 	    atomic_cmpxchg(&old->state,
864 			   FW_DEVICE_GONE,
865 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
866 		struct fw_node *current_node = new->node;
867 		struct fw_node *obsolete_node = old->node;
868 
869 		new->node = obsolete_node;
870 		new->node->data = new;
871 		old->node = current_node;
872 		old->node->data = old;
873 
874 		old->max_speed = new->max_speed;
875 		old->node_id = current_node->node_id;
876 		smp_wmb();  /* update node_id before generation */
877 		old->generation = card->generation;
878 		old->config_rom_retries = 0;
879 		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
880 
881 		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
882 		fw_schedule_device_work(old, 0);
883 
884 		if (current_node == card->root_node)
885 			fw_schedule_bm_work(card, 0);
886 
887 		match = 1;
888 	}
889 
890 	spin_unlock_irq(&card->lock);
891 	up_read(&fw_device_rwsem);
892 
893 	return match;
894 }
895 
896 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
897 
set_broadcast_channel(struct fw_device * device,int generation)898 static void set_broadcast_channel(struct fw_device *device, int generation)
899 {
900 	struct fw_card *card = device->card;
901 	__be32 data;
902 	int rcode;
903 
904 	if (!card->broadcast_channel_allocated)
905 		return;
906 
907 	/*
908 	 * The Broadcast_Channel Valid bit is required by nodes which want to
909 	 * transmit on this channel.  Such transmissions are practically
910 	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
911 	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
912 	 * to narrow down to which nodes we send Broadcast_Channel updates.
913 	 */
914 	if (!device->irmc || device->max_rec < 8)
915 		return;
916 
917 	/*
918 	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
919 	 * Perform a read test first.
920 	 */
921 	if (device->bc_implemented == BC_UNKNOWN) {
922 		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
923 				device->node_id, generation, device->max_speed,
924 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
925 				&data, 4);
926 		switch (rcode) {
927 		case RCODE_COMPLETE:
928 			if (data & cpu_to_be32(1 << 31)) {
929 				device->bc_implemented = BC_IMPLEMENTED;
930 				break;
931 			}
932 			/* else fall through to case address error */
933 		case RCODE_ADDRESS_ERROR:
934 			device->bc_implemented = BC_UNIMPLEMENTED;
935 		}
936 	}
937 
938 	if (device->bc_implemented == BC_IMPLEMENTED) {
939 		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
940 				   BROADCAST_CHANNEL_VALID);
941 		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
942 				device->node_id, generation, device->max_speed,
943 				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
944 				&data, 4);
945 	}
946 }
947 
fw_device_set_broadcast_channel(struct device * dev,void * gen)948 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
949 {
950 	if (is_fw_device(dev))
951 		set_broadcast_channel(fw_device(dev), (long)gen);
952 
953 	return 0;
954 }
955 
fw_device_init(struct work_struct * work)956 static void fw_device_init(struct work_struct *work)
957 {
958 	struct fw_device *device =
959 		container_of(work, struct fw_device, work.work);
960 	struct fw_card *card = device->card;
961 	struct device *revived_dev;
962 	int minor, ret;
963 
964 	/*
965 	 * All failure paths here set node->data to NULL, so that we
966 	 * don't try to do device_for_each_child() on a kfree()'d
967 	 * device.
968 	 */
969 
970 	if (read_config_rom(device, device->generation) < 0) {
971 		if (device->config_rom_retries < MAX_RETRIES &&
972 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
973 			device->config_rom_retries++;
974 			fw_schedule_device_work(device, RETRY_DELAY);
975 		} else {
976 			if (device->node->link_on)
977 				fw_notice(card, "giving up on Config ROM for node id %x\n",
978 					  device->node_id);
979 			if (device->node == card->root_node)
980 				fw_schedule_bm_work(card, 0);
981 			fw_device_release(&device->device);
982 		}
983 		return;
984 	}
985 
986 	revived_dev = device_find_child(card->device,
987 					device, lookup_existing_device);
988 	if (revived_dev) {
989 		put_device(revived_dev);
990 		fw_device_release(&device->device);
991 
992 		return;
993 	}
994 
995 	device_initialize(&device->device);
996 
997 	fw_device_get(device);
998 	down_write(&fw_device_rwsem);
999 	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1000 	      idr_get_new(&fw_device_idr, device, &minor) :
1001 	      -ENOMEM;
1002 	if (minor >= 1 << MINORBITS) {
1003 		idr_remove(&fw_device_idr, minor);
1004 		minor = -ENOSPC;
1005 	}
1006 	up_write(&fw_device_rwsem);
1007 
1008 	if (ret < 0)
1009 		goto error;
1010 
1011 	device->device.bus = &fw_bus_type;
1012 	device->device.type = &fw_device_type;
1013 	device->device.parent = card->device;
1014 	device->device.devt = MKDEV(fw_cdev_major, minor);
1015 	dev_set_name(&device->device, "fw%d", minor);
1016 
1017 	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1018 			ARRAY_SIZE(fw_device_attributes) +
1019 			ARRAY_SIZE(config_rom_attributes));
1020 	init_fw_attribute_group(&device->device,
1021 				fw_device_attributes,
1022 				&device->attribute_group);
1023 
1024 	if (device_add(&device->device)) {
1025 		fw_err(card, "failed to add device\n");
1026 		goto error_with_cdev;
1027 	}
1028 
1029 	create_units(device);
1030 
1031 	/*
1032 	 * Transition the device to running state.  If it got pulled
1033 	 * out from under us while we did the intialization work, we
1034 	 * have to shut down the device again here.  Normally, though,
1035 	 * fw_node_event will be responsible for shutting it down when
1036 	 * necessary.  We have to use the atomic cmpxchg here to avoid
1037 	 * racing with the FW_NODE_DESTROYED case in
1038 	 * fw_node_event().
1039 	 */
1040 	if (atomic_cmpxchg(&device->state,
1041 			   FW_DEVICE_INITIALIZING,
1042 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1043 		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1044 		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1045 	} else {
1046 		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1047 			  dev_name(&device->device),
1048 			  device->config_rom[3], device->config_rom[4],
1049 			  1 << device->max_speed);
1050 		device->config_rom_retries = 0;
1051 
1052 		set_broadcast_channel(device, device->generation);
1053 	}
1054 
1055 	/*
1056 	 * Reschedule the IRM work if we just finished reading the
1057 	 * root node config rom.  If this races with a bus reset we
1058 	 * just end up running the IRM work a couple of extra times -
1059 	 * pretty harmless.
1060 	 */
1061 	if (device->node == card->root_node)
1062 		fw_schedule_bm_work(card, 0);
1063 
1064 	return;
1065 
1066  error_with_cdev:
1067 	down_write(&fw_device_rwsem);
1068 	idr_remove(&fw_device_idr, minor);
1069 	up_write(&fw_device_rwsem);
1070  error:
1071 	fw_device_put(device);		/* fw_device_idr's reference */
1072 
1073 	put_device(&device->device);	/* our reference */
1074 }
1075 
1076 enum {
1077 	REREAD_BIB_ERROR,
1078 	REREAD_BIB_GONE,
1079 	REREAD_BIB_UNCHANGED,
1080 	REREAD_BIB_CHANGED,
1081 };
1082 
1083 /* Reread and compare bus info block and header of root directory */
reread_config_rom(struct fw_device * device,int generation)1084 static int reread_config_rom(struct fw_device *device, int generation)
1085 {
1086 	u32 q;
1087 	int i;
1088 
1089 	for (i = 0; i < 6; i++) {
1090 		if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1091 			return REREAD_BIB_ERROR;
1092 
1093 		if (i == 0 && q == 0)
1094 			return REREAD_BIB_GONE;
1095 
1096 		if (q != device->config_rom[i])
1097 			return REREAD_BIB_CHANGED;
1098 	}
1099 
1100 	return REREAD_BIB_UNCHANGED;
1101 }
1102 
fw_device_refresh(struct work_struct * work)1103 static void fw_device_refresh(struct work_struct *work)
1104 {
1105 	struct fw_device *device =
1106 		container_of(work, struct fw_device, work.work);
1107 	struct fw_card *card = device->card;
1108 	int node_id = device->node_id;
1109 
1110 	switch (reread_config_rom(device, device->generation)) {
1111 	case REREAD_BIB_ERROR:
1112 		if (device->config_rom_retries < MAX_RETRIES / 2 &&
1113 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1114 			device->config_rom_retries++;
1115 			fw_schedule_device_work(device, RETRY_DELAY / 2);
1116 
1117 			return;
1118 		}
1119 		goto give_up;
1120 
1121 	case REREAD_BIB_GONE:
1122 		goto gone;
1123 
1124 	case REREAD_BIB_UNCHANGED:
1125 		if (atomic_cmpxchg(&device->state,
1126 				   FW_DEVICE_INITIALIZING,
1127 				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1128 			goto gone;
1129 
1130 		fw_device_update(work);
1131 		device->config_rom_retries = 0;
1132 		goto out;
1133 
1134 	case REREAD_BIB_CHANGED:
1135 		break;
1136 	}
1137 
1138 	/*
1139 	 * Something changed.  We keep things simple and don't investigate
1140 	 * further.  We just destroy all previous units and create new ones.
1141 	 */
1142 	device_for_each_child(&device->device, NULL, shutdown_unit);
1143 
1144 	if (read_config_rom(device, device->generation) < 0) {
1145 		if (device->config_rom_retries < MAX_RETRIES &&
1146 		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1147 			device->config_rom_retries++;
1148 			fw_schedule_device_work(device, RETRY_DELAY);
1149 
1150 			return;
1151 		}
1152 		goto give_up;
1153 	}
1154 
1155 	fw_device_cdev_update(device);
1156 	create_units(device);
1157 
1158 	/* Userspace may want to re-read attributes. */
1159 	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1160 
1161 	if (atomic_cmpxchg(&device->state,
1162 			   FW_DEVICE_INITIALIZING,
1163 			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1164 		goto gone;
1165 
1166 	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1167 	device->config_rom_retries = 0;
1168 	goto out;
1169 
1170  give_up:
1171 	fw_notice(card, "giving up on refresh of device %s\n",
1172 		  dev_name(&device->device));
1173  gone:
1174 	atomic_set(&device->state, FW_DEVICE_GONE);
1175 	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1176 	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1177  out:
1178 	if (node_id == card->root_node->node_id)
1179 		fw_schedule_bm_work(card, 0);
1180 }
1181 
fw_node_event(struct fw_card * card,struct fw_node * node,int event)1182 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1183 {
1184 	struct fw_device *device;
1185 
1186 	switch (event) {
1187 	case FW_NODE_CREATED:
1188 		/*
1189 		 * Attempt to scan the node, regardless whether its self ID has
1190 		 * the L (link active) flag set or not.  Some broken devices
1191 		 * send L=0 but have an up-and-running link; others send L=1
1192 		 * without actually having a link.
1193 		 */
1194  create:
1195 		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1196 		if (device == NULL)
1197 			break;
1198 
1199 		/*
1200 		 * Do minimal intialization of the device here, the
1201 		 * rest will happen in fw_device_init().
1202 		 *
1203 		 * Attention:  A lot of things, even fw_device_get(),
1204 		 * cannot be done before fw_device_init() finished!
1205 		 * You can basically just check device->state and
1206 		 * schedule work until then, but only while holding
1207 		 * card->lock.
1208 		 */
1209 		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1210 		device->card = fw_card_get(card);
1211 		device->node = fw_node_get(node);
1212 		device->node_id = node->node_id;
1213 		device->generation = card->generation;
1214 		device->is_local = node == card->local_node;
1215 		mutex_init(&device->client_list_mutex);
1216 		INIT_LIST_HEAD(&device->client_list);
1217 
1218 		/*
1219 		 * Set the node data to point back to this device so
1220 		 * FW_NODE_UPDATED callbacks can update the node_id
1221 		 * and generation for the device.
1222 		 */
1223 		node->data = device;
1224 
1225 		/*
1226 		 * Many devices are slow to respond after bus resets,
1227 		 * especially if they are bus powered and go through
1228 		 * power-up after getting plugged in.  We schedule the
1229 		 * first config rom scan half a second after bus reset.
1230 		 */
1231 		INIT_DELAYED_WORK(&device->work, fw_device_init);
1232 		fw_schedule_device_work(device, INITIAL_DELAY);
1233 		break;
1234 
1235 	case FW_NODE_INITIATED_RESET:
1236 	case FW_NODE_LINK_ON:
1237 		device = node->data;
1238 		if (device == NULL)
1239 			goto create;
1240 
1241 		device->node_id = node->node_id;
1242 		smp_wmb();  /* update node_id before generation */
1243 		device->generation = card->generation;
1244 		if (atomic_cmpxchg(&device->state,
1245 			    FW_DEVICE_RUNNING,
1246 			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1247 			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1248 			fw_schedule_device_work(device,
1249 				device->is_local ? 0 : INITIAL_DELAY);
1250 		}
1251 		break;
1252 
1253 	case FW_NODE_UPDATED:
1254 		device = node->data;
1255 		if (device == NULL)
1256 			break;
1257 
1258 		device->node_id = node->node_id;
1259 		smp_wmb();  /* update node_id before generation */
1260 		device->generation = card->generation;
1261 		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1262 			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1263 			fw_schedule_device_work(device, 0);
1264 		}
1265 		break;
1266 
1267 	case FW_NODE_DESTROYED:
1268 	case FW_NODE_LINK_OFF:
1269 		if (!node->data)
1270 			break;
1271 
1272 		/*
1273 		 * Destroy the device associated with the node.  There
1274 		 * are two cases here: either the device is fully
1275 		 * initialized (FW_DEVICE_RUNNING) or we're in the
1276 		 * process of reading its config rom
1277 		 * (FW_DEVICE_INITIALIZING).  If it is fully
1278 		 * initialized we can reuse device->work to schedule a
1279 		 * full fw_device_shutdown().  If not, there's work
1280 		 * scheduled to read it's config rom, and we just put
1281 		 * the device in shutdown state to have that code fail
1282 		 * to create the device.
1283 		 */
1284 		device = node->data;
1285 		if (atomic_xchg(&device->state,
1286 				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1287 			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1288 			fw_schedule_device_work(device,
1289 				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1290 		}
1291 		break;
1292 	}
1293 }
1294