• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Glue with the networking stack
4  *
5  *
6  * Copyright (C) 2007 Intel Corporation <linux-wimax@intel.com>
7  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
8  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License version
12  * 2 as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22  * 02110-1301, USA.
23  *
24  *
25  * This implements an ethernet device for the i2400m.
26  *
27  * We fake being an ethernet device to simplify the support from user
28  * space and from the other side. The world is (sadly) configured to
29  * take in only Ethernet devices...
30  *
31  * Because of this, when using firmwares <= v1.3, there is an
32  * copy-each-rxed-packet overhead on the RX path. Each IP packet has
33  * to be reallocated to add an ethernet header (as there is no space
34  * in what we get from the device). This is a known drawback and
35  * firmwares >= 1.4 add header space that can be used to insert the
36  * ethernet header without having to reallocate and copy.
37  *
38  * TX error handling is tricky; because we have to FIFO/queue the
39  * buffers for transmission (as the hardware likes it aggregated), we
40  * just give the skb to the TX subsystem and by the time it is
41  * transmitted, we have long forgotten about it. So we just don't care
42  * too much about it.
43  *
44  * Note that when the device is in idle mode with the basestation, we
45  * need to negotiate coming back up online. That involves negotiation
46  * and possible user space interaction. Thus, we defer to a workqueue
47  * to do all that. By default, we only queue a single packet and drop
48  * the rest, as potentially the time to go back from idle to normal is
49  * long.
50  *
51  * ROADMAP
52  *
53  * i2400m_open         Called on ifconfig up
54  * i2400m_stop         Called on ifconfig down
55  *
56  * i2400m_hard_start_xmit Called by the network stack to send a packet
57  *   i2400m_net_wake_tx	  Wake up device from basestation-IDLE & TX
58  *     i2400m_wake_tx_work
59  *       i2400m_cmd_exit_idle
60  *       i2400m_tx
61  *   i2400m_net_tx        TX a data frame
62  *     i2400m_tx
63  *
64  * i2400m_change_mtu      Called on ifconfig mtu XXX
65  *
66  * i2400m_tx_timeout      Called when the device times out
67  *
68  * i2400m_net_rx          Called by the RX code when a data frame is
69  *                        available (firmware <= 1.3)
70  * i2400m_net_erx         Called by the RX code when a data frame is
71  *                        available (firmware >= 1.4).
72  * i2400m_netdev_setup    Called to setup all the netdev stuff from
73  *                        alloc_netdev.
74  */
75 #include <linux/if_arp.h>
76 #include <linux/slab.h>
77 #include <linux/netdevice.h>
78 #include <linux/ethtool.h>
79 #include <linux/export.h>
80 #include "i2400m.h"
81 
82 
83 #define D_SUBMODULE netdev
84 #include "debug-levels.h"
85 
86 enum {
87 /* netdev interface */
88 	/* 20 secs? yep, this is the maximum timeout that the device
89 	 * might take to get out of IDLE / negotiate it with the base
90 	 * station. We add 1sec for good measure. */
91 	I2400M_TX_TIMEOUT = 21 * HZ,
92 	/*
93 	 * Experimentation has determined that, 20 to be a good value
94 	 * for minimizing the jitter in the throughput.
95 	 */
96 	I2400M_TX_QLEN = 20,
97 };
98 
99 
100 static
i2400m_open(struct net_device * net_dev)101 int i2400m_open(struct net_device *net_dev)
102 {
103 	int result;
104 	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
105 	struct device *dev = i2400m_dev(i2400m);
106 
107 	d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
108 	/* Make sure we wait until init is complete... */
109 	mutex_lock(&i2400m->init_mutex);
110 	if (i2400m->updown)
111 		result = 0;
112 	else
113 		result = -EBUSY;
114 	mutex_unlock(&i2400m->init_mutex);
115 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
116 		net_dev, i2400m, result);
117 	return result;
118 }
119 
120 
121 static
i2400m_stop(struct net_device * net_dev)122 int i2400m_stop(struct net_device *net_dev)
123 {
124 	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
125 	struct device *dev = i2400m_dev(i2400m);
126 
127 	d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
128 	i2400m_net_wake_stop(i2400m);
129 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m);
130 	return 0;
131 }
132 
133 
134 /*
135  * Wake up the device and transmit a held SKB, then restart the net queue
136  *
137  * When the device goes into basestation-idle mode, we need to tell it
138  * to exit that mode; it will negotiate with the base station, user
139  * space may have to intervene to rehandshake crypto and then tell us
140  * when it is ready to transmit the packet we have "queued". Still we
141  * need to give it sometime after it reports being ok.
142  *
143  * On error, there is not much we can do. If the error was on TX, we
144  * still wake the queue up to see if the next packet will be luckier.
145  *
146  * If _cmd_exit_idle() fails...well, it could be many things; most
147  * commonly it is that something else took the device out of IDLE mode
148  * (for example, the base station). In that case we get an -EILSEQ and
149  * we are just going to ignore that one. If the device is back to
150  * connected, then fine -- if it is someother state, the packet will
151  * be dropped anyway.
152  */
i2400m_wake_tx_work(struct work_struct * ws)153 void i2400m_wake_tx_work(struct work_struct *ws)
154 {
155 	int result;
156 	struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws);
157 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
158 	struct device *dev = i2400m_dev(i2400m);
159 	struct sk_buff *skb = i2400m->wake_tx_skb;
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&i2400m->tx_lock, flags);
163 	skb = i2400m->wake_tx_skb;
164 	i2400m->wake_tx_skb = NULL;
165 	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
166 
167 	d_fnstart(3, dev, "(ws %p i2400m %p skb %p)\n", ws, i2400m, skb);
168 	result = -EINVAL;
169 	if (skb == NULL) {
170 		dev_err(dev, "WAKE&TX: skb disappeared!\n");
171 		goto out_put;
172 	}
173 	/* If we have, somehow, lost the connection after this was
174 	 * queued, don't do anything; this might be the device got
175 	 * reset or just disconnected. */
176 	if (unlikely(!netif_carrier_ok(net_dev)))
177 		goto out_kfree;
178 	result = i2400m_cmd_exit_idle(i2400m);
179 	if (result == -EILSEQ)
180 		result = 0;
181 	if (result < 0) {
182 		dev_err(dev, "WAKE&TX: device didn't get out of idle: "
183 			"%d - resetting\n", result);
184 		i2400m_reset(i2400m, I2400M_RT_BUS);
185 		goto error;
186 	}
187 	result = wait_event_timeout(i2400m->state_wq,
188 				    i2400m->state != I2400M_SS_IDLE,
189 				    net_dev->watchdog_timeo - HZ/2);
190 	if (result == 0)
191 		result = -ETIMEDOUT;
192 	if (result < 0) {
193 		dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: "
194 			"%d - resetting\n", result);
195 		i2400m_reset(i2400m, I2400M_RT_BUS);
196 		goto error;
197 	}
198 	msleep(20);	/* device still needs some time or it drops it */
199 	result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
200 error:
201 	netif_wake_queue(net_dev);
202 out_kfree:
203 	kfree_skb(skb);	/* refcount transferred by _hard_start_xmit() */
204 out_put:
205 	i2400m_put(i2400m);
206 	d_fnend(3, dev, "(ws %p i2400m %p skb %p) = void [%d]\n",
207 		ws, i2400m, skb, result);
208 }
209 
210 
211 /*
212  * Prepare the data payload TX header
213  *
214  * The i2400m expects a 4 byte header in front of a data packet.
215  *
216  * Because we pretend to be an ethernet device, this packet comes with
217  * an ethernet header. Pull it and push our header.
218  */
219 static
i2400m_tx_prep_header(struct sk_buff * skb)220 void i2400m_tx_prep_header(struct sk_buff *skb)
221 {
222 	struct i2400m_pl_data_hdr *pl_hdr;
223 	skb_pull(skb, ETH_HLEN);
224 	pl_hdr = (struct i2400m_pl_data_hdr *) skb_push(skb, sizeof(*pl_hdr));
225 	pl_hdr->reserved = 0;
226 }
227 
228 
229 
230 /*
231  * Cleanup resources acquired during i2400m_net_wake_tx()
232  *
233  * This is called by __i2400m_dev_stop and means we have to make sure
234  * the workqueue is flushed from any pending work.
235  */
i2400m_net_wake_stop(struct i2400m * i2400m)236 void i2400m_net_wake_stop(struct i2400m *i2400m)
237 {
238 	struct device *dev = i2400m_dev(i2400m);
239 
240 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
241 	/* See i2400m_hard_start_xmit(), references are taken there
242 	 * and here we release them if the work was still
243 	 * pending. Note we can't differentiate work not pending vs
244 	 * never scheduled, so the NULL check does that. */
245 	if (cancel_work_sync(&i2400m->wake_tx_ws) == 0
246 	    && i2400m->wake_tx_skb != NULL) {
247 		unsigned long flags;
248 		struct sk_buff *wake_tx_skb;
249 		spin_lock_irqsave(&i2400m->tx_lock, flags);
250 		wake_tx_skb = i2400m->wake_tx_skb;	/* compat help */
251 		i2400m->wake_tx_skb = NULL;	/* compat help */
252 		spin_unlock_irqrestore(&i2400m->tx_lock, flags);
253 		i2400m_put(i2400m);
254 		kfree_skb(wake_tx_skb);
255 	}
256 	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
257 }
258 
259 
260 /*
261  * TX an skb to an idle device
262  *
263  * When the device is in basestation-idle mode, we need to wake it up
264  * and then TX. So we queue a work_struct for doing so.
265  *
266  * We need to get an extra ref for the skb (so it is not dropped), as
267  * well as be careful not to queue more than one request (won't help
268  * at all). If more than one request comes or there are errors, we
269  * just drop the packets (see i2400m_hard_start_xmit()).
270  */
271 static
i2400m_net_wake_tx(struct i2400m * i2400m,struct net_device * net_dev,struct sk_buff * skb)272 int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev,
273 		       struct sk_buff *skb)
274 {
275 	int result;
276 	struct device *dev = i2400m_dev(i2400m);
277 	unsigned long flags;
278 
279 	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
280 	if (net_ratelimit()) {
281 		d_printf(3, dev, "WAKE&NETTX: "
282 			 "skb %p sending %d bytes to radio\n",
283 			 skb, skb->len);
284 		d_dump(4, dev, skb->data, skb->len);
285 	}
286 	/* We hold a ref count for i2400m and skb, so when
287 	 * stopping() the device, we need to cancel that work
288 	 * and if pending, release those resources. */
289 	result = 0;
290 	spin_lock_irqsave(&i2400m->tx_lock, flags);
291 	if (!work_pending(&i2400m->wake_tx_ws)) {
292 		netif_stop_queue(net_dev);
293 		i2400m_get(i2400m);
294 		i2400m->wake_tx_skb = skb_get(skb);	/* transfer ref count */
295 		i2400m_tx_prep_header(skb);
296 		result = schedule_work(&i2400m->wake_tx_ws);
297 		WARN_ON(result == 0);
298 	}
299 	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
300 	if (result == 0) {
301 		/* Yes, this happens even if we stopped the
302 		 * queue -- blame the queue disciplines that
303 		 * queue without looking -- I guess there is a reason
304 		 * for that. */
305 		if (net_ratelimit())
306 			d_printf(1, dev, "NETTX: device exiting idle, "
307 				 "dropping skb %p, queue running %d\n",
308 				 skb, netif_queue_stopped(net_dev));
309 		result = -EBUSY;
310 	}
311 	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
312 	return result;
313 }
314 
315 
316 /*
317  * Transmit a packet to the base station on behalf of the network stack.
318  *
319  * Returns: 0 if ok, < 0 errno code on error.
320  *
321  * We need to pull the ethernet header and add the hardware header,
322  * which is currently set to all zeroes and reserved.
323  */
324 static
i2400m_net_tx(struct i2400m * i2400m,struct net_device * net_dev,struct sk_buff * skb)325 int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev,
326 		  struct sk_buff *skb)
327 {
328 	int result;
329 	struct device *dev = i2400m_dev(i2400m);
330 
331 	d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n",
332 		  i2400m, net_dev, skb);
333 	/* FIXME: check eth hdr, only IPv4 is routed by the device as of now */
334 	net_dev->trans_start = jiffies;
335 	i2400m_tx_prep_header(skb);
336 	d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n",
337 		 skb, skb->len);
338 	d_dump(4, dev, skb->data, skb->len);
339 	result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
340 	d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n",
341 		i2400m, net_dev, skb, result);
342 	return result;
343 }
344 
345 
346 /*
347  * Transmit a packet to the base station on behalf of the network stack
348  *
349  *
350  * Returns: NETDEV_TX_OK (always, even in case of error)
351  *
352  * In case of error, we just drop it. Reasons:
353  *
354  *  - we add a hw header to each skb, and if the network stack
355  *    retries, we have no way to know if that skb has it or not.
356  *
357  *  - network protocols have their own drop-recovery mechanisms
358  *
359  *  - there is not much else we can do
360  *
361  * If the device is idle, we need to wake it up; that is an operation
362  * that will sleep. See i2400m_net_wake_tx() for details.
363  */
364 static
i2400m_hard_start_xmit(struct sk_buff * skb,struct net_device * net_dev)365 netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
366 					 struct net_device *net_dev)
367 {
368 	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
369 	struct device *dev = i2400m_dev(i2400m);
370 	int result = -1;
371 
372 	d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
373 
374 	if (skb_header_cloned(skb) &&
375 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
376 		goto drop;
377 
378 	if (i2400m->state == I2400M_SS_IDLE)
379 		result = i2400m_net_wake_tx(i2400m, net_dev, skb);
380 	else
381 		result = i2400m_net_tx(i2400m, net_dev, skb);
382 	if (result <  0) {
383 drop:
384 		net_dev->stats.tx_dropped++;
385 	} else {
386 		net_dev->stats.tx_packets++;
387 		net_dev->stats.tx_bytes += skb->len;
388 	}
389 	dev_kfree_skb(skb);
390 	d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
391 	return NETDEV_TX_OK;
392 }
393 
394 
395 static
i2400m_change_mtu(struct net_device * net_dev,int new_mtu)396 int i2400m_change_mtu(struct net_device *net_dev, int new_mtu)
397 {
398 	int result;
399 	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
400 	struct device *dev = i2400m_dev(i2400m);
401 
402 	if (new_mtu >= I2400M_MAX_MTU) {
403 		dev_err(dev, "Cannot change MTU to %d (max is %d)\n",
404 			new_mtu, I2400M_MAX_MTU);
405 		result = -EINVAL;
406 	} else {
407 		net_dev->mtu = new_mtu;
408 		result = 0;
409 	}
410 	return result;
411 }
412 
413 
414 static
i2400m_tx_timeout(struct net_device * net_dev)415 void i2400m_tx_timeout(struct net_device *net_dev)
416 {
417 	/*
418 	 * We might want to kick the device
419 	 *
420 	 * There is not much we can do though, as the device requires
421 	 * that we send the data aggregated. By the time we receive
422 	 * this, there might be data pending to be sent or not...
423 	 */
424 	net_dev->stats.tx_errors++;
425 }
426 
427 
428 /*
429  * Create a fake ethernet header
430  *
431  * For emulating an ethernet device, every received IP header has to
432  * be prefixed with an ethernet header. Fake it with the given
433  * protocol.
434  */
435 static
i2400m_rx_fake_eth_header(struct net_device * net_dev,void * _eth_hdr,__be16 protocol)436 void i2400m_rx_fake_eth_header(struct net_device *net_dev,
437 			       void *_eth_hdr, __be16 protocol)
438 {
439 	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
440 	struct ethhdr *eth_hdr = _eth_hdr;
441 
442 	memcpy(eth_hdr->h_dest, net_dev->dev_addr, sizeof(eth_hdr->h_dest));
443 	memcpy(eth_hdr->h_source, i2400m->src_mac_addr,
444 	       sizeof(eth_hdr->h_source));
445 	eth_hdr->h_proto = protocol;
446 }
447 
448 
449 /*
450  * i2400m_net_rx - pass a network packet to the stack
451  *
452  * @i2400m: device instance
453  * @skb_rx: the skb where the buffer pointed to by @buf is
454  * @i: 1 if payload is the only one
455  * @buf: pointer to the buffer containing the data
456  * @len: buffer's length
457  *
458  * This is only used now for the v1.3 firmware. It will be deprecated
459  * in >= 2.6.31.
460  *
461  * Note that due to firmware limitations, we don't have space to add
462  * an ethernet header, so we need to copy each packet. Firmware
463  * versions >= v1.4 fix this [see i2400m_net_erx()].
464  *
465  * We just clone the skb and set it up so that it's skb->data pointer
466  * points to "buf" and it's length.
467  *
468  * Note that if the payload is the last (or the only one) in a
469  * multi-payload message, we don't clone the SKB but just reuse it.
470  *
471  * This function is normally run from a thread context. However, we
472  * still use netif_rx() instead of netif_receive_skb() as was
473  * recommended in the mailing list. Reason is in some stress tests
474  * when sending/receiving a lot of data we seem to hit a softlock in
475  * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
476  * netif_rx() took care of the issue.
477  *
478  * This is, of course, still open to do more research on why running
479  * with netif_receive_skb() hits this softlock. FIXME.
480  *
481  * FIXME: currently we don't do any efforts at distinguishing if what
482  * we got was an IPv4 or IPv6 header, to setup the protocol field
483  * correctly.
484  */
i2400m_net_rx(struct i2400m * i2400m,struct sk_buff * skb_rx,unsigned i,const void * buf,int buf_len)485 void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx,
486 		   unsigned i, const void *buf, int buf_len)
487 {
488 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
489 	struct device *dev = i2400m_dev(i2400m);
490 	struct sk_buff *skb;
491 
492 	d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n",
493 		  i2400m, buf, buf_len);
494 	if (i) {
495 		skb = skb_get(skb_rx);
496 		d_printf(2, dev, "RX: reusing first payload skb %p\n", skb);
497 		skb_pull(skb, buf - (void *) skb->data);
498 		skb_trim(skb, (void *) skb_end_pointer(skb) - buf);
499 	} else {
500 		/* Yes, this is bad -- a lot of overhead -- see
501 		 * comments at the top of the file */
502 		skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL);
503 		if (skb == NULL) {
504 			dev_err(dev, "NETRX: no memory to realloc skb\n");
505 			net_dev->stats.rx_dropped++;
506 			goto error_skb_realloc;
507 		}
508 		memcpy(skb_put(skb, buf_len), buf, buf_len);
509 	}
510 	i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
511 				  skb->data - ETH_HLEN,
512 				  cpu_to_be16(ETH_P_IP));
513 	skb_set_mac_header(skb, -ETH_HLEN);
514 	skb->dev = i2400m->wimax_dev.net_dev;
515 	skb->protocol = htons(ETH_P_IP);
516 	net_dev->stats.rx_packets++;
517 	net_dev->stats.rx_bytes += buf_len;
518 	d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n",
519 		buf_len);
520 	d_dump(4, dev, buf, buf_len);
521 	netif_rx_ni(skb);	/* see notes in function header */
522 error_skb_realloc:
523 	d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n",
524 		i2400m, buf, buf_len);
525 }
526 
527 
528 /*
529  * i2400m_net_erx - pass a network packet to the stack (extended version)
530  *
531  * @i2400m: device descriptor
532  * @skb: the skb where the packet is - the skb should be set to point
533  *     at the IP packet; this function will add ethernet headers if
534  *     needed.
535  * @cs: packet type
536  *
537  * This is only used now for firmware >= v1.4. Note it is quite
538  * similar to i2400m_net_rx() (used only for v1.3 firmware).
539  *
540  * This function is normally run from a thread context. However, we
541  * still use netif_rx() instead of netif_receive_skb() as was
542  * recommended in the mailing list. Reason is in some stress tests
543  * when sending/receiving a lot of data we seem to hit a softlock in
544  * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
545  * netif_rx() took care of the issue.
546  *
547  * This is, of course, still open to do more research on why running
548  * with netif_receive_skb() hits this softlock. FIXME.
549  */
i2400m_net_erx(struct i2400m * i2400m,struct sk_buff * skb,enum i2400m_cs cs)550 void i2400m_net_erx(struct i2400m *i2400m, struct sk_buff *skb,
551 		    enum i2400m_cs cs)
552 {
553 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
554 	struct device *dev = i2400m_dev(i2400m);
555 	int protocol;
556 
557 	d_fnstart(2, dev, "(i2400m %p skb %p [%u] cs %d)\n",
558 		  i2400m, skb, skb->len, cs);
559 	switch(cs) {
560 	case I2400M_CS_IPV4_0:
561 	case I2400M_CS_IPV4:
562 		protocol = ETH_P_IP;
563 		i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
564 					  skb->data - ETH_HLEN,
565 					  cpu_to_be16(ETH_P_IP));
566 		skb_set_mac_header(skb, -ETH_HLEN);
567 		skb->dev = i2400m->wimax_dev.net_dev;
568 		skb->protocol = htons(ETH_P_IP);
569 		net_dev->stats.rx_packets++;
570 		net_dev->stats.rx_bytes += skb->len;
571 		break;
572 	default:
573 		dev_err(dev, "ERX: BUG? CS type %u unsupported\n", cs);
574 		goto error;
575 
576 	}
577 	d_printf(3, dev, "ERX: receiving %d bytes to the network stack\n",
578 		 skb->len);
579 	d_dump(4, dev, skb->data, skb->len);
580 	netif_rx_ni(skb);	/* see notes in function header */
581 error:
582 	d_fnend(2, dev, "(i2400m %p skb %p [%u] cs %d) = void\n",
583 		i2400m, skb, skb->len, cs);
584 }
585 
586 static const struct net_device_ops i2400m_netdev_ops = {
587 	.ndo_open = i2400m_open,
588 	.ndo_stop = i2400m_stop,
589 	.ndo_start_xmit = i2400m_hard_start_xmit,
590 	.ndo_tx_timeout = i2400m_tx_timeout,
591 	.ndo_change_mtu = i2400m_change_mtu,
592 };
593 
i2400m_get_drvinfo(struct net_device * net_dev,struct ethtool_drvinfo * info)594 static void i2400m_get_drvinfo(struct net_device *net_dev,
595 			       struct ethtool_drvinfo *info)
596 {
597 	struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
598 
599 	strncpy(info->driver, KBUILD_MODNAME, sizeof(info->driver) - 1);
600 	strncpy(info->fw_version,
601 	        i2400m->fw_name ? : "", sizeof(info->fw_version) - 1);
602 	if (net_dev->dev.parent)
603 		strncpy(info->bus_info, dev_name(net_dev->dev.parent),
604 			sizeof(info->bus_info) - 1);
605 }
606 
607 static const struct ethtool_ops i2400m_ethtool_ops = {
608 	.get_drvinfo = i2400m_get_drvinfo,
609 	.get_link = ethtool_op_get_link,
610 };
611 
612 /**
613  * i2400m_netdev_setup - Setup setup @net_dev's i2400m private data
614  *
615  * Called by alloc_netdev()
616  */
i2400m_netdev_setup(struct net_device * net_dev)617 void i2400m_netdev_setup(struct net_device *net_dev)
618 {
619 	d_fnstart(3, NULL, "(net_dev %p)\n", net_dev);
620 	ether_setup(net_dev);
621 	net_dev->mtu = I2400M_MAX_MTU;
622 	net_dev->tx_queue_len = I2400M_TX_QLEN;
623 	net_dev->features =
624 		  NETIF_F_VLAN_CHALLENGED
625 		| NETIF_F_HIGHDMA;
626 	net_dev->flags =
627 		IFF_NOARP		/* i2400m is apure IP device */
628 		& (~IFF_BROADCAST	/* i2400m is P2P */
629 		   & ~IFF_MULTICAST);
630 	net_dev->watchdog_timeo = I2400M_TX_TIMEOUT;
631 	net_dev->netdev_ops = &i2400m_netdev_ops;
632 	net_dev->ethtool_ops = &i2400m_ethtool_ops;
633 	d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev);
634 }
635 EXPORT_SYMBOL_GPL(i2400m_netdev_setup);
636 
637