• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
40 
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
44 
45 #include "tcb.h"
46 #include "cxgb3_offload.h"
47 #include "iwch.h"
48 #include "iwch_provider.h"
49 #include "iwch_cm.h"
50 
51 static char *states[] = {
52 	"idle",
53 	"listen",
54 	"connecting",
55 	"mpa_wait_req",
56 	"mpa_req_sent",
57 	"mpa_req_rcvd",
58 	"mpa_rep_sent",
59 	"fpdu_mode",
60 	"aborting",
61 	"closing",
62 	"moribund",
63 	"dead",
64 	NULL,
65 };
66 
67 int peer2peer = 0;
68 module_param(peer2peer, int, 0644);
69 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
70 
71 static int ep_timeout_secs = 60;
72 module_param(ep_timeout_secs, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
74 				   "in seconds (default=60)");
75 
76 static int mpa_rev = 1;
77 module_param(mpa_rev, int, 0644);
78 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
79 		 "1 is spec compliant. (default=1)");
80 
81 static int markers_enabled = 0;
82 module_param(markers_enabled, int, 0644);
83 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
84 
85 static int crc_enabled = 1;
86 module_param(crc_enabled, int, 0644);
87 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
88 
89 static int rcv_win = 256 * 1024;
90 module_param(rcv_win, int, 0644);
91 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
92 
93 static int snd_win = 32 * 1024;
94 module_param(snd_win, int, 0644);
95 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
96 
97 static unsigned int nocong = 0;
98 module_param(nocong, uint, 0644);
99 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
100 
101 static unsigned int cong_flavor = 1;
102 module_param(cong_flavor, uint, 0644);
103 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
104 
105 static struct workqueue_struct *workq;
106 
107 static struct sk_buff_head rxq;
108 
109 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
110 static void ep_timeout(unsigned long arg);
111 static void connect_reply_upcall(struct iwch_ep *ep, int status);
112 
start_ep_timer(struct iwch_ep * ep)113 static void start_ep_timer(struct iwch_ep *ep)
114 {
115 	PDBG("%s ep %p\n", __func__, ep);
116 	if (timer_pending(&ep->timer)) {
117 		PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
118 		del_timer_sync(&ep->timer);
119 	} else
120 		get_ep(&ep->com);
121 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
122 	ep->timer.data = (unsigned long)ep;
123 	ep->timer.function = ep_timeout;
124 	add_timer(&ep->timer);
125 }
126 
stop_ep_timer(struct iwch_ep * ep)127 static void stop_ep_timer(struct iwch_ep *ep)
128 {
129 	PDBG("%s ep %p\n", __func__, ep);
130 	if (!timer_pending(&ep->timer)) {
131 		printk(KERN_ERR "%s timer stopped when its not running!  ep %p state %u\n",
132 			__func__, ep, ep->com.state);
133 		WARN_ON(1);
134 		return;
135 	}
136 	del_timer_sync(&ep->timer);
137 	put_ep(&ep->com);
138 }
139 
iwch_l2t_send(struct t3cdev * tdev,struct sk_buff * skb,struct l2t_entry * l2e)140 static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
141 {
142 	int	error = 0;
143 	struct cxio_rdev *rdev;
144 
145 	rdev = (struct cxio_rdev *)tdev->ulp;
146 	if (cxio_fatal_error(rdev)) {
147 		kfree_skb(skb);
148 		return -EIO;
149 	}
150 	error = l2t_send(tdev, skb, l2e);
151 	if (error < 0)
152 		kfree_skb(skb);
153 	return error;
154 }
155 
iwch_cxgb3_ofld_send(struct t3cdev * tdev,struct sk_buff * skb)156 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
157 {
158 	int	error = 0;
159 	struct cxio_rdev *rdev;
160 
161 	rdev = (struct cxio_rdev *)tdev->ulp;
162 	if (cxio_fatal_error(rdev)) {
163 		kfree_skb(skb);
164 		return -EIO;
165 	}
166 	error = cxgb3_ofld_send(tdev, skb);
167 	if (error < 0)
168 		kfree_skb(skb);
169 	return error;
170 }
171 
release_tid(struct t3cdev * tdev,u32 hwtid,struct sk_buff * skb)172 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
173 {
174 	struct cpl_tid_release *req;
175 
176 	skb = get_skb(skb, sizeof *req, GFP_KERNEL);
177 	if (!skb)
178 		return;
179 	req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
180 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
181 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
182 	skb->priority = CPL_PRIORITY_SETUP;
183 	iwch_cxgb3_ofld_send(tdev, skb);
184 	return;
185 }
186 
iwch_quiesce_tid(struct iwch_ep * ep)187 int iwch_quiesce_tid(struct iwch_ep *ep)
188 {
189 	struct cpl_set_tcb_field *req;
190 	struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
191 
192 	if (!skb)
193 		return -ENOMEM;
194 	req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
195 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
196 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
197 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
198 	req->reply = 0;
199 	req->cpu_idx = 0;
200 	req->word = htons(W_TCB_RX_QUIESCE);
201 	req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
202 	req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
203 
204 	skb->priority = CPL_PRIORITY_DATA;
205 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
206 }
207 
iwch_resume_tid(struct iwch_ep * ep)208 int iwch_resume_tid(struct iwch_ep *ep)
209 {
210 	struct cpl_set_tcb_field *req;
211 	struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
212 
213 	if (!skb)
214 		return -ENOMEM;
215 	req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
216 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
217 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
218 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
219 	req->reply = 0;
220 	req->cpu_idx = 0;
221 	req->word = htons(W_TCB_RX_QUIESCE);
222 	req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
223 	req->val = 0;
224 
225 	skb->priority = CPL_PRIORITY_DATA;
226 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
227 }
228 
set_emss(struct iwch_ep * ep,u16 opt)229 static void set_emss(struct iwch_ep *ep, u16 opt)
230 {
231 	PDBG("%s ep %p opt %u\n", __func__, ep, opt);
232 	ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
233 	if (G_TCPOPT_TSTAMP(opt))
234 		ep->emss -= 12;
235 	if (ep->emss < 128)
236 		ep->emss = 128;
237 	PDBG("emss=%d\n", ep->emss);
238 }
239 
state_read(struct iwch_ep_common * epc)240 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
241 {
242 	unsigned long flags;
243 	enum iwch_ep_state state;
244 
245 	spin_lock_irqsave(&epc->lock, flags);
246 	state = epc->state;
247 	spin_unlock_irqrestore(&epc->lock, flags);
248 	return state;
249 }
250 
__state_set(struct iwch_ep_common * epc,enum iwch_ep_state new)251 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
252 {
253 	epc->state = new;
254 }
255 
state_set(struct iwch_ep_common * epc,enum iwch_ep_state new)256 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
257 {
258 	unsigned long flags;
259 
260 	spin_lock_irqsave(&epc->lock, flags);
261 	PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
262 	__state_set(epc, new);
263 	spin_unlock_irqrestore(&epc->lock, flags);
264 	return;
265 }
266 
alloc_ep(int size,gfp_t gfp)267 static void *alloc_ep(int size, gfp_t gfp)
268 {
269 	struct iwch_ep_common *epc;
270 
271 	epc = kzalloc(size, gfp);
272 	if (epc) {
273 		kref_init(&epc->kref);
274 		spin_lock_init(&epc->lock);
275 		init_waitqueue_head(&epc->waitq);
276 	}
277 	PDBG("%s alloc ep %p\n", __func__, epc);
278 	return epc;
279 }
280 
__free_ep(struct kref * kref)281 void __free_ep(struct kref *kref)
282 {
283 	struct iwch_ep *ep;
284 	ep = container_of(container_of(kref, struct iwch_ep_common, kref),
285 			  struct iwch_ep, com);
286 	PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
287 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
288 		cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
289 		dst_release(ep->dst);
290 		l2t_release(ep->com.tdev, ep->l2t);
291 	}
292 	kfree(ep);
293 }
294 
release_ep_resources(struct iwch_ep * ep)295 static void release_ep_resources(struct iwch_ep *ep)
296 {
297 	PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
298 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
299 	put_ep(&ep->com);
300 }
301 
status2errno(int status)302 static int status2errno(int status)
303 {
304 	switch (status) {
305 	case CPL_ERR_NONE:
306 		return 0;
307 	case CPL_ERR_CONN_RESET:
308 		return -ECONNRESET;
309 	case CPL_ERR_ARP_MISS:
310 		return -EHOSTUNREACH;
311 	case CPL_ERR_CONN_TIMEDOUT:
312 		return -ETIMEDOUT;
313 	case CPL_ERR_TCAM_FULL:
314 		return -ENOMEM;
315 	case CPL_ERR_CONN_EXIST:
316 		return -EADDRINUSE;
317 	default:
318 		return -EIO;
319 	}
320 }
321 
322 /*
323  * Try and reuse skbs already allocated...
324  */
get_skb(struct sk_buff * skb,int len,gfp_t gfp)325 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
326 {
327 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
328 		skb_trim(skb, 0);
329 		skb_get(skb);
330 	} else {
331 		skb = alloc_skb(len, gfp);
332 	}
333 	return skb;
334 }
335 
find_route(struct t3cdev * dev,__be32 local_ip,__be32 peer_ip,__be16 local_port,__be16 peer_port,u8 tos)336 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
337 				 __be32 peer_ip, __be16 local_port,
338 				 __be16 peer_port, u8 tos)
339 {
340 	struct rtable *rt;
341 	struct flowi4 fl4;
342 
343 	rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
344 				   peer_port, local_port, IPPROTO_TCP,
345 				   tos, 0);
346 	if (IS_ERR(rt))
347 		return NULL;
348 	return rt;
349 }
350 
find_best_mtu(const struct t3c_data * d,unsigned short mtu)351 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
352 {
353 	int i = 0;
354 
355 	while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
356 		++i;
357 	return i;
358 }
359 
arp_failure_discard(struct t3cdev * dev,struct sk_buff * skb)360 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
361 {
362 	PDBG("%s t3cdev %p\n", __func__, dev);
363 	kfree_skb(skb);
364 }
365 
366 /*
367  * Handle an ARP failure for an active open.
368  */
act_open_req_arp_failure(struct t3cdev * dev,struct sk_buff * skb)369 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
370 {
371 	printk(KERN_ERR MOD "ARP failure duing connect\n");
372 	kfree_skb(skb);
373 }
374 
375 /*
376  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
377  * and send it along.
378  */
abort_arp_failure(struct t3cdev * dev,struct sk_buff * skb)379 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
380 {
381 	struct cpl_abort_req *req = cplhdr(skb);
382 
383 	PDBG("%s t3cdev %p\n", __func__, dev);
384 	req->cmd = CPL_ABORT_NO_RST;
385 	iwch_cxgb3_ofld_send(dev, skb);
386 }
387 
send_halfclose(struct iwch_ep * ep,gfp_t gfp)388 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
389 {
390 	struct cpl_close_con_req *req;
391 	struct sk_buff *skb;
392 
393 	PDBG("%s ep %p\n", __func__, ep);
394 	skb = get_skb(NULL, sizeof(*req), gfp);
395 	if (!skb) {
396 		printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
397 		return -ENOMEM;
398 	}
399 	skb->priority = CPL_PRIORITY_DATA;
400 	set_arp_failure_handler(skb, arp_failure_discard);
401 	req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
402 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
403 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
404 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
405 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
406 }
407 
send_abort(struct iwch_ep * ep,struct sk_buff * skb,gfp_t gfp)408 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
409 {
410 	struct cpl_abort_req *req;
411 
412 	PDBG("%s ep %p\n", __func__, ep);
413 	skb = get_skb(skb, sizeof(*req), gfp);
414 	if (!skb) {
415 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
416 		       __func__);
417 		return -ENOMEM;
418 	}
419 	skb->priority = CPL_PRIORITY_DATA;
420 	set_arp_failure_handler(skb, abort_arp_failure);
421 	req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
422 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
423 	req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
424 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
425 	req->cmd = CPL_ABORT_SEND_RST;
426 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
427 }
428 
send_connect(struct iwch_ep * ep)429 static int send_connect(struct iwch_ep *ep)
430 {
431 	struct cpl_act_open_req *req;
432 	struct sk_buff *skb;
433 	u32 opt0h, opt0l, opt2;
434 	unsigned int mtu_idx;
435 	int wscale;
436 
437 	PDBG("%s ep %p\n", __func__, ep);
438 
439 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
440 	if (!skb) {
441 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
442 		       __func__);
443 		return -ENOMEM;
444 	}
445 	mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
446 	wscale = compute_wscale(rcv_win);
447 	opt0h = V_NAGLE(0) |
448 	    V_NO_CONG(nocong) |
449 	    V_KEEP_ALIVE(1) |
450 	    F_TCAM_BYPASS |
451 	    V_WND_SCALE(wscale) |
452 	    V_MSS_IDX(mtu_idx) |
453 	    V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
454 	opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
455 	opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
456 	       V_CONG_CONTROL_FLAVOR(cong_flavor);
457 	skb->priority = CPL_PRIORITY_SETUP;
458 	set_arp_failure_handler(skb, act_open_req_arp_failure);
459 
460 	req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
461 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
462 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
463 	req->local_port = ep->com.local_addr.sin_port;
464 	req->peer_port = ep->com.remote_addr.sin_port;
465 	req->local_ip = ep->com.local_addr.sin_addr.s_addr;
466 	req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
467 	req->opt0h = htonl(opt0h);
468 	req->opt0l = htonl(opt0l);
469 	req->params = 0;
470 	req->opt2 = htonl(opt2);
471 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
472 }
473 
send_mpa_req(struct iwch_ep * ep,struct sk_buff * skb)474 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
475 {
476 	int mpalen;
477 	struct tx_data_wr *req;
478 	struct mpa_message *mpa;
479 	int len;
480 
481 	PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
482 
483 	BUG_ON(skb_cloned(skb));
484 
485 	mpalen = sizeof(*mpa) + ep->plen;
486 	if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
487 		kfree_skb(skb);
488 		skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
489 		if (!skb) {
490 			connect_reply_upcall(ep, -ENOMEM);
491 			return;
492 		}
493 	}
494 	skb_trim(skb, 0);
495 	skb_reserve(skb, sizeof(*req));
496 	skb_put(skb, mpalen);
497 	skb->priority = CPL_PRIORITY_DATA;
498 	mpa = (struct mpa_message *) skb->data;
499 	memset(mpa, 0, sizeof(*mpa));
500 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
501 	mpa->flags = (crc_enabled ? MPA_CRC : 0) |
502 		     (markers_enabled ? MPA_MARKERS : 0);
503 	mpa->private_data_size = htons(ep->plen);
504 	mpa->revision = mpa_rev;
505 
506 	if (ep->plen)
507 		memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
508 
509 	/*
510 	 * Reference the mpa skb.  This ensures the data area
511 	 * will remain in memory until the hw acks the tx.
512 	 * Function tx_ack() will deref it.
513 	 */
514 	skb_get(skb);
515 	set_arp_failure_handler(skb, arp_failure_discard);
516 	skb_reset_transport_header(skb);
517 	len = skb->len;
518 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
519 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
520 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
521 	req->len = htonl(len);
522 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
523 			   V_TX_SNDBUF(snd_win>>15));
524 	req->flags = htonl(F_TX_INIT);
525 	req->sndseq = htonl(ep->snd_seq);
526 	BUG_ON(ep->mpa_skb);
527 	ep->mpa_skb = skb;
528 	iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
529 	start_ep_timer(ep);
530 	state_set(&ep->com, MPA_REQ_SENT);
531 	return;
532 }
533 
send_mpa_reject(struct iwch_ep * ep,const void * pdata,u8 plen)534 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
535 {
536 	int mpalen;
537 	struct tx_data_wr *req;
538 	struct mpa_message *mpa;
539 	struct sk_buff *skb;
540 
541 	PDBG("%s ep %p plen %d\n", __func__, ep, plen);
542 
543 	mpalen = sizeof(*mpa) + plen;
544 
545 	skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
546 	if (!skb) {
547 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
548 		return -ENOMEM;
549 	}
550 	skb_reserve(skb, sizeof(*req));
551 	mpa = (struct mpa_message *) skb_put(skb, mpalen);
552 	memset(mpa, 0, sizeof(*mpa));
553 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
554 	mpa->flags = MPA_REJECT;
555 	mpa->revision = mpa_rev;
556 	mpa->private_data_size = htons(plen);
557 	if (plen)
558 		memcpy(mpa->private_data, pdata, plen);
559 
560 	/*
561 	 * Reference the mpa skb again.  This ensures the data area
562 	 * will remain in memory until the hw acks the tx.
563 	 * Function tx_ack() will deref it.
564 	 */
565 	skb_get(skb);
566 	skb->priority = CPL_PRIORITY_DATA;
567 	set_arp_failure_handler(skb, arp_failure_discard);
568 	skb_reset_transport_header(skb);
569 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
570 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
571 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
572 	req->len = htonl(mpalen);
573 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
574 			   V_TX_SNDBUF(snd_win>>15));
575 	req->flags = htonl(F_TX_INIT);
576 	req->sndseq = htonl(ep->snd_seq);
577 	BUG_ON(ep->mpa_skb);
578 	ep->mpa_skb = skb;
579 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
580 }
581 
send_mpa_reply(struct iwch_ep * ep,const void * pdata,u8 plen)582 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
583 {
584 	int mpalen;
585 	struct tx_data_wr *req;
586 	struct mpa_message *mpa;
587 	int len;
588 	struct sk_buff *skb;
589 
590 	PDBG("%s ep %p plen %d\n", __func__, ep, plen);
591 
592 	mpalen = sizeof(*mpa) + plen;
593 
594 	skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
595 	if (!skb) {
596 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
597 		return -ENOMEM;
598 	}
599 	skb->priority = CPL_PRIORITY_DATA;
600 	skb_reserve(skb, sizeof(*req));
601 	mpa = (struct mpa_message *) skb_put(skb, mpalen);
602 	memset(mpa, 0, sizeof(*mpa));
603 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
604 	mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
605 		     (markers_enabled ? MPA_MARKERS : 0);
606 	mpa->revision = mpa_rev;
607 	mpa->private_data_size = htons(plen);
608 	if (plen)
609 		memcpy(mpa->private_data, pdata, plen);
610 
611 	/*
612 	 * Reference the mpa skb.  This ensures the data area
613 	 * will remain in memory until the hw acks the tx.
614 	 * Function tx_ack() will deref it.
615 	 */
616 	skb_get(skb);
617 	set_arp_failure_handler(skb, arp_failure_discard);
618 	skb_reset_transport_header(skb);
619 	len = skb->len;
620 	req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
621 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
622 	req->wr_lo = htonl(V_WR_TID(ep->hwtid));
623 	req->len = htonl(len);
624 	req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
625 			   V_TX_SNDBUF(snd_win>>15));
626 	req->flags = htonl(F_TX_INIT);
627 	req->sndseq = htonl(ep->snd_seq);
628 	ep->mpa_skb = skb;
629 	state_set(&ep->com, MPA_REP_SENT);
630 	return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
631 }
632 
act_establish(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)633 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
634 {
635 	struct iwch_ep *ep = ctx;
636 	struct cpl_act_establish *req = cplhdr(skb);
637 	unsigned int tid = GET_TID(req);
638 
639 	PDBG("%s ep %p tid %d\n", __func__, ep, tid);
640 
641 	dst_confirm(ep->dst);
642 
643 	/* setup the hwtid for this connection */
644 	ep->hwtid = tid;
645 	cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
646 
647 	ep->snd_seq = ntohl(req->snd_isn);
648 	ep->rcv_seq = ntohl(req->rcv_isn);
649 
650 	set_emss(ep, ntohs(req->tcp_opt));
651 
652 	/* dealloc the atid */
653 	cxgb3_free_atid(ep->com.tdev, ep->atid);
654 
655 	/* start MPA negotiation */
656 	send_mpa_req(ep, skb);
657 
658 	return 0;
659 }
660 
abort_connection(struct iwch_ep * ep,struct sk_buff * skb,gfp_t gfp)661 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
662 {
663 	PDBG("%s ep %p\n", __FILE__, ep);
664 	state_set(&ep->com, ABORTING);
665 	send_abort(ep, skb, gfp);
666 }
667 
close_complete_upcall(struct iwch_ep * ep)668 static void close_complete_upcall(struct iwch_ep *ep)
669 {
670 	struct iw_cm_event event;
671 
672 	PDBG("%s ep %p\n", __func__, ep);
673 	memset(&event, 0, sizeof(event));
674 	event.event = IW_CM_EVENT_CLOSE;
675 	if (ep->com.cm_id) {
676 		PDBG("close complete delivered ep %p cm_id %p tid %d\n",
677 		     ep, ep->com.cm_id, ep->hwtid);
678 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
679 		ep->com.cm_id->rem_ref(ep->com.cm_id);
680 		ep->com.cm_id = NULL;
681 		ep->com.qp = NULL;
682 	}
683 }
684 
peer_close_upcall(struct iwch_ep * ep)685 static void peer_close_upcall(struct iwch_ep *ep)
686 {
687 	struct iw_cm_event event;
688 
689 	PDBG("%s ep %p\n", __func__, ep);
690 	memset(&event, 0, sizeof(event));
691 	event.event = IW_CM_EVENT_DISCONNECT;
692 	if (ep->com.cm_id) {
693 		PDBG("peer close delivered ep %p cm_id %p tid %d\n",
694 		     ep, ep->com.cm_id, ep->hwtid);
695 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
696 	}
697 }
698 
peer_abort_upcall(struct iwch_ep * ep)699 static void peer_abort_upcall(struct iwch_ep *ep)
700 {
701 	struct iw_cm_event event;
702 
703 	PDBG("%s ep %p\n", __func__, ep);
704 	memset(&event, 0, sizeof(event));
705 	event.event = IW_CM_EVENT_CLOSE;
706 	event.status = -ECONNRESET;
707 	if (ep->com.cm_id) {
708 		PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
709 		     ep->com.cm_id, ep->hwtid);
710 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
711 		ep->com.cm_id->rem_ref(ep->com.cm_id);
712 		ep->com.cm_id = NULL;
713 		ep->com.qp = NULL;
714 	}
715 }
716 
connect_reply_upcall(struct iwch_ep * ep,int status)717 static void connect_reply_upcall(struct iwch_ep *ep, int status)
718 {
719 	struct iw_cm_event event;
720 
721 	PDBG("%s ep %p status %d\n", __func__, ep, status);
722 	memset(&event, 0, sizeof(event));
723 	event.event = IW_CM_EVENT_CONNECT_REPLY;
724 	event.status = status;
725 	event.local_addr = ep->com.local_addr;
726 	event.remote_addr = ep->com.remote_addr;
727 
728 	if ((status == 0) || (status == -ECONNREFUSED)) {
729 		event.private_data_len = ep->plen;
730 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
731 	}
732 	if (ep->com.cm_id) {
733 		PDBG("%s ep %p tid %d status %d\n", __func__, ep,
734 		     ep->hwtid, status);
735 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
736 	}
737 	if (status < 0) {
738 		ep->com.cm_id->rem_ref(ep->com.cm_id);
739 		ep->com.cm_id = NULL;
740 		ep->com.qp = NULL;
741 	}
742 }
743 
connect_request_upcall(struct iwch_ep * ep)744 static void connect_request_upcall(struct iwch_ep *ep)
745 {
746 	struct iw_cm_event event;
747 
748 	PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
749 	memset(&event, 0, sizeof(event));
750 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
751 	event.local_addr = ep->com.local_addr;
752 	event.remote_addr = ep->com.remote_addr;
753 	event.private_data_len = ep->plen;
754 	event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
755 	event.provider_data = ep;
756 	/*
757 	 * Until ird/ord negotiation via MPAv2 support is added, send max
758 	 * supported values
759 	 */
760 	event.ird = event.ord = 8;
761 	if (state_read(&ep->parent_ep->com) != DEAD) {
762 		get_ep(&ep->com);
763 		ep->parent_ep->com.cm_id->event_handler(
764 						ep->parent_ep->com.cm_id,
765 						&event);
766 	}
767 	put_ep(&ep->parent_ep->com);
768 	ep->parent_ep = NULL;
769 }
770 
established_upcall(struct iwch_ep * ep)771 static void established_upcall(struct iwch_ep *ep)
772 {
773 	struct iw_cm_event event;
774 
775 	PDBG("%s ep %p\n", __func__, ep);
776 	memset(&event, 0, sizeof(event));
777 	event.event = IW_CM_EVENT_ESTABLISHED;
778 	/*
779 	 * Until ird/ord negotiation via MPAv2 support is added, send max
780 	 * supported values
781 	 */
782 	event.ird = event.ord = 8;
783 	if (ep->com.cm_id) {
784 		PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
785 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
786 	}
787 }
788 
update_rx_credits(struct iwch_ep * ep,u32 credits)789 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
790 {
791 	struct cpl_rx_data_ack *req;
792 	struct sk_buff *skb;
793 
794 	PDBG("%s ep %p credits %u\n", __func__, ep, credits);
795 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
796 	if (!skb) {
797 		printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
798 		return 0;
799 	}
800 
801 	req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
802 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
803 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
804 	req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
805 	skb->priority = CPL_PRIORITY_ACK;
806 	iwch_cxgb3_ofld_send(ep->com.tdev, skb);
807 	return credits;
808 }
809 
process_mpa_reply(struct iwch_ep * ep,struct sk_buff * skb)810 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
811 {
812 	struct mpa_message *mpa;
813 	u16 plen;
814 	struct iwch_qp_attributes attrs;
815 	enum iwch_qp_attr_mask mask;
816 	int err;
817 
818 	PDBG("%s ep %p\n", __func__, ep);
819 
820 	/*
821 	 * Stop mpa timer.  If it expired, then the state has
822 	 * changed and we bail since ep_timeout already aborted
823 	 * the connection.
824 	 */
825 	stop_ep_timer(ep);
826 	if (state_read(&ep->com) != MPA_REQ_SENT)
827 		return;
828 
829 	/*
830 	 * If we get more than the supported amount of private data
831 	 * then we must fail this connection.
832 	 */
833 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
834 		err = -EINVAL;
835 		goto err;
836 	}
837 
838 	/*
839 	 * copy the new data into our accumulation buffer.
840 	 */
841 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
842 				  skb->len);
843 	ep->mpa_pkt_len += skb->len;
844 
845 	/*
846 	 * if we don't even have the mpa message, then bail.
847 	 */
848 	if (ep->mpa_pkt_len < sizeof(*mpa))
849 		return;
850 	mpa = (struct mpa_message *) ep->mpa_pkt;
851 
852 	/* Validate MPA header. */
853 	if (mpa->revision != mpa_rev) {
854 		err = -EPROTO;
855 		goto err;
856 	}
857 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
858 		err = -EPROTO;
859 		goto err;
860 	}
861 
862 	plen = ntohs(mpa->private_data_size);
863 
864 	/*
865 	 * Fail if there's too much private data.
866 	 */
867 	if (plen > MPA_MAX_PRIVATE_DATA) {
868 		err = -EPROTO;
869 		goto err;
870 	}
871 
872 	/*
873 	 * If plen does not account for pkt size
874 	 */
875 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
876 		err = -EPROTO;
877 		goto err;
878 	}
879 
880 	ep->plen = (u8) plen;
881 
882 	/*
883 	 * If we don't have all the pdata yet, then bail.
884 	 * We'll continue process when more data arrives.
885 	 */
886 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
887 		return;
888 
889 	if (mpa->flags & MPA_REJECT) {
890 		err = -ECONNREFUSED;
891 		goto err;
892 	}
893 
894 	/*
895 	 * If we get here we have accumulated the entire mpa
896 	 * start reply message including private data. And
897 	 * the MPA header is valid.
898 	 */
899 	state_set(&ep->com, FPDU_MODE);
900 	ep->mpa_attr.initiator = 1;
901 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
902 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
903 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
904 	ep->mpa_attr.version = mpa_rev;
905 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
906 	     "xmit_marker_enabled=%d, version=%d\n", __func__,
907 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
908 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
909 
910 	attrs.mpa_attr = ep->mpa_attr;
911 	attrs.max_ird = ep->ird;
912 	attrs.max_ord = ep->ord;
913 	attrs.llp_stream_handle = ep;
914 	attrs.next_state = IWCH_QP_STATE_RTS;
915 
916 	mask = IWCH_QP_ATTR_NEXT_STATE |
917 	    IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
918 	    IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
919 
920 	/* bind QP and TID with INIT_WR */
921 	err = iwch_modify_qp(ep->com.qp->rhp,
922 			     ep->com.qp, mask, &attrs, 1);
923 	if (err)
924 		goto err;
925 
926 	if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
927 		iwch_post_zb_read(ep);
928 	}
929 
930 	goto out;
931 err:
932 	abort_connection(ep, skb, GFP_KERNEL);
933 out:
934 	connect_reply_upcall(ep, err);
935 	return;
936 }
937 
process_mpa_request(struct iwch_ep * ep,struct sk_buff * skb)938 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
939 {
940 	struct mpa_message *mpa;
941 	u16 plen;
942 
943 	PDBG("%s ep %p\n", __func__, ep);
944 
945 	/*
946 	 * Stop mpa timer.  If it expired, then the state has
947 	 * changed and we bail since ep_timeout already aborted
948 	 * the connection.
949 	 */
950 	stop_ep_timer(ep);
951 	if (state_read(&ep->com) != MPA_REQ_WAIT)
952 		return;
953 
954 	/*
955 	 * If we get more than the supported amount of private data
956 	 * then we must fail this connection.
957 	 */
958 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
959 		abort_connection(ep, skb, GFP_KERNEL);
960 		return;
961 	}
962 
963 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
964 
965 	/*
966 	 * Copy the new data into our accumulation buffer.
967 	 */
968 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
969 				  skb->len);
970 	ep->mpa_pkt_len += skb->len;
971 
972 	/*
973 	 * If we don't even have the mpa message, then bail.
974 	 * We'll continue process when more data arrives.
975 	 */
976 	if (ep->mpa_pkt_len < sizeof(*mpa))
977 		return;
978 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
979 	mpa = (struct mpa_message *) ep->mpa_pkt;
980 
981 	/*
982 	 * Validate MPA Header.
983 	 */
984 	if (mpa->revision != mpa_rev) {
985 		abort_connection(ep, skb, GFP_KERNEL);
986 		return;
987 	}
988 
989 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
990 		abort_connection(ep, skb, GFP_KERNEL);
991 		return;
992 	}
993 
994 	plen = ntohs(mpa->private_data_size);
995 
996 	/*
997 	 * Fail if there's too much private data.
998 	 */
999 	if (plen > MPA_MAX_PRIVATE_DATA) {
1000 		abort_connection(ep, skb, GFP_KERNEL);
1001 		return;
1002 	}
1003 
1004 	/*
1005 	 * If plen does not account for pkt size
1006 	 */
1007 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1008 		abort_connection(ep, skb, GFP_KERNEL);
1009 		return;
1010 	}
1011 	ep->plen = (u8) plen;
1012 
1013 	/*
1014 	 * If we don't have all the pdata yet, then bail.
1015 	 */
1016 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1017 		return;
1018 
1019 	/*
1020 	 * If we get here we have accumulated the entire mpa
1021 	 * start reply message including private data.
1022 	 */
1023 	ep->mpa_attr.initiator = 0;
1024 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1025 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1026 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1027 	ep->mpa_attr.version = mpa_rev;
1028 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1029 	     "xmit_marker_enabled=%d, version=%d\n", __func__,
1030 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1031 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1032 
1033 	state_set(&ep->com, MPA_REQ_RCVD);
1034 
1035 	/* drive upcall */
1036 	connect_request_upcall(ep);
1037 	return;
1038 }
1039 
rx_data(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1040 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1041 {
1042 	struct iwch_ep *ep = ctx;
1043 	struct cpl_rx_data *hdr = cplhdr(skb);
1044 	unsigned int dlen = ntohs(hdr->len);
1045 
1046 	PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1047 
1048 	skb_pull(skb, sizeof(*hdr));
1049 	skb_trim(skb, dlen);
1050 
1051 	ep->rcv_seq += dlen;
1052 	BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1053 
1054 	switch (state_read(&ep->com)) {
1055 	case MPA_REQ_SENT:
1056 		process_mpa_reply(ep, skb);
1057 		break;
1058 	case MPA_REQ_WAIT:
1059 		process_mpa_request(ep, skb);
1060 		break;
1061 	case MPA_REP_SENT:
1062 		break;
1063 	default:
1064 		printk(KERN_ERR MOD "%s Unexpected streaming data."
1065 		       " ep %p state %d tid %d\n",
1066 		       __func__, ep, state_read(&ep->com), ep->hwtid);
1067 
1068 		/*
1069 		 * The ep will timeout and inform the ULP of the failure.
1070 		 * See ep_timeout().
1071 		 */
1072 		break;
1073 	}
1074 
1075 	/* update RX credits */
1076 	update_rx_credits(ep, dlen);
1077 
1078 	return CPL_RET_BUF_DONE;
1079 }
1080 
1081 /*
1082  * Upcall from the adapter indicating data has been transmitted.
1083  * For us its just the single MPA request or reply.  We can now free
1084  * the skb holding the mpa message.
1085  */
tx_ack(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1086 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1087 {
1088 	struct iwch_ep *ep = ctx;
1089 	struct cpl_wr_ack *hdr = cplhdr(skb);
1090 	unsigned int credits = ntohs(hdr->credits);
1091 	unsigned long flags;
1092 	int post_zb = 0;
1093 
1094 	PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1095 
1096 	if (credits == 0) {
1097 		PDBG("%s 0 credit ack  ep %p state %u\n",
1098 		     __func__, ep, state_read(&ep->com));
1099 		return CPL_RET_BUF_DONE;
1100 	}
1101 
1102 	spin_lock_irqsave(&ep->com.lock, flags);
1103 	BUG_ON(credits != 1);
1104 	dst_confirm(ep->dst);
1105 	if (!ep->mpa_skb) {
1106 		PDBG("%s rdma_init wr_ack ep %p state %u\n",
1107 			__func__, ep, ep->com.state);
1108 		if (ep->mpa_attr.initiator) {
1109 			PDBG("%s initiator ep %p state %u\n",
1110 				__func__, ep, ep->com.state);
1111 			if (peer2peer && ep->com.state == FPDU_MODE)
1112 				post_zb = 1;
1113 		} else {
1114 			PDBG("%s responder ep %p state %u\n",
1115 				__func__, ep, ep->com.state);
1116 			if (ep->com.state == MPA_REQ_RCVD) {
1117 				ep->com.rpl_done = 1;
1118 				wake_up(&ep->com.waitq);
1119 			}
1120 		}
1121 	} else {
1122 		PDBG("%s lsm ack ep %p state %u freeing skb\n",
1123 			__func__, ep, ep->com.state);
1124 		kfree_skb(ep->mpa_skb);
1125 		ep->mpa_skb = NULL;
1126 	}
1127 	spin_unlock_irqrestore(&ep->com.lock, flags);
1128 	if (post_zb)
1129 		iwch_post_zb_read(ep);
1130 	return CPL_RET_BUF_DONE;
1131 }
1132 
abort_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1133 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1134 {
1135 	struct iwch_ep *ep = ctx;
1136 	unsigned long flags;
1137 	int release = 0;
1138 
1139 	PDBG("%s ep %p\n", __func__, ep);
1140 	BUG_ON(!ep);
1141 
1142 	/*
1143 	 * We get 2 abort replies from the HW.  The first one must
1144 	 * be ignored except for scribbling that we need one more.
1145 	 */
1146 	if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
1147 		return CPL_RET_BUF_DONE;
1148 	}
1149 
1150 	spin_lock_irqsave(&ep->com.lock, flags);
1151 	switch (ep->com.state) {
1152 	case ABORTING:
1153 		close_complete_upcall(ep);
1154 		__state_set(&ep->com, DEAD);
1155 		release = 1;
1156 		break;
1157 	default:
1158 		printk(KERN_ERR "%s ep %p state %d\n",
1159 		     __func__, ep, ep->com.state);
1160 		break;
1161 	}
1162 	spin_unlock_irqrestore(&ep->com.lock, flags);
1163 
1164 	if (release)
1165 		release_ep_resources(ep);
1166 	return CPL_RET_BUF_DONE;
1167 }
1168 
1169 /*
1170  * Return whether a failed active open has allocated a TID
1171  */
act_open_has_tid(int status)1172 static inline int act_open_has_tid(int status)
1173 {
1174 	return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1175 	       status != CPL_ERR_ARP_MISS;
1176 }
1177 
act_open_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1178 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1179 {
1180 	struct iwch_ep *ep = ctx;
1181 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
1182 
1183 	PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1184 	     status2errno(rpl->status));
1185 	connect_reply_upcall(ep, status2errno(rpl->status));
1186 	state_set(&ep->com, DEAD);
1187 	if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1188 		release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1189 	cxgb3_free_atid(ep->com.tdev, ep->atid);
1190 	dst_release(ep->dst);
1191 	l2t_release(ep->com.tdev, ep->l2t);
1192 	put_ep(&ep->com);
1193 	return CPL_RET_BUF_DONE;
1194 }
1195 
listen_start(struct iwch_listen_ep * ep)1196 static int listen_start(struct iwch_listen_ep *ep)
1197 {
1198 	struct sk_buff *skb;
1199 	struct cpl_pass_open_req *req;
1200 
1201 	PDBG("%s ep %p\n", __func__, ep);
1202 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1203 	if (!skb) {
1204 		printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1205 		return -ENOMEM;
1206 	}
1207 
1208 	req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1209 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1210 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1211 	req->local_port = ep->com.local_addr.sin_port;
1212 	req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1213 	req->peer_port = 0;
1214 	req->peer_ip = 0;
1215 	req->peer_netmask = 0;
1216 	req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1217 	req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1218 	req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1219 
1220 	skb->priority = 1;
1221 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1222 }
1223 
pass_open_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1224 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1225 {
1226 	struct iwch_listen_ep *ep = ctx;
1227 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1228 
1229 	PDBG("%s ep %p status %d error %d\n", __func__, ep,
1230 	     rpl->status, status2errno(rpl->status));
1231 	ep->com.rpl_err = status2errno(rpl->status);
1232 	ep->com.rpl_done = 1;
1233 	wake_up(&ep->com.waitq);
1234 
1235 	return CPL_RET_BUF_DONE;
1236 }
1237 
listen_stop(struct iwch_listen_ep * ep)1238 static int listen_stop(struct iwch_listen_ep *ep)
1239 {
1240 	struct sk_buff *skb;
1241 	struct cpl_close_listserv_req *req;
1242 
1243 	PDBG("%s ep %p\n", __func__, ep);
1244 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1245 	if (!skb) {
1246 		printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1247 		return -ENOMEM;
1248 	}
1249 	req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1250 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1251 	req->cpu_idx = 0;
1252 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1253 	skb->priority = 1;
1254 	return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1255 }
1256 
close_listsrv_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1257 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1258 			     void *ctx)
1259 {
1260 	struct iwch_listen_ep *ep = ctx;
1261 	struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1262 
1263 	PDBG("%s ep %p\n", __func__, ep);
1264 	ep->com.rpl_err = status2errno(rpl->status);
1265 	ep->com.rpl_done = 1;
1266 	wake_up(&ep->com.waitq);
1267 	return CPL_RET_BUF_DONE;
1268 }
1269 
accept_cr(struct iwch_ep * ep,__be32 peer_ip,struct sk_buff * skb)1270 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1271 {
1272 	struct cpl_pass_accept_rpl *rpl;
1273 	unsigned int mtu_idx;
1274 	u32 opt0h, opt0l, opt2;
1275 	int wscale;
1276 
1277 	PDBG("%s ep %p\n", __func__, ep);
1278 	BUG_ON(skb_cloned(skb));
1279 	skb_trim(skb, sizeof(*rpl));
1280 	skb_get(skb);
1281 	mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1282 	wscale = compute_wscale(rcv_win);
1283 	opt0h = V_NAGLE(0) |
1284 	    V_NO_CONG(nocong) |
1285 	    V_KEEP_ALIVE(1) |
1286 	    F_TCAM_BYPASS |
1287 	    V_WND_SCALE(wscale) |
1288 	    V_MSS_IDX(mtu_idx) |
1289 	    V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1290 	opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1291 	opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1292 	       V_CONG_CONTROL_FLAVOR(cong_flavor);
1293 
1294 	rpl = cplhdr(skb);
1295 	rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1296 	OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1297 	rpl->peer_ip = peer_ip;
1298 	rpl->opt0h = htonl(opt0h);
1299 	rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1300 	rpl->opt2 = htonl(opt2);
1301 	rpl->rsvd = rpl->opt2;	/* workaround for HW bug */
1302 	skb->priority = CPL_PRIORITY_SETUP;
1303 	iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1304 
1305 	return;
1306 }
1307 
reject_cr(struct t3cdev * tdev,u32 hwtid,__be32 peer_ip,struct sk_buff * skb)1308 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1309 		      struct sk_buff *skb)
1310 {
1311 	PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1312 	     peer_ip);
1313 	BUG_ON(skb_cloned(skb));
1314 	skb_trim(skb, sizeof(struct cpl_tid_release));
1315 	skb_get(skb);
1316 
1317 	if (tdev->type != T3A)
1318 		release_tid(tdev, hwtid, skb);
1319 	else {
1320 		struct cpl_pass_accept_rpl *rpl;
1321 
1322 		rpl = cplhdr(skb);
1323 		skb->priority = CPL_PRIORITY_SETUP;
1324 		rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1325 		OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1326 						      hwtid));
1327 		rpl->peer_ip = peer_ip;
1328 		rpl->opt0h = htonl(F_TCAM_BYPASS);
1329 		rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1330 		rpl->opt2 = 0;
1331 		rpl->rsvd = rpl->opt2;
1332 		iwch_cxgb3_ofld_send(tdev, skb);
1333 	}
1334 }
1335 
pass_accept_req(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1336 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1337 {
1338 	struct iwch_ep *child_ep, *parent_ep = ctx;
1339 	struct cpl_pass_accept_req *req = cplhdr(skb);
1340 	unsigned int hwtid = GET_TID(req);
1341 	struct dst_entry *dst;
1342 	struct l2t_entry *l2t;
1343 	struct rtable *rt;
1344 	struct iff_mac tim;
1345 
1346 	PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1347 
1348 	if (state_read(&parent_ep->com) != LISTEN) {
1349 		printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1350 		       __func__);
1351 		goto reject;
1352 	}
1353 
1354 	/*
1355 	 * Find the netdev for this connection request.
1356 	 */
1357 	tim.mac_addr = req->dst_mac;
1358 	tim.vlan_tag = ntohs(req->vlan_tag);
1359 	if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1360 		printk(KERN_ERR "%s bad dst mac %pM\n",
1361 			__func__, req->dst_mac);
1362 		goto reject;
1363 	}
1364 
1365 	/* Find output route */
1366 	rt = find_route(tdev,
1367 			req->local_ip,
1368 			req->peer_ip,
1369 			req->local_port,
1370 			req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1371 	if (!rt) {
1372 		printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1373 		       __func__);
1374 		goto reject;
1375 	}
1376 	dst = &rt->dst;
1377 	l2t = t3_l2t_get(tdev, dst, NULL);
1378 	if (!l2t) {
1379 		printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1380 		       __func__);
1381 		dst_release(dst);
1382 		goto reject;
1383 	}
1384 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1385 	if (!child_ep) {
1386 		printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1387 		       __func__);
1388 		l2t_release(tdev, l2t);
1389 		dst_release(dst);
1390 		goto reject;
1391 	}
1392 	state_set(&child_ep->com, CONNECTING);
1393 	child_ep->com.tdev = tdev;
1394 	child_ep->com.cm_id = NULL;
1395 	child_ep->com.local_addr.sin_family = PF_INET;
1396 	child_ep->com.local_addr.sin_port = req->local_port;
1397 	child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1398 	child_ep->com.remote_addr.sin_family = PF_INET;
1399 	child_ep->com.remote_addr.sin_port = req->peer_port;
1400 	child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1401 	get_ep(&parent_ep->com);
1402 	child_ep->parent_ep = parent_ep;
1403 	child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1404 	child_ep->l2t = l2t;
1405 	child_ep->dst = dst;
1406 	child_ep->hwtid = hwtid;
1407 	init_timer(&child_ep->timer);
1408 	cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1409 	accept_cr(child_ep, req->peer_ip, skb);
1410 	goto out;
1411 reject:
1412 	reject_cr(tdev, hwtid, req->peer_ip, skb);
1413 out:
1414 	return CPL_RET_BUF_DONE;
1415 }
1416 
pass_establish(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1417 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1418 {
1419 	struct iwch_ep *ep = ctx;
1420 	struct cpl_pass_establish *req = cplhdr(skb);
1421 
1422 	PDBG("%s ep %p\n", __func__, ep);
1423 	ep->snd_seq = ntohl(req->snd_isn);
1424 	ep->rcv_seq = ntohl(req->rcv_isn);
1425 
1426 	set_emss(ep, ntohs(req->tcp_opt));
1427 
1428 	dst_confirm(ep->dst);
1429 	state_set(&ep->com, MPA_REQ_WAIT);
1430 	start_ep_timer(ep);
1431 
1432 	return CPL_RET_BUF_DONE;
1433 }
1434 
peer_close(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1435 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1436 {
1437 	struct iwch_ep *ep = ctx;
1438 	struct iwch_qp_attributes attrs;
1439 	unsigned long flags;
1440 	int disconnect = 1;
1441 	int release = 0;
1442 
1443 	PDBG("%s ep %p\n", __func__, ep);
1444 	dst_confirm(ep->dst);
1445 
1446 	spin_lock_irqsave(&ep->com.lock, flags);
1447 	switch (ep->com.state) {
1448 	case MPA_REQ_WAIT:
1449 		__state_set(&ep->com, CLOSING);
1450 		break;
1451 	case MPA_REQ_SENT:
1452 		__state_set(&ep->com, CLOSING);
1453 		connect_reply_upcall(ep, -ECONNRESET);
1454 		break;
1455 	case MPA_REQ_RCVD:
1456 
1457 		/*
1458 		 * We're gonna mark this puppy DEAD, but keep
1459 		 * the reference on it until the ULP accepts or
1460 		 * rejects the CR. Also wake up anyone waiting
1461 		 * in rdma connection migration (see iwch_accept_cr()).
1462 		 */
1463 		__state_set(&ep->com, CLOSING);
1464 		ep->com.rpl_done = 1;
1465 		ep->com.rpl_err = -ECONNRESET;
1466 		PDBG("waking up ep %p\n", ep);
1467 		wake_up(&ep->com.waitq);
1468 		break;
1469 	case MPA_REP_SENT:
1470 		__state_set(&ep->com, CLOSING);
1471 		ep->com.rpl_done = 1;
1472 		ep->com.rpl_err = -ECONNRESET;
1473 		PDBG("waking up ep %p\n", ep);
1474 		wake_up(&ep->com.waitq);
1475 		break;
1476 	case FPDU_MODE:
1477 		start_ep_timer(ep);
1478 		__state_set(&ep->com, CLOSING);
1479 		attrs.next_state = IWCH_QP_STATE_CLOSING;
1480 		iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1481 			       IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1482 		peer_close_upcall(ep);
1483 		break;
1484 	case ABORTING:
1485 		disconnect = 0;
1486 		break;
1487 	case CLOSING:
1488 		__state_set(&ep->com, MORIBUND);
1489 		disconnect = 0;
1490 		break;
1491 	case MORIBUND:
1492 		stop_ep_timer(ep);
1493 		if (ep->com.cm_id && ep->com.qp) {
1494 			attrs.next_state = IWCH_QP_STATE_IDLE;
1495 			iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1496 				       IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1497 		}
1498 		close_complete_upcall(ep);
1499 		__state_set(&ep->com, DEAD);
1500 		release = 1;
1501 		disconnect = 0;
1502 		break;
1503 	case DEAD:
1504 		disconnect = 0;
1505 		break;
1506 	default:
1507 		BUG_ON(1);
1508 	}
1509 	spin_unlock_irqrestore(&ep->com.lock, flags);
1510 	if (disconnect)
1511 		iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1512 	if (release)
1513 		release_ep_resources(ep);
1514 	return CPL_RET_BUF_DONE;
1515 }
1516 
1517 /*
1518  * Returns whether an ABORT_REQ_RSS message is a negative advice.
1519  */
is_neg_adv_abort(unsigned int status)1520 static int is_neg_adv_abort(unsigned int status)
1521 {
1522 	return status == CPL_ERR_RTX_NEG_ADVICE ||
1523 	       status == CPL_ERR_PERSIST_NEG_ADVICE;
1524 }
1525 
peer_abort(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1526 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1527 {
1528 	struct cpl_abort_req_rss *req = cplhdr(skb);
1529 	struct iwch_ep *ep = ctx;
1530 	struct cpl_abort_rpl *rpl;
1531 	struct sk_buff *rpl_skb;
1532 	struct iwch_qp_attributes attrs;
1533 	int ret;
1534 	int release = 0;
1535 	unsigned long flags;
1536 
1537 	if (is_neg_adv_abort(req->status)) {
1538 		PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1539 		     ep->hwtid);
1540 		t3_l2t_send_event(ep->com.tdev, ep->l2t);
1541 		return CPL_RET_BUF_DONE;
1542 	}
1543 
1544 	/*
1545 	 * We get 2 peer aborts from the HW.  The first one must
1546 	 * be ignored except for scribbling that we need one more.
1547 	 */
1548 	if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
1549 		return CPL_RET_BUF_DONE;
1550 	}
1551 
1552 	spin_lock_irqsave(&ep->com.lock, flags);
1553 	PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1554 	switch (ep->com.state) {
1555 	case CONNECTING:
1556 		break;
1557 	case MPA_REQ_WAIT:
1558 		stop_ep_timer(ep);
1559 		break;
1560 	case MPA_REQ_SENT:
1561 		stop_ep_timer(ep);
1562 		connect_reply_upcall(ep, -ECONNRESET);
1563 		break;
1564 	case MPA_REP_SENT:
1565 		ep->com.rpl_done = 1;
1566 		ep->com.rpl_err = -ECONNRESET;
1567 		PDBG("waking up ep %p\n", ep);
1568 		wake_up(&ep->com.waitq);
1569 		break;
1570 	case MPA_REQ_RCVD:
1571 
1572 		/*
1573 		 * We're gonna mark this puppy DEAD, but keep
1574 		 * the reference on it until the ULP accepts or
1575 		 * rejects the CR. Also wake up anyone waiting
1576 		 * in rdma connection migration (see iwch_accept_cr()).
1577 		 */
1578 		ep->com.rpl_done = 1;
1579 		ep->com.rpl_err = -ECONNRESET;
1580 		PDBG("waking up ep %p\n", ep);
1581 		wake_up(&ep->com.waitq);
1582 		break;
1583 	case MORIBUND:
1584 	case CLOSING:
1585 		stop_ep_timer(ep);
1586 		/*FALLTHROUGH*/
1587 	case FPDU_MODE:
1588 		if (ep->com.cm_id && ep->com.qp) {
1589 			attrs.next_state = IWCH_QP_STATE_ERROR;
1590 			ret = iwch_modify_qp(ep->com.qp->rhp,
1591 				     ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1592 				     &attrs, 1);
1593 			if (ret)
1594 				printk(KERN_ERR MOD
1595 				       "%s - qp <- error failed!\n",
1596 				       __func__);
1597 		}
1598 		peer_abort_upcall(ep);
1599 		break;
1600 	case ABORTING:
1601 		break;
1602 	case DEAD:
1603 		PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1604 		spin_unlock_irqrestore(&ep->com.lock, flags);
1605 		return CPL_RET_BUF_DONE;
1606 	default:
1607 		BUG_ON(1);
1608 		break;
1609 	}
1610 	dst_confirm(ep->dst);
1611 	if (ep->com.state != ABORTING) {
1612 		__state_set(&ep->com, DEAD);
1613 		release = 1;
1614 	}
1615 	spin_unlock_irqrestore(&ep->com.lock, flags);
1616 
1617 	rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1618 	if (!rpl_skb) {
1619 		printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1620 		       __func__);
1621 		release = 1;
1622 		goto out;
1623 	}
1624 	rpl_skb->priority = CPL_PRIORITY_DATA;
1625 	rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1626 	rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1627 	rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1628 	OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1629 	rpl->cmd = CPL_ABORT_NO_RST;
1630 	iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1631 out:
1632 	if (release)
1633 		release_ep_resources(ep);
1634 	return CPL_RET_BUF_DONE;
1635 }
1636 
close_con_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1637 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1638 {
1639 	struct iwch_ep *ep = ctx;
1640 	struct iwch_qp_attributes attrs;
1641 	unsigned long flags;
1642 	int release = 0;
1643 
1644 	PDBG("%s ep %p\n", __func__, ep);
1645 	BUG_ON(!ep);
1646 
1647 	/* The cm_id may be null if we failed to connect */
1648 	spin_lock_irqsave(&ep->com.lock, flags);
1649 	switch (ep->com.state) {
1650 	case CLOSING:
1651 		__state_set(&ep->com, MORIBUND);
1652 		break;
1653 	case MORIBUND:
1654 		stop_ep_timer(ep);
1655 		if ((ep->com.cm_id) && (ep->com.qp)) {
1656 			attrs.next_state = IWCH_QP_STATE_IDLE;
1657 			iwch_modify_qp(ep->com.qp->rhp,
1658 					     ep->com.qp,
1659 					     IWCH_QP_ATTR_NEXT_STATE,
1660 					     &attrs, 1);
1661 		}
1662 		close_complete_upcall(ep);
1663 		__state_set(&ep->com, DEAD);
1664 		release = 1;
1665 		break;
1666 	case ABORTING:
1667 	case DEAD:
1668 		break;
1669 	default:
1670 		BUG_ON(1);
1671 		break;
1672 	}
1673 	spin_unlock_irqrestore(&ep->com.lock, flags);
1674 	if (release)
1675 		release_ep_resources(ep);
1676 	return CPL_RET_BUF_DONE;
1677 }
1678 
1679 /*
1680  * T3A does 3 things when a TERM is received:
1681  * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1682  * 2) generate an async event on the QP with the TERMINATE opcode
1683  * 3) post a TERMINATE opcde cqe into the associated CQ.
1684  *
1685  * For (1), we save the message in the qp for later consumer consumption.
1686  * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1687  * For (3), we toss the CQE in cxio_poll_cq().
1688  *
1689  * terminate() handles case (1)...
1690  */
terminate(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1691 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1692 {
1693 	struct iwch_ep *ep = ctx;
1694 
1695 	if (state_read(&ep->com) != FPDU_MODE)
1696 		return CPL_RET_BUF_DONE;
1697 
1698 	PDBG("%s ep %p\n", __func__, ep);
1699 	skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1700 	PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1701 	skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1702 				  skb->len);
1703 	ep->com.qp->attr.terminate_msg_len = skb->len;
1704 	ep->com.qp->attr.is_terminate_local = 0;
1705 	return CPL_RET_BUF_DONE;
1706 }
1707 
ec_status(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)1708 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1709 {
1710 	struct cpl_rdma_ec_status *rep = cplhdr(skb);
1711 	struct iwch_ep *ep = ctx;
1712 
1713 	PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1714 	     rep->status);
1715 	if (rep->status) {
1716 		struct iwch_qp_attributes attrs;
1717 
1718 		printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1719 		       __func__, ep->hwtid);
1720 		stop_ep_timer(ep);
1721 		attrs.next_state = IWCH_QP_STATE_ERROR;
1722 		iwch_modify_qp(ep->com.qp->rhp,
1723 			       ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1724 			       &attrs, 1);
1725 		abort_connection(ep, NULL, GFP_KERNEL);
1726 	}
1727 	return CPL_RET_BUF_DONE;
1728 }
1729 
ep_timeout(unsigned long arg)1730 static void ep_timeout(unsigned long arg)
1731 {
1732 	struct iwch_ep *ep = (struct iwch_ep *)arg;
1733 	struct iwch_qp_attributes attrs;
1734 	unsigned long flags;
1735 	int abort = 1;
1736 
1737 	spin_lock_irqsave(&ep->com.lock, flags);
1738 	PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1739 	     ep->com.state);
1740 	switch (ep->com.state) {
1741 	case MPA_REQ_SENT:
1742 		__state_set(&ep->com, ABORTING);
1743 		connect_reply_upcall(ep, -ETIMEDOUT);
1744 		break;
1745 	case MPA_REQ_WAIT:
1746 		__state_set(&ep->com, ABORTING);
1747 		break;
1748 	case CLOSING:
1749 	case MORIBUND:
1750 		if (ep->com.cm_id && ep->com.qp) {
1751 			attrs.next_state = IWCH_QP_STATE_ERROR;
1752 			iwch_modify_qp(ep->com.qp->rhp,
1753 				     ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1754 				     &attrs, 1);
1755 		}
1756 		__state_set(&ep->com, ABORTING);
1757 		break;
1758 	default:
1759 		printk(KERN_ERR "%s unexpected state ep %p state %u\n",
1760 			__func__, ep, ep->com.state);
1761 		WARN_ON(1);
1762 		abort = 0;
1763 	}
1764 	spin_unlock_irqrestore(&ep->com.lock, flags);
1765 	if (abort)
1766 		abort_connection(ep, NULL, GFP_ATOMIC);
1767 	put_ep(&ep->com);
1768 }
1769 
iwch_reject_cr(struct iw_cm_id * cm_id,const void * pdata,u8 pdata_len)1770 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1771 {
1772 	int err;
1773 	struct iwch_ep *ep = to_ep(cm_id);
1774 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1775 
1776 	if (state_read(&ep->com) == DEAD) {
1777 		put_ep(&ep->com);
1778 		return -ECONNRESET;
1779 	}
1780 	BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1781 	if (mpa_rev == 0)
1782 		abort_connection(ep, NULL, GFP_KERNEL);
1783 	else {
1784 		err = send_mpa_reject(ep, pdata, pdata_len);
1785 		err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1786 	}
1787 	put_ep(&ep->com);
1788 	return 0;
1789 }
1790 
iwch_accept_cr(struct iw_cm_id * cm_id,struct iw_cm_conn_param * conn_param)1791 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1792 {
1793 	int err;
1794 	struct iwch_qp_attributes attrs;
1795 	enum iwch_qp_attr_mask mask;
1796 	struct iwch_ep *ep = to_ep(cm_id);
1797 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1798 	struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1799 
1800 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1801 	if (state_read(&ep->com) == DEAD) {
1802 		err = -ECONNRESET;
1803 		goto err;
1804 	}
1805 
1806 	BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1807 	BUG_ON(!qp);
1808 
1809 	if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1810 	    (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1811 		abort_connection(ep, NULL, GFP_KERNEL);
1812 		err = -EINVAL;
1813 		goto err;
1814 	}
1815 
1816 	cm_id->add_ref(cm_id);
1817 	ep->com.cm_id = cm_id;
1818 	ep->com.qp = qp;
1819 
1820 	ep->ird = conn_param->ird;
1821 	ep->ord = conn_param->ord;
1822 
1823 	if (peer2peer && ep->ird == 0)
1824 		ep->ird = 1;
1825 
1826 	PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1827 
1828 	/* bind QP to EP and move to RTS */
1829 	attrs.mpa_attr = ep->mpa_attr;
1830 	attrs.max_ird = ep->ird;
1831 	attrs.max_ord = ep->ord;
1832 	attrs.llp_stream_handle = ep;
1833 	attrs.next_state = IWCH_QP_STATE_RTS;
1834 
1835 	/* bind QP and TID with INIT_WR */
1836 	mask = IWCH_QP_ATTR_NEXT_STATE |
1837 			     IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1838 			     IWCH_QP_ATTR_MPA_ATTR |
1839 			     IWCH_QP_ATTR_MAX_IRD |
1840 			     IWCH_QP_ATTR_MAX_ORD;
1841 
1842 	err = iwch_modify_qp(ep->com.qp->rhp,
1843 			     ep->com.qp, mask, &attrs, 1);
1844 	if (err)
1845 		goto err1;
1846 
1847 	/* if needed, wait for wr_ack */
1848 	if (iwch_rqes_posted(qp)) {
1849 		wait_event(ep->com.waitq, ep->com.rpl_done);
1850 		err = ep->com.rpl_err;
1851 		if (err)
1852 			goto err1;
1853 	}
1854 
1855 	err = send_mpa_reply(ep, conn_param->private_data,
1856 			     conn_param->private_data_len);
1857 	if (err)
1858 		goto err1;
1859 
1860 
1861 	state_set(&ep->com, FPDU_MODE);
1862 	established_upcall(ep);
1863 	put_ep(&ep->com);
1864 	return 0;
1865 err1:
1866 	ep->com.cm_id = NULL;
1867 	ep->com.qp = NULL;
1868 	cm_id->rem_ref(cm_id);
1869 err:
1870 	put_ep(&ep->com);
1871 	return err;
1872 }
1873 
is_loopback_dst(struct iw_cm_id * cm_id)1874 static int is_loopback_dst(struct iw_cm_id *cm_id)
1875 {
1876 	struct net_device *dev;
1877 
1878 	dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr);
1879 	if (!dev)
1880 		return 0;
1881 	dev_put(dev);
1882 	return 1;
1883 }
1884 
iwch_connect(struct iw_cm_id * cm_id,struct iw_cm_conn_param * conn_param)1885 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1886 {
1887 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1888 	struct iwch_ep *ep;
1889 	struct rtable *rt;
1890 	int err = 0;
1891 
1892 	if (is_loopback_dst(cm_id)) {
1893 		err = -ENOSYS;
1894 		goto out;
1895 	}
1896 
1897 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1898 	if (!ep) {
1899 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1900 		err = -ENOMEM;
1901 		goto out;
1902 	}
1903 	init_timer(&ep->timer);
1904 	ep->plen = conn_param->private_data_len;
1905 	if (ep->plen)
1906 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1907 		       conn_param->private_data, ep->plen);
1908 	ep->ird = conn_param->ird;
1909 	ep->ord = conn_param->ord;
1910 
1911 	if (peer2peer && ep->ord == 0)
1912 		ep->ord = 1;
1913 
1914 	ep->com.tdev = h->rdev.t3cdev_p;
1915 
1916 	cm_id->add_ref(cm_id);
1917 	ep->com.cm_id = cm_id;
1918 	ep->com.qp = get_qhp(h, conn_param->qpn);
1919 	BUG_ON(!ep->com.qp);
1920 	PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1921 	     ep->com.qp, cm_id);
1922 
1923 	/*
1924 	 * Allocate an active TID to initiate a TCP connection.
1925 	 */
1926 	ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1927 	if (ep->atid == -1) {
1928 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1929 		err = -ENOMEM;
1930 		goto fail2;
1931 	}
1932 
1933 	/* find a route */
1934 	rt = find_route(h->rdev.t3cdev_p,
1935 			cm_id->local_addr.sin_addr.s_addr,
1936 			cm_id->remote_addr.sin_addr.s_addr,
1937 			cm_id->local_addr.sin_port,
1938 			cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1939 	if (!rt) {
1940 		printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1941 		err = -EHOSTUNREACH;
1942 		goto fail3;
1943 	}
1944 	ep->dst = &rt->dst;
1945 	ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst, NULL);
1946 	if (!ep->l2t) {
1947 		printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1948 		err = -ENOMEM;
1949 		goto fail4;
1950 	}
1951 
1952 	state_set(&ep->com, CONNECTING);
1953 	ep->tos = IPTOS_LOWDELAY;
1954 	ep->com.local_addr = cm_id->local_addr;
1955 	ep->com.remote_addr = cm_id->remote_addr;
1956 
1957 	/* send connect request to rnic */
1958 	err = send_connect(ep);
1959 	if (!err)
1960 		goto out;
1961 
1962 	l2t_release(h->rdev.t3cdev_p, ep->l2t);
1963 fail4:
1964 	dst_release(ep->dst);
1965 fail3:
1966 	cxgb3_free_atid(ep->com.tdev, ep->atid);
1967 fail2:
1968 	cm_id->rem_ref(cm_id);
1969 	put_ep(&ep->com);
1970 out:
1971 	return err;
1972 }
1973 
iwch_create_listen(struct iw_cm_id * cm_id,int backlog)1974 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1975 {
1976 	int err = 0;
1977 	struct iwch_dev *h = to_iwch_dev(cm_id->device);
1978 	struct iwch_listen_ep *ep;
1979 
1980 
1981 	might_sleep();
1982 
1983 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1984 	if (!ep) {
1985 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1986 		err = -ENOMEM;
1987 		goto fail1;
1988 	}
1989 	PDBG("%s ep %p\n", __func__, ep);
1990 	ep->com.tdev = h->rdev.t3cdev_p;
1991 	cm_id->add_ref(cm_id);
1992 	ep->com.cm_id = cm_id;
1993 	ep->backlog = backlog;
1994 	ep->com.local_addr = cm_id->local_addr;
1995 
1996 	/*
1997 	 * Allocate a server TID.
1998 	 */
1999 	ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
2000 	if (ep->stid == -1) {
2001 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
2002 		err = -ENOMEM;
2003 		goto fail2;
2004 	}
2005 
2006 	state_set(&ep->com, LISTEN);
2007 	err = listen_start(ep);
2008 	if (err)
2009 		goto fail3;
2010 
2011 	/* wait for pass_open_rpl */
2012 	wait_event(ep->com.waitq, ep->com.rpl_done);
2013 	err = ep->com.rpl_err;
2014 	if (!err) {
2015 		cm_id->provider_data = ep;
2016 		goto out;
2017 	}
2018 fail3:
2019 	cxgb3_free_stid(ep->com.tdev, ep->stid);
2020 fail2:
2021 	cm_id->rem_ref(cm_id);
2022 	put_ep(&ep->com);
2023 fail1:
2024 out:
2025 	return err;
2026 }
2027 
iwch_destroy_listen(struct iw_cm_id * cm_id)2028 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2029 {
2030 	int err;
2031 	struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2032 
2033 	PDBG("%s ep %p\n", __func__, ep);
2034 
2035 	might_sleep();
2036 	state_set(&ep->com, DEAD);
2037 	ep->com.rpl_done = 0;
2038 	ep->com.rpl_err = 0;
2039 	err = listen_stop(ep);
2040 	if (err)
2041 		goto done;
2042 	wait_event(ep->com.waitq, ep->com.rpl_done);
2043 	cxgb3_free_stid(ep->com.tdev, ep->stid);
2044 done:
2045 	err = ep->com.rpl_err;
2046 	cm_id->rem_ref(cm_id);
2047 	put_ep(&ep->com);
2048 	return err;
2049 }
2050 
iwch_ep_disconnect(struct iwch_ep * ep,int abrupt,gfp_t gfp)2051 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2052 {
2053 	int ret=0;
2054 	unsigned long flags;
2055 	int close = 0;
2056 	int fatal = 0;
2057 	struct t3cdev *tdev;
2058 	struct cxio_rdev *rdev;
2059 
2060 	spin_lock_irqsave(&ep->com.lock, flags);
2061 
2062 	PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2063 	     states[ep->com.state], abrupt);
2064 
2065 	tdev = (struct t3cdev *)ep->com.tdev;
2066 	rdev = (struct cxio_rdev *)tdev->ulp;
2067 	if (cxio_fatal_error(rdev)) {
2068 		fatal = 1;
2069 		close_complete_upcall(ep);
2070 		ep->com.state = DEAD;
2071 	}
2072 	switch (ep->com.state) {
2073 	case MPA_REQ_WAIT:
2074 	case MPA_REQ_SENT:
2075 	case MPA_REQ_RCVD:
2076 	case MPA_REP_SENT:
2077 	case FPDU_MODE:
2078 		close = 1;
2079 		if (abrupt)
2080 			ep->com.state = ABORTING;
2081 		else {
2082 			ep->com.state = CLOSING;
2083 			start_ep_timer(ep);
2084 		}
2085 		set_bit(CLOSE_SENT, &ep->com.flags);
2086 		break;
2087 	case CLOSING:
2088 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2089 			close = 1;
2090 			if (abrupt) {
2091 				stop_ep_timer(ep);
2092 				ep->com.state = ABORTING;
2093 			} else
2094 				ep->com.state = MORIBUND;
2095 		}
2096 		break;
2097 	case MORIBUND:
2098 	case ABORTING:
2099 	case DEAD:
2100 		PDBG("%s ignoring disconnect ep %p state %u\n",
2101 		     __func__, ep, ep->com.state);
2102 		break;
2103 	default:
2104 		BUG();
2105 		break;
2106 	}
2107 
2108 	spin_unlock_irqrestore(&ep->com.lock, flags);
2109 	if (close) {
2110 		if (abrupt)
2111 			ret = send_abort(ep, NULL, gfp);
2112 		else
2113 			ret = send_halfclose(ep, gfp);
2114 		if (ret)
2115 			fatal = 1;
2116 	}
2117 	if (fatal)
2118 		release_ep_resources(ep);
2119 	return ret;
2120 }
2121 
iwch_ep_redirect(void * ctx,struct dst_entry * old,struct dst_entry * new,struct l2t_entry * l2t)2122 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2123 		     struct l2t_entry *l2t)
2124 {
2125 	struct iwch_ep *ep = ctx;
2126 
2127 	if (ep->dst != old)
2128 		return 0;
2129 
2130 	PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2131 	     l2t);
2132 	dst_hold(new);
2133 	l2t_release(ep->com.tdev, ep->l2t);
2134 	ep->l2t = l2t;
2135 	dst_release(old);
2136 	ep->dst = new;
2137 	return 1;
2138 }
2139 
2140 /*
2141  * All the CM events are handled on a work queue to have a safe context.
2142  * These are the real handlers that are called from the work queue.
2143  */
2144 static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
2145 	[CPL_ACT_ESTABLISH]	= act_establish,
2146 	[CPL_ACT_OPEN_RPL]	= act_open_rpl,
2147 	[CPL_RX_DATA]		= rx_data,
2148 	[CPL_TX_DMA_ACK]	= tx_ack,
2149 	[CPL_ABORT_RPL_RSS]	= abort_rpl,
2150 	[CPL_ABORT_RPL]		= abort_rpl,
2151 	[CPL_PASS_OPEN_RPL]	= pass_open_rpl,
2152 	[CPL_CLOSE_LISTSRV_RPL]	= close_listsrv_rpl,
2153 	[CPL_PASS_ACCEPT_REQ]	= pass_accept_req,
2154 	[CPL_PASS_ESTABLISH]	= pass_establish,
2155 	[CPL_PEER_CLOSE]	= peer_close,
2156 	[CPL_ABORT_REQ_RSS]	= peer_abort,
2157 	[CPL_CLOSE_CON_RPL]	= close_con_rpl,
2158 	[CPL_RDMA_TERMINATE]	= terminate,
2159 	[CPL_RDMA_EC_STATUS]	= ec_status,
2160 };
2161 
process_work(struct work_struct * work)2162 static void process_work(struct work_struct *work)
2163 {
2164 	struct sk_buff *skb = NULL;
2165 	void *ep;
2166 	struct t3cdev *tdev;
2167 	int ret;
2168 
2169 	while ((skb = skb_dequeue(&rxq))) {
2170 		ep = *((void **) (skb->cb));
2171 		tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
2172 		ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
2173 		if (ret & CPL_RET_BUF_DONE)
2174 			kfree_skb(skb);
2175 
2176 		/*
2177 		 * ep was referenced in sched(), and is freed here.
2178 		 */
2179 		put_ep((struct iwch_ep_common *)ep);
2180 	}
2181 }
2182 
2183 static DECLARE_WORK(skb_work, process_work);
2184 
sched(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)2185 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2186 {
2187 	struct iwch_ep_common *epc = ctx;
2188 
2189 	get_ep(epc);
2190 
2191 	/*
2192 	 * Save ctx and tdev in the skb->cb area.
2193 	 */
2194 	*((void **) skb->cb) = ctx;
2195 	*((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2196 
2197 	/*
2198 	 * Queue the skb and schedule the worker thread.
2199 	 */
2200 	skb_queue_tail(&rxq, skb);
2201 	queue_work(workq, &skb_work);
2202 	return 0;
2203 }
2204 
set_tcb_rpl(struct t3cdev * tdev,struct sk_buff * skb,void * ctx)2205 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2206 {
2207 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2208 
2209 	if (rpl->status != CPL_ERR_NONE) {
2210 		printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2211 		       "for tid %u\n", rpl->status, GET_TID(rpl));
2212 	}
2213 	return CPL_RET_BUF_DONE;
2214 }
2215 
2216 /*
2217  * All upcalls from the T3 Core go to sched() to schedule the
2218  * processing on a work queue.
2219  */
2220 cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
2221 	[CPL_ACT_ESTABLISH]	= sched,
2222 	[CPL_ACT_OPEN_RPL]	= sched,
2223 	[CPL_RX_DATA]		= sched,
2224 	[CPL_TX_DMA_ACK]	= sched,
2225 	[CPL_ABORT_RPL_RSS]	= sched,
2226 	[CPL_ABORT_RPL]		= sched,
2227 	[CPL_PASS_OPEN_RPL]	= sched,
2228 	[CPL_CLOSE_LISTSRV_RPL]	= sched,
2229 	[CPL_PASS_ACCEPT_REQ]	= sched,
2230 	[CPL_PASS_ESTABLISH]	= sched,
2231 	[CPL_PEER_CLOSE]	= sched,
2232 	[CPL_CLOSE_CON_RPL]	= sched,
2233 	[CPL_ABORT_REQ_RSS]	= sched,
2234 	[CPL_RDMA_TERMINATE]	= sched,
2235 	[CPL_RDMA_EC_STATUS]	= sched,
2236 	[CPL_SET_TCB_RPL]	= set_tcb_rpl,
2237 };
2238 
iwch_cm_init(void)2239 int __init iwch_cm_init(void)
2240 {
2241 	skb_queue_head_init(&rxq);
2242 
2243 	workq = create_singlethread_workqueue("iw_cxgb3");
2244 	if (!workq)
2245 		return -ENOMEM;
2246 
2247 	return 0;
2248 }
2249 
iwch_cm_term(void)2250 void __exit iwch_cm_term(void)
2251 {
2252 	flush_workqueue(workq);
2253 	destroy_workqueue(workq);
2254 }
2255