1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21
22 /*
23 * Inode locking rules:
24 *
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
35 *
36 * Lock ordering:
37 *
38 * inode_sb_list_lock
39 * inode->i_lock
40 * inode->i_sb->s_inode_lru_lock
41 *
42 * bdi->wb.list_lock
43 * inode->i_lock
44 *
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
48 *
49 * iunique_lock
50 * inode_hash_lock
51 */
52
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
get_nr_inodes(void)78 static int get_nr_inodes(void)
79 {
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
get_nr_inodes_unused(void)87 static inline int get_nr_inodes_unused(void)
88 {
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
get_nr_dirty_inodes(void)96 int get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
proc_nr_inodes(ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)107 int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 /**
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
120 *
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
123 */
inode_init_always(struct super_block * sb,struct inode * inode)124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 static const struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->__i_nlink = 1;
137 inode->i_opflags = 0;
138 inode->i_uid = 0;
139 inode->i_gid = 0;
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
153
154 if (security_inode_alloc(inode))
155 goto out;
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161
162 atomic_set(&inode->i_dio_count, 0);
163
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 mapping->assoc_mapping = NULL;
169 mapping->backing_dev_info = &default_backing_dev_info;
170 mapping->writeback_index = 0;
171
172 /*
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
175 * backing_dev_info.
176 */
177 if (sb->s_bdev) {
178 struct backing_dev_info *bdi;
179
180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 mapping->backing_dev_info = bdi;
182 }
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
193
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
alloc_inode(struct super_block * sb)202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
free_inode_nonrcu(struct inode * inode)225 void free_inode_nonrcu(struct inode *inode)
226 {
227 kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230
__destroy_inode(struct inode * inode)231 void __destroy_inode(struct inode *inode)
232 {
233 BUG_ON(inode_has_buffers(inode));
234 security_inode_free(inode);
235 fsnotify_inode_delete(inode);
236 if (!inode->i_nlink) {
237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 atomic_long_dec(&inode->i_sb->s_remove_count);
239 }
240
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 posix_acl_release(inode->i_acl);
244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_default_acl);
246 #endif
247 this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250
i_callback(struct rcu_head * head)251 static void i_callback(struct rcu_head *head)
252 {
253 struct inode *inode = container_of(head, struct inode, i_rcu);
254 kmem_cache_free(inode_cachep, inode);
255 }
256
destroy_inode(struct inode * inode)257 static void destroy_inode(struct inode *inode)
258 {
259 BUG_ON(!list_empty(&inode->i_lru));
260 __destroy_inode(inode);
261 if (inode->i_sb->s_op->destroy_inode)
262 inode->i_sb->s_op->destroy_inode(inode);
263 else
264 call_rcu(&inode->i_rcu, i_callback);
265 }
266
267 /**
268 * drop_nlink - directly drop an inode's link count
269 * @inode: inode
270 *
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
276 * on the filesystem.
277 */
drop_nlink(struct inode * inode)278 void drop_nlink(struct inode *inode)
279 {
280 WARN_ON(inode->i_nlink == 0);
281 inode->__i_nlink--;
282 if (!inode->i_nlink)
283 atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286
287 /**
288 * clear_nlink - directly zero an inode's link count
289 * @inode: inode
290 *
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
294 */
clear_nlink(struct inode * inode)295 void clear_nlink(struct inode *inode)
296 {
297 if (inode->i_nlink) {
298 inode->__i_nlink = 0;
299 atomic_long_inc(&inode->i_sb->s_remove_count);
300 }
301 }
302 EXPORT_SYMBOL(clear_nlink);
303
304 /**
305 * set_nlink - directly set an inode's link count
306 * @inode: inode
307 * @nlink: new nlink (should be non-zero)
308 *
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
311 */
set_nlink(struct inode * inode,unsigned int nlink)312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 if (!nlink) {
315 clear_nlink(inode);
316 } else {
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode->i_nlink == 0)
319 atomic_long_dec(&inode->i_sb->s_remove_count);
320
321 inode->__i_nlink = nlink;
322 }
323 }
324 EXPORT_SYMBOL(set_nlink);
325
326 /**
327 * inc_nlink - directly increment an inode's link count
328 * @inode: inode
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
333 */
inc_nlink(struct inode * inode)334 void inc_nlink(struct inode *inode)
335 {
336 if (WARN_ON(inode->i_nlink == 0))
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338
339 inode->__i_nlink++;
340 }
341 EXPORT_SYMBOL(inc_nlink);
342
address_space_init_once(struct address_space * mapping)343 void address_space_init_once(struct address_space *mapping)
344 {
345 memset(mapping, 0, sizeof(*mapping));
346 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 spin_lock_init(&mapping->tree_lock);
348 mutex_init(&mapping->i_mmap_mutex);
349 INIT_LIST_HEAD(&mapping->private_list);
350 spin_lock_init(&mapping->private_lock);
351 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
352 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
353 }
354 EXPORT_SYMBOL(address_space_init_once);
355
356 /*
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
360 */
inode_init_once(struct inode * inode)361 void inode_init_once(struct inode *inode)
362 {
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_wb_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
373 }
374 EXPORT_SYMBOL(inode_init_once);
375
init_once(void * foo)376 static void init_once(void *foo)
377 {
378 struct inode *inode = (struct inode *) foo;
379
380 inode_init_once(inode);
381 }
382
383 /*
384 * inode->i_lock must be held
385 */
__iget(struct inode * inode)386 void __iget(struct inode *inode)
387 {
388 atomic_inc(&inode->i_count);
389 }
390
391 /*
392 * get additional reference to inode; caller must already hold one.
393 */
ihold(struct inode * inode)394 void ihold(struct inode *inode)
395 {
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397 }
398 EXPORT_SYMBOL(ihold);
399
inode_lru_list_add(struct inode * inode)400 static void inode_lru_list_add(struct inode *inode)
401 {
402 spin_lock(&inode->i_sb->s_inode_lru_lock);
403 if (list_empty(&inode->i_lru)) {
404 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 inode->i_sb->s_nr_inodes_unused++;
406 this_cpu_inc(nr_unused);
407 }
408 spin_unlock(&inode->i_sb->s_inode_lru_lock);
409 }
410
inode_lru_list_del(struct inode * inode)411 static void inode_lru_list_del(struct inode *inode)
412 {
413 spin_lock(&inode->i_sb->s_inode_lru_lock);
414 if (!list_empty(&inode->i_lru)) {
415 list_del_init(&inode->i_lru);
416 inode->i_sb->s_nr_inodes_unused--;
417 this_cpu_dec(nr_unused);
418 }
419 spin_unlock(&inode->i_sb->s_inode_lru_lock);
420 }
421
422 /**
423 * inode_sb_list_add - add inode to the superblock list of inodes
424 * @inode: inode to add
425 */
inode_sb_list_add(struct inode * inode)426 void inode_sb_list_add(struct inode *inode)
427 {
428 spin_lock(&inode_sb_list_lock);
429 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
430 spin_unlock(&inode_sb_list_lock);
431 }
432 EXPORT_SYMBOL_GPL(inode_sb_list_add);
433
inode_sb_list_del(struct inode * inode)434 static inline void inode_sb_list_del(struct inode *inode)
435 {
436 if (!list_empty(&inode->i_sb_list)) {
437 spin_lock(&inode_sb_list_lock);
438 list_del_init(&inode->i_sb_list);
439 spin_unlock(&inode_sb_list_lock);
440 }
441 }
442
hash(struct super_block * sb,unsigned long hashval)443 static unsigned long hash(struct super_block *sb, unsigned long hashval)
444 {
445 unsigned long tmp;
446
447 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
448 L1_CACHE_BYTES;
449 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
450 return tmp & i_hash_mask;
451 }
452
453 /**
454 * __insert_inode_hash - hash an inode
455 * @inode: unhashed inode
456 * @hashval: unsigned long value used to locate this object in the
457 * inode_hashtable.
458 *
459 * Add an inode to the inode hash for this superblock.
460 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)461 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
462 {
463 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
464
465 spin_lock(&inode_hash_lock);
466 spin_lock(&inode->i_lock);
467 hlist_add_head(&inode->i_hash, b);
468 spin_unlock(&inode->i_lock);
469 spin_unlock(&inode_hash_lock);
470 }
471 EXPORT_SYMBOL(__insert_inode_hash);
472
473 /**
474 * __remove_inode_hash - remove an inode from the hash
475 * @inode: inode to unhash
476 *
477 * Remove an inode from the superblock.
478 */
__remove_inode_hash(struct inode * inode)479 void __remove_inode_hash(struct inode *inode)
480 {
481 spin_lock(&inode_hash_lock);
482 spin_lock(&inode->i_lock);
483 hlist_del_init(&inode->i_hash);
484 spin_unlock(&inode->i_lock);
485 spin_unlock(&inode_hash_lock);
486 }
487 EXPORT_SYMBOL(__remove_inode_hash);
488
end_writeback(struct inode * inode)489 void end_writeback(struct inode *inode)
490 {
491 might_sleep();
492 /*
493 * We have to cycle tree_lock here because reclaim can be still in the
494 * process of removing the last page (in __delete_from_page_cache())
495 * and we must not free mapping under it.
496 */
497 spin_lock_irq(&inode->i_data.tree_lock);
498 BUG_ON(inode->i_data.nrpages);
499 spin_unlock_irq(&inode->i_data.tree_lock);
500 BUG_ON(!list_empty(&inode->i_data.private_list));
501 BUG_ON(!(inode->i_state & I_FREEING));
502 BUG_ON(inode->i_state & I_CLEAR);
503 inode_sync_wait(inode);
504 /* don't need i_lock here, no concurrent mods to i_state */
505 inode->i_state = I_FREEING | I_CLEAR;
506 }
507 EXPORT_SYMBOL(end_writeback);
508
509 /*
510 * Free the inode passed in, removing it from the lists it is still connected
511 * to. We remove any pages still attached to the inode and wait for any IO that
512 * is still in progress before finally destroying the inode.
513 *
514 * An inode must already be marked I_FREEING so that we avoid the inode being
515 * moved back onto lists if we race with other code that manipulates the lists
516 * (e.g. writeback_single_inode). The caller is responsible for setting this.
517 *
518 * An inode must already be removed from the LRU list before being evicted from
519 * the cache. This should occur atomically with setting the I_FREEING state
520 * flag, so no inodes here should ever be on the LRU when being evicted.
521 */
evict(struct inode * inode)522 static void evict(struct inode *inode)
523 {
524 const struct super_operations *op = inode->i_sb->s_op;
525
526 BUG_ON(!(inode->i_state & I_FREEING));
527 BUG_ON(!list_empty(&inode->i_lru));
528
529 if (!list_empty(&inode->i_wb_list))
530 inode_wb_list_del(inode);
531
532 inode_sb_list_del(inode);
533
534 if (op->evict_inode) {
535 op->evict_inode(inode);
536 } else {
537 if (inode->i_data.nrpages)
538 truncate_inode_pages(&inode->i_data, 0);
539 end_writeback(inode);
540 }
541 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
542 bd_forget(inode);
543 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
544 cd_forget(inode);
545
546 remove_inode_hash(inode);
547
548 spin_lock(&inode->i_lock);
549 wake_up_bit(&inode->i_state, __I_NEW);
550 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
551 spin_unlock(&inode->i_lock);
552
553 destroy_inode(inode);
554 }
555
556 /*
557 * dispose_list - dispose of the contents of a local list
558 * @head: the head of the list to free
559 *
560 * Dispose-list gets a local list with local inodes in it, so it doesn't
561 * need to worry about list corruption and SMP locks.
562 */
dispose_list(struct list_head * head)563 static void dispose_list(struct list_head *head)
564 {
565 while (!list_empty(head)) {
566 struct inode *inode;
567
568 inode = list_first_entry(head, struct inode, i_lru);
569 list_del_init(&inode->i_lru);
570
571 evict(inode);
572 }
573 }
574
575 /**
576 * evict_inodes - evict all evictable inodes for a superblock
577 * @sb: superblock to operate on
578 *
579 * Make sure that no inodes with zero refcount are retained. This is
580 * called by superblock shutdown after having MS_ACTIVE flag removed,
581 * so any inode reaching zero refcount during or after that call will
582 * be immediately evicted.
583 */
evict_inodes(struct super_block * sb)584 void evict_inodes(struct super_block *sb)
585 {
586 struct inode *inode, *next;
587 LIST_HEAD(dispose);
588
589 spin_lock(&inode_sb_list_lock);
590 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
591 if (atomic_read(&inode->i_count))
592 continue;
593
594 spin_lock(&inode->i_lock);
595 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
596 spin_unlock(&inode->i_lock);
597 continue;
598 }
599
600 inode->i_state |= I_FREEING;
601 inode_lru_list_del(inode);
602 spin_unlock(&inode->i_lock);
603 list_add(&inode->i_lru, &dispose);
604 }
605 spin_unlock(&inode_sb_list_lock);
606
607 dispose_list(&dispose);
608 }
609
610 /**
611 * invalidate_inodes - attempt to free all inodes on a superblock
612 * @sb: superblock to operate on
613 * @kill_dirty: flag to guide handling of dirty inodes
614 *
615 * Attempts to free all inodes for a given superblock. If there were any
616 * busy inodes return a non-zero value, else zero.
617 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
618 * them as busy.
619 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)620 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
621 {
622 int busy = 0;
623 struct inode *inode, *next;
624 LIST_HEAD(dispose);
625
626 spin_lock(&inode_sb_list_lock);
627 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
628 spin_lock(&inode->i_lock);
629 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
630 spin_unlock(&inode->i_lock);
631 continue;
632 }
633 if (inode->i_state & I_DIRTY && !kill_dirty) {
634 spin_unlock(&inode->i_lock);
635 busy = 1;
636 continue;
637 }
638 if (atomic_read(&inode->i_count)) {
639 spin_unlock(&inode->i_lock);
640 busy = 1;
641 continue;
642 }
643
644 inode->i_state |= I_FREEING;
645 inode_lru_list_del(inode);
646 spin_unlock(&inode->i_lock);
647 list_add(&inode->i_lru, &dispose);
648 }
649 spin_unlock(&inode_sb_list_lock);
650
651 dispose_list(&dispose);
652
653 return busy;
654 }
655
can_unuse(struct inode * inode)656 static int can_unuse(struct inode *inode)
657 {
658 if (inode->i_state & ~I_REFERENCED)
659 return 0;
660 if (inode_has_buffers(inode))
661 return 0;
662 if (atomic_read(&inode->i_count))
663 return 0;
664 if (inode->i_data.nrpages)
665 return 0;
666 return 1;
667 }
668
669 /*
670 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
671 * This is called from the superblock shrinker function with a number of inodes
672 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
673 * then are freed outside inode_lock by dispose_list().
674 *
675 * Any inodes which are pinned purely because of attached pagecache have their
676 * pagecache removed. If the inode has metadata buffers attached to
677 * mapping->private_list then try to remove them.
678 *
679 * If the inode has the I_REFERENCED flag set, then it means that it has been
680 * used recently - the flag is set in iput_final(). When we encounter such an
681 * inode, clear the flag and move it to the back of the LRU so it gets another
682 * pass through the LRU before it gets reclaimed. This is necessary because of
683 * the fact we are doing lazy LRU updates to minimise lock contention so the
684 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
685 * with this flag set because they are the inodes that are out of order.
686 */
prune_icache_sb(struct super_block * sb,int nr_to_scan)687 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
688 {
689 LIST_HEAD(freeable);
690 int nr_scanned;
691 unsigned long reap = 0;
692
693 spin_lock(&sb->s_inode_lru_lock);
694 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
695 struct inode *inode;
696
697 if (list_empty(&sb->s_inode_lru))
698 break;
699
700 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
701
702 /*
703 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
704 * so use a trylock. If we fail to get the lock, just move the
705 * inode to the back of the list so we don't spin on it.
706 */
707 if (!spin_trylock(&inode->i_lock)) {
708 list_move(&inode->i_lru, &sb->s_inode_lru);
709 continue;
710 }
711
712 /*
713 * Referenced or dirty inodes are still in use. Give them
714 * another pass through the LRU as we canot reclaim them now.
715 */
716 if (atomic_read(&inode->i_count) ||
717 (inode->i_state & ~I_REFERENCED)) {
718 list_del_init(&inode->i_lru);
719 spin_unlock(&inode->i_lock);
720 sb->s_nr_inodes_unused--;
721 this_cpu_dec(nr_unused);
722 continue;
723 }
724
725 /* recently referenced inodes get one more pass */
726 if (inode->i_state & I_REFERENCED) {
727 inode->i_state &= ~I_REFERENCED;
728 list_move(&inode->i_lru, &sb->s_inode_lru);
729 spin_unlock(&inode->i_lock);
730 continue;
731 }
732 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
733 __iget(inode);
734 spin_unlock(&inode->i_lock);
735 spin_unlock(&sb->s_inode_lru_lock);
736 if (remove_inode_buffers(inode))
737 reap += invalidate_mapping_pages(&inode->i_data,
738 0, -1);
739 iput(inode);
740 spin_lock(&sb->s_inode_lru_lock);
741
742 if (inode != list_entry(sb->s_inode_lru.next,
743 struct inode, i_lru))
744 continue; /* wrong inode or list_empty */
745 /* avoid lock inversions with trylock */
746 if (!spin_trylock(&inode->i_lock))
747 continue;
748 if (!can_unuse(inode)) {
749 spin_unlock(&inode->i_lock);
750 continue;
751 }
752 }
753 WARN_ON(inode->i_state & I_NEW);
754 inode->i_state |= I_FREEING;
755 spin_unlock(&inode->i_lock);
756
757 list_move(&inode->i_lru, &freeable);
758 sb->s_nr_inodes_unused--;
759 this_cpu_dec(nr_unused);
760 }
761 if (current_is_kswapd())
762 __count_vm_events(KSWAPD_INODESTEAL, reap);
763 else
764 __count_vm_events(PGINODESTEAL, reap);
765 spin_unlock(&sb->s_inode_lru_lock);
766 if (current->reclaim_state)
767 current->reclaim_state->reclaimed_slab += reap;
768
769 dispose_list(&freeable);
770 }
771
772 static void __wait_on_freeing_inode(struct inode *inode);
773 /*
774 * Called with the inode lock held.
775 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)776 static struct inode *find_inode(struct super_block *sb,
777 struct hlist_head *head,
778 int (*test)(struct inode *, void *),
779 void *data)
780 {
781 struct hlist_node *node;
782 struct inode *inode = NULL;
783
784 repeat:
785 hlist_for_each_entry(inode, node, head, i_hash) {
786 spin_lock(&inode->i_lock);
787 if (inode->i_sb != sb) {
788 spin_unlock(&inode->i_lock);
789 continue;
790 }
791 if (!test(inode, data)) {
792 spin_unlock(&inode->i_lock);
793 continue;
794 }
795 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
796 __wait_on_freeing_inode(inode);
797 goto repeat;
798 }
799 __iget(inode);
800 spin_unlock(&inode->i_lock);
801 return inode;
802 }
803 return NULL;
804 }
805
806 /*
807 * find_inode_fast is the fast path version of find_inode, see the comment at
808 * iget_locked for details.
809 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)810 static struct inode *find_inode_fast(struct super_block *sb,
811 struct hlist_head *head, unsigned long ino)
812 {
813 struct hlist_node *node;
814 struct inode *inode = NULL;
815
816 repeat:
817 hlist_for_each_entry(inode, node, head, i_hash) {
818 spin_lock(&inode->i_lock);
819 if (inode->i_ino != ino) {
820 spin_unlock(&inode->i_lock);
821 continue;
822 }
823 if (inode->i_sb != sb) {
824 spin_unlock(&inode->i_lock);
825 continue;
826 }
827 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
828 __wait_on_freeing_inode(inode);
829 goto repeat;
830 }
831 __iget(inode);
832 spin_unlock(&inode->i_lock);
833 return inode;
834 }
835 return NULL;
836 }
837
838 /*
839 * Each cpu owns a range of LAST_INO_BATCH numbers.
840 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
841 * to renew the exhausted range.
842 *
843 * This does not significantly increase overflow rate because every CPU can
844 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
845 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
846 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
847 * overflow rate by 2x, which does not seem too significant.
848 *
849 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
850 * error if st_ino won't fit in target struct field. Use 32bit counter
851 * here to attempt to avoid that.
852 */
853 #define LAST_INO_BATCH 1024
854 static DEFINE_PER_CPU(unsigned int, last_ino);
855
get_next_ino(void)856 unsigned int get_next_ino(void)
857 {
858 unsigned int *p = &get_cpu_var(last_ino);
859 unsigned int res = *p;
860
861 #ifdef CONFIG_SMP
862 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
863 static atomic_t shared_last_ino;
864 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
865
866 res = next - LAST_INO_BATCH;
867 }
868 #endif
869
870 *p = ++res;
871 put_cpu_var(last_ino);
872 return res;
873 }
874 EXPORT_SYMBOL(get_next_ino);
875
876 /**
877 * new_inode_pseudo - obtain an inode
878 * @sb: superblock
879 *
880 * Allocates a new inode for given superblock.
881 * Inode wont be chained in superblock s_inodes list
882 * This means :
883 * - fs can't be unmount
884 * - quotas, fsnotify, writeback can't work
885 */
new_inode_pseudo(struct super_block * sb)886 struct inode *new_inode_pseudo(struct super_block *sb)
887 {
888 struct inode *inode = alloc_inode(sb);
889
890 if (inode) {
891 spin_lock(&inode->i_lock);
892 inode->i_state = 0;
893 spin_unlock(&inode->i_lock);
894 INIT_LIST_HEAD(&inode->i_sb_list);
895 }
896 return inode;
897 }
898
899 /**
900 * new_inode - obtain an inode
901 * @sb: superblock
902 *
903 * Allocates a new inode for given superblock. The default gfp_mask
904 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
905 * If HIGHMEM pages are unsuitable or it is known that pages allocated
906 * for the page cache are not reclaimable or migratable,
907 * mapping_set_gfp_mask() must be called with suitable flags on the
908 * newly created inode's mapping
909 *
910 */
new_inode(struct super_block * sb)911 struct inode *new_inode(struct super_block *sb)
912 {
913 struct inode *inode;
914
915 spin_lock_prefetch(&inode_sb_list_lock);
916
917 inode = new_inode_pseudo(sb);
918 if (inode)
919 inode_sb_list_add(inode);
920 return inode;
921 }
922 EXPORT_SYMBOL(new_inode);
923
924 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)925 void lockdep_annotate_inode_mutex_key(struct inode *inode)
926 {
927 if (S_ISDIR(inode->i_mode)) {
928 struct file_system_type *type = inode->i_sb->s_type;
929
930 /* Set new key only if filesystem hasn't already changed it */
931 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
932 /*
933 * ensure nobody is actually holding i_mutex
934 */
935 mutex_destroy(&inode->i_mutex);
936 mutex_init(&inode->i_mutex);
937 lockdep_set_class(&inode->i_mutex,
938 &type->i_mutex_dir_key);
939 }
940 }
941 }
942 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
943 #endif
944
945 /**
946 * unlock_new_inode - clear the I_NEW state and wake up any waiters
947 * @inode: new inode to unlock
948 *
949 * Called when the inode is fully initialised to clear the new state of the
950 * inode and wake up anyone waiting for the inode to finish initialisation.
951 */
unlock_new_inode(struct inode * inode)952 void unlock_new_inode(struct inode *inode)
953 {
954 lockdep_annotate_inode_mutex_key(inode);
955 spin_lock(&inode->i_lock);
956 WARN_ON(!(inode->i_state & I_NEW));
957 inode->i_state &= ~I_NEW;
958 smp_mb();
959 wake_up_bit(&inode->i_state, __I_NEW);
960 spin_unlock(&inode->i_lock);
961 }
962 EXPORT_SYMBOL(unlock_new_inode);
963
964 /**
965 * iget5_locked - obtain an inode from a mounted file system
966 * @sb: super block of file system
967 * @hashval: hash value (usually inode number) to get
968 * @test: callback used for comparisons between inodes
969 * @set: callback used to initialize a new struct inode
970 * @data: opaque data pointer to pass to @test and @set
971 *
972 * Search for the inode specified by @hashval and @data in the inode cache,
973 * and if present it is return it with an increased reference count. This is
974 * a generalized version of iget_locked() for file systems where the inode
975 * number is not sufficient for unique identification of an inode.
976 *
977 * If the inode is not in cache, allocate a new inode and return it locked,
978 * hashed, and with the I_NEW flag set. The file system gets to fill it in
979 * before unlocking it via unlock_new_inode().
980 *
981 * Note both @test and @set are called with the inode_hash_lock held, so can't
982 * sleep.
983 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)984 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
985 int (*test)(struct inode *, void *),
986 int (*set)(struct inode *, void *), void *data)
987 {
988 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
989 struct inode *inode;
990
991 spin_lock(&inode_hash_lock);
992 inode = find_inode(sb, head, test, data);
993 spin_unlock(&inode_hash_lock);
994
995 if (inode) {
996 wait_on_inode(inode);
997 return inode;
998 }
999
1000 inode = alloc_inode(sb);
1001 if (inode) {
1002 struct inode *old;
1003
1004 spin_lock(&inode_hash_lock);
1005 /* We released the lock, so.. */
1006 old = find_inode(sb, head, test, data);
1007 if (!old) {
1008 if (set(inode, data))
1009 goto set_failed;
1010
1011 spin_lock(&inode->i_lock);
1012 inode->i_state = I_NEW;
1013 hlist_add_head(&inode->i_hash, head);
1014 spin_unlock(&inode->i_lock);
1015 inode_sb_list_add(inode);
1016 spin_unlock(&inode_hash_lock);
1017
1018 /* Return the locked inode with I_NEW set, the
1019 * caller is responsible for filling in the contents
1020 */
1021 return inode;
1022 }
1023
1024 /*
1025 * Uhhuh, somebody else created the same inode under
1026 * us. Use the old inode instead of the one we just
1027 * allocated.
1028 */
1029 spin_unlock(&inode_hash_lock);
1030 destroy_inode(inode);
1031 inode = old;
1032 wait_on_inode(inode);
1033 }
1034 return inode;
1035
1036 set_failed:
1037 spin_unlock(&inode_hash_lock);
1038 destroy_inode(inode);
1039 return NULL;
1040 }
1041 EXPORT_SYMBOL(iget5_locked);
1042
1043 /**
1044 * iget_locked - obtain an inode from a mounted file system
1045 * @sb: super block of file system
1046 * @ino: inode number to get
1047 *
1048 * Search for the inode specified by @ino in the inode cache and if present
1049 * return it with an increased reference count. This is for file systems
1050 * where the inode number is sufficient for unique identification of an inode.
1051 *
1052 * If the inode is not in cache, allocate a new inode and return it locked,
1053 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1054 * before unlocking it via unlock_new_inode().
1055 */
iget_locked(struct super_block * sb,unsigned long ino)1056 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1057 {
1058 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1059 struct inode *inode;
1060
1061 spin_lock(&inode_hash_lock);
1062 inode = find_inode_fast(sb, head, ino);
1063 spin_unlock(&inode_hash_lock);
1064 if (inode) {
1065 wait_on_inode(inode);
1066 return inode;
1067 }
1068
1069 inode = alloc_inode(sb);
1070 if (inode) {
1071 struct inode *old;
1072
1073 spin_lock(&inode_hash_lock);
1074 /* We released the lock, so.. */
1075 old = find_inode_fast(sb, head, ino);
1076 if (!old) {
1077 inode->i_ino = ino;
1078 spin_lock(&inode->i_lock);
1079 inode->i_state = I_NEW;
1080 hlist_add_head(&inode->i_hash, head);
1081 spin_unlock(&inode->i_lock);
1082 inode_sb_list_add(inode);
1083 spin_unlock(&inode_hash_lock);
1084
1085 /* Return the locked inode with I_NEW set, the
1086 * caller is responsible for filling in the contents
1087 */
1088 return inode;
1089 }
1090
1091 /*
1092 * Uhhuh, somebody else created the same inode under
1093 * us. Use the old inode instead of the one we just
1094 * allocated.
1095 */
1096 spin_unlock(&inode_hash_lock);
1097 destroy_inode(inode);
1098 inode = old;
1099 wait_on_inode(inode);
1100 }
1101 return inode;
1102 }
1103 EXPORT_SYMBOL(iget_locked);
1104
1105 /*
1106 * search the inode cache for a matching inode number.
1107 * If we find one, then the inode number we are trying to
1108 * allocate is not unique and so we should not use it.
1109 *
1110 * Returns 1 if the inode number is unique, 0 if it is not.
1111 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1112 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1113 {
1114 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1115 struct hlist_node *node;
1116 struct inode *inode;
1117
1118 spin_lock(&inode_hash_lock);
1119 hlist_for_each_entry(inode, node, b, i_hash) {
1120 if (inode->i_ino == ino && inode->i_sb == sb) {
1121 spin_unlock(&inode_hash_lock);
1122 return 0;
1123 }
1124 }
1125 spin_unlock(&inode_hash_lock);
1126
1127 return 1;
1128 }
1129
1130 /**
1131 * iunique - get a unique inode number
1132 * @sb: superblock
1133 * @max_reserved: highest reserved inode number
1134 *
1135 * Obtain an inode number that is unique on the system for a given
1136 * superblock. This is used by file systems that have no natural
1137 * permanent inode numbering system. An inode number is returned that
1138 * is higher than the reserved limit but unique.
1139 *
1140 * BUGS:
1141 * With a large number of inodes live on the file system this function
1142 * currently becomes quite slow.
1143 */
iunique(struct super_block * sb,ino_t max_reserved)1144 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1145 {
1146 /*
1147 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1148 * error if st_ino won't fit in target struct field. Use 32bit counter
1149 * here to attempt to avoid that.
1150 */
1151 static DEFINE_SPINLOCK(iunique_lock);
1152 static unsigned int counter;
1153 ino_t res;
1154
1155 spin_lock(&iunique_lock);
1156 do {
1157 if (counter <= max_reserved)
1158 counter = max_reserved + 1;
1159 res = counter++;
1160 } while (!test_inode_iunique(sb, res));
1161 spin_unlock(&iunique_lock);
1162
1163 return res;
1164 }
1165 EXPORT_SYMBOL(iunique);
1166
igrab(struct inode * inode)1167 struct inode *igrab(struct inode *inode)
1168 {
1169 spin_lock(&inode->i_lock);
1170 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1171 __iget(inode);
1172 spin_unlock(&inode->i_lock);
1173 } else {
1174 spin_unlock(&inode->i_lock);
1175 /*
1176 * Handle the case where s_op->clear_inode is not been
1177 * called yet, and somebody is calling igrab
1178 * while the inode is getting freed.
1179 */
1180 inode = NULL;
1181 }
1182 return inode;
1183 }
1184 EXPORT_SYMBOL(igrab);
1185
1186 /**
1187 * ilookup5_nowait - search for an inode in the inode cache
1188 * @sb: super block of file system to search
1189 * @hashval: hash value (usually inode number) to search for
1190 * @test: callback used for comparisons between inodes
1191 * @data: opaque data pointer to pass to @test
1192 *
1193 * Search for the inode specified by @hashval and @data in the inode cache.
1194 * If the inode is in the cache, the inode is returned with an incremented
1195 * reference count.
1196 *
1197 * Note: I_NEW is not waited upon so you have to be very careful what you do
1198 * with the returned inode. You probably should be using ilookup5() instead.
1199 *
1200 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1201 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1202 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1203 int (*test)(struct inode *, void *), void *data)
1204 {
1205 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1206 struct inode *inode;
1207
1208 spin_lock(&inode_hash_lock);
1209 inode = find_inode(sb, head, test, data);
1210 spin_unlock(&inode_hash_lock);
1211
1212 return inode;
1213 }
1214 EXPORT_SYMBOL(ilookup5_nowait);
1215
1216 /**
1217 * ilookup5 - search for an inode in the inode cache
1218 * @sb: super block of file system to search
1219 * @hashval: hash value (usually inode number) to search for
1220 * @test: callback used for comparisons between inodes
1221 * @data: opaque data pointer to pass to @test
1222 *
1223 * Search for the inode specified by @hashval and @data in the inode cache,
1224 * and if the inode is in the cache, return the inode with an incremented
1225 * reference count. Waits on I_NEW before returning the inode.
1226 * returned with an incremented reference count.
1227 *
1228 * This is a generalized version of ilookup() for file systems where the
1229 * inode number is not sufficient for unique identification of an inode.
1230 *
1231 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1232 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1233 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1234 int (*test)(struct inode *, void *), void *data)
1235 {
1236 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1237
1238 if (inode)
1239 wait_on_inode(inode);
1240 return inode;
1241 }
1242 EXPORT_SYMBOL(ilookup5);
1243
1244 /**
1245 * ilookup - search for an inode in the inode cache
1246 * @sb: super block of file system to search
1247 * @ino: inode number to search for
1248 *
1249 * Search for the inode @ino in the inode cache, and if the inode is in the
1250 * cache, the inode is returned with an incremented reference count.
1251 */
ilookup(struct super_block * sb,unsigned long ino)1252 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1253 {
1254 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1255 struct inode *inode;
1256
1257 spin_lock(&inode_hash_lock);
1258 inode = find_inode_fast(sb, head, ino);
1259 spin_unlock(&inode_hash_lock);
1260
1261 if (inode)
1262 wait_on_inode(inode);
1263 return inode;
1264 }
1265 EXPORT_SYMBOL(ilookup);
1266
insert_inode_locked(struct inode * inode)1267 int insert_inode_locked(struct inode *inode)
1268 {
1269 struct super_block *sb = inode->i_sb;
1270 ino_t ino = inode->i_ino;
1271 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1272
1273 while (1) {
1274 struct hlist_node *node;
1275 struct inode *old = NULL;
1276 spin_lock(&inode_hash_lock);
1277 hlist_for_each_entry(old, node, head, i_hash) {
1278 if (old->i_ino != ino)
1279 continue;
1280 if (old->i_sb != sb)
1281 continue;
1282 spin_lock(&old->i_lock);
1283 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1284 spin_unlock(&old->i_lock);
1285 continue;
1286 }
1287 break;
1288 }
1289 if (likely(!node)) {
1290 spin_lock(&inode->i_lock);
1291 inode->i_state |= I_NEW;
1292 hlist_add_head(&inode->i_hash, head);
1293 spin_unlock(&inode->i_lock);
1294 spin_unlock(&inode_hash_lock);
1295 return 0;
1296 }
1297 __iget(old);
1298 spin_unlock(&old->i_lock);
1299 spin_unlock(&inode_hash_lock);
1300 wait_on_inode(old);
1301 if (unlikely(!inode_unhashed(old))) {
1302 iput(old);
1303 return -EBUSY;
1304 }
1305 iput(old);
1306 }
1307 }
1308 EXPORT_SYMBOL(insert_inode_locked);
1309
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1310 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1311 int (*test)(struct inode *, void *), void *data)
1312 {
1313 struct super_block *sb = inode->i_sb;
1314 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1315
1316 while (1) {
1317 struct hlist_node *node;
1318 struct inode *old = NULL;
1319
1320 spin_lock(&inode_hash_lock);
1321 hlist_for_each_entry(old, node, head, i_hash) {
1322 if (old->i_sb != sb)
1323 continue;
1324 if (!test(old, data))
1325 continue;
1326 spin_lock(&old->i_lock);
1327 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1328 spin_unlock(&old->i_lock);
1329 continue;
1330 }
1331 break;
1332 }
1333 if (likely(!node)) {
1334 spin_lock(&inode->i_lock);
1335 inode->i_state |= I_NEW;
1336 hlist_add_head(&inode->i_hash, head);
1337 spin_unlock(&inode->i_lock);
1338 spin_unlock(&inode_hash_lock);
1339 return 0;
1340 }
1341 __iget(old);
1342 spin_unlock(&old->i_lock);
1343 spin_unlock(&inode_hash_lock);
1344 wait_on_inode(old);
1345 if (unlikely(!inode_unhashed(old))) {
1346 iput(old);
1347 return -EBUSY;
1348 }
1349 iput(old);
1350 }
1351 }
1352 EXPORT_SYMBOL(insert_inode_locked4);
1353
1354
generic_delete_inode(struct inode * inode)1355 int generic_delete_inode(struct inode *inode)
1356 {
1357 return 1;
1358 }
1359 EXPORT_SYMBOL(generic_delete_inode);
1360
1361 /*
1362 * Called when we're dropping the last reference
1363 * to an inode.
1364 *
1365 * Call the FS "drop_inode()" function, defaulting to
1366 * the legacy UNIX filesystem behaviour. If it tells
1367 * us to evict inode, do so. Otherwise, retain inode
1368 * in cache if fs is alive, sync and evict if fs is
1369 * shutting down.
1370 */
iput_final(struct inode * inode)1371 static void iput_final(struct inode *inode)
1372 {
1373 struct super_block *sb = inode->i_sb;
1374 const struct super_operations *op = inode->i_sb->s_op;
1375 int drop;
1376
1377 WARN_ON(inode->i_state & I_NEW);
1378
1379 if (op->drop_inode)
1380 drop = op->drop_inode(inode);
1381 else
1382 drop = generic_drop_inode(inode);
1383
1384 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1385 inode->i_state |= I_REFERENCED;
1386 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1387 inode_lru_list_add(inode);
1388 spin_unlock(&inode->i_lock);
1389 return;
1390 }
1391
1392 if (!drop) {
1393 inode->i_state |= I_WILL_FREE;
1394 spin_unlock(&inode->i_lock);
1395 write_inode_now(inode, 1);
1396 spin_lock(&inode->i_lock);
1397 WARN_ON(inode->i_state & I_NEW);
1398 inode->i_state &= ~I_WILL_FREE;
1399 }
1400
1401 inode->i_state |= I_FREEING;
1402 if (!list_empty(&inode->i_lru))
1403 inode_lru_list_del(inode);
1404 spin_unlock(&inode->i_lock);
1405
1406 evict(inode);
1407 }
1408
1409 /**
1410 * iput - put an inode
1411 * @inode: inode to put
1412 *
1413 * Puts an inode, dropping its usage count. If the inode use count hits
1414 * zero, the inode is then freed and may also be destroyed.
1415 *
1416 * Consequently, iput() can sleep.
1417 */
iput(struct inode * inode)1418 void iput(struct inode *inode)
1419 {
1420 if (inode) {
1421 BUG_ON(inode->i_state & I_CLEAR);
1422
1423 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1424 iput_final(inode);
1425 }
1426 }
1427 EXPORT_SYMBOL(iput);
1428
1429 /**
1430 * bmap - find a block number in a file
1431 * @inode: inode of file
1432 * @block: block to find
1433 *
1434 * Returns the block number on the device holding the inode that
1435 * is the disk block number for the block of the file requested.
1436 * That is, asked for block 4 of inode 1 the function will return the
1437 * disk block relative to the disk start that holds that block of the
1438 * file.
1439 */
bmap(struct inode * inode,sector_t block)1440 sector_t bmap(struct inode *inode, sector_t block)
1441 {
1442 sector_t res = 0;
1443 if (inode->i_mapping->a_ops->bmap)
1444 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1445 return res;
1446 }
1447 EXPORT_SYMBOL(bmap);
1448
1449 /*
1450 * With relative atime, only update atime if the previous atime is
1451 * earlier than either the ctime or mtime or if at least a day has
1452 * passed since the last atime update.
1453 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec now)1454 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1455 struct timespec now)
1456 {
1457
1458 if (!(mnt->mnt_flags & MNT_RELATIME))
1459 return 1;
1460 /*
1461 * Is mtime younger than atime? If yes, update atime:
1462 */
1463 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1464 return 1;
1465 /*
1466 * Is ctime younger than atime? If yes, update atime:
1467 */
1468 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1469 return 1;
1470
1471 /*
1472 * Is the previous atime value older than a day? If yes,
1473 * update atime:
1474 */
1475 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1476 return 1;
1477 /*
1478 * Good, we can skip the atime update:
1479 */
1480 return 0;
1481 }
1482
1483 /*
1484 * This does the actual work of updating an inodes time or version. Must have
1485 * had called mnt_want_write() before calling this.
1486 */
update_time(struct inode * inode,struct timespec * time,int flags)1487 static int update_time(struct inode *inode, struct timespec *time, int flags)
1488 {
1489 if (inode->i_op->update_time)
1490 return inode->i_op->update_time(inode, time, flags);
1491
1492 if (flags & S_ATIME)
1493 inode->i_atime = *time;
1494 if (flags & S_VERSION)
1495 inode_inc_iversion(inode);
1496 if (flags & S_CTIME)
1497 inode->i_ctime = *time;
1498 if (flags & S_MTIME)
1499 inode->i_mtime = *time;
1500 mark_inode_dirty_sync(inode);
1501 return 0;
1502 }
1503
1504 /**
1505 * touch_atime - update the access time
1506 * @mnt: mount the inode is accessed on
1507 * @dentry: dentry accessed
1508 *
1509 * Update the accessed time on an inode and mark it for writeback.
1510 * This function automatically handles read only file systems and media,
1511 * as well as the "noatime" flag and inode specific "noatime" markers.
1512 */
touch_atime(struct path * path)1513 void touch_atime(struct path *path)
1514 {
1515 struct vfsmount *mnt = path->mnt;
1516 struct inode *inode = path->dentry->d_inode;
1517 struct timespec now;
1518
1519 if (inode->i_flags & S_NOATIME)
1520 return;
1521 if (IS_NOATIME(inode))
1522 return;
1523 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1524 return;
1525
1526 if (mnt->mnt_flags & MNT_NOATIME)
1527 return;
1528 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1529 return;
1530
1531 now = current_fs_time(inode->i_sb);
1532
1533 if (!relatime_need_update(mnt, inode, now))
1534 return;
1535
1536 if (timespec_equal(&inode->i_atime, &now))
1537 return;
1538
1539 if (mnt_want_write(mnt))
1540 return;
1541
1542 /*
1543 * File systems can error out when updating inodes if they need to
1544 * allocate new space to modify an inode (such is the case for
1545 * Btrfs), but since we touch atime while walking down the path we
1546 * really don't care if we failed to update the atime of the file,
1547 * so just ignore the return value.
1548 */
1549 update_time(inode, &now, S_ATIME);
1550 mnt_drop_write(mnt);
1551 }
1552 EXPORT_SYMBOL(touch_atime);
1553
1554 /**
1555 * file_update_time - update mtime and ctime time
1556 * @file: file accessed
1557 *
1558 * Update the mtime and ctime members of an inode and mark the inode
1559 * for writeback. Note that this function is meant exclusively for
1560 * usage in the file write path of filesystems, and filesystems may
1561 * choose to explicitly ignore update via this function with the
1562 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1563 * timestamps are handled by the server. This can return an error for
1564 * file systems who need to allocate space in order to update an inode.
1565 */
1566
file_update_time(struct file * file)1567 int file_update_time(struct file *file)
1568 {
1569 struct inode *inode = file->f_path.dentry->d_inode;
1570 struct timespec now;
1571 int sync_it = 0;
1572 int ret;
1573
1574 /* First try to exhaust all avenues to not sync */
1575 if (IS_NOCMTIME(inode))
1576 return 0;
1577
1578 now = current_fs_time(inode->i_sb);
1579 if (!timespec_equal(&inode->i_mtime, &now))
1580 sync_it = S_MTIME;
1581
1582 if (!timespec_equal(&inode->i_ctime, &now))
1583 sync_it |= S_CTIME;
1584
1585 if (IS_I_VERSION(inode))
1586 sync_it |= S_VERSION;
1587
1588 if (!sync_it)
1589 return 0;
1590
1591 /* Finally allowed to write? Takes lock. */
1592 if (mnt_want_write_file(file))
1593 return 0;
1594
1595 ret = update_time(inode, &now, sync_it);
1596 mnt_drop_write_file(file);
1597
1598 return ret;
1599 }
1600 EXPORT_SYMBOL(file_update_time);
1601
inode_needs_sync(struct inode * inode)1602 int inode_needs_sync(struct inode *inode)
1603 {
1604 if (IS_SYNC(inode))
1605 return 1;
1606 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1607 return 1;
1608 return 0;
1609 }
1610 EXPORT_SYMBOL(inode_needs_sync);
1611
inode_wait(void * word)1612 int inode_wait(void *word)
1613 {
1614 schedule();
1615 return 0;
1616 }
1617 EXPORT_SYMBOL(inode_wait);
1618
1619 /*
1620 * If we try to find an inode in the inode hash while it is being
1621 * deleted, we have to wait until the filesystem completes its
1622 * deletion before reporting that it isn't found. This function waits
1623 * until the deletion _might_ have completed. Callers are responsible
1624 * to recheck inode state.
1625 *
1626 * It doesn't matter if I_NEW is not set initially, a call to
1627 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1628 * will DTRT.
1629 */
__wait_on_freeing_inode(struct inode * inode)1630 static void __wait_on_freeing_inode(struct inode *inode)
1631 {
1632 wait_queue_head_t *wq;
1633 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1634 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1635 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1636 spin_unlock(&inode->i_lock);
1637 spin_unlock(&inode_hash_lock);
1638 schedule();
1639 finish_wait(wq, &wait.wait);
1640 spin_lock(&inode_hash_lock);
1641 }
1642
1643 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)1644 static int __init set_ihash_entries(char *str)
1645 {
1646 if (!str)
1647 return 0;
1648 ihash_entries = simple_strtoul(str, &str, 0);
1649 return 1;
1650 }
1651 __setup("ihash_entries=", set_ihash_entries);
1652
1653 /*
1654 * Initialize the waitqueues and inode hash table.
1655 */
inode_init_early(void)1656 void __init inode_init_early(void)
1657 {
1658 unsigned int loop;
1659
1660 /* If hashes are distributed across NUMA nodes, defer
1661 * hash allocation until vmalloc space is available.
1662 */
1663 if (hashdist)
1664 return;
1665
1666 inode_hashtable =
1667 alloc_large_system_hash("Inode-cache",
1668 sizeof(struct hlist_head),
1669 ihash_entries,
1670 14,
1671 HASH_EARLY,
1672 &i_hash_shift,
1673 &i_hash_mask,
1674 0);
1675
1676 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1677 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1678 }
1679
inode_init(void)1680 void __init inode_init(void)
1681 {
1682 unsigned int loop;
1683
1684 /* inode slab cache */
1685 inode_cachep = kmem_cache_create("inode_cache",
1686 sizeof(struct inode),
1687 0,
1688 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1689 SLAB_MEM_SPREAD),
1690 init_once);
1691
1692 /* Hash may have been set up in inode_init_early */
1693 if (!hashdist)
1694 return;
1695
1696 inode_hashtable =
1697 alloc_large_system_hash("Inode-cache",
1698 sizeof(struct hlist_head),
1699 ihash_entries,
1700 14,
1701 0,
1702 &i_hash_shift,
1703 &i_hash_mask,
1704 0);
1705
1706 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1707 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1708 }
1709
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)1710 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1711 {
1712 inode->i_mode = mode;
1713 if (S_ISCHR(mode)) {
1714 inode->i_fop = &def_chr_fops;
1715 inode->i_rdev = rdev;
1716 } else if (S_ISBLK(mode)) {
1717 inode->i_fop = &def_blk_fops;
1718 inode->i_rdev = rdev;
1719 } else if (S_ISFIFO(mode))
1720 inode->i_fop = &def_fifo_fops;
1721 else if (S_ISSOCK(mode))
1722 inode->i_fop = &bad_sock_fops;
1723 else
1724 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1725 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1726 inode->i_ino);
1727 }
1728 EXPORT_SYMBOL(init_special_inode);
1729
1730 /**
1731 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1732 * @inode: New inode
1733 * @dir: Directory inode
1734 * @mode: mode of the new inode
1735 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)1736 void inode_init_owner(struct inode *inode, const struct inode *dir,
1737 umode_t mode)
1738 {
1739 inode->i_uid = current_fsuid();
1740 if (dir && dir->i_mode & S_ISGID) {
1741 inode->i_gid = dir->i_gid;
1742 if (S_ISDIR(mode))
1743 mode |= S_ISGID;
1744 } else
1745 inode->i_gid = current_fsgid();
1746 inode->i_mode = mode;
1747 }
1748 EXPORT_SYMBOL(inode_init_owner);
1749
1750 /**
1751 * inode_owner_or_capable - check current task permissions to inode
1752 * @inode: inode being checked
1753 *
1754 * Return true if current either has CAP_FOWNER to the inode, or
1755 * owns the file.
1756 */
inode_owner_or_capable(const struct inode * inode)1757 bool inode_owner_or_capable(const struct inode *inode)
1758 {
1759 struct user_namespace *ns = inode_userns(inode);
1760
1761 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1762 return true;
1763 if (ns_capable(ns, CAP_FOWNER))
1764 return true;
1765 return false;
1766 }
1767 EXPORT_SYMBOL(inode_owner_or_capable);
1768