• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Generic probe/disconnect, reset and message passing
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License version
11  * 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  *
23  *
24  * See i2400m.h for driver documentation. This contains helpers for
25  * the driver model glue [_setup()/_release()], handling device resets
26  * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27  * reset [_op_reset()] and message from user [_op_msg_from_user()].
28  *
29  * ROADMAP:
30  *
31  * i2400m_op_msg_from_user()
32  *   i2400m_msg_to_dev()
33  *   wimax_msg_to_user_send()
34  *
35  * i2400m_op_reset()
36  *   i240m->bus_reset()
37  *
38  * i2400m_dev_reset_handle()
39  *   __i2400m_dev_reset_handle()
40  *     __i2400m_dev_stop()
41  *     __i2400m_dev_start()
42  *
43  * i2400m_setup()
44  *   i2400m->bus_setup()
45  *   i2400m_bootrom_init()
46  *   register_netdev()
47  *   wimax_dev_add()
48  *   i2400m_dev_start()
49  *     __i2400m_dev_start()
50  *       i2400m_dev_bootstrap()
51  *       i2400m_tx_setup()
52  *       i2400m->bus_dev_start()
53  *       i2400m_firmware_check()
54  *       i2400m_check_mac_addr()
55  *
56  * i2400m_release()
57  *   i2400m_dev_stop()
58  *     __i2400m_dev_stop()
59  *       i2400m_dev_shutdown()
60  *       i2400m->bus_dev_stop()
61  *       i2400m_tx_release()
62  *   i2400m->bus_release()
63  *   wimax_dev_rm()
64  *   unregister_netdev()
65  */
66 #include "i2400m.h"
67 #include <linux/etherdevice.h>
68 #include <linux/wimax/i2400m.h>
69 #include <linux/module.h>
70 #include <linux/moduleparam.h>
71 #include <linux/suspend.h>
72 #include <linux/slab.h>
73 
74 #define D_SUBMODULE driver
75 #include "debug-levels.h"
76 
77 
78 static char i2400m_debug_params[128];
79 module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
80 		    0644);
81 MODULE_PARM_DESC(debug,
82 		 "String of space-separated NAME:VALUE pairs, where NAMEs "
83 		 "are the different debug submodules and VALUE are the "
84 		 "initial debug value to set.");
85 
86 static char i2400m_barkers_params[128];
87 module_param_string(barkers, i2400m_barkers_params,
88 		    sizeof(i2400m_barkers_params), 0644);
89 MODULE_PARM_DESC(barkers,
90 		 "String of comma-separated 32-bit values; each is "
91 		 "recognized as the value the device sends as a reboot "
92 		 "signal; values are appended to a list--setting one value "
93 		 "as zero cleans the existing list and starts a new one.");
94 
95 /*
96  * WiMAX stack operation: relay a message from user space
97  *
98  * @wimax_dev: device descriptor
99  * @pipe_name: named pipe the message is for
100  * @msg_buf: pointer to the message bytes
101  * @msg_len: length of the buffer
102  * @genl_info: passed by the generic netlink layer
103  *
104  * The WiMAX stack will call this function when a message was received
105  * from user space.
106  *
107  * For the i2400m, this is an L3L4 message, as specified in
108  * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
109  * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
110  * coded in Little Endian.
111  *
112  * This function just verifies that the header declaration and the
113  * payload are consistent and then deals with it, either forwarding it
114  * to the device or procesing it locally.
115  *
116  * In the i2400m, messages are basically commands that will carry an
117  * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
118  * user space. The rx.c code might intercept the response and use it
119  * to update the driver's state, but then it will pass it on so it can
120  * be relayed back to user space.
121  *
122  * Note that asynchronous events from the device are processed and
123  * sent to user space in rx.c.
124  */
125 static
i2400m_op_msg_from_user(struct wimax_dev * wimax_dev,const char * pipe_name,const void * msg_buf,size_t msg_len,const struct genl_info * genl_info)126 int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
127 			    const char *pipe_name,
128 			    const void *msg_buf, size_t msg_len,
129 			    const struct genl_info *genl_info)
130 {
131 	int result;
132 	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
133 	struct device *dev = i2400m_dev(i2400m);
134 	struct sk_buff *ack_skb;
135 
136 	d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
137 		  "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
138 		  msg_buf, msg_len, genl_info);
139 	ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
140 	result = PTR_ERR(ack_skb);
141 	if (IS_ERR(ack_skb))
142 		goto error_msg_to_dev;
143 	result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
144 error_msg_to_dev:
145 	d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
146 		"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
147 		genl_info, result);
148 	return result;
149 }
150 
151 
152 /*
153  * Context to wait for a reset to finalize
154  */
155 struct i2400m_reset_ctx {
156 	struct completion completion;
157 	int result;
158 };
159 
160 
161 /*
162  * WiMAX stack operation: reset a device
163  *
164  * @wimax_dev: device descriptor
165  *
166  * See the documentation for wimax_reset() and wimax_dev->op_reset for
167  * the requirements of this function. The WiMAX stack guarantees
168  * serialization on calls to this function.
169  *
170  * Do a warm reset on the device; if it fails, resort to a cold reset
171  * and return -ENODEV. On successful warm reset, we need to block
172  * until it is complete.
173  *
174  * The bus-driver implementation of reset takes care of falling back
175  * to cold reset if warm fails.
176  */
177 static
i2400m_op_reset(struct wimax_dev * wimax_dev)178 int i2400m_op_reset(struct wimax_dev *wimax_dev)
179 {
180 	int result;
181 	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
182 	struct device *dev = i2400m_dev(i2400m);
183 	struct i2400m_reset_ctx ctx = {
184 		.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
185 		.result = 0,
186 	};
187 
188 	d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
189 	mutex_lock(&i2400m->init_mutex);
190 	i2400m->reset_ctx = &ctx;
191 	mutex_unlock(&i2400m->init_mutex);
192 	result = i2400m_reset(i2400m, I2400M_RT_WARM);
193 	if (result < 0)
194 		goto out;
195 	result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
196 	if (result == 0)
197 		result = -ETIMEDOUT;
198 	else if (result > 0)
199 		result = ctx.result;
200 	/* if result < 0, pass it on */
201 	mutex_lock(&i2400m->init_mutex);
202 	i2400m->reset_ctx = NULL;
203 	mutex_unlock(&i2400m->init_mutex);
204 out:
205 	d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
206 	return result;
207 }
208 
209 
210 /*
211  * Check the MAC address we got from boot mode is ok
212  *
213  * @i2400m: device descriptor
214  *
215  * Returns: 0 if ok, < 0 errno code on error.
216  */
217 static
i2400m_check_mac_addr(struct i2400m * i2400m)218 int i2400m_check_mac_addr(struct i2400m *i2400m)
219 {
220 	int result;
221 	struct device *dev = i2400m_dev(i2400m);
222 	struct sk_buff *skb;
223 	const struct i2400m_tlv_detailed_device_info *ddi;
224 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
225 	const unsigned char zeromac[ETH_ALEN] = { 0 };
226 
227 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
228 	skb = i2400m_get_device_info(i2400m);
229 	if (IS_ERR(skb)) {
230 		result = PTR_ERR(skb);
231 		dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
232 			result);
233 		goto error;
234 	}
235 	/* Extract MAC address */
236 	ddi = (void *) skb->data;
237 	BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
238 	d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
239 		 ddi->mac_address);
240 	if (!memcmp(net_dev->perm_addr, ddi->mac_address,
241 		   sizeof(ddi->mac_address)))
242 		goto ok;
243 	dev_warn(dev, "warning: device reports a different MAC address "
244 		 "to that of boot mode's\n");
245 	dev_warn(dev, "device reports     %pM\n", ddi->mac_address);
246 	dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
247 	if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
248 		dev_err(dev, "device reports an invalid MAC address, "
249 			"not updating\n");
250 	else {
251 		dev_warn(dev, "updating MAC address\n");
252 		net_dev->addr_len = ETH_ALEN;
253 		memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
254 		memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
255 	}
256 ok:
257 	result = 0;
258 	kfree_skb(skb);
259 error:
260 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
261 	return result;
262 }
263 
264 
265 /**
266  * __i2400m_dev_start - Bring up driver communication with the device
267  *
268  * @i2400m: device descriptor
269  * @flags: boot mode flags
270  *
271  * Returns: 0 if ok, < 0 errno code on error.
272  *
273  * Uploads firmware and brings up all the resources needed to be able
274  * to communicate with the device.
275  *
276  * The workqueue has to be setup early, at least before RX handling
277  * (it's only real user for now) so it can process reports as they
278  * arrive. We also want to destroy it if we retry, to make sure it is
279  * flushed...easier like this.
280  *
281  * TX needs to be setup before the bus-specific code (otherwise on
282  * shutdown, the bus-tx code could try to access it).
283  */
284 static
__i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri flags)285 int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
286 {
287 	int result;
288 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
289 	struct net_device *net_dev = wimax_dev->net_dev;
290 	struct device *dev = i2400m_dev(i2400m);
291 	int times = i2400m->bus_bm_retries;
292 
293 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
294 retry:
295 	result = i2400m_dev_bootstrap(i2400m, flags);
296 	if (result < 0) {
297 		dev_err(dev, "cannot bootstrap device: %d\n", result);
298 		goto error_bootstrap;
299 	}
300 	result = i2400m_tx_setup(i2400m);
301 	if (result < 0)
302 		goto error_tx_setup;
303 	result = i2400m_rx_setup(i2400m);
304 	if (result < 0)
305 		goto error_rx_setup;
306 	i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
307 	if (i2400m->work_queue == NULL) {
308 		result = -ENOMEM;
309 		dev_err(dev, "cannot create workqueue\n");
310 		goto error_create_workqueue;
311 	}
312 	if (i2400m->bus_dev_start) {
313 		result = i2400m->bus_dev_start(i2400m);
314 		if (result < 0)
315 			goto error_bus_dev_start;
316 	}
317 	i2400m->ready = 1;
318 	wmb();		/* see i2400m->ready's documentation  */
319 	/* process pending reports from the device */
320 	queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
321 	result = i2400m_firmware_check(i2400m);	/* fw versions ok? */
322 	if (result < 0)
323 		goto error_fw_check;
324 	/* At this point is ok to send commands to the device */
325 	result = i2400m_check_mac_addr(i2400m);
326 	if (result < 0)
327 		goto error_check_mac_addr;
328 	result = i2400m_dev_initialize(i2400m);
329 	if (result < 0)
330 		goto error_dev_initialize;
331 
332 	/* We don't want any additional unwanted error recovery triggered
333 	 * from any other context so if anything went wrong before we come
334 	 * here, let's keep i2400m->error_recovery untouched and leave it to
335 	 * dev_reset_handle(). See dev_reset_handle(). */
336 
337 	atomic_dec(&i2400m->error_recovery);
338 	/* Every thing works so far, ok, now we are ready to
339 	 * take error recovery if it's required. */
340 
341 	/* At this point, reports will come for the device and set it
342 	 * to the right state if it is different than UNINITIALIZED */
343 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
344 		net_dev, i2400m, result);
345 	return result;
346 
347 error_dev_initialize:
348 error_check_mac_addr:
349 error_fw_check:
350 	i2400m->ready = 0;
351 	wmb();		/* see i2400m->ready's documentation  */
352 	flush_workqueue(i2400m->work_queue);
353 	if (i2400m->bus_dev_stop)
354 		i2400m->bus_dev_stop(i2400m);
355 error_bus_dev_start:
356 	destroy_workqueue(i2400m->work_queue);
357 error_create_workqueue:
358 	i2400m_rx_release(i2400m);
359 error_rx_setup:
360 	i2400m_tx_release(i2400m);
361 error_tx_setup:
362 error_bootstrap:
363 	if (result == -EL3RST && times-- > 0) {
364 		flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
365 		goto retry;
366 	}
367 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
368 		net_dev, i2400m, result);
369 	return result;
370 }
371 
372 
373 static
i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri bm_flags)374 int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
375 {
376 	int result = 0;
377 	mutex_lock(&i2400m->init_mutex);	/* Well, start the device */
378 	if (i2400m->updown == 0) {
379 		result = __i2400m_dev_start(i2400m, bm_flags);
380 		if (result >= 0) {
381 			i2400m->updown = 1;
382 			i2400m->alive = 1;
383 			wmb();/* see i2400m->updown and i2400m->alive's doc */
384 		}
385 	}
386 	mutex_unlock(&i2400m->init_mutex);
387 	return result;
388 }
389 
390 
391 /**
392  * i2400m_dev_stop - Tear down driver communication with the device
393  *
394  * @i2400m: device descriptor
395  *
396  * Returns: 0 if ok, < 0 errno code on error.
397  *
398  * Releases all the resources allocated to communicate with the
399  * device. Note we cannot destroy the workqueue earlier as until RX is
400  * fully destroyed, it could still try to schedule jobs.
401  */
402 static
__i2400m_dev_stop(struct i2400m * i2400m)403 void __i2400m_dev_stop(struct i2400m *i2400m)
404 {
405 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
406 	struct device *dev = i2400m_dev(i2400m);
407 
408 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
409 	wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
410 	i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
411 	complete(&i2400m->msg_completion);
412 	i2400m_net_wake_stop(i2400m);
413 	i2400m_dev_shutdown(i2400m);
414 	/*
415 	 * Make sure no report hooks are running *before* we stop the
416 	 * communication infrastructure with the device.
417 	 */
418 	i2400m->ready = 0;	/* nobody can queue work anymore */
419 	wmb();		/* see i2400m->ready's documentation  */
420 	flush_workqueue(i2400m->work_queue);
421 
422 	if (i2400m->bus_dev_stop)
423 		i2400m->bus_dev_stop(i2400m);
424 	destroy_workqueue(i2400m->work_queue);
425 	i2400m_rx_release(i2400m);
426 	i2400m_tx_release(i2400m);
427 	wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
428 	d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
429 }
430 
431 
432 /*
433  * Watch out -- we only need to stop if there is a need for it. The
434  * device could have reset itself and failed to come up again (see
435  * _i2400m_dev_reset_handle()).
436  */
437 static
i2400m_dev_stop(struct i2400m * i2400m)438 void i2400m_dev_stop(struct i2400m *i2400m)
439 {
440 	mutex_lock(&i2400m->init_mutex);
441 	if (i2400m->updown) {
442 		__i2400m_dev_stop(i2400m);
443 		i2400m->updown = 0;
444 		i2400m->alive = 0;
445 		wmb();	/* see i2400m->updown and i2400m->alive's doc */
446 	}
447 	mutex_unlock(&i2400m->init_mutex);
448 }
449 
450 
451 /*
452  * Listen to PM events to cache the firmware before suspend/hibernation
453  *
454  * When the device comes out of suspend, it might go into reset and
455  * firmware has to be uploaded again. At resume, most of the times, we
456  * can't load firmware images from disk, so we need to cache it.
457  *
458  * i2400m_fw_cache() will allocate a kobject and attach the firmware
459  * to it; that way we don't have to worry too much about the fw loader
460  * hitting a race condition.
461  *
462  * Note: modus operandi stolen from the Orinoco driver; thx.
463  */
464 static
i2400m_pm_notifier(struct notifier_block * notifier,unsigned long pm_event,void * unused)465 int i2400m_pm_notifier(struct notifier_block *notifier,
466 		       unsigned long pm_event,
467 		       void *unused)
468 {
469 	struct i2400m *i2400m =
470 		container_of(notifier, struct i2400m, pm_notifier);
471 	struct device *dev = i2400m_dev(i2400m);
472 
473 	d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
474 	switch (pm_event) {
475 	case PM_HIBERNATION_PREPARE:
476 	case PM_SUSPEND_PREPARE:
477 		i2400m_fw_cache(i2400m);
478 		break;
479 	case PM_POST_RESTORE:
480 		/* Restore from hibernation failed. We need to clean
481 		 * up in exactly the same way, so fall through. */
482 	case PM_POST_HIBERNATION:
483 	case PM_POST_SUSPEND:
484 		i2400m_fw_uncache(i2400m);
485 		break;
486 
487 	case PM_RESTORE_PREPARE:
488 	default:
489 		break;
490 	}
491 	d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
492 	return NOTIFY_DONE;
493 }
494 
495 
496 /*
497  * pre-reset is called before a device is going on reset
498  *
499  * This has to be followed by a call to i2400m_post_reset(), otherwise
500  * bad things might happen.
501  */
i2400m_pre_reset(struct i2400m * i2400m)502 int i2400m_pre_reset(struct i2400m *i2400m)
503 {
504 	int result;
505 	struct device *dev = i2400m_dev(i2400m);
506 
507 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
508 	d_printf(1, dev, "pre-reset shut down\n");
509 
510 	result = 0;
511 	mutex_lock(&i2400m->init_mutex);
512 	if (i2400m->updown) {
513 		netif_tx_disable(i2400m->wimax_dev.net_dev);
514 		__i2400m_dev_stop(i2400m);
515 		result = 0;
516 		/* down't set updown to zero -- this way
517 		 * post_reset can restore properly */
518 	}
519 	mutex_unlock(&i2400m->init_mutex);
520 	if (i2400m->bus_release)
521 		i2400m->bus_release(i2400m);
522 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
523 	return result;
524 }
525 EXPORT_SYMBOL_GPL(i2400m_pre_reset);
526 
527 
528 /*
529  * Restore device state after a reset
530  *
531  * Do the work needed after a device reset to bring it up to the same
532  * state as it was before the reset.
533  *
534  * NOTE: this requires i2400m->init_mutex taken
535  */
i2400m_post_reset(struct i2400m * i2400m)536 int i2400m_post_reset(struct i2400m *i2400m)
537 {
538 	int result = 0;
539 	struct device *dev = i2400m_dev(i2400m);
540 
541 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
542 	d_printf(1, dev, "post-reset start\n");
543 	if (i2400m->bus_setup) {
544 		result = i2400m->bus_setup(i2400m);
545 		if (result < 0) {
546 			dev_err(dev, "bus-specific setup failed: %d\n",
547 				result);
548 			goto error_bus_setup;
549 		}
550 	}
551 	mutex_lock(&i2400m->init_mutex);
552 	if (i2400m->updown) {
553 		result = __i2400m_dev_start(
554 			i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
555 		if (result < 0)
556 			goto error_dev_start;
557 	}
558 	mutex_unlock(&i2400m->init_mutex);
559 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
560 	return result;
561 
562 error_dev_start:
563 	if (i2400m->bus_release)
564 		i2400m->bus_release(i2400m);
565 	/* even if the device was up, it could not be recovered, so we
566 	 * mark it as down. */
567 	i2400m->updown = 0;
568 	wmb();		/* see i2400m->updown's documentation  */
569 	mutex_unlock(&i2400m->init_mutex);
570 error_bus_setup:
571 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
572 	return result;
573 }
574 EXPORT_SYMBOL_GPL(i2400m_post_reset);
575 
576 
577 /*
578  * The device has rebooted; fix up the device and the driver
579  *
580  * Tear down the driver communication with the device, reload the
581  * firmware and reinitialize the communication with the device.
582  *
583  * If someone calls a reset when the device's firmware is down, in
584  * theory we won't see it because we are not listening. However, just
585  * in case, leave the code to handle it.
586  *
587  * If there is a reset context, use it; this means someone is waiting
588  * for us to tell him when the reset operation is complete and the
589  * device is ready to rock again.
590  *
591  * NOTE: if we are in the process of bringing up or down the
592  *       communication with the device [running i2400m_dev_start() or
593  *       _stop()], don't do anything, let it fail and handle it.
594  *
595  * This function is ran always in a thread context
596  *
597  * This function gets passed, as payload to i2400m_work() a 'const
598  * char *' ptr with a "reason" why the reset happened (for messages).
599  */
600 static
__i2400m_dev_reset_handle(struct work_struct * ws)601 void __i2400m_dev_reset_handle(struct work_struct *ws)
602 {
603 	struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws);
604 	const char *reason = i2400m->reset_reason;
605 	struct device *dev = i2400m_dev(i2400m);
606 	struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
607 	int result;
608 
609 	d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
610 
611 	i2400m->boot_mode = 1;
612 	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
613 
614 	result = 0;
615 	if (mutex_trylock(&i2400m->init_mutex) == 0) {
616 		/* We are still in i2400m_dev_start() [let it fail] or
617 		 * i2400m_dev_stop() [we are shutting down anyway, so
618 		 * ignore it] or we are resetting somewhere else. */
619 		dev_err(dev, "device rebooted somewhere else?\n");
620 		i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
621 		complete(&i2400m->msg_completion);
622 		goto out;
623 	}
624 
625 	dev_err(dev, "%s: reinitializing driver\n", reason);
626 	rmb();
627 	if (i2400m->updown) {
628 		__i2400m_dev_stop(i2400m);
629 		i2400m->updown = 0;
630 		wmb();		/* see i2400m->updown's documentation  */
631 	}
632 
633 	if (i2400m->alive) {
634 		result = __i2400m_dev_start(i2400m,
635 				    I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
636 		if (result < 0) {
637 			dev_err(dev, "%s: cannot start the device: %d\n",
638 				reason, result);
639 			result = -EUCLEAN;
640 			if (atomic_read(&i2400m->bus_reset_retries)
641 					>= I2400M_BUS_RESET_RETRIES) {
642 				result = -ENODEV;
643 				dev_err(dev, "tried too many times to "
644 					"reset the device, giving up\n");
645 			}
646 		}
647 	}
648 
649 	if (i2400m->reset_ctx) {
650 		ctx->result = result;
651 		complete(&ctx->completion);
652 	}
653 	mutex_unlock(&i2400m->init_mutex);
654 	if (result == -EUCLEAN) {
655 		/*
656 		 * We come here because the reset during operational mode
657 		 * wasn't successfully done and need to proceed to a bus
658 		 * reset. For the dev_reset_handle() to be able to handle
659 		 * the reset event later properly, we restore boot_mode back
660 		 * to the state before previous reset. ie: just like we are
661 		 * issuing the bus reset for the first time
662 		 */
663 		i2400m->boot_mode = 0;
664 		wmb();
665 
666 		atomic_inc(&i2400m->bus_reset_retries);
667 		/* ops, need to clean up [w/ init_mutex not held] */
668 		result = i2400m_reset(i2400m, I2400M_RT_BUS);
669 		if (result >= 0)
670 			result = -ENODEV;
671 	} else {
672 		rmb();
673 		if (i2400m->alive) {
674 			/* great, we expect the device state up and
675 			 * dev_start() actually brings the device state up */
676 			i2400m->updown = 1;
677 			wmb();
678 			atomic_set(&i2400m->bus_reset_retries, 0);
679 		}
680 	}
681 out:
682 	d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
683 		ws, i2400m, reason);
684 }
685 
686 
687 /**
688  * i2400m_dev_reset_handle - Handle a device's reset in a thread context
689  *
690  * Schedule a device reset handling out on a thread context, so it
691  * is safe to call from atomic context. We can't use the i2400m's
692  * queue as we are going to destroy it and reinitialize it as part of
693  * the driver bringup/bringup process.
694  *
695  * See __i2400m_dev_reset_handle() for details; that takes care of
696  * reinitializing the driver to handle the reset, calling into the
697  * bus-specific functions ops as needed.
698  */
i2400m_dev_reset_handle(struct i2400m * i2400m,const char * reason)699 int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
700 {
701 	i2400m->reset_reason = reason;
702 	return schedule_work(&i2400m->reset_ws);
703 }
704 EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
705 
706 
707  /*
708  * The actual work of error recovery.
709  *
710  * The current implementation of error recovery is to trigger a bus reset.
711  */
712 static
__i2400m_error_recovery(struct work_struct * ws)713 void __i2400m_error_recovery(struct work_struct *ws)
714 {
715 	struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws);
716 
717 	i2400m_reset(i2400m, I2400M_RT_BUS);
718 }
719 
720 /*
721  * Schedule a work struct for error recovery.
722  *
723  * The intention of error recovery is to bring back the device to some
724  * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
725  * the device. The TX failure could mean a device bus stuck, so the current
726  * error recovery implementation is to trigger a bus reset to the device
727  * and hopefully it can bring back the device.
728  *
729  * The actual work of error recovery has to be in a thread context because
730  * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
731  * destroyed by the error recovery mechanism (currently a bus reset).
732  *
733  * Also, there may be already a queue of TX works that all hit
734  * the -ETIMEOUT error condition because the device is stuck already.
735  * Since bus reset is used as the error recovery mechanism and we don't
736  * want consecutive bus resets simply because the multiple TX works
737  * in the queue all hit the same device erratum, the flag "error_recovery"
738  * is introduced for preventing unwanted consecutive bus resets.
739  *
740  * Error recovery shall only be invoked again if previous one was completed.
741  * The flag error_recovery is set when error recovery mechanism is scheduled,
742  * and is checked when we need to schedule another error recovery. If it is
743  * in place already, then we shouldn't schedule another one.
744  */
i2400m_error_recovery(struct i2400m * i2400m)745 void i2400m_error_recovery(struct i2400m *i2400m)
746 {
747 	if (atomic_add_return(1, &i2400m->error_recovery) == 1)
748 		schedule_work(&i2400m->recovery_ws);
749 	else
750 		atomic_dec(&i2400m->error_recovery);
751 }
752 EXPORT_SYMBOL_GPL(i2400m_error_recovery);
753 
754 /*
755  * Alloc the command and ack buffers for boot mode
756  *
757  * Get the buffers needed to deal with boot mode messages.  These
758  * buffers need to be allocated before the sdio receive irq is setup.
759  */
760 static
i2400m_bm_buf_alloc(struct i2400m * i2400m)761 int i2400m_bm_buf_alloc(struct i2400m *i2400m)
762 {
763 	int result;
764 
765 	result = -ENOMEM;
766 	i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
767 	if (i2400m->bm_cmd_buf == NULL)
768 		goto error_bm_cmd_kzalloc;
769 	i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
770 	if (i2400m->bm_ack_buf == NULL)
771 		goto error_bm_ack_buf_kzalloc;
772 	return 0;
773 
774 error_bm_ack_buf_kzalloc:
775 	kfree(i2400m->bm_cmd_buf);
776 error_bm_cmd_kzalloc:
777 	return result;
778 }
779 
780 
781 /*
782  * Free boot mode command and ack buffers.
783  */
784 static
i2400m_bm_buf_free(struct i2400m * i2400m)785 void i2400m_bm_buf_free(struct i2400m *i2400m)
786 {
787 	kfree(i2400m->bm_ack_buf);
788 	kfree(i2400m->bm_cmd_buf);
789 }
790 
791 
792 /**
793  * i2400m_init - Initialize a 'struct i2400m' from all zeroes
794  *
795  * This is a bus-generic API call.
796  */
i2400m_init(struct i2400m * i2400m)797 void i2400m_init(struct i2400m *i2400m)
798 {
799 	wimax_dev_init(&i2400m->wimax_dev);
800 
801 	i2400m->boot_mode = 1;
802 	i2400m->rx_reorder = 1;
803 	init_waitqueue_head(&i2400m->state_wq);
804 
805 	spin_lock_init(&i2400m->tx_lock);
806 	i2400m->tx_pl_min = UINT_MAX;
807 	i2400m->tx_size_min = UINT_MAX;
808 
809 	spin_lock_init(&i2400m->rx_lock);
810 	i2400m->rx_pl_min = UINT_MAX;
811 	i2400m->rx_size_min = UINT_MAX;
812 	INIT_LIST_HEAD(&i2400m->rx_reports);
813 	INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
814 
815 	mutex_init(&i2400m->msg_mutex);
816 	init_completion(&i2400m->msg_completion);
817 
818 	mutex_init(&i2400m->init_mutex);
819 	/* wake_tx_ws is initialized in i2400m_tx_setup() */
820 
821 	INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle);
822 	INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery);
823 
824 	atomic_set(&i2400m->bus_reset_retries, 0);
825 
826 	i2400m->alive = 0;
827 
828 	/* initialize error_recovery to 1 for denoting we
829 	 * are not yet ready to take any error recovery */
830 	atomic_set(&i2400m->error_recovery, 1);
831 }
832 EXPORT_SYMBOL_GPL(i2400m_init);
833 
834 
i2400m_reset(struct i2400m * i2400m,enum i2400m_reset_type rt)835 int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
836 {
837 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
838 
839 	/*
840 	 * Make sure we stop TXs and down the carrier before
841 	 * resetting; this is needed to avoid things like
842 	 * i2400m_wake_tx() scheduling stuff in parallel.
843 	 */
844 	if (net_dev->reg_state == NETREG_REGISTERED) {
845 		netif_tx_disable(net_dev);
846 		netif_carrier_off(net_dev);
847 	}
848 	return i2400m->bus_reset(i2400m, rt);
849 }
850 EXPORT_SYMBOL_GPL(i2400m_reset);
851 
852 
853 /**
854  * i2400m_setup - bus-generic setup function for the i2400m device
855  *
856  * @i2400m: device descriptor (bus-specific parts have been initialized)
857  *
858  * Returns: 0 if ok, < 0 errno code on error.
859  *
860  * Sets up basic device comunication infrastructure, boots the ROM to
861  * read the MAC address, registers with the WiMAX and network stacks
862  * and then brings up the device.
863  */
i2400m_setup(struct i2400m * i2400m,enum i2400m_bri bm_flags)864 int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
865 {
866 	int result = -ENODEV;
867 	struct device *dev = i2400m_dev(i2400m);
868 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
869 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
870 
871 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
872 
873 	snprintf(wimax_dev->name, sizeof(wimax_dev->name),
874 		 "i2400m-%s:%s", dev->bus->name, dev_name(dev));
875 
876 	result = i2400m_bm_buf_alloc(i2400m);
877 	if (result < 0) {
878 		dev_err(dev, "cannot allocate bootmode scratch buffers\n");
879 		goto error_bm_buf_alloc;
880 	}
881 
882 	if (i2400m->bus_setup) {
883 		result = i2400m->bus_setup(i2400m);
884 		if (result < 0) {
885 			dev_err(dev, "bus-specific setup failed: %d\n",
886 				result);
887 			goto error_bus_setup;
888 		}
889 	}
890 
891 	result = i2400m_bootrom_init(i2400m, bm_flags);
892 	if (result < 0) {
893 		dev_err(dev, "read mac addr: bootrom init "
894 			"failed: %d\n", result);
895 		goto error_bootrom_init;
896 	}
897 	result = i2400m_read_mac_addr(i2400m);
898 	if (result < 0)
899 		goto error_read_mac_addr;
900 	random_ether_addr(i2400m->src_mac_addr);
901 
902 	i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
903 	register_pm_notifier(&i2400m->pm_notifier);
904 
905 	result = register_netdev(net_dev);	/* Okey dokey, bring it up */
906 	if (result < 0) {
907 		dev_err(dev, "cannot register i2400m network device: %d\n",
908 			result);
909 		goto error_register_netdev;
910 	}
911 	netif_carrier_off(net_dev);
912 
913 	i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
914 	i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
915 	i2400m->wimax_dev.op_reset = i2400m_op_reset;
916 
917 	result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
918 	if (result < 0)
919 		goto error_wimax_dev_add;
920 
921 	/* Now setup all that requires a registered net and wimax device. */
922 	result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
923 	if (result < 0) {
924 		dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
925 		goto error_sysfs_setup;
926 	}
927 
928 	result = i2400m_debugfs_add(i2400m);
929 	if (result < 0) {
930 		dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
931 		goto error_debugfs_setup;
932 	}
933 
934 	result = i2400m_dev_start(i2400m, bm_flags);
935 	if (result < 0)
936 		goto error_dev_start;
937 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
938 	return result;
939 
940 error_dev_start:
941 	i2400m_debugfs_rm(i2400m);
942 error_debugfs_setup:
943 	sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
944 			   &i2400m_dev_attr_group);
945 error_sysfs_setup:
946 	wimax_dev_rm(&i2400m->wimax_dev);
947 error_wimax_dev_add:
948 	unregister_netdev(net_dev);
949 error_register_netdev:
950 	unregister_pm_notifier(&i2400m->pm_notifier);
951 error_read_mac_addr:
952 error_bootrom_init:
953 	if (i2400m->bus_release)
954 		i2400m->bus_release(i2400m);
955 error_bus_setup:
956 	i2400m_bm_buf_free(i2400m);
957 error_bm_buf_alloc:
958 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
959 	return result;
960 }
961 EXPORT_SYMBOL_GPL(i2400m_setup);
962 
963 
964 /**
965  * i2400m_release - release the bus-generic driver resources
966  *
967  * Sends a disconnect message and undoes any setup done by i2400m_setup()
968  */
i2400m_release(struct i2400m * i2400m)969 void i2400m_release(struct i2400m *i2400m)
970 {
971 	struct device *dev = i2400m_dev(i2400m);
972 
973 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
974 	netif_stop_queue(i2400m->wimax_dev.net_dev);
975 
976 	i2400m_dev_stop(i2400m);
977 
978 	cancel_work_sync(&i2400m->reset_ws);
979 	cancel_work_sync(&i2400m->recovery_ws);
980 
981 	i2400m_debugfs_rm(i2400m);
982 	sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
983 			   &i2400m_dev_attr_group);
984 	wimax_dev_rm(&i2400m->wimax_dev);
985 	unregister_netdev(i2400m->wimax_dev.net_dev);
986 	unregister_pm_notifier(&i2400m->pm_notifier);
987 	if (i2400m->bus_release)
988 		i2400m->bus_release(i2400m);
989 	i2400m_bm_buf_free(i2400m);
990 	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
991 }
992 EXPORT_SYMBOL_GPL(i2400m_release);
993 
994 
995 /*
996  * Debug levels control; see debug.h
997  */
998 struct d_level D_LEVEL[] = {
999 	D_SUBMODULE_DEFINE(control),
1000 	D_SUBMODULE_DEFINE(driver),
1001 	D_SUBMODULE_DEFINE(debugfs),
1002 	D_SUBMODULE_DEFINE(fw),
1003 	D_SUBMODULE_DEFINE(netdev),
1004 	D_SUBMODULE_DEFINE(rfkill),
1005 	D_SUBMODULE_DEFINE(rx),
1006 	D_SUBMODULE_DEFINE(sysfs),
1007 	D_SUBMODULE_DEFINE(tx),
1008 };
1009 size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
1010 
1011 
1012 static
i2400m_driver_init(void)1013 int __init i2400m_driver_init(void)
1014 {
1015 	d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
1016 		       "i2400m.debug");
1017 	return i2400m_barker_db_init(i2400m_barkers_params);
1018 }
1019 module_init(i2400m_driver_init);
1020 
1021 static
i2400m_driver_exit(void)1022 void __exit i2400m_driver_exit(void)
1023 {
1024 	i2400m_barker_db_exit();
1025 }
1026 module_exit(i2400m_driver_exit);
1027 
1028 MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
1029 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
1030 MODULE_LICENSE("GPL");
1031