• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <asm/current.h>
22 #include <asm/pgtable.h>
23 #include <asm/mmu_context.h>
24 #include <asm/uaccess.h>
25 #include "as-layout.h"
26 #include "kern_util.h"
27 #include "os.h"
28 #include "skas.h"
29 
30 /*
31  * This is a per-cpu array.  A processor only modifies its entry and it only
32  * cares about its entry, so it's OK if another processor is modifying its
33  * entry.
34  */
35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
36 
external_pid(void)37 static inline int external_pid(void)
38 {
39 	/* FIXME: Need to look up userspace_pid by cpu */
40 	return userspace_pid[0];
41 }
42 
pid_to_processor_id(int pid)43 int pid_to_processor_id(int pid)
44 {
45 	int i;
46 
47 	for (i = 0; i < ncpus; i++) {
48 		if (cpu_tasks[i].pid == pid)
49 			return i;
50 	}
51 	return -1;
52 }
53 
free_stack(unsigned long stack,int order)54 void free_stack(unsigned long stack, int order)
55 {
56 	free_pages(stack, order);
57 }
58 
alloc_stack(int order,int atomic)59 unsigned long alloc_stack(int order, int atomic)
60 {
61 	unsigned long page;
62 	gfp_t flags = GFP_KERNEL;
63 
64 	if (atomic)
65 		flags = GFP_ATOMIC;
66 	page = __get_free_pages(flags, order);
67 
68 	return page;
69 }
70 
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)71 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
72 {
73 	int pid;
74 
75 	current->thread.request.u.thread.proc = fn;
76 	current->thread.request.u.thread.arg = arg;
77 	pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
78 		      &current->thread.regs, 0, NULL, NULL);
79 	return pid;
80 }
81 EXPORT_SYMBOL(kernel_thread);
82 
set_current(struct task_struct * task)83 static inline void set_current(struct task_struct *task)
84 {
85 	cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
86 		{ external_pid(), task });
87 }
88 
89 extern void arch_switch_to(struct task_struct *to);
90 
__switch_to(struct task_struct * from,struct task_struct * to)91 void *__switch_to(struct task_struct *from, struct task_struct *to)
92 {
93 	to->thread.prev_sched = from;
94 	set_current(to);
95 
96 	do {
97 		current->thread.saved_task = NULL;
98 
99 		switch_threads(&from->thread.switch_buf,
100 			       &to->thread.switch_buf);
101 
102 		arch_switch_to(current);
103 
104 		if (current->thread.saved_task)
105 			show_regs(&(current->thread.regs));
106 		to = current->thread.saved_task;
107 		from = current;
108 	} while (current->thread.saved_task);
109 
110 	return current->thread.prev_sched;
111 }
112 
interrupt_end(void)113 void interrupt_end(void)
114 {
115 	if (need_resched())
116 		schedule();
117 	if (test_tsk_thread_flag(current, TIF_SIGPENDING))
118 		do_signal();
119 }
120 
exit_thread(void)121 void exit_thread(void)
122 {
123 }
124 
get_current_pid(void)125 int get_current_pid(void)
126 {
127 	return task_pid_nr(current);
128 }
129 
130 /*
131  * This is called magically, by its address being stuffed in a jmp_buf
132  * and being longjmp-d to.
133  */
new_thread_handler(void)134 void new_thread_handler(void)
135 {
136 	int (*fn)(void *), n;
137 	void *arg;
138 
139 	if (current->thread.prev_sched != NULL)
140 		schedule_tail(current->thread.prev_sched);
141 	current->thread.prev_sched = NULL;
142 
143 	fn = current->thread.request.u.thread.proc;
144 	arg = current->thread.request.u.thread.arg;
145 
146 	/*
147 	 * The return value is 1 if the kernel thread execs a process,
148 	 * 0 if it just exits
149 	 */
150 	n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
151 	if (n == 1) {
152 		/* Handle any immediate reschedules or signals */
153 		interrupt_end();
154 		userspace(&current->thread.regs.regs);
155 	}
156 	else do_exit(0);
157 }
158 
159 /* Called magically, see new_thread_handler above */
fork_handler(void)160 void fork_handler(void)
161 {
162 	force_flush_all();
163 
164 	schedule_tail(current->thread.prev_sched);
165 
166 	/*
167 	 * XXX: if interrupt_end() calls schedule, this call to
168 	 * arch_switch_to isn't needed. We could want to apply this to
169 	 * improve performance. -bb
170 	 */
171 	arch_switch_to(current);
172 
173 	current->thread.prev_sched = NULL;
174 
175 	/* Handle any immediate reschedules or signals */
176 	interrupt_end();
177 
178 	userspace(&current->thread.regs.regs);
179 }
180 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long stack_top,struct task_struct * p,struct pt_regs * regs)181 int copy_thread(unsigned long clone_flags, unsigned long sp,
182 		unsigned long stack_top, struct task_struct * p,
183 		struct pt_regs *regs)
184 {
185 	void (*handler)(void);
186 	int ret = 0;
187 
188 	p->thread = (struct thread_struct) INIT_THREAD;
189 
190 	if (current->thread.forking) {
191 	  	memcpy(&p->thread.regs.regs, &regs->regs,
192 		       sizeof(p->thread.regs.regs));
193 		REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
194 		if (sp != 0)
195 			REGS_SP(p->thread.regs.regs.gp) = sp;
196 
197 		handler = fork_handler;
198 
199 		arch_copy_thread(&current->thread.arch, &p->thread.arch);
200 	}
201 	else {
202 		get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
203 		p->thread.request.u.thread = current->thread.request.u.thread;
204 		handler = new_thread_handler;
205 	}
206 
207 	new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
208 
209 	if (current->thread.forking) {
210 		clear_flushed_tls(p);
211 
212 		/*
213 		 * Set a new TLS for the child thread?
214 		 */
215 		if (clone_flags & CLONE_SETTLS)
216 			ret = arch_copy_tls(p);
217 	}
218 
219 	return ret;
220 }
221 
initial_thread_cb(void (* proc)(void *),void * arg)222 void initial_thread_cb(void (*proc)(void *), void *arg)
223 {
224 	int save_kmalloc_ok = kmalloc_ok;
225 
226 	kmalloc_ok = 0;
227 	initial_thread_cb_skas(proc, arg);
228 	kmalloc_ok = save_kmalloc_ok;
229 }
230 
default_idle(void)231 void default_idle(void)
232 {
233 	unsigned long long nsecs;
234 
235 	while (1) {
236 		/* endless idle loop with no priority at all */
237 
238 		/*
239 		 * although we are an idle CPU, we do not want to
240 		 * get into the scheduler unnecessarily.
241 		 */
242 		if (need_resched())
243 			schedule();
244 
245 		tick_nohz_idle_enter();
246 		rcu_idle_enter();
247 		nsecs = disable_timer();
248 		idle_sleep(nsecs);
249 		rcu_idle_exit();
250 		tick_nohz_idle_exit();
251 	}
252 }
253 
cpu_idle(void)254 void cpu_idle(void)
255 {
256 	cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
257 	default_idle();
258 }
259 
__cant_sleep(void)260 int __cant_sleep(void) {
261 	return in_atomic() || irqs_disabled() || in_interrupt();
262 	/* Is in_interrupt() really needed? */
263 }
264 
user_context(unsigned long sp)265 int user_context(unsigned long sp)
266 {
267 	unsigned long stack;
268 
269 	stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
270 	return stack != (unsigned long) current_thread_info();
271 }
272 
273 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
274 
do_uml_exitcalls(void)275 void do_uml_exitcalls(void)
276 {
277 	exitcall_t *call;
278 
279 	call = &__uml_exitcall_end;
280 	while (--call >= &__uml_exitcall_begin)
281 		(*call)();
282 }
283 
uml_strdup(const char * string)284 char *uml_strdup(const char *string)
285 {
286 	return kstrdup(string, GFP_KERNEL);
287 }
288 EXPORT_SYMBOL(uml_strdup);
289 
copy_to_user_proc(void __user * to,void * from,int size)290 int copy_to_user_proc(void __user *to, void *from, int size)
291 {
292 	return copy_to_user(to, from, size);
293 }
294 
copy_from_user_proc(void * to,void __user * from,int size)295 int copy_from_user_proc(void *to, void __user *from, int size)
296 {
297 	return copy_from_user(to, from, size);
298 }
299 
clear_user_proc(void __user * buf,int size)300 int clear_user_proc(void __user *buf, int size)
301 {
302 	return clear_user(buf, size);
303 }
304 
strlen_user_proc(char __user * str)305 int strlen_user_proc(char __user *str)
306 {
307 	return strlen_user(str);
308 }
309 
smp_sigio_handler(void)310 int smp_sigio_handler(void)
311 {
312 #ifdef CONFIG_SMP
313 	int cpu = current_thread_info()->cpu;
314 	IPI_handler(cpu);
315 	if (cpu != 0)
316 		return 1;
317 #endif
318 	return 0;
319 }
320 
cpu(void)321 int cpu(void)
322 {
323 	return current_thread_info()->cpu;
324 }
325 
326 static atomic_t using_sysemu = ATOMIC_INIT(0);
327 int sysemu_supported;
328 
set_using_sysemu(int value)329 void set_using_sysemu(int value)
330 {
331 	if (value > sysemu_supported)
332 		return;
333 	atomic_set(&using_sysemu, value);
334 }
335 
get_using_sysemu(void)336 int get_using_sysemu(void)
337 {
338 	return atomic_read(&using_sysemu);
339 }
340 
sysemu_proc_show(struct seq_file * m,void * v)341 static int sysemu_proc_show(struct seq_file *m, void *v)
342 {
343 	seq_printf(m, "%d\n", get_using_sysemu());
344 	return 0;
345 }
346 
sysemu_proc_open(struct inode * inode,struct file * file)347 static int sysemu_proc_open(struct inode *inode, struct file *file)
348 {
349 	return single_open(file, sysemu_proc_show, NULL);
350 }
351 
sysemu_proc_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)352 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
353 				 size_t count, loff_t *pos)
354 {
355 	char tmp[2];
356 
357 	if (copy_from_user(tmp, buf, 1))
358 		return -EFAULT;
359 
360 	if (tmp[0] >= '0' && tmp[0] <= '2')
361 		set_using_sysemu(tmp[0] - '0');
362 	/* We use the first char, but pretend to write everything */
363 	return count;
364 }
365 
366 static const struct file_operations sysemu_proc_fops = {
367 	.owner		= THIS_MODULE,
368 	.open		= sysemu_proc_open,
369 	.read		= seq_read,
370 	.llseek		= seq_lseek,
371 	.release	= single_release,
372 	.write		= sysemu_proc_write,
373 };
374 
make_proc_sysemu(void)375 int __init make_proc_sysemu(void)
376 {
377 	struct proc_dir_entry *ent;
378 	if (!sysemu_supported)
379 		return 0;
380 
381 	ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
382 
383 	if (ent == NULL)
384 	{
385 		printk(KERN_WARNING "Failed to register /proc/sysemu\n");
386 		return 0;
387 	}
388 
389 	return 0;
390 }
391 
392 late_initcall(make_proc_sysemu);
393 
singlestepping(void * t)394 int singlestepping(void * t)
395 {
396 	struct task_struct *task = t ? t : current;
397 
398 	if (!(task->ptrace & PT_DTRACE))
399 		return 0;
400 
401 	if (task->thread.singlestep_syscall)
402 		return 1;
403 
404 	return 2;
405 }
406 
407 /*
408  * Only x86 and x86_64 have an arch_align_stack().
409  * All other arches have "#define arch_align_stack(x) (x)"
410  * in their asm/system.h
411  * As this is included in UML from asm-um/system-generic.h,
412  * we can use it to behave as the subarch does.
413  */
414 #ifndef arch_align_stack
arch_align_stack(unsigned long sp)415 unsigned long arch_align_stack(unsigned long sp)
416 {
417 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
418 		sp -= get_random_int() % 8192;
419 	return sp & ~0xf;
420 }
421 #endif
422 
get_wchan(struct task_struct * p)423 unsigned long get_wchan(struct task_struct *p)
424 {
425 	unsigned long stack_page, sp, ip;
426 	bool seen_sched = 0;
427 
428 	if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
429 		return 0;
430 
431 	stack_page = (unsigned long) task_stack_page(p);
432 	/* Bail if the process has no kernel stack for some reason */
433 	if (stack_page == 0)
434 		return 0;
435 
436 	sp = p->thread.switch_buf->JB_SP;
437 	/*
438 	 * Bail if the stack pointer is below the bottom of the kernel
439 	 * stack for some reason
440 	 */
441 	if (sp < stack_page)
442 		return 0;
443 
444 	while (sp < stack_page + THREAD_SIZE) {
445 		ip = *((unsigned long *) sp);
446 		if (in_sched_functions(ip))
447 			/* Ignore everything until we're above the scheduler */
448 			seen_sched = 1;
449 		else if (kernel_text_address(ip) && seen_sched)
450 			return ip;
451 
452 		sp += sizeof(unsigned long);
453 	}
454 
455 	return 0;
456 }
457 
elf_core_copy_fpregs(struct task_struct * t,elf_fpregset_t * fpu)458 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
459 {
460 	int cpu = current_thread_info()->cpu;
461 
462 	return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
463 }
464 
465