• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Firmware uploader
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38  *  - Initial implementation
39  *
40  *
41  * THE PROCEDURE
42  *
43  * The 2400m and derived devices work in two modes: boot-mode or
44  * normal mode. In boot mode we can execute only a handful of commands
45  * targeted at uploading the firmware and launching it.
46  *
47  * The 2400m enters boot mode when it is first connected to the
48  * system, when it crashes and when you ask it to reboot. There are
49  * two submodes of the boot mode: signed and non-signed. Signed takes
50  * firmwares signed with a certain private key, non-signed takes any
51  * firmware. Normal hardware takes only signed firmware.
52  *
53  * On boot mode, in USB, we write to the device using the bulk out
54  * endpoint and read from it in the notification endpoint. In SDIO we
55  * talk to it via the write address and read from the read address.
56  *
57  * Upon entrance to boot mode, the device sends (preceded with a few
58  * zero length packets (ZLPs) on the notification endpoint in USB) a
59  * reboot barker (4 le32 words with the same value). We ack it by
60  * sending the same barker to the device. The device acks with a
61  * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62  * then is fully booted. At this point we can upload the firmware.
63  *
64  * Note that different iterations of the device and EEPROM
65  * configurations will send different [re]boot barkers; these are
66  * collected in i2400m_barker_db along with the firmware
67  * characteristics they require.
68  *
69  * This process is accomplished by the i2400m_bootrom_init()
70  * function. All the device interaction happens through the
71  * i2400m_bm_cmd() [boot mode command]. Special return values will
72  * indicate if the device did reset during the process.
73  *
74  * After this, we read the MAC address and then (if needed)
75  * reinitialize the device. We need to read it ahead of time because
76  * in the future, we might not upload the firmware until userspace
77  * 'ifconfig up's the device.
78  *
79  * We can then upload the firmware file. The file is composed of a BCF
80  * header (basic data, keys and signatures) and a list of write
81  * commands and payloads. Optionally more BCF headers might follow the
82  * main payload. We first upload the header [i2400m_dnload_init()] and
83  * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84  * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85  * the new firmware [i2400m_dnload_finalize()].
86  *
87  * Once firmware is uploaded, we are good to go :)
88  *
89  * When we don't know in which mode we are, we first try by sending a
90  * warm reset request that will take us to boot-mode. If we time out
91  * waiting for a reboot barker, that means maybe we are already in
92  * boot mode, so we send a reboot barker.
93  *
94  * COMMAND EXECUTION
95  *
96  * This code (and process) is single threaded; for executing commands,
97  * we post a URB to the notification endpoint, post the command, wait
98  * for data on the notification buffer. We don't need to worry about
99  * others as we know we are the only ones in there.
100  *
101  * BACKEND IMPLEMENTATION
102  *
103  * This code is bus-generic; the bus-specific driver provides back end
104  * implementations to send a boot mode command to the device and to
105  * read an acknolwedgement from it (or an asynchronous notification)
106  * from it.
107  *
108  * FIRMWARE LOADING
109  *
110  * Note that in some cases, we can't just load a firmware file (for
111  * example, when resuming). For that, we might cache the firmware
112  * file. Thus, when doing the bootstrap, if there is a cache firmware
113  * file, it is used; if not, loading from disk is attempted.
114  *
115  * ROADMAP
116  *
117  * i2400m_barker_db_init              Called by i2400m_driver_init()
118  *   i2400m_barker_db_add
119  *
120  * i2400m_barker_db_exit              Called by i2400m_driver_exit()
121  *
122  * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
123  *   request_firmware
124  *   i2400m_fw_bootstrap
125  *     i2400m_fw_check
126  *       i2400m_fw_hdr_check
127  *     i2400m_fw_dnload
128  *   release_firmware
129  *
130  * i2400m_fw_dnload
131  *   i2400m_bootrom_init
132  *     i2400m_bm_cmd
133  *     i2400m_reset
134  *   i2400m_dnload_init
135  *     i2400m_dnload_init_signed
136  *     i2400m_dnload_init_nonsigned
137  *       i2400m_download_chunk
138  *         i2400m_bm_cmd
139  *   i2400m_dnload_bcf
140  *     i2400m_bm_cmd
141  *   i2400m_dnload_finalize
142  *     i2400m_bm_cmd
143  *
144  * i2400m_bm_cmd
145  *   i2400m->bus_bm_cmd_send()
146  *   i2400m->bus_bm_wait_for_ack
147  *   __i2400m_bm_ack_verify
148  *     i2400m_is_boot_barker
149  *
150  * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
151  *                                    commands before sending
152  *
153  * i2400m_pm_notifier                 Called on Power Management events
154  *   i2400m_fw_cache
155  *   i2400m_fw_uncache
156  */
157 #include <linux/firmware.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/usb.h>
161 #include <linux/export.h>
162 #include "i2400m.h"
163 
164 
165 #define D_SUBMODULE fw
166 #include "debug-levels.h"
167 
168 
169 static const __le32 i2400m_ACK_BARKER[4] = {
170 	cpu_to_le32(I2400M_ACK_BARKER),
171 	cpu_to_le32(I2400M_ACK_BARKER),
172 	cpu_to_le32(I2400M_ACK_BARKER),
173 	cpu_to_le32(I2400M_ACK_BARKER)
174 };
175 
176 
177 /**
178  * Prepare a boot-mode command for delivery
179  *
180  * @cmd: pointer to bootrom header to prepare
181  *
182  * Computes checksum if so needed. After calling this function, DO NOT
183  * modify the command or header as the checksum won't work anymore.
184  *
185  * We do it from here because some times we cannot do it in the
186  * original context the command was sent (it is a const), so when we
187  * copy it to our staging buffer, we add the checksum there.
188  */
i2400m_bm_cmd_prepare(struct i2400m_bootrom_header * cmd)189 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
190 {
191 	if (i2400m_brh_get_use_checksum(cmd)) {
192 		int i;
193 		u32 checksum = 0;
194 		const u32 *checksum_ptr = (void *) cmd->payload;
195 		for (i = 0; i < cmd->data_size / 4; i++)
196 			checksum += cpu_to_le32(*checksum_ptr++);
197 		checksum += cmd->command + cmd->target_addr + cmd->data_size;
198 		cmd->block_checksum = cpu_to_le32(checksum);
199 	}
200 }
201 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
202 
203 
204 /*
205  * Database of known barkers.
206  *
207  * A barker is what the device sends indicating he is ready to be
208  * bootloaded. Different versions of the device will send different
209  * barkers. Depending on the barker, it might mean the device wants
210  * some kind of firmware or the other.
211  */
212 static struct i2400m_barker_db {
213 	__le32 data[4];
214 } *i2400m_barker_db;
215 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
216 
217 
218 static
i2400m_zrealloc_2x(void ** ptr,size_t * _count,size_t el_size,gfp_t gfp_flags)219 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
220 		       gfp_t gfp_flags)
221 {
222 	size_t old_count = *_count,
223 		new_count = old_count ? 2 * old_count : 2,
224 		old_size = el_size * old_count,
225 		new_size = el_size * new_count;
226 	void *nptr = krealloc(*ptr, new_size, gfp_flags);
227 	if (nptr) {
228 		/* zero the other half or the whole thing if old_count
229 		 * was zero */
230 		if (old_size == 0)
231 			memset(nptr, 0, new_size);
232 		else
233 			memset(nptr + old_size, 0, old_size);
234 		*_count = new_count;
235 		*ptr = nptr;
236 		return 0;
237 	} else
238 		return -ENOMEM;
239 }
240 
241 
242 /*
243  * Add a barker to the database
244  *
245  * This cannot used outside of this module and only at at module_init
246  * time. This is to avoid the need to do locking.
247  */
248 static
i2400m_barker_db_add(u32 barker_id)249 int i2400m_barker_db_add(u32 barker_id)
250 {
251 	int result;
252 
253 	struct i2400m_barker_db *barker;
254 	if (i2400m_barker_db_used >= i2400m_barker_db_size) {
255 		result = i2400m_zrealloc_2x(
256 			(void **) &i2400m_barker_db, &i2400m_barker_db_size,
257 			sizeof(i2400m_barker_db[0]), GFP_KERNEL);
258 		if (result < 0)
259 			return result;
260 	}
261 	barker = i2400m_barker_db + i2400m_barker_db_used++;
262 	barker->data[0] = le32_to_cpu(barker_id);
263 	barker->data[1] = le32_to_cpu(barker_id);
264 	barker->data[2] = le32_to_cpu(barker_id);
265 	barker->data[3] = le32_to_cpu(barker_id);
266 	return 0;
267 }
268 
269 
i2400m_barker_db_exit(void)270 void i2400m_barker_db_exit(void)
271 {
272 	kfree(i2400m_barker_db);
273 	i2400m_barker_db = NULL;
274 	i2400m_barker_db_size = 0;
275 	i2400m_barker_db_used = 0;
276 }
277 
278 
279 /*
280  * Helper function to add all the known stable barkers to the barker
281  * database.
282  */
283 static
i2400m_barker_db_known_barkers(void)284 int i2400m_barker_db_known_barkers(void)
285 {
286 	int result;
287 
288 	result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
289 	if (result < 0)
290 		goto error_add;
291 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
292 	if (result < 0)
293 		goto error_add;
294 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
295 	if (result < 0)
296 		goto error_add;
297 error_add:
298        return result;
299 }
300 
301 
302 /*
303  * Initialize the barker database
304  *
305  * This can only be used from the module_init function for this
306  * module; this is to avoid the need to do locking.
307  *
308  * @options: command line argument with extra barkers to
309  *     recognize. This is a comma-separated list of 32-bit hex
310  *     numbers. They are appended to the existing list. Setting 0
311  *     cleans the existing list and starts a new one.
312  */
i2400m_barker_db_init(const char * _options)313 int i2400m_barker_db_init(const char *_options)
314 {
315 	int result;
316 	char *options = NULL, *options_orig, *token;
317 
318 	i2400m_barker_db = NULL;
319 	i2400m_barker_db_size = 0;
320 	i2400m_barker_db_used = 0;
321 
322 	result = i2400m_barker_db_known_barkers();
323 	if (result < 0)
324 		goto error_add;
325 	/* parse command line options from i2400m.barkers */
326 	if (_options != NULL) {
327 		unsigned barker;
328 
329 		options_orig = kstrdup(_options, GFP_KERNEL);
330 		if (options_orig == NULL)
331 			goto error_parse;
332 		options = options_orig;
333 
334 		while ((token = strsep(&options, ",")) != NULL) {
335 			if (*token == '\0')	/* eat joint commas */
336 				continue;
337 			if (sscanf(token, "%x", &barker) != 1
338 			    || barker > 0xffffffff) {
339 				printk(KERN_ERR "%s: can't recognize "
340 				       "i2400m.barkers value '%s' as "
341 				       "a 32-bit number\n",
342 				       __func__, token);
343 				result = -EINVAL;
344 				goto error_parse;
345 			}
346 			if (barker == 0) {
347 				/* clean list and start new */
348 				i2400m_barker_db_exit();
349 				continue;
350 			}
351 			result = i2400m_barker_db_add(barker);
352 			if (result < 0)
353 				goto error_add;
354 		}
355 		kfree(options_orig);
356 	}
357 	return 0;
358 
359 error_parse:
360 error_add:
361 	kfree(i2400m_barker_db);
362 	return result;
363 }
364 
365 
366 /*
367  * Recognize a boot barker
368  *
369  * @buf: buffer where the boot barker.
370  * @buf_size: size of the buffer (has to be 16 bytes). It is passed
371  *     here so the function can check it for the caller.
372  *
373  * Note that as a side effect, upon identifying the obtained boot
374  * barker, this function will set i2400m->barker to point to the right
375  * barker database entry. Subsequent calls to the function will result
376  * in verifying that the same type of boot barker is returned when the
377  * device [re]boots (as long as the same device instance is used).
378  *
379  * Return: 0 if @buf matches a known boot barker. -ENOENT if the
380  *     buffer in @buf doesn't match any boot barker in the database or
381  *     -EILSEQ if the buffer doesn't have the right size.
382  */
i2400m_is_boot_barker(struct i2400m * i2400m,const void * buf,size_t buf_size)383 int i2400m_is_boot_barker(struct i2400m *i2400m,
384 			  const void *buf, size_t buf_size)
385 {
386 	int result;
387 	struct device *dev = i2400m_dev(i2400m);
388 	struct i2400m_barker_db *barker;
389 	int i;
390 
391 	result = -ENOENT;
392 	if (buf_size != sizeof(i2400m_barker_db[i].data))
393 		return result;
394 
395 	/* Short circuit if we have already discovered the barker
396 	 * associated with the device. */
397 	if (i2400m->barker
398 	    && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
399 		unsigned index = (i2400m->barker - i2400m_barker_db)
400 			/ sizeof(*i2400m->barker);
401 		d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
402 			 index, le32_to_cpu(i2400m->barker->data[0]));
403 		return 0;
404 	}
405 
406 	for (i = 0; i < i2400m_barker_db_used; i++) {
407 		barker = &i2400m_barker_db[i];
408 		BUILD_BUG_ON(sizeof(barker->data) != 16);
409 		if (memcmp(buf, barker->data, sizeof(barker->data)))
410 			continue;
411 
412 		if (i2400m->barker == NULL) {
413 			i2400m->barker = barker;
414 			d_printf(1, dev, "boot barker set to #%u/%08x\n",
415 				 i, le32_to_cpu(barker->data[0]));
416 			if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
417 				i2400m->sboot = 0;
418 			else
419 				i2400m->sboot = 1;
420 		} else if (i2400m->barker != barker) {
421 			dev_err(dev, "HW inconsistency: device "
422 				"reports a different boot barker "
423 				"than set (from %08x to %08x)\n",
424 				le32_to_cpu(i2400m->barker->data[0]),
425 				le32_to_cpu(barker->data[0]));
426 			result = -EIO;
427 		} else
428 			d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
429 				 i, le32_to_cpu(barker->data[0]));
430 		result = 0;
431 		break;
432 	}
433 	return result;
434 }
435 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
436 
437 
438 /*
439  * Verify the ack data received
440  *
441  * Given a reply to a boot mode command, chew it and verify everything
442  * is ok.
443  *
444  * @opcode: opcode which generated this ack. For error messages.
445  * @ack: pointer to ack data we received
446  * @ack_size: size of that data buffer
447  * @flags: I2400M_BM_CMD_* flags we called the command with.
448  *
449  * Way too long function -- maybe it should be further split
450  */
451 static
__i2400m_bm_ack_verify(struct i2400m * i2400m,int opcode,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)452 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
453 			       struct i2400m_bootrom_header *ack,
454 			       size_t ack_size, int flags)
455 {
456 	ssize_t result = -ENOMEM;
457 	struct device *dev = i2400m_dev(i2400m);
458 
459 	d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
460 		  i2400m, opcode, ack, ack_size);
461 	if (ack_size < sizeof(*ack)) {
462 		result = -EIO;
463 		dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
464 			"return enough data (%zu bytes vs %zu expected)\n",
465 			opcode, ack_size, sizeof(*ack));
466 		goto error_ack_short;
467 	}
468 	result = i2400m_is_boot_barker(i2400m, ack, ack_size);
469 	if (result >= 0) {
470 		result = -ERESTARTSYS;
471 		d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
472 		goto error_reboot;
473 	}
474 	if (ack_size == sizeof(i2400m_ACK_BARKER)
475 		 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
476 		result = -EISCONN;
477 		d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
478 			 opcode);
479 		goto error_reboot_ack;
480 	}
481 	result = 0;
482 	if (flags & I2400M_BM_CMD_RAW)
483 		goto out_raw;
484 	ack->data_size = le32_to_cpu(ack->data_size);
485 	ack->target_addr = le32_to_cpu(ack->target_addr);
486 	ack->block_checksum = le32_to_cpu(ack->block_checksum);
487 	d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
488 		 "response %u csum %u rr %u da %u\n",
489 		 opcode, i2400m_brh_get_opcode(ack),
490 		 i2400m_brh_get_response(ack),
491 		 i2400m_brh_get_use_checksum(ack),
492 		 i2400m_brh_get_response_required(ack),
493 		 i2400m_brh_get_direct_access(ack));
494 	result = -EIO;
495 	if (i2400m_brh_get_signature(ack) != 0xcbbc) {
496 		dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
497 			"0x%04x\n", opcode, i2400m_brh_get_signature(ack));
498 		goto error_ack_signature;
499 	}
500 	if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
501 		dev_err(dev, "boot-mode cmd %d: HW BUG? "
502 			"received response for opcode %u, expected %u\n",
503 			opcode, i2400m_brh_get_opcode(ack), opcode);
504 		goto error_ack_opcode;
505 	}
506 	if (i2400m_brh_get_response(ack) != 0) {	/* failed? */
507 		dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
508 			opcode, i2400m_brh_get_response(ack));
509 		goto error_ack_failed;
510 	}
511 	if (ack_size < ack->data_size + sizeof(*ack)) {
512 		dev_err(dev, "boot-mode cmd %d: SW BUG "
513 			"driver provided only %zu bytes for %zu bytes "
514 			"of data\n", opcode, ack_size,
515 			(size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
516 		goto error_ack_short_buffer;
517 	}
518 	result = ack_size;
519 	/* Don't you love this stack of empty targets? Well, I don't
520 	 * either, but it helps track exactly who comes in here and
521 	 * why :) */
522 error_ack_short_buffer:
523 error_ack_failed:
524 error_ack_opcode:
525 error_ack_signature:
526 out_raw:
527 error_reboot_ack:
528 error_reboot:
529 error_ack_short:
530 	d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
531 		i2400m, opcode, ack, ack_size, (int) result);
532 	return result;
533 }
534 
535 
536 /**
537  * i2400m_bm_cmd - Execute a boot mode command
538  *
539  * @cmd: buffer containing the command data (pointing at the header).
540  *     This data can be ANYWHERE (for USB, we will copy it to an
541  *     specific buffer). Make sure everything is in proper little
542  *     endian.
543  *
544  *     A raw buffer can be also sent, just cast it and set flags to
545  *     I2400M_BM_CMD_RAW.
546  *
547  *     This function will generate a checksum for you if the
548  *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
549  *     is set).
550  *
551  *     You can use the i2400m->bm_cmd_buf to stage your commands and
552  *     send them.
553  *
554  *     If NULL, no command is sent (we just wait for an ack).
555  *
556  * @cmd_size: size of the command. Will be auto padded to the
557  *     bus-specific drivers padding requirements.
558  *
559  * @ack: buffer where to place the acknowledgement. If it is a regular
560  *     command response, all fields will be returned with the right,
561  *     native endianess.
562  *
563  *     You *cannot* use i2400m->bm_ack_buf for this buffer.
564  *
565  * @ack_size: size of @ack, 16 aligned; you need to provide at least
566  *     sizeof(*ack) bytes and then enough to contain the return data
567  *     from the command
568  *
569  * @flags: see I2400M_BM_CMD_* above.
570  *
571  * @returns: bytes received by the notification; if < 0, an errno code
572  *     denoting an error or:
573  *
574  *     -ERESTARTSYS  The device has rebooted
575  *
576  * Executes a boot-mode command and waits for a response, doing basic
577  * validation on it; if a zero length response is received, it retries
578  * waiting for a response until a non-zero one is received (timing out
579  * after %I2400M_BOOT_RETRIES retries).
580  */
581 static
i2400m_bm_cmd(struct i2400m * i2400m,const struct i2400m_bootrom_header * cmd,size_t cmd_size,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)582 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
583 		      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
584 		      struct i2400m_bootrom_header *ack, size_t ack_size,
585 		      int flags)
586 {
587 	ssize_t result = -ENOMEM, rx_bytes;
588 	struct device *dev = i2400m_dev(i2400m);
589 	int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
590 
591 	d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
592 		  i2400m, cmd, cmd_size, ack, ack_size);
593 	BUG_ON(ack_size < sizeof(*ack));
594 	BUG_ON(i2400m->boot_mode == 0);
595 
596 	if (cmd != NULL) {		/* send the command */
597 		result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
598 		if (result < 0)
599 			goto error_cmd_send;
600 		if ((flags & I2400M_BM_CMD_RAW) == 0)
601 			d_printf(5, dev,
602 				 "boot-mode cmd %d csum %u rr %u da %u: "
603 				 "addr 0x%04x size %u block csum 0x%04x\n",
604 				 opcode, i2400m_brh_get_use_checksum(cmd),
605 				 i2400m_brh_get_response_required(cmd),
606 				 i2400m_brh_get_direct_access(cmd),
607 				 cmd->target_addr, cmd->data_size,
608 				 cmd->block_checksum);
609 	}
610 	result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
611 	if (result < 0) {
612 		dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
613 			opcode, (int) result);	/* bah, %zd doesn't work */
614 		goto error_wait_for_ack;
615 	}
616 	rx_bytes = result;
617 	/* verify the ack and read more if necessary [result is the
618 	 * final amount of bytes we get in the ack]  */
619 	result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
620 	if (result < 0)
621 		goto error_bad_ack;
622 	/* Don't you love this stack of empty targets? Well, I don't
623 	 * either, but it helps track exactly who comes in here and
624 	 * why :) */
625 	result = rx_bytes;
626 error_bad_ack:
627 error_wait_for_ack:
628 error_cmd_send:
629 	d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
630 		i2400m, cmd, cmd_size, ack, ack_size, (int) result);
631 	return result;
632 }
633 
634 
635 /**
636  * i2400m_download_chunk - write a single chunk of data to the device's memory
637  *
638  * @i2400m: device descriptor
639  * @buf: the buffer to write
640  * @buf_len: length of the buffer to write
641  * @addr: address in the device memory space
642  * @direct: bootrom write mode
643  * @do_csum: should a checksum validation be performed
644  */
i2400m_download_chunk(struct i2400m * i2400m,const void * chunk,size_t __chunk_len,unsigned long addr,unsigned int direct,unsigned int do_csum)645 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
646 				 size_t __chunk_len, unsigned long addr,
647 				 unsigned int direct, unsigned int do_csum)
648 {
649 	int ret;
650 	size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
651 	struct device *dev = i2400m_dev(i2400m);
652 	struct {
653 		struct i2400m_bootrom_header cmd;
654 		u8 cmd_payload[chunk_len];
655 	} __packed *buf;
656 	struct i2400m_bootrom_header ack;
657 
658 	d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
659 		  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
660 		  addr, direct, do_csum);
661 	buf = i2400m->bm_cmd_buf;
662 	memcpy(buf->cmd_payload, chunk, __chunk_len);
663 	memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
664 
665 	buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
666 					      __chunk_len & 0x3 ? 0 : do_csum,
667 					      __chunk_len & 0xf ? 0 : direct);
668 	buf->cmd.target_addr = cpu_to_le32(addr);
669 	buf->cmd.data_size = cpu_to_le32(__chunk_len);
670 	ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
671 			    &ack, sizeof(ack), 0);
672 	if (ret >= 0)
673 		ret = 0;
674 	d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
675 		"direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
676 		addr, direct, do_csum, ret);
677 	return ret;
678 }
679 
680 
681 /*
682  * Download a BCF file's sections to the device
683  *
684  * @i2400m: device descriptor
685  * @bcf: pointer to firmware data (first header followed by the
686  *     payloads). Assumed verified and consistent.
687  * @bcf_len: length (in bytes) of the @bcf buffer.
688  *
689  * Returns: < 0 errno code on error or the offset to the jump instruction.
690  *
691  * Given a BCF file, downloads each section (a command and a payload)
692  * to the device's address space. Actually, it just executes each
693  * command i the BCF file.
694  *
695  * The section size has to be aligned to 4 bytes AND the padding has
696  * to be taken from the firmware file, as the signature takes it into
697  * account.
698  */
699 static
i2400m_dnload_bcf(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t bcf_len)700 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
701 			  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
702 {
703 	ssize_t ret;
704 	struct device *dev = i2400m_dev(i2400m);
705 	size_t offset,		/* iterator offset */
706 		data_size,	/* Size of the data payload */
707 		section_size,	/* Size of the whole section (cmd + payload) */
708 		section = 1;
709 	const struct i2400m_bootrom_header *bh;
710 	struct i2400m_bootrom_header ack;
711 
712 	d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
713 		  i2400m, bcf, bcf_len);
714 	/* Iterate over the command blocks in the BCF file that start
715 	 * after the header */
716 	offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
717 	while (1) {	/* start sending the file */
718 		bh = (void *) bcf + offset;
719 		data_size = le32_to_cpu(bh->data_size);
720 		section_size = ALIGN(sizeof(*bh) + data_size, 4);
721 		d_printf(7, dev,
722 			 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
723 			 section, offset, sizeof(*bh) + data_size,
724 			 le32_to_cpu(bh->target_addr));
725 		/*
726 		 * We look for JUMP cmd from the bootmode header,
727 		 * either I2400M_BRH_SIGNED_JUMP for secure boot
728 		 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
729 		 * should be the bootmode header with JUMP cmd.
730 		 */
731 		if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
732 			i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
733 			d_printf(5, dev,  "jump found @%zu\n", offset);
734 			break;
735 		}
736 		if (offset + section_size > bcf_len) {
737 			dev_err(dev, "fw %s: bad section #%zu, "
738 				"end (@%zu) beyond EOF (@%zu)\n",
739 				i2400m->fw_name, section,
740 				offset + section_size,  bcf_len);
741 			ret = -EINVAL;
742 			goto error_section_beyond_eof;
743 		}
744 		__i2400m_msleep(20);
745 		ret = i2400m_bm_cmd(i2400m, bh, section_size,
746 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
747 		if (ret < 0) {
748 			dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
749 				"failed %d\n", i2400m->fw_name, section,
750 				offset, sizeof(*bh) + data_size, (int) ret);
751 			goto error_send;
752 		}
753 		offset += section_size;
754 		section++;
755 	}
756 	ret = offset;
757 error_section_beyond_eof:
758 error_send:
759 	d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
760 		i2400m, bcf, bcf_len, (int) ret);
761 	return ret;
762 }
763 
764 
765 /*
766  * Indicate if the device emitted a reboot barker that indicates
767  * "signed boot"
768  */
769 static
i2400m_boot_is_signed(struct i2400m * i2400m)770 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
771 {
772 	return likely(i2400m->sboot);
773 }
774 
775 
776 /*
777  * Do the final steps of uploading firmware
778  *
779  * @bcf_hdr: BCF header we are actually using
780  * @bcf: pointer to the firmware image (which matches the first header
781  *     that is followed by the actual payloads).
782  * @offset: [byte] offset into @bcf for the command we need to send.
783  *
784  * Depending on the boot mode (signed vs non-signed), different
785  * actions need to be taken.
786  */
787 static
i2400m_dnload_finalize(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,const struct i2400m_bcf_hdr * bcf,size_t offset)788 int i2400m_dnload_finalize(struct i2400m *i2400m,
789 			   const struct i2400m_bcf_hdr *bcf_hdr,
790 			   const struct i2400m_bcf_hdr *bcf, size_t offset)
791 {
792 	int ret = 0;
793 	struct device *dev = i2400m_dev(i2400m);
794 	struct i2400m_bootrom_header *cmd, ack;
795 	struct {
796 		struct i2400m_bootrom_header cmd;
797 		u8 cmd_pl[0];
798 	} __packed *cmd_buf;
799 	size_t signature_block_offset, signature_block_size;
800 
801 	d_fnstart(3, dev, "offset %zu\n", offset);
802 	cmd = (void *) bcf + offset;
803 	if (i2400m_boot_is_signed(i2400m) == 0) {
804 		struct i2400m_bootrom_header jump_ack;
805 		d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
806 			le32_to_cpu(cmd->target_addr));
807 		cmd_buf = i2400m->bm_cmd_buf;
808 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
809 		cmd = &cmd_buf->cmd;
810 		/* now cmd points to the actual bootrom_header in cmd_buf */
811 		i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
812 		cmd->data_size = 0;
813 		ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
814 				    &jump_ack, sizeof(jump_ack), 0);
815 	} else {
816 		d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
817 			 le32_to_cpu(cmd->target_addr));
818 		cmd_buf = i2400m->bm_cmd_buf;
819 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
820 		signature_block_offset =
821 			sizeof(*bcf_hdr)
822 			+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
823 			+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
824 		signature_block_size =
825 			le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
826 		memcpy(cmd_buf->cmd_pl,
827 		       (void *) bcf_hdr + signature_block_offset,
828 		       signature_block_size);
829 		ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
830 				    sizeof(cmd_buf->cmd) + signature_block_size,
831 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
832 	}
833 	d_fnend(3, dev, "returning %d\n", ret);
834 	return ret;
835 }
836 
837 
838 /**
839  * i2400m_bootrom_init - Reboots a powered device into boot mode
840  *
841  * @i2400m: device descriptor
842  * @flags:
843  *      I2400M_BRI_SOFT: a reboot barker has been seen
844  *          already, so don't wait for it.
845  *
846  *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
847  *          for a reboot barker notification. This is a one shot; if
848  *          the state machine needs to send a reboot command it will.
849  *
850  * Returns:
851  *
852  *     < 0 errno code on error, 0 if ok.
853  *
854  * Description:
855  *
856  * Tries hard enough to put the device in boot-mode. There are two
857  * main phases to this:
858  *
859  * a. (1) send a reboot command and (2) get a reboot barker
860  *
861  * b. (1) echo/ack the reboot sending the reboot barker back and (2)
862  *        getting an ack barker in return
863  *
864  * We want to skip (a) in some cases [soft]. The state machine is
865  * horrible, but it is basically: on each phase, send what has to be
866  * sent (if any), wait for the answer and act on the answer. We might
867  * have to backtrack and retry, so we keep a max tries counter for
868  * that.
869  *
870  * It sucks because we don't know ahead of time which is going to be
871  * the reboot barker (the device might send different ones depending
872  * on its EEPROM config) and once the device reboots and waits for the
873  * echo/ack reboot barker being sent back, it doesn't understand
874  * anything else. So we can be left at the point where we don't know
875  * what to send to it -- cold reset and bus reset seem to have little
876  * effect. So the function iterates (in this case) through all the
877  * known barkers and tries them all until an ACK is
878  * received. Otherwise, it gives up.
879  *
880  * If we get a timeout after sending a warm reset, we do it again.
881  */
i2400m_bootrom_init(struct i2400m * i2400m,enum i2400m_bri flags)882 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
883 {
884 	int result;
885 	struct device *dev = i2400m_dev(i2400m);
886 	struct i2400m_bootrom_header *cmd;
887 	struct i2400m_bootrom_header ack;
888 	int count = i2400m->bus_bm_retries;
889 	int ack_timeout_cnt = 1;
890 	unsigned i;
891 
892 	BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
893 	BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
894 
895 	d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
896 	result = -ENOMEM;
897 	cmd = i2400m->bm_cmd_buf;
898 	if (flags & I2400M_BRI_SOFT)
899 		goto do_reboot_ack;
900 do_reboot:
901 	ack_timeout_cnt = 1;
902 	if (--count < 0)
903 		goto error_timeout;
904 	d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
905 		 count);
906 	if ((flags & I2400M_BRI_NO_REBOOT) == 0)
907 		i2400m_reset(i2400m, I2400M_RT_WARM);
908 	result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
909 			       I2400M_BM_CMD_RAW);
910 	flags &= ~I2400M_BRI_NO_REBOOT;
911 	switch (result) {
912 	case -ERESTARTSYS:
913 		/*
914 		 * at this point, i2400m_bm_cmd(), through
915 		 * __i2400m_bm_ack_process(), has updated
916 		 * i2400m->barker and we are good to go.
917 		 */
918 		d_printf(4, dev, "device reboot: got reboot barker\n");
919 		break;
920 	case -EISCONN:	/* we don't know how it got here...but we follow it */
921 		d_printf(4, dev, "device reboot: got ack barker - whatever\n");
922 		goto do_reboot;
923 	case -ETIMEDOUT:
924 		/*
925 		 * Device has timed out, we might be in boot mode
926 		 * already and expecting an ack; if we don't know what
927 		 * the barker is, we just send them all. Cold reset
928 		 * and bus reset don't work. Beats me.
929 		 */
930 		if (i2400m->barker != NULL) {
931 			dev_err(dev, "device boot: reboot barker timed out, "
932 				"trying (set) %08x echo/ack\n",
933 				le32_to_cpu(i2400m->barker->data[0]));
934 			goto do_reboot_ack;
935 		}
936 		for (i = 0; i < i2400m_barker_db_used; i++) {
937 			struct i2400m_barker_db *barker = &i2400m_barker_db[i];
938 			memcpy(cmd, barker->data, sizeof(barker->data));
939 			result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
940 					       &ack, sizeof(ack),
941 					       I2400M_BM_CMD_RAW);
942 			if (result == -EISCONN) {
943 				dev_warn(dev, "device boot: got ack barker "
944 					 "after sending echo/ack barker "
945 					 "#%d/%08x; rebooting j.i.c.\n",
946 					 i, le32_to_cpu(barker->data[0]));
947 				flags &= ~I2400M_BRI_NO_REBOOT;
948 				goto do_reboot;
949 			}
950 		}
951 		dev_err(dev, "device boot: tried all the echo/acks, could "
952 			"not get device to respond; giving up");
953 		result = -ESHUTDOWN;
954 	case -EPROTO:
955 	case -ESHUTDOWN:	/* dev is gone */
956 	case -EINTR:		/* user cancelled */
957 		goto error_dev_gone;
958 	default:
959 		dev_err(dev, "device reboot: error %d while waiting "
960 			"for reboot barker - rebooting\n", result);
961 		d_dump(1, dev, &ack, result);
962 		goto do_reboot;
963 	}
964 	/* At this point we ack back with 4 REBOOT barkers and expect
965 	 * 4 ACK barkers. This is ugly, as we send a raw command --
966 	 * hence the cast. _bm_cmd() will catch the reboot ack
967 	 * notification and report it as -EISCONN. */
968 do_reboot_ack:
969 	d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
970 	memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
971 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
972 			       &ack, sizeof(ack), I2400M_BM_CMD_RAW);
973 	switch (result) {
974 	case -ERESTARTSYS:
975 		d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
976 		if (--count < 0)
977 			goto error_timeout;
978 		goto do_reboot_ack;
979 	case -EISCONN:
980 		d_printf(4, dev, "reboot ack: got ack barker - good\n");
981 		break;
982 	case -ETIMEDOUT:	/* no response, maybe it is the other type? */
983 		if (ack_timeout_cnt-- < 0) {
984 			d_printf(4, dev, "reboot ack timedout: retrying\n");
985 			goto do_reboot_ack;
986 		} else {
987 			dev_err(dev, "reboot ack timedout too long: "
988 				"trying reboot\n");
989 			goto do_reboot;
990 		}
991 		break;
992 	case -EPROTO:
993 	case -ESHUTDOWN:	/* dev is gone */
994 		goto error_dev_gone;
995 	default:
996 		dev_err(dev, "device reboot ack: error %d while waiting for "
997 			"reboot ack barker - rebooting\n", result);
998 		goto do_reboot;
999 	}
1000 	d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1001 	result = 0;
1002 exit_timeout:
1003 error_dev_gone:
1004 	d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1005 		i2400m, flags, result);
1006 	return result;
1007 
1008 error_timeout:
1009 	dev_err(dev, "Timed out waiting for reboot ack\n");
1010 	result = -ETIMEDOUT;
1011 	goto exit_timeout;
1012 }
1013 
1014 
1015 /*
1016  * Read the MAC addr
1017  *
1018  * The position this function reads is fixed in device memory and
1019  * always available, even without firmware.
1020  *
1021  * Note we specify we want to read only six bytes, but provide space
1022  * for 16, as we always get it rounded up.
1023  */
i2400m_read_mac_addr(struct i2400m * i2400m)1024 int i2400m_read_mac_addr(struct i2400m *i2400m)
1025 {
1026 	int result;
1027 	struct device *dev = i2400m_dev(i2400m);
1028 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1029 	struct i2400m_bootrom_header *cmd;
1030 	struct {
1031 		struct i2400m_bootrom_header ack;
1032 		u8 ack_pl[16];
1033 	} __packed ack_buf;
1034 
1035 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1036 	cmd = i2400m->bm_cmd_buf;
1037 	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1038 	cmd->target_addr = cpu_to_le32(0x00203fe8);
1039 	cmd->data_size = cpu_to_le32(6);
1040 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1041 			       &ack_buf.ack, sizeof(ack_buf), 0);
1042 	if (result < 0) {
1043 		dev_err(dev, "BM: read mac addr failed: %d\n", result);
1044 		goto error_read_mac;
1045 	}
1046 	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1047 	if (i2400m->bus_bm_mac_addr_impaired == 1) {
1048 		ack_buf.ack_pl[0] = 0x00;
1049 		ack_buf.ack_pl[1] = 0x16;
1050 		ack_buf.ack_pl[2] = 0xd3;
1051 		get_random_bytes(&ack_buf.ack_pl[3], 3);
1052 		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1053 			"mac addr is %pM\n", ack_buf.ack_pl);
1054 		result = 0;
1055 	}
1056 	net_dev->addr_len = ETH_ALEN;
1057 	memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1058 	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1059 error_read_mac:
1060 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1061 	return result;
1062 }
1063 
1064 
1065 /*
1066  * Initialize a non signed boot
1067  *
1068  * This implies sending some magic values to the device's memory. Note
1069  * we convert the values to little endian in the same array
1070  * declaration.
1071  */
1072 static
i2400m_dnload_init_nonsigned(struct i2400m * i2400m)1073 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1074 {
1075 	unsigned i = 0;
1076 	int ret = 0;
1077 	struct device *dev = i2400m_dev(i2400m);
1078 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1079 	if (i2400m->bus_bm_pokes_table) {
1080 		while (i2400m->bus_bm_pokes_table[i].address) {
1081 			ret = i2400m_download_chunk(
1082 				i2400m,
1083 				&i2400m->bus_bm_pokes_table[i].data,
1084 				sizeof(i2400m->bus_bm_pokes_table[i].data),
1085 				i2400m->bus_bm_pokes_table[i].address, 1, 1);
1086 			if (ret < 0)
1087 				break;
1088 			i++;
1089 		}
1090 	}
1091 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1092 	return ret;
1093 }
1094 
1095 
1096 /*
1097  * Initialize the signed boot process
1098  *
1099  * @i2400m: device descriptor
1100  *
1101  * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1102  *     memory (it has gone through basic validation).
1103  *
1104  * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1105  *     rebooted.
1106  *
1107  * This writes the firmware BCF header to the device using the
1108  * HASH_PAYLOAD_ONLY command.
1109  */
1110 static
i2400m_dnload_init_signed(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1111 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1112 			      const struct i2400m_bcf_hdr *bcf_hdr)
1113 {
1114 	int ret;
1115 	struct device *dev = i2400m_dev(i2400m);
1116 	struct {
1117 		struct i2400m_bootrom_header cmd;
1118 		struct i2400m_bcf_hdr cmd_pl;
1119 	} __packed *cmd_buf;
1120 	struct i2400m_bootrom_header ack;
1121 
1122 	d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1123 	cmd_buf = i2400m->bm_cmd_buf;
1124 	cmd_buf->cmd.command =
1125 		i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1126 	cmd_buf->cmd.target_addr = 0;
1127 	cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1128 	memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1129 	ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1130 			    &ack, sizeof(ack), 0);
1131 	if (ret >= 0)
1132 		ret = 0;
1133 	d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1134 	return ret;
1135 }
1136 
1137 
1138 /*
1139  * Initialize the firmware download at the device size
1140  *
1141  * Multiplex to the one that matters based on the device's mode
1142  * (signed or non-signed).
1143  */
1144 static
i2400m_dnload_init(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1145 int i2400m_dnload_init(struct i2400m *i2400m,
1146 		       const struct i2400m_bcf_hdr *bcf_hdr)
1147 {
1148 	int result;
1149 	struct device *dev = i2400m_dev(i2400m);
1150 
1151 	if (i2400m_boot_is_signed(i2400m)) {
1152 		d_printf(1, dev, "signed boot\n");
1153 		result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1154 		if (result == -ERESTARTSYS)
1155 			return result;
1156 		if (result < 0)
1157 			dev_err(dev, "firmware %s: signed boot download "
1158 				"initialization failed: %d\n",
1159 				i2400m->fw_name, result);
1160 	} else {
1161 		/* non-signed boot process without pokes */
1162 		d_printf(1, dev, "non-signed boot\n");
1163 		result = i2400m_dnload_init_nonsigned(i2400m);
1164 		if (result == -ERESTARTSYS)
1165 			return result;
1166 		if (result < 0)
1167 			dev_err(dev, "firmware %s: non-signed download "
1168 				"initialization failed: %d\n",
1169 				i2400m->fw_name, result);
1170 	}
1171 	return result;
1172 }
1173 
1174 
1175 /*
1176  * Run consistency tests on the firmware file and load up headers
1177  *
1178  * Check for the firmware being made for the i2400m device,
1179  * etc...These checks are mostly informative, as the device will make
1180  * them too; but the driver's response is more informative on what
1181  * went wrong.
1182  *
1183  * This will also look at all the headers present on the firmware
1184  * file, and update i2400m->fw_bcf_hdr to point to them.
1185  */
1186 static
i2400m_fw_hdr_check(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,size_t index,size_t offset)1187 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1188 			const struct i2400m_bcf_hdr *bcf_hdr,
1189 			size_t index, size_t offset)
1190 {
1191 	struct device *dev = i2400m_dev(i2400m);
1192 
1193 	unsigned module_type, header_len, major_version, minor_version,
1194 		module_id, module_vendor, date, size;
1195 
1196 	module_type = le32_to_cpu(bcf_hdr->module_type);
1197 	header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1198 	major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1199 		>> 16;
1200 	minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1201 	module_id = le32_to_cpu(bcf_hdr->module_id);
1202 	module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1203 	date = le32_to_cpu(bcf_hdr->date);
1204 	size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1205 
1206 	d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1207 		 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1208 		 i2400m->fw_name, index, offset,
1209 		 module_type, module_vendor, module_id,
1210 		 major_version, minor_version, header_len, size, date);
1211 
1212 	/* Hard errors */
1213 	if (major_version != 1) {
1214 		dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1215 			"v%u.%u not supported\n",
1216 			i2400m->fw_name, index, offset,
1217 			major_version, minor_version);
1218 		return -EBADF;
1219 	}
1220 
1221 	if (module_type != 6) {		/* built for the right hardware? */
1222 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1223 			"type 0x%x; aborting\n",
1224 			i2400m->fw_name, index, offset,
1225 			module_type);
1226 		return -EBADF;
1227 	}
1228 
1229 	if (module_vendor != 0x8086) {
1230 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1231 			"vendor 0x%x; aborting\n",
1232 			i2400m->fw_name, index, offset, module_vendor);
1233 		return -EBADF;
1234 	}
1235 
1236 	if (date < 0x20080300)
1237 		dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1238 			 "too old; unsupported\n",
1239 			 i2400m->fw_name, index, offset, date);
1240 	return 0;
1241 }
1242 
1243 
1244 /*
1245  * Run consistency tests on the firmware file and load up headers
1246  *
1247  * Check for the firmware being made for the i2400m device,
1248  * etc...These checks are mostly informative, as the device will make
1249  * them too; but the driver's response is more informative on what
1250  * went wrong.
1251  *
1252  * This will also look at all the headers present on the firmware
1253  * file, and update i2400m->fw_hdrs to point to them.
1254  */
1255 static
i2400m_fw_check(struct i2400m * i2400m,const void * bcf,size_t bcf_size)1256 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1257 {
1258 	int result;
1259 	struct device *dev = i2400m_dev(i2400m);
1260 	size_t headers = 0;
1261 	const struct i2400m_bcf_hdr *bcf_hdr;
1262 	const void *itr, *next, *top;
1263 	size_t slots = 0, used_slots = 0;
1264 
1265 	for (itr = bcf, top = itr + bcf_size;
1266 	     itr < top;
1267 	     headers++, itr = next) {
1268 		size_t leftover, offset, header_len, size;
1269 
1270 		leftover = top - itr;
1271 		offset = itr - (const void *) bcf;
1272 		if (leftover <= sizeof(*bcf_hdr)) {
1273 			dev_err(dev, "firmware %s: %zu B left at @%zx, "
1274 				"not enough for BCF header\n",
1275 				i2400m->fw_name, leftover, offset);
1276 			break;
1277 		}
1278 		bcf_hdr = itr;
1279 		/* Only the first header is supposed to be followed by
1280 		 * payload */
1281 		header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1282 		size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1283 		if (headers == 0)
1284 			next = itr + size;
1285 		else
1286 			next = itr + header_len;
1287 
1288 		result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1289 		if (result < 0)
1290 			continue;
1291 		if (used_slots + 1 >= slots) {
1292 			/* +1 -> we need to account for the one we'll
1293 			 * occupy and at least an extra one for
1294 			 * always being NULL */
1295 			result = i2400m_zrealloc_2x(
1296 				(void **) &i2400m->fw_hdrs, &slots,
1297 				sizeof(i2400m->fw_hdrs[0]),
1298 				GFP_KERNEL);
1299 			if (result < 0)
1300 				goto error_zrealloc;
1301 		}
1302 		i2400m->fw_hdrs[used_slots] = bcf_hdr;
1303 		used_slots++;
1304 	}
1305 	if (headers == 0) {
1306 		dev_err(dev, "firmware %s: no usable headers found\n",
1307 			i2400m->fw_name);
1308 		result = -EBADF;
1309 	} else
1310 		result = 0;
1311 error_zrealloc:
1312 	return result;
1313 }
1314 
1315 
1316 /*
1317  * Match a barker to a BCF header module ID
1318  *
1319  * The device sends a barker which tells the firmware loader which
1320  * header in the BCF file has to be used. This does the matching.
1321  */
1322 static
i2400m_bcf_hdr_match(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1323 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1324 			      const struct i2400m_bcf_hdr *bcf_hdr)
1325 {
1326 	u32 barker = le32_to_cpu(i2400m->barker->data[0])
1327 		& 0x7fffffff;
1328 	u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1329 		& 0x7fffffff;	/* high bit used for something else */
1330 
1331 	/* special case for 5x50 */
1332 	if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1333 		return 1;
1334 	if (module_id == barker)
1335 		return 1;
1336 	return 0;
1337 }
1338 
1339 static
i2400m_bcf_hdr_find(struct i2400m * i2400m)1340 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1341 {
1342 	struct device *dev = i2400m_dev(i2400m);
1343 	const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1344 	unsigned i = 0;
1345 	u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1346 
1347 	d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1348 	if (barker == I2400M_NBOOT_BARKER) {
1349 		bcf_hdr = i2400m->fw_hdrs[0];
1350 		d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1351 			 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1352 		return bcf_hdr;
1353 	}
1354 	for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1355 		bcf_hdr = *bcf_itr;
1356 		if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1357 			d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1358 				 i, le32_to_cpu(bcf_hdr->module_id));
1359 			return bcf_hdr;
1360 		} else
1361 			d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1362 				 i, le32_to_cpu(bcf_hdr->module_id));
1363 	}
1364 	dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1365 		barker);
1366 	return NULL;
1367 }
1368 
1369 
1370 /*
1371  * Download the firmware to the device
1372  *
1373  * @i2400m: device descriptor
1374  * @bcf: pointer to loaded (and minimally verified for consistency)
1375  *    firmware
1376  * @bcf_size: size of the @bcf buffer (header plus payloads)
1377  *
1378  * The process for doing this is described in this file's header.
1379  *
1380  * Note we only reinitialize boot-mode if the flags say so. Some hw
1381  * iterations need it, some don't. In any case, if we loop, we always
1382  * need to reinitialize the boot room, hence the flags modification.
1383  */
1384 static
i2400m_fw_dnload(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t fw_size,enum i2400m_bri flags)1385 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1386 		     size_t fw_size, enum i2400m_bri flags)
1387 {
1388 	int ret = 0;
1389 	struct device *dev = i2400m_dev(i2400m);
1390 	int count = i2400m->bus_bm_retries;
1391 	const struct i2400m_bcf_hdr *bcf_hdr;
1392 	size_t bcf_size;
1393 
1394 	d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1395 		  i2400m, bcf, fw_size);
1396 	i2400m->boot_mode = 1;
1397 	wmb();		/* Make sure other readers see it */
1398 hw_reboot:
1399 	if (count-- == 0) {
1400 		ret = -ERESTARTSYS;
1401 		dev_err(dev, "device rebooted too many times, aborting\n");
1402 		goto error_too_many_reboots;
1403 	}
1404 	if (flags & I2400M_BRI_MAC_REINIT) {
1405 		ret = i2400m_bootrom_init(i2400m, flags);
1406 		if (ret < 0) {
1407 			dev_err(dev, "bootrom init failed: %d\n", ret);
1408 			goto error_bootrom_init;
1409 		}
1410 	}
1411 	flags |= I2400M_BRI_MAC_REINIT;
1412 
1413 	/*
1414 	 * Initialize the download, push the bytes to the device and
1415 	 * then jump to the new firmware. Note @ret is passed with the
1416 	 * offset of the jump instruction to _dnload_finalize()
1417 	 *
1418 	 * Note we need to use the BCF header in the firmware image
1419 	 * that matches the barker that the device sent when it
1420 	 * rebooted, so it has to be passed along.
1421 	 */
1422 	ret = -EBADF;
1423 	bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1424 	if (bcf_hdr == NULL)
1425 		goto error_bcf_hdr_find;
1426 
1427 	ret = i2400m_dnload_init(i2400m, bcf_hdr);
1428 	if (ret == -ERESTARTSYS)
1429 		goto error_dev_rebooted;
1430 	if (ret < 0)
1431 		goto error_dnload_init;
1432 
1433 	/*
1434 	 * bcf_size refers to one header size plus the fw sections size
1435 	 * indicated by the header,ie. if there are other extended headers
1436 	 * at the tail, they are not counted
1437 	 */
1438 	bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1439 	ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1440 	if (ret == -ERESTARTSYS)
1441 		goto error_dev_rebooted;
1442 	if (ret < 0) {
1443 		dev_err(dev, "fw %s: download failed: %d\n",
1444 			i2400m->fw_name, ret);
1445 		goto error_dnload_bcf;
1446 	}
1447 
1448 	ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1449 	if (ret == -ERESTARTSYS)
1450 		goto error_dev_rebooted;
1451 	if (ret < 0) {
1452 		dev_err(dev, "fw %s: "
1453 			"download finalization failed: %d\n",
1454 			i2400m->fw_name, ret);
1455 		goto error_dnload_finalize;
1456 	}
1457 
1458 	d_printf(2, dev, "fw %s successfully uploaded\n",
1459 		 i2400m->fw_name);
1460 	i2400m->boot_mode = 0;
1461 	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
1462 error_dnload_finalize:
1463 error_dnload_bcf:
1464 error_dnload_init:
1465 error_bcf_hdr_find:
1466 error_bootrom_init:
1467 error_too_many_reboots:
1468 	d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1469 		i2400m, bcf, fw_size, ret);
1470 	return ret;
1471 
1472 error_dev_rebooted:
1473 	dev_err(dev, "device rebooted, %d tries left\n", count);
1474 	/* we got the notification already, no need to wait for it again */
1475 	flags |= I2400M_BRI_SOFT;
1476 	goto hw_reboot;
1477 }
1478 
1479 static
i2400m_fw_bootstrap(struct i2400m * i2400m,const struct firmware * fw,enum i2400m_bri flags)1480 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1481 			enum i2400m_bri flags)
1482 {
1483 	int ret;
1484 	struct device *dev = i2400m_dev(i2400m);
1485 	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1486 
1487 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1488 	bcf = (void *) fw->data;
1489 	ret = i2400m_fw_check(i2400m, bcf, fw->size);
1490 	if (ret >= 0)
1491 		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1492 	if (ret < 0)
1493 		dev_err(dev, "%s: cannot use: %d, skipping\n",
1494 			i2400m->fw_name, ret);
1495 	kfree(i2400m->fw_hdrs);
1496 	i2400m->fw_hdrs = NULL;
1497 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1498 	return ret;
1499 }
1500 
1501 
1502 /* Refcounted container for firmware data */
1503 struct i2400m_fw {
1504 	struct kref kref;
1505 	const struct firmware *fw;
1506 };
1507 
1508 
1509 static
i2400m_fw_destroy(struct kref * kref)1510 void i2400m_fw_destroy(struct kref *kref)
1511 {
1512 	struct i2400m_fw *i2400m_fw =
1513 		container_of(kref, struct i2400m_fw, kref);
1514 	release_firmware(i2400m_fw->fw);
1515 	kfree(i2400m_fw);
1516 }
1517 
1518 
1519 static
i2400m_fw_get(struct i2400m_fw * i2400m_fw)1520 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1521 {
1522 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1523 		kref_get(&i2400m_fw->kref);
1524 	return i2400m_fw;
1525 }
1526 
1527 
1528 static
i2400m_fw_put(struct i2400m_fw * i2400m_fw)1529 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1530 {
1531 	kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1532 }
1533 
1534 
1535 /**
1536  * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1537  *
1538  * @i2400m: device descriptor
1539  *
1540  * Returns: >= 0 if ok, < 0 errno code on error.
1541  *
1542  * This sets up the firmware upload environment, loads the firmware
1543  * file from disk, verifies and then calls the firmware upload process
1544  * per se.
1545  *
1546  * Can be called either from probe, or after a warm reset.  Can not be
1547  * called from within an interrupt.  All the flow in this code is
1548  * single-threade; all I/Os are synchronous.
1549  */
i2400m_dev_bootstrap(struct i2400m * i2400m,enum i2400m_bri flags)1550 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1551 {
1552 	int ret, itr;
1553 	struct device *dev = i2400m_dev(i2400m);
1554 	struct i2400m_fw *i2400m_fw;
1555 	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1556 	const struct firmware *fw;
1557 	const char *fw_name;
1558 
1559 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1560 
1561 	ret = -ENODEV;
1562 	spin_lock(&i2400m->rx_lock);
1563 	i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1564 	spin_unlock(&i2400m->rx_lock);
1565 	if (i2400m_fw == (void *) ~0) {
1566 		dev_err(dev, "can't load firmware now!");
1567 		goto out;
1568 	} else if (i2400m_fw != NULL) {
1569 		dev_info(dev, "firmware %s: loading from cache\n",
1570 			 i2400m->fw_name);
1571 		ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1572 		i2400m_fw_put(i2400m_fw);
1573 		goto out;
1574 	}
1575 
1576 	/* Load firmware files to memory. */
1577 	for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1578 		fw_name = i2400m->bus_fw_names[itr];
1579 		if (fw_name == NULL) {
1580 			dev_err(dev, "Could not find a usable firmware image\n");
1581 			break;
1582 		}
1583 		d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1584 		ret = request_firmware(&fw, fw_name, dev);
1585 		if (ret < 0) {
1586 			dev_err(dev, "fw %s: cannot load file: %d\n",
1587 				fw_name, ret);
1588 			continue;
1589 		}
1590 		i2400m->fw_name = fw_name;
1591 		ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1592 		release_firmware(fw);
1593 		if (ret >= 0)	/* firmware loaded successfully */
1594 			break;
1595 		i2400m->fw_name = NULL;
1596 	}
1597 out:
1598 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1599 	return ret;
1600 }
1601 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1602 
1603 
i2400m_fw_cache(struct i2400m * i2400m)1604 void i2400m_fw_cache(struct i2400m *i2400m)
1605 {
1606 	int result;
1607 	struct i2400m_fw *i2400m_fw;
1608 	struct device *dev = i2400m_dev(i2400m);
1609 
1610 	/* if there is anything there, free it -- now, this'd be weird */
1611 	spin_lock(&i2400m->rx_lock);
1612 	i2400m_fw = i2400m->fw_cached;
1613 	spin_unlock(&i2400m->rx_lock);
1614 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1615 		i2400m_fw_put(i2400m_fw);
1616 		WARN(1, "%s:%u: still cached fw still present?\n",
1617 		     __func__, __LINE__);
1618 	}
1619 
1620 	if (i2400m->fw_name == NULL) {
1621 		dev_err(dev, "firmware n/a: can't cache\n");
1622 		i2400m_fw = (void *) ~0;
1623 		goto out;
1624 	}
1625 
1626 	i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1627 	if (i2400m_fw == NULL)
1628 		goto out;
1629 	kref_init(&i2400m_fw->kref);
1630 	result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1631 	if (result < 0) {
1632 		dev_err(dev, "firmware %s: failed to cache: %d\n",
1633 			i2400m->fw_name, result);
1634 		kfree(i2400m_fw);
1635 		i2400m_fw = (void *) ~0;
1636 	} else
1637 		dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1638 out:
1639 	spin_lock(&i2400m->rx_lock);
1640 	i2400m->fw_cached = i2400m_fw;
1641 	spin_unlock(&i2400m->rx_lock);
1642 }
1643 
1644 
i2400m_fw_uncache(struct i2400m * i2400m)1645 void i2400m_fw_uncache(struct i2400m *i2400m)
1646 {
1647 	struct i2400m_fw *i2400m_fw;
1648 
1649 	spin_lock(&i2400m->rx_lock);
1650 	i2400m_fw = i2400m->fw_cached;
1651 	i2400m->fw_cached = NULL;
1652 	spin_unlock(&i2400m->rx_lock);
1653 
1654 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1655 		i2400m_fw_put(i2400m_fw);
1656 }
1657 
1658