• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "linux/string.h"
29 #include "linux/bitops.h"
30 #include "drmP.h"
31 #include "drm.h"
32 #include "i915_drm.h"
33 #include "i915_drv.h"
34 
35 /** @file i915_gem_tiling.c
36  *
37  * Support for managing tiling state of buffer objects.
38  *
39  * The idea behind tiling is to increase cache hit rates by rearranging
40  * pixel data so that a group of pixel accesses are in the same cacheline.
41  * Performance improvement from doing this on the back/depth buffer are on
42  * the order of 30%.
43  *
44  * Intel architectures make this somewhat more complicated, though, by
45  * adjustments made to addressing of data when the memory is in interleaved
46  * mode (matched pairs of DIMMS) to improve memory bandwidth.
47  * For interleaved memory, the CPU sends every sequential 64 bytes
48  * to an alternate memory channel so it can get the bandwidth from both.
49  *
50  * The GPU also rearranges its accesses for increased bandwidth to interleaved
51  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
52  * it does it a little differently, since one walks addresses not just in the
53  * X direction but also Y.  So, along with alternating channels when bit
54  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
55  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
56  * are common to both the 915 and 965-class hardware.
57  *
58  * The CPU also sometimes XORs in higher bits as well, to improve
59  * bandwidth doing strided access like we do so frequently in graphics.  This
60  * is called "Channel XOR Randomization" in the MCH documentation.  The result
61  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
62  * decode.
63  *
64  * All of this bit 6 XORing has an effect on our memory management,
65  * as we need to make sure that the 3d driver can correctly address object
66  * contents.
67  *
68  * If we don't have interleaved memory, all tiling is safe and no swizzling is
69  * required.
70  *
71  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
72  * 17 is not just a page offset, so as we page an objet out and back in,
73  * individual pages in it will have different bit 17 addresses, resulting in
74  * each 64 bytes being swapped with its neighbor!
75  *
76  * Otherwise, if interleaved, we have to tell the 3d driver what the address
77  * swizzling it needs to do is, since it's writing with the CPU to the pages
78  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
79  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
80  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
81  * to match what the GPU expects.
82  */
83 
84 /**
85  * Detects bit 6 swizzling of address lookup between IGD access and CPU
86  * access through main memory.
87  */
88 void
i915_gem_detect_bit_6_swizzle(struct drm_device * dev)89 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
90 {
91 	drm_i915_private_t *dev_priv = dev->dev_private;
92 	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
93 	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
94 
95 	if (INTEL_INFO(dev)->gen >= 6) {
96 		uint32_t dimm_c0, dimm_c1;
97 		dimm_c0 = I915_READ(MAD_DIMM_C0);
98 		dimm_c1 = I915_READ(MAD_DIMM_C1);
99 		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
100 		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
101 		/* Enable swizzling when the channels are populated with
102 		 * identically sized dimms. We don't need to check the 3rd
103 		 * channel because no cpu with gpu attached ships in that
104 		 * configuration. Also, swizzling only makes sense for 2
105 		 * channels anyway. */
106 		if (dimm_c0 == dimm_c1) {
107 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
108 			swizzle_y = I915_BIT_6_SWIZZLE_9;
109 		} else {
110 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
111 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
112 		}
113 	} else if (IS_GEN5(dev)) {
114 		/* On Ironlake whatever DRAM config, GPU always do
115 		 * same swizzling setup.
116 		 */
117 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
118 		swizzle_y = I915_BIT_6_SWIZZLE_9;
119 	} else if (IS_GEN2(dev)) {
120 		/* As far as we know, the 865 doesn't have these bit 6
121 		 * swizzling issues.
122 		 */
123 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
124 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
125 	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
126 		uint32_t dcc;
127 
128 		/* On 9xx chipsets, channel interleave by the CPU is
129 		 * determined by DCC.  For single-channel, neither the CPU
130 		 * nor the GPU do swizzling.  For dual channel interleaved,
131 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
132 		 * 9 for Y tiled.  The CPU's interleave is independent, and
133 		 * can be based on either bit 11 (haven't seen this yet) or
134 		 * bit 17 (common).
135 		 */
136 		dcc = I915_READ(DCC);
137 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
138 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
139 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
140 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
141 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
142 			break;
143 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
144 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
145 				/* This is the base swizzling by the GPU for
146 				 * tiled buffers.
147 				 */
148 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
149 				swizzle_y = I915_BIT_6_SWIZZLE_9;
150 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
151 				/* Bit 11 swizzling by the CPU in addition. */
152 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
153 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
154 			} else {
155 				/* Bit 17 swizzling by the CPU in addition. */
156 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
157 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
158 			}
159 			break;
160 		}
161 		if (dcc == 0xffffffff) {
162 			DRM_ERROR("Couldn't read from MCHBAR.  "
163 				  "Disabling tiling.\n");
164 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
165 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
166 		}
167 	} else {
168 		/* The 965, G33, and newer, have a very flexible memory
169 		 * configuration.  It will enable dual-channel mode
170 		 * (interleaving) on as much memory as it can, and the GPU
171 		 * will additionally sometimes enable different bit 6
172 		 * swizzling for tiled objects from the CPU.
173 		 *
174 		 * Here's what I found on the G965:
175 		 *    slot fill         memory size  swizzling
176 		 * 0A   0B   1A   1B    1-ch   2-ch
177 		 * 512  0    0    0     512    0     O
178 		 * 512  0    512  0     16     1008  X
179 		 * 512  0    0    512   16     1008  X
180 		 * 0    512  0    512   16     1008  X
181 		 * 1024 1024 1024 0     2048   1024  O
182 		 *
183 		 * We could probably detect this based on either the DRB
184 		 * matching, which was the case for the swizzling required in
185 		 * the table above, or from the 1-ch value being less than
186 		 * the minimum size of a rank.
187 		 */
188 		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
189 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
190 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
191 		} else {
192 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
193 			swizzle_y = I915_BIT_6_SWIZZLE_9;
194 		}
195 	}
196 
197 	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
198 	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
199 }
200 
201 /* Check pitch constriants for all chips & tiling formats */
202 static bool
i915_tiling_ok(struct drm_device * dev,int stride,int size,int tiling_mode)203 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
204 {
205 	int tile_width;
206 
207 	/* Linear is always fine */
208 	if (tiling_mode == I915_TILING_NONE)
209 		return true;
210 
211 	if (IS_GEN2(dev) ||
212 	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
213 		tile_width = 128;
214 	else
215 		tile_width = 512;
216 
217 	/* check maximum stride & object size */
218 	if (INTEL_INFO(dev)->gen >= 4) {
219 		/* i965 stores the end address of the gtt mapping in the fence
220 		 * reg, so dont bother to check the size */
221 		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
222 			return false;
223 	} else {
224 		if (stride > 8192)
225 			return false;
226 
227 		if (IS_GEN3(dev)) {
228 			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
229 				return false;
230 		} else {
231 			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
232 				return false;
233 		}
234 	}
235 
236 	/* 965+ just needs multiples of tile width */
237 	if (INTEL_INFO(dev)->gen >= 4) {
238 		if (stride & (tile_width - 1))
239 			return false;
240 		return true;
241 	}
242 
243 	/* Pre-965 needs power of two tile widths */
244 	if (stride < tile_width)
245 		return false;
246 
247 	if (stride & (stride - 1))
248 		return false;
249 
250 	return true;
251 }
252 
253 /* Is the current GTT allocation valid for the change in tiling? */
254 static bool
i915_gem_object_fence_ok(struct drm_i915_gem_object * obj,int tiling_mode)255 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
256 {
257 	u32 size;
258 
259 	if (tiling_mode == I915_TILING_NONE)
260 		return true;
261 
262 	if (INTEL_INFO(obj->base.dev)->gen >= 4)
263 		return true;
264 
265 	if (INTEL_INFO(obj->base.dev)->gen == 3) {
266 		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
267 			return false;
268 	} else {
269 		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
270 			return false;
271 	}
272 
273 	/*
274 	 * Previous chips need to be aligned to the size of the smallest
275 	 * fence register that can contain the object.
276 	 */
277 	if (INTEL_INFO(obj->base.dev)->gen == 3)
278 		size = 1024*1024;
279 	else
280 		size = 512*1024;
281 
282 	while (size < obj->base.size)
283 		size <<= 1;
284 
285 	if (obj->gtt_space->size != size)
286 		return false;
287 
288 	if (obj->gtt_offset & (size - 1))
289 		return false;
290 
291 	return true;
292 }
293 
294 /**
295  * Sets the tiling mode of an object, returning the required swizzling of
296  * bit 6 of addresses in the object.
297  */
298 int
i915_gem_set_tiling(struct drm_device * dev,void * data,struct drm_file * file)299 i915_gem_set_tiling(struct drm_device *dev, void *data,
300 		   struct drm_file *file)
301 {
302 	struct drm_i915_gem_set_tiling *args = data;
303 	drm_i915_private_t *dev_priv = dev->dev_private;
304 	struct drm_i915_gem_object *obj;
305 	int ret = 0;
306 
307 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
308 	if (&obj->base == NULL)
309 		return -ENOENT;
310 
311 	if (!i915_tiling_ok(dev,
312 			    args->stride, obj->base.size, args->tiling_mode)) {
313 		drm_gem_object_unreference_unlocked(&obj->base);
314 		return -EINVAL;
315 	}
316 
317 	if (obj->pin_count) {
318 		drm_gem_object_unreference_unlocked(&obj->base);
319 		return -EBUSY;
320 	}
321 
322 	if (args->tiling_mode == I915_TILING_NONE) {
323 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
324 		args->stride = 0;
325 	} else {
326 		if (args->tiling_mode == I915_TILING_X)
327 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
328 		else
329 			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
330 
331 		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
332 		 * from aborting the application on sw fallbacks to bit 17,
333 		 * and we use the pread/pwrite bit17 paths to swizzle for it.
334 		 * If there was a user that was relying on the swizzle
335 		 * information for drm_intel_bo_map()ed reads/writes this would
336 		 * break it, but we don't have any of those.
337 		 */
338 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
339 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
340 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
341 			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
342 
343 		/* If we can't handle the swizzling, make it untiled. */
344 		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
345 			args->tiling_mode = I915_TILING_NONE;
346 			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
347 			args->stride = 0;
348 		}
349 	}
350 
351 	mutex_lock(&dev->struct_mutex);
352 	if (args->tiling_mode != obj->tiling_mode ||
353 	    args->stride != obj->stride) {
354 		/* We need to rebind the object if its current allocation
355 		 * no longer meets the alignment restrictions for its new
356 		 * tiling mode. Otherwise we can just leave it alone, but
357 		 * need to ensure that any fence register is cleared.
358 		 */
359 		i915_gem_release_mmap(obj);
360 
361 		obj->map_and_fenceable =
362 			obj->gtt_space == NULL ||
363 			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
364 			 i915_gem_object_fence_ok(obj, args->tiling_mode));
365 
366 		/* Rebind if we need a change of alignment */
367 		if (!obj->map_and_fenceable) {
368 			u32 unfenced_alignment =
369 				i915_gem_get_unfenced_gtt_alignment(dev,
370 								    obj->base.size,
371 								    args->tiling_mode);
372 			if (obj->gtt_offset & (unfenced_alignment - 1))
373 				ret = i915_gem_object_unbind(obj);
374 		}
375 
376 		if (ret == 0) {
377 			obj->tiling_changed = true;
378 			obj->tiling_mode = args->tiling_mode;
379 			obj->stride = args->stride;
380 		}
381 	}
382 	/* we have to maintain this existing ABI... */
383 	args->stride = obj->stride;
384 	args->tiling_mode = obj->tiling_mode;
385 	drm_gem_object_unreference(&obj->base);
386 	mutex_unlock(&dev->struct_mutex);
387 
388 	return ret;
389 }
390 
391 /**
392  * Returns the current tiling mode and required bit 6 swizzling for the object.
393  */
394 int
i915_gem_get_tiling(struct drm_device * dev,void * data,struct drm_file * file)395 i915_gem_get_tiling(struct drm_device *dev, void *data,
396 		   struct drm_file *file)
397 {
398 	struct drm_i915_gem_get_tiling *args = data;
399 	drm_i915_private_t *dev_priv = dev->dev_private;
400 	struct drm_i915_gem_object *obj;
401 
402 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
403 	if (&obj->base == NULL)
404 		return -ENOENT;
405 
406 	mutex_lock(&dev->struct_mutex);
407 
408 	args->tiling_mode = obj->tiling_mode;
409 	switch (obj->tiling_mode) {
410 	case I915_TILING_X:
411 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
412 		break;
413 	case I915_TILING_Y:
414 		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
415 		break;
416 	case I915_TILING_NONE:
417 		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
418 		break;
419 	default:
420 		DRM_ERROR("unknown tiling mode\n");
421 	}
422 
423 	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
424 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
425 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
426 	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
427 		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
428 
429 	drm_gem_object_unreference(&obj->base);
430 	mutex_unlock(&dev->struct_mutex);
431 
432 	return 0;
433 }
434 
435 /**
436  * Swap every 64 bytes of this page around, to account for it having a new
437  * bit 17 of its physical address and therefore being interpreted differently
438  * by the GPU.
439  */
440 static void
i915_gem_swizzle_page(struct page * page)441 i915_gem_swizzle_page(struct page *page)
442 {
443 	char temp[64];
444 	char *vaddr;
445 	int i;
446 
447 	vaddr = kmap(page);
448 
449 	for (i = 0; i < PAGE_SIZE; i += 128) {
450 		memcpy(temp, &vaddr[i], 64);
451 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
452 		memcpy(&vaddr[i + 64], temp, 64);
453 	}
454 
455 	kunmap(page);
456 }
457 
458 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj)459 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
460 {
461 	int page_count = obj->base.size >> PAGE_SHIFT;
462 	int i;
463 
464 	if (obj->bit_17 == NULL)
465 		return;
466 
467 	for (i = 0; i < page_count; i++) {
468 		char new_bit_17 = page_to_phys(obj->pages[i]) >> 17;
469 		if ((new_bit_17 & 0x1) !=
470 		    (test_bit(i, obj->bit_17) != 0)) {
471 			i915_gem_swizzle_page(obj->pages[i]);
472 			set_page_dirty(obj->pages[i]);
473 		}
474 	}
475 }
476 
477 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj)478 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
479 {
480 	int page_count = obj->base.size >> PAGE_SHIFT;
481 	int i;
482 
483 	if (obj->bit_17 == NULL) {
484 		obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
485 					   sizeof(long), GFP_KERNEL);
486 		if (obj->bit_17 == NULL) {
487 			DRM_ERROR("Failed to allocate memory for bit 17 "
488 				  "record\n");
489 			return;
490 		}
491 	}
492 
493 	for (i = 0; i < page_count; i++) {
494 		if (page_to_phys(obj->pages[i]) & (1 << 17))
495 			__set_bit(i, obj->bit_17);
496 		else
497 			__clear_bit(i, obj->bit_17);
498 	}
499 }
500