1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 EXPORT_SYMBOL(jbd2_inode_cache);
96
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99
100 /*
101 * Helper function used to manage commit timeouts
102 */
103
commit_timeout(unsigned long __data)104 static void commit_timeout(unsigned long __data)
105 {
106 struct task_struct * p = (struct task_struct *) __data;
107
108 wake_up_process(p);
109 }
110
111 /*
112 * kjournald2: The main thread function used to manage a logging device
113 * journal.
114 *
115 * This kernel thread is responsible for two things:
116 *
117 * 1) COMMIT: Every so often we need to commit the current state of the
118 * filesystem to disk. The journal thread is responsible for writing
119 * all of the metadata buffers to disk.
120 *
121 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
122 * of the data in that part of the log has been rewritten elsewhere on
123 * the disk. Flushing these old buffers to reclaim space in the log is
124 * known as checkpointing, and this thread is responsible for that job.
125 */
126
kjournald2(void * arg)127 static int kjournald2(void *arg)
128 {
129 journal_t *journal = arg;
130 transaction_t *transaction;
131
132 /*
133 * Set up an interval timer which can be used to trigger a commit wakeup
134 * after the commit interval expires
135 */
136 setup_timer(&journal->j_commit_timer, commit_timeout,
137 (unsigned long)current);
138
139 set_freezable();
140
141 /* Record that the journal thread is running */
142 journal->j_task = current;
143 wake_up(&journal->j_wait_done_commit);
144
145 /*
146 * And now, wait forever for commit wakeup events.
147 */
148 write_lock(&journal->j_state_lock);
149
150 loop:
151 if (journal->j_flags & JBD2_UNMOUNT)
152 goto end_loop;
153
154 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
155 journal->j_commit_sequence, journal->j_commit_request);
156
157 if (journal->j_commit_sequence != journal->j_commit_request) {
158 jbd_debug(1, "OK, requests differ\n");
159 write_unlock(&journal->j_state_lock);
160 del_timer_sync(&journal->j_commit_timer);
161 jbd2_journal_commit_transaction(journal);
162 write_lock(&journal->j_state_lock);
163 goto loop;
164 }
165
166 wake_up(&journal->j_wait_done_commit);
167 if (freezing(current)) {
168 /*
169 * The simpler the better. Flushing journal isn't a
170 * good idea, because that depends on threads that may
171 * be already stopped.
172 */
173 jbd_debug(1, "Now suspending kjournald2\n");
174 write_unlock(&journal->j_state_lock);
175 try_to_freeze();
176 write_lock(&journal->j_state_lock);
177 } else {
178 /*
179 * We assume on resume that commits are already there,
180 * so we don't sleep
181 */
182 DEFINE_WAIT(wait);
183 int should_sleep = 1;
184
185 prepare_to_wait(&journal->j_wait_commit, &wait,
186 TASK_INTERRUPTIBLE);
187 if (journal->j_commit_sequence != journal->j_commit_request)
188 should_sleep = 0;
189 transaction = journal->j_running_transaction;
190 if (transaction && time_after_eq(jiffies,
191 transaction->t_expires))
192 should_sleep = 0;
193 if (journal->j_flags & JBD2_UNMOUNT)
194 should_sleep = 0;
195 if (should_sleep) {
196 write_unlock(&journal->j_state_lock);
197 schedule();
198 write_lock(&journal->j_state_lock);
199 }
200 finish_wait(&journal->j_wait_commit, &wait);
201 }
202
203 jbd_debug(1, "kjournald2 wakes\n");
204
205 /*
206 * Were we woken up by a commit wakeup event?
207 */
208 transaction = journal->j_running_transaction;
209 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
210 journal->j_commit_request = transaction->t_tid;
211 jbd_debug(1, "woke because of timeout\n");
212 }
213 goto loop;
214
215 end_loop:
216 write_unlock(&journal->j_state_lock);
217 del_timer_sync(&journal->j_commit_timer);
218 journal->j_task = NULL;
219 wake_up(&journal->j_wait_done_commit);
220 jbd_debug(1, "Journal thread exiting.\n");
221 return 0;
222 }
223
jbd2_journal_start_thread(journal_t * journal)224 static int jbd2_journal_start_thread(journal_t *journal)
225 {
226 struct task_struct *t;
227
228 t = kthread_run(kjournald2, journal, "jbd2/%s",
229 journal->j_devname);
230 if (IS_ERR(t))
231 return PTR_ERR(t);
232
233 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
234 return 0;
235 }
236
journal_kill_thread(journal_t * journal)237 static void journal_kill_thread(journal_t *journal)
238 {
239 write_lock(&journal->j_state_lock);
240 journal->j_flags |= JBD2_UNMOUNT;
241
242 while (journal->j_task) {
243 wake_up(&journal->j_wait_commit);
244 write_unlock(&journal->j_state_lock);
245 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
246 write_lock(&journal->j_state_lock);
247 }
248 write_unlock(&journal->j_state_lock);
249 }
250
251 /*
252 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
253 *
254 * Writes a metadata buffer to a given disk block. The actual IO is not
255 * performed but a new buffer_head is constructed which labels the data
256 * to be written with the correct destination disk block.
257 *
258 * Any magic-number escaping which needs to be done will cause a
259 * copy-out here. If the buffer happens to start with the
260 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
261 * magic number is only written to the log for descripter blocks. In
262 * this case, we copy the data and replace the first word with 0, and we
263 * return a result code which indicates that this buffer needs to be
264 * marked as an escaped buffer in the corresponding log descriptor
265 * block. The missing word can then be restored when the block is read
266 * during recovery.
267 *
268 * If the source buffer has already been modified by a new transaction
269 * since we took the last commit snapshot, we use the frozen copy of
270 * that data for IO. If we end up using the existing buffer_head's data
271 * for the write, then we *have* to lock the buffer to prevent anyone
272 * else from using and possibly modifying it while the IO is in
273 * progress.
274 *
275 * The function returns a pointer to the buffer_heads to be used for IO.
276 *
277 * We assume that the journal has already been locked in this function.
278 *
279 * Return value:
280 * <0: Error
281 * >=0: Finished OK
282 *
283 * On success:
284 * Bit 0 set == escape performed on the data
285 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
286 */
287
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct journal_head ** jh_out,unsigned long long blocknr)288 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
289 struct journal_head *jh_in,
290 struct journal_head **jh_out,
291 unsigned long long blocknr)
292 {
293 int need_copy_out = 0;
294 int done_copy_out = 0;
295 int do_escape = 0;
296 char *mapped_data;
297 struct buffer_head *new_bh;
298 struct journal_head *new_jh;
299 struct page *new_page;
300 unsigned int new_offset;
301 struct buffer_head *bh_in = jh2bh(jh_in);
302 journal_t *journal = transaction->t_journal;
303
304 /*
305 * The buffer really shouldn't be locked: only the current committing
306 * transaction is allowed to write it, so nobody else is allowed
307 * to do any IO.
308 *
309 * akpm: except if we're journalling data, and write() output is
310 * also part of a shared mapping, and another thread has
311 * decided to launch a writepage() against this buffer.
312 */
313 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
314
315 retry_alloc:
316 new_bh = alloc_buffer_head(GFP_NOFS);
317 if (!new_bh) {
318 /*
319 * Failure is not an option, but __GFP_NOFAIL is going
320 * away; so we retry ourselves here.
321 */
322 congestion_wait(BLK_RW_ASYNC, HZ/50);
323 goto retry_alloc;
324 }
325
326 /* keep subsequent assertions sane */
327 new_bh->b_state = 0;
328 init_buffer(new_bh, NULL, NULL);
329 atomic_set(&new_bh->b_count, 1);
330 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
331
332 /*
333 * If a new transaction has already done a buffer copy-out, then
334 * we use that version of the data for the commit.
335 */
336 jbd_lock_bh_state(bh_in);
337 repeat:
338 if (jh_in->b_frozen_data) {
339 done_copy_out = 1;
340 new_page = virt_to_page(jh_in->b_frozen_data);
341 new_offset = offset_in_page(jh_in->b_frozen_data);
342 } else {
343 new_page = jh2bh(jh_in)->b_page;
344 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
345 }
346
347 mapped_data = kmap_atomic(new_page);
348 /*
349 * Fire data frozen trigger if data already wasn't frozen. Do this
350 * before checking for escaping, as the trigger may modify the magic
351 * offset. If a copy-out happens afterwards, it will have the correct
352 * data in the buffer.
353 */
354 if (!done_copy_out)
355 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
356 jh_in->b_triggers);
357
358 /*
359 * Check for escaping
360 */
361 if (*((__be32 *)(mapped_data + new_offset)) ==
362 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
363 need_copy_out = 1;
364 do_escape = 1;
365 }
366 kunmap_atomic(mapped_data);
367
368 /*
369 * Do we need to do a data copy?
370 */
371 if (need_copy_out && !done_copy_out) {
372 char *tmp;
373
374 jbd_unlock_bh_state(bh_in);
375 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
376 if (!tmp) {
377 jbd2_journal_put_journal_head(new_jh);
378 return -ENOMEM;
379 }
380 jbd_lock_bh_state(bh_in);
381 if (jh_in->b_frozen_data) {
382 jbd2_free(tmp, bh_in->b_size);
383 goto repeat;
384 }
385
386 jh_in->b_frozen_data = tmp;
387 mapped_data = kmap_atomic(new_page);
388 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
389 kunmap_atomic(mapped_data);
390
391 new_page = virt_to_page(tmp);
392 new_offset = offset_in_page(tmp);
393 done_copy_out = 1;
394
395 /*
396 * This isn't strictly necessary, as we're using frozen
397 * data for the escaping, but it keeps consistency with
398 * b_frozen_data usage.
399 */
400 jh_in->b_frozen_triggers = jh_in->b_triggers;
401 }
402
403 /*
404 * Did we need to do an escaping? Now we've done all the
405 * copying, we can finally do so.
406 */
407 if (do_escape) {
408 mapped_data = kmap_atomic(new_page);
409 *((unsigned int *)(mapped_data + new_offset)) = 0;
410 kunmap_atomic(mapped_data);
411 }
412
413 set_bh_page(new_bh, new_page, new_offset);
414 new_jh->b_transaction = NULL;
415 new_bh->b_size = jh2bh(jh_in)->b_size;
416 new_bh->b_bdev = transaction->t_journal->j_dev;
417 new_bh->b_blocknr = blocknr;
418 set_buffer_mapped(new_bh);
419 set_buffer_dirty(new_bh);
420
421 *jh_out = new_jh;
422
423 /*
424 * The to-be-written buffer needs to get moved to the io queue,
425 * and the original buffer whose contents we are shadowing or
426 * copying is moved to the transaction's shadow queue.
427 */
428 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
429 spin_lock(&journal->j_list_lock);
430 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
431 spin_unlock(&journal->j_list_lock);
432 jbd_unlock_bh_state(bh_in);
433
434 JBUFFER_TRACE(new_jh, "file as BJ_IO");
435 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
436
437 return do_escape | (done_copy_out << 1);
438 }
439
440 /*
441 * Allocation code for the journal file. Manage the space left in the
442 * journal, so that we can begin checkpointing when appropriate.
443 */
444
445 /*
446 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
447 *
448 * Called with the journal already locked.
449 *
450 * Called under j_state_lock
451 */
452
__jbd2_log_space_left(journal_t * journal)453 int __jbd2_log_space_left(journal_t *journal)
454 {
455 int left = journal->j_free;
456
457 /* assert_spin_locked(&journal->j_state_lock); */
458
459 /*
460 * Be pessimistic here about the number of those free blocks which
461 * might be required for log descriptor control blocks.
462 */
463
464 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
465
466 left -= MIN_LOG_RESERVED_BLOCKS;
467
468 if (left <= 0)
469 return 0;
470 left -= (left >> 3);
471 return left;
472 }
473
474 /*
475 * Called with j_state_lock locked for writing.
476 * Returns true if a transaction commit was started.
477 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)478 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
479 {
480 /*
481 * The only transaction we can possibly wait upon is the
482 * currently running transaction (if it exists). Otherwise,
483 * the target tid must be an old one.
484 */
485 if (journal->j_running_transaction &&
486 journal->j_running_transaction->t_tid == target) {
487 /*
488 * We want a new commit: OK, mark the request and wakeup the
489 * commit thread. We do _not_ do the commit ourselves.
490 */
491
492 journal->j_commit_request = target;
493 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
494 journal->j_commit_request,
495 journal->j_commit_sequence);
496 wake_up(&journal->j_wait_commit);
497 return 1;
498 } else if (!tid_geq(journal->j_commit_request, target))
499 /* This should never happen, but if it does, preserve
500 the evidence before kjournald goes into a loop and
501 increments j_commit_sequence beyond all recognition. */
502 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
503 journal->j_commit_request,
504 journal->j_commit_sequence,
505 target, journal->j_running_transaction ?
506 journal->j_running_transaction->t_tid : 0);
507 return 0;
508 }
509
jbd2_log_start_commit(journal_t * journal,tid_t tid)510 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
511 {
512 int ret;
513
514 write_lock(&journal->j_state_lock);
515 ret = __jbd2_log_start_commit(journal, tid);
516 write_unlock(&journal->j_state_lock);
517 return ret;
518 }
519
520 /*
521 * Force and wait upon a commit if the calling process is not within
522 * transaction. This is used for forcing out undo-protected data which contains
523 * bitmaps, when the fs is running out of space.
524 *
525 * We can only force the running transaction if we don't have an active handle;
526 * otherwise, we will deadlock.
527 *
528 * Returns true if a transaction was started.
529 */
jbd2_journal_force_commit_nested(journal_t * journal)530 int jbd2_journal_force_commit_nested(journal_t *journal)
531 {
532 transaction_t *transaction = NULL;
533 tid_t tid;
534 int need_to_start = 0;
535
536 read_lock(&journal->j_state_lock);
537 if (journal->j_running_transaction && !current->journal_info) {
538 transaction = journal->j_running_transaction;
539 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
540 need_to_start = 1;
541 } else if (journal->j_committing_transaction)
542 transaction = journal->j_committing_transaction;
543
544 if (!transaction) {
545 read_unlock(&journal->j_state_lock);
546 return 0; /* Nothing to retry */
547 }
548
549 tid = transaction->t_tid;
550 read_unlock(&journal->j_state_lock);
551 if (need_to_start)
552 jbd2_log_start_commit(journal, tid);
553 jbd2_log_wait_commit(journal, tid);
554 return 1;
555 }
556
557 /*
558 * Start a commit of the current running transaction (if any). Returns true
559 * if a transaction is going to be committed (or is currently already
560 * committing), and fills its tid in at *ptid
561 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)562 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
563 {
564 int ret = 0;
565
566 write_lock(&journal->j_state_lock);
567 if (journal->j_running_transaction) {
568 tid_t tid = journal->j_running_transaction->t_tid;
569
570 __jbd2_log_start_commit(journal, tid);
571 /* There's a running transaction and we've just made sure
572 * it's commit has been scheduled. */
573 if (ptid)
574 *ptid = tid;
575 ret = 1;
576 } else if (journal->j_committing_transaction) {
577 /*
578 * If ext3_write_super() recently started a commit, then we
579 * have to wait for completion of that transaction
580 */
581 if (ptid)
582 *ptid = journal->j_committing_transaction->t_tid;
583 ret = 1;
584 }
585 write_unlock(&journal->j_state_lock);
586 return ret;
587 }
588
589 /*
590 * Return 1 if a given transaction has not yet sent barrier request
591 * connected with a transaction commit. If 0 is returned, transaction
592 * may or may not have sent the barrier. Used to avoid sending barrier
593 * twice in common cases.
594 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)595 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
596 {
597 int ret = 0;
598 transaction_t *commit_trans;
599
600 if (!(journal->j_flags & JBD2_BARRIER))
601 return 0;
602 read_lock(&journal->j_state_lock);
603 /* Transaction already committed? */
604 if (tid_geq(journal->j_commit_sequence, tid))
605 goto out;
606 commit_trans = journal->j_committing_transaction;
607 if (!commit_trans || commit_trans->t_tid != tid) {
608 ret = 1;
609 goto out;
610 }
611 /*
612 * Transaction is being committed and we already proceeded to
613 * submitting a flush to fs partition?
614 */
615 if (journal->j_fs_dev != journal->j_dev) {
616 if (!commit_trans->t_need_data_flush ||
617 commit_trans->t_state >= T_COMMIT_DFLUSH)
618 goto out;
619 } else {
620 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
621 goto out;
622 }
623 ret = 1;
624 out:
625 read_unlock(&journal->j_state_lock);
626 return ret;
627 }
628 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
629
630 /*
631 * Wait for a specified commit to complete.
632 * The caller may not hold the journal lock.
633 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)634 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
635 {
636 int err = 0;
637
638 read_lock(&journal->j_state_lock);
639 #ifdef CONFIG_JBD2_DEBUG
640 if (!tid_geq(journal->j_commit_request, tid)) {
641 printk(KERN_EMERG
642 "%s: error: j_commit_request=%d, tid=%d\n",
643 __func__, journal->j_commit_request, tid);
644 }
645 #endif
646 while (tid_gt(tid, journal->j_commit_sequence)) {
647 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
648 tid, journal->j_commit_sequence);
649 wake_up(&journal->j_wait_commit);
650 read_unlock(&journal->j_state_lock);
651 wait_event(journal->j_wait_done_commit,
652 !tid_gt(tid, journal->j_commit_sequence));
653 read_lock(&journal->j_state_lock);
654 }
655 read_unlock(&journal->j_state_lock);
656
657 if (unlikely(is_journal_aborted(journal))) {
658 printk(KERN_EMERG "journal commit I/O error\n");
659 err = -EIO;
660 }
661 return err;
662 }
663
664 /*
665 * Log buffer allocation routines:
666 */
667
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)668 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
669 {
670 unsigned long blocknr;
671
672 write_lock(&journal->j_state_lock);
673 J_ASSERT(journal->j_free > 1);
674
675 blocknr = journal->j_head;
676 journal->j_head++;
677 journal->j_free--;
678 if (journal->j_head == journal->j_last)
679 journal->j_head = journal->j_first;
680 write_unlock(&journal->j_state_lock);
681 return jbd2_journal_bmap(journal, blocknr, retp);
682 }
683
684 /*
685 * Conversion of logical to physical block numbers for the journal
686 *
687 * On external journals the journal blocks are identity-mapped, so
688 * this is a no-op. If needed, we can use j_blk_offset - everything is
689 * ready.
690 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)691 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
692 unsigned long long *retp)
693 {
694 int err = 0;
695 unsigned long long ret;
696
697 if (journal->j_inode) {
698 ret = bmap(journal->j_inode, blocknr);
699 if (ret)
700 *retp = ret;
701 else {
702 printk(KERN_ALERT "%s: journal block not found "
703 "at offset %lu on %s\n",
704 __func__, blocknr, journal->j_devname);
705 err = -EIO;
706 __journal_abort_soft(journal, err);
707 }
708 } else {
709 *retp = blocknr; /* +journal->j_blk_offset */
710 }
711 return err;
712 }
713
714 /*
715 * We play buffer_head aliasing tricks to write data/metadata blocks to
716 * the journal without copying their contents, but for journal
717 * descriptor blocks we do need to generate bona fide buffers.
718 *
719 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
720 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
721 * But we don't bother doing that, so there will be coherency problems with
722 * mmaps of blockdevs which hold live JBD-controlled filesystems.
723 */
jbd2_journal_get_descriptor_buffer(journal_t * journal)724 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
725 {
726 struct buffer_head *bh;
727 unsigned long long blocknr;
728 int err;
729
730 err = jbd2_journal_next_log_block(journal, &blocknr);
731
732 if (err)
733 return NULL;
734
735 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
736 if (!bh)
737 return NULL;
738 lock_buffer(bh);
739 memset(bh->b_data, 0, journal->j_blocksize);
740 set_buffer_uptodate(bh);
741 unlock_buffer(bh);
742 BUFFER_TRACE(bh, "return this buffer");
743 return jbd2_journal_add_journal_head(bh);
744 }
745
746 /*
747 * Return tid of the oldest transaction in the journal and block in the journal
748 * where the transaction starts.
749 *
750 * If the journal is now empty, return which will be the next transaction ID
751 * we will write and where will that transaction start.
752 *
753 * The return value is 0 if journal tail cannot be pushed any further, 1 if
754 * it can.
755 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)756 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
757 unsigned long *block)
758 {
759 transaction_t *transaction;
760 int ret;
761
762 read_lock(&journal->j_state_lock);
763 spin_lock(&journal->j_list_lock);
764 transaction = journal->j_checkpoint_transactions;
765 if (transaction) {
766 *tid = transaction->t_tid;
767 *block = transaction->t_log_start;
768 } else if ((transaction = journal->j_committing_transaction) != NULL) {
769 *tid = transaction->t_tid;
770 *block = transaction->t_log_start;
771 } else if ((transaction = journal->j_running_transaction) != NULL) {
772 *tid = transaction->t_tid;
773 *block = journal->j_head;
774 } else {
775 *tid = journal->j_transaction_sequence;
776 *block = journal->j_head;
777 }
778 ret = tid_gt(*tid, journal->j_tail_sequence);
779 spin_unlock(&journal->j_list_lock);
780 read_unlock(&journal->j_state_lock);
781
782 return ret;
783 }
784
785 /*
786 * Update information in journal structure and in on disk journal superblock
787 * about log tail. This function does not check whether information passed in
788 * really pushes log tail further. It's responsibility of the caller to make
789 * sure provided log tail information is valid (e.g. by holding
790 * j_checkpoint_mutex all the time between computing log tail and calling this
791 * function as is the case with jbd2_cleanup_journal_tail()).
792 *
793 * Requires j_checkpoint_mutex
794 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)795 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
796 {
797 unsigned long freed;
798
799 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
800
801 /*
802 * We cannot afford for write to remain in drive's caches since as
803 * soon as we update j_tail, next transaction can start reusing journal
804 * space and if we lose sb update during power failure we'd replay
805 * old transaction with possibly newly overwritten data.
806 */
807 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
808 write_lock(&journal->j_state_lock);
809 freed = block - journal->j_tail;
810 if (block < journal->j_tail)
811 freed += journal->j_last - journal->j_first;
812
813 trace_jbd2_update_log_tail(journal, tid, block, freed);
814 jbd_debug(1,
815 "Cleaning journal tail from %d to %d (offset %lu), "
816 "freeing %lu\n",
817 journal->j_tail_sequence, tid, block, freed);
818
819 journal->j_free += freed;
820 journal->j_tail_sequence = tid;
821 journal->j_tail = block;
822 write_unlock(&journal->j_state_lock);
823 }
824
825 /*
826 * This is a variaon of __jbd2_update_log_tail which checks for validity of
827 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
828 * with other threads updating log tail.
829 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)830 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
831 {
832 mutex_lock(&journal->j_checkpoint_mutex);
833 if (tid_gt(tid, journal->j_tail_sequence))
834 __jbd2_update_log_tail(journal, tid, block);
835 mutex_unlock(&journal->j_checkpoint_mutex);
836 }
837
838 struct jbd2_stats_proc_session {
839 journal_t *journal;
840 struct transaction_stats_s *stats;
841 int start;
842 int max;
843 };
844
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)845 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
846 {
847 return *pos ? NULL : SEQ_START_TOKEN;
848 }
849
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)850 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
851 {
852 return NULL;
853 }
854
jbd2_seq_info_show(struct seq_file * seq,void * v)855 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
856 {
857 struct jbd2_stats_proc_session *s = seq->private;
858
859 if (v != SEQ_START_TOKEN)
860 return 0;
861 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
862 s->stats->ts_tid,
863 s->journal->j_max_transaction_buffers);
864 if (s->stats->ts_tid == 0)
865 return 0;
866 seq_printf(seq, "average: \n %ums waiting for transaction\n",
867 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
868 seq_printf(seq, " %ums running transaction\n",
869 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
870 seq_printf(seq, " %ums transaction was being locked\n",
871 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
872 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
873 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
874 seq_printf(seq, " %ums logging transaction\n",
875 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
876 seq_printf(seq, " %lluus average transaction commit time\n",
877 div_u64(s->journal->j_average_commit_time, 1000));
878 seq_printf(seq, " %lu handles per transaction\n",
879 s->stats->run.rs_handle_count / s->stats->ts_tid);
880 seq_printf(seq, " %lu blocks per transaction\n",
881 s->stats->run.rs_blocks / s->stats->ts_tid);
882 seq_printf(seq, " %lu logged blocks per transaction\n",
883 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
884 return 0;
885 }
886
jbd2_seq_info_stop(struct seq_file * seq,void * v)887 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
888 {
889 }
890
891 static const struct seq_operations jbd2_seq_info_ops = {
892 .start = jbd2_seq_info_start,
893 .next = jbd2_seq_info_next,
894 .stop = jbd2_seq_info_stop,
895 .show = jbd2_seq_info_show,
896 };
897
jbd2_seq_info_open(struct inode * inode,struct file * file)898 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
899 {
900 journal_t *journal = PDE(inode)->data;
901 struct jbd2_stats_proc_session *s;
902 int rc, size;
903
904 s = kmalloc(sizeof(*s), GFP_KERNEL);
905 if (s == NULL)
906 return -ENOMEM;
907 size = sizeof(struct transaction_stats_s);
908 s->stats = kmalloc(size, GFP_KERNEL);
909 if (s->stats == NULL) {
910 kfree(s);
911 return -ENOMEM;
912 }
913 spin_lock(&journal->j_history_lock);
914 memcpy(s->stats, &journal->j_stats, size);
915 s->journal = journal;
916 spin_unlock(&journal->j_history_lock);
917
918 rc = seq_open(file, &jbd2_seq_info_ops);
919 if (rc == 0) {
920 struct seq_file *m = file->private_data;
921 m->private = s;
922 } else {
923 kfree(s->stats);
924 kfree(s);
925 }
926 return rc;
927
928 }
929
jbd2_seq_info_release(struct inode * inode,struct file * file)930 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
931 {
932 struct seq_file *seq = file->private_data;
933 struct jbd2_stats_proc_session *s = seq->private;
934 kfree(s->stats);
935 kfree(s);
936 return seq_release(inode, file);
937 }
938
939 static const struct file_operations jbd2_seq_info_fops = {
940 .owner = THIS_MODULE,
941 .open = jbd2_seq_info_open,
942 .read = seq_read,
943 .llseek = seq_lseek,
944 .release = jbd2_seq_info_release,
945 };
946
947 static struct proc_dir_entry *proc_jbd2_stats;
948
jbd2_stats_proc_init(journal_t * journal)949 static void jbd2_stats_proc_init(journal_t *journal)
950 {
951 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
952 if (journal->j_proc_entry) {
953 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
954 &jbd2_seq_info_fops, journal);
955 }
956 }
957
jbd2_stats_proc_exit(journal_t * journal)958 static void jbd2_stats_proc_exit(journal_t *journal)
959 {
960 remove_proc_entry("info", journal->j_proc_entry);
961 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
962 }
963
964 /*
965 * Management for journal control blocks: functions to create and
966 * destroy journal_t structures, and to initialise and read existing
967 * journal blocks from disk. */
968
969 /* First: create and setup a journal_t object in memory. We initialise
970 * very few fields yet: that has to wait until we have created the
971 * journal structures from from scratch, or loaded them from disk. */
972
journal_init_common(void)973 static journal_t * journal_init_common (void)
974 {
975 journal_t *journal;
976 int err;
977
978 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
979 if (!journal)
980 return NULL;
981
982 init_waitqueue_head(&journal->j_wait_transaction_locked);
983 init_waitqueue_head(&journal->j_wait_logspace);
984 init_waitqueue_head(&journal->j_wait_done_commit);
985 init_waitqueue_head(&journal->j_wait_checkpoint);
986 init_waitqueue_head(&journal->j_wait_commit);
987 init_waitqueue_head(&journal->j_wait_updates);
988 mutex_init(&journal->j_barrier);
989 mutex_init(&journal->j_checkpoint_mutex);
990 spin_lock_init(&journal->j_revoke_lock);
991 spin_lock_init(&journal->j_list_lock);
992 rwlock_init(&journal->j_state_lock);
993
994 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
995 journal->j_min_batch_time = 0;
996 journal->j_max_batch_time = 15000; /* 15ms */
997
998 /* The journal is marked for error until we succeed with recovery! */
999 journal->j_flags = JBD2_ABORT;
1000
1001 /* Set up a default-sized revoke table for the new mount. */
1002 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1003 if (err) {
1004 kfree(journal);
1005 return NULL;
1006 }
1007
1008 spin_lock_init(&journal->j_history_lock);
1009
1010 return journal;
1011 }
1012
1013 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1014 *
1015 * Create a journal structure assigned some fixed set of disk blocks to
1016 * the journal. We don't actually touch those disk blocks yet, but we
1017 * need to set up all of the mapping information to tell the journaling
1018 * system where the journal blocks are.
1019 *
1020 */
1021
1022 /**
1023 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1024 * @bdev: Block device on which to create the journal
1025 * @fs_dev: Device which hold journalled filesystem for this journal.
1026 * @start: Block nr Start of journal.
1027 * @len: Length of the journal in blocks.
1028 * @blocksize: blocksize of journalling device
1029 *
1030 * Returns: a newly created journal_t *
1031 *
1032 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1033 * range of blocks on an arbitrary block device.
1034 *
1035 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1036 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1037 struct block_device *fs_dev,
1038 unsigned long long start, int len, int blocksize)
1039 {
1040 journal_t *journal = journal_init_common();
1041 struct buffer_head *bh;
1042 char *p;
1043 int n;
1044
1045 if (!journal)
1046 return NULL;
1047
1048 /* journal descriptor can store up to n blocks -bzzz */
1049 journal->j_blocksize = blocksize;
1050 journal->j_dev = bdev;
1051 journal->j_fs_dev = fs_dev;
1052 journal->j_blk_offset = start;
1053 journal->j_maxlen = len;
1054 bdevname(journal->j_dev, journal->j_devname);
1055 p = journal->j_devname;
1056 while ((p = strchr(p, '/')))
1057 *p = '!';
1058 jbd2_stats_proc_init(journal);
1059 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1060 journal->j_wbufsize = n;
1061 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1062 if (!journal->j_wbuf) {
1063 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1064 __func__);
1065 goto out_err;
1066 }
1067
1068 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1069 if (!bh) {
1070 printk(KERN_ERR
1071 "%s: Cannot get buffer for journal superblock\n",
1072 __func__);
1073 goto out_err;
1074 }
1075 journal->j_sb_buffer = bh;
1076 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1077
1078 return journal;
1079 out_err:
1080 kfree(journal->j_wbuf);
1081 jbd2_stats_proc_exit(journal);
1082 kfree(journal);
1083 return NULL;
1084 }
1085
1086 /**
1087 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1088 * @inode: An inode to create the journal in
1089 *
1090 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1091 * the journal. The inode must exist already, must support bmap() and
1092 * must have all data blocks preallocated.
1093 */
jbd2_journal_init_inode(struct inode * inode)1094 journal_t * jbd2_journal_init_inode (struct inode *inode)
1095 {
1096 struct buffer_head *bh;
1097 journal_t *journal = journal_init_common();
1098 char *p;
1099 int err;
1100 int n;
1101 unsigned long long blocknr;
1102
1103 if (!journal)
1104 return NULL;
1105
1106 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1107 journal->j_inode = inode;
1108 bdevname(journal->j_dev, journal->j_devname);
1109 p = journal->j_devname;
1110 while ((p = strchr(p, '/')))
1111 *p = '!';
1112 p = journal->j_devname + strlen(journal->j_devname);
1113 sprintf(p, "-%lu", journal->j_inode->i_ino);
1114 jbd_debug(1,
1115 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1116 journal, inode->i_sb->s_id, inode->i_ino,
1117 (long long) inode->i_size,
1118 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1119
1120 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1121 journal->j_blocksize = inode->i_sb->s_blocksize;
1122 jbd2_stats_proc_init(journal);
1123
1124 /* journal descriptor can store up to n blocks -bzzz */
1125 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1126 journal->j_wbufsize = n;
1127 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1128 if (!journal->j_wbuf) {
1129 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1130 __func__);
1131 goto out_err;
1132 }
1133
1134 err = jbd2_journal_bmap(journal, 0, &blocknr);
1135 /* If that failed, give up */
1136 if (err) {
1137 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1138 __func__);
1139 goto out_err;
1140 }
1141
1142 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1143 if (!bh) {
1144 printk(KERN_ERR
1145 "%s: Cannot get buffer for journal superblock\n",
1146 __func__);
1147 goto out_err;
1148 }
1149 journal->j_sb_buffer = bh;
1150 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1151
1152 return journal;
1153 out_err:
1154 kfree(journal->j_wbuf);
1155 jbd2_stats_proc_exit(journal);
1156 kfree(journal);
1157 return NULL;
1158 }
1159
1160 /*
1161 * If the journal init or create aborts, we need to mark the journal
1162 * superblock as being NULL to prevent the journal destroy from writing
1163 * back a bogus superblock.
1164 */
journal_fail_superblock(journal_t * journal)1165 static void journal_fail_superblock (journal_t *journal)
1166 {
1167 struct buffer_head *bh = journal->j_sb_buffer;
1168 brelse(bh);
1169 journal->j_sb_buffer = NULL;
1170 }
1171
1172 /*
1173 * Given a journal_t structure, initialise the various fields for
1174 * startup of a new journaling session. We use this both when creating
1175 * a journal, and after recovering an old journal to reset it for
1176 * subsequent use.
1177 */
1178
journal_reset(journal_t * journal)1179 static int journal_reset(journal_t *journal)
1180 {
1181 journal_superblock_t *sb = journal->j_superblock;
1182 unsigned long long first, last;
1183
1184 first = be32_to_cpu(sb->s_first);
1185 last = be32_to_cpu(sb->s_maxlen);
1186 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1187 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1188 first, last);
1189 journal_fail_superblock(journal);
1190 return -EINVAL;
1191 }
1192
1193 journal->j_first = first;
1194 journal->j_last = last;
1195
1196 journal->j_head = first;
1197 journal->j_tail = first;
1198 journal->j_free = last - first;
1199
1200 journal->j_tail_sequence = journal->j_transaction_sequence;
1201 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1202 journal->j_commit_request = journal->j_commit_sequence;
1203
1204 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1205
1206 /*
1207 * As a special case, if the on-disk copy is already marked as needing
1208 * no recovery (s_start == 0), then we can safely defer the superblock
1209 * update until the next commit by setting JBD2_FLUSHED. This avoids
1210 * attempting a write to a potential-readonly device.
1211 */
1212 if (sb->s_start == 0) {
1213 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1214 "(start %ld, seq %d, errno %d)\n",
1215 journal->j_tail, journal->j_tail_sequence,
1216 journal->j_errno);
1217 journal->j_flags |= JBD2_FLUSHED;
1218 } else {
1219 /* Lock here to make assertions happy... */
1220 mutex_lock(&journal->j_checkpoint_mutex);
1221 /*
1222 * Update log tail information. We use WRITE_FUA since new
1223 * transaction will start reusing journal space and so we
1224 * must make sure information about current log tail is on
1225 * disk before that.
1226 */
1227 jbd2_journal_update_sb_log_tail(journal,
1228 journal->j_tail_sequence,
1229 journal->j_tail,
1230 WRITE_FUA);
1231 mutex_unlock(&journal->j_checkpoint_mutex);
1232 }
1233 return jbd2_journal_start_thread(journal);
1234 }
1235
jbd2_write_superblock(journal_t * journal,int write_op)1236 static void jbd2_write_superblock(journal_t *journal, int write_op)
1237 {
1238 struct buffer_head *bh = journal->j_sb_buffer;
1239 int ret;
1240
1241 trace_jbd2_write_superblock(journal, write_op);
1242 if (!(journal->j_flags & JBD2_BARRIER))
1243 write_op &= ~(REQ_FUA | REQ_FLUSH);
1244 lock_buffer(bh);
1245 if (buffer_write_io_error(bh)) {
1246 /*
1247 * Oh, dear. A previous attempt to write the journal
1248 * superblock failed. This could happen because the
1249 * USB device was yanked out. Or it could happen to
1250 * be a transient write error and maybe the block will
1251 * be remapped. Nothing we can do but to retry the
1252 * write and hope for the best.
1253 */
1254 printk(KERN_ERR "JBD2: previous I/O error detected "
1255 "for journal superblock update for %s.\n",
1256 journal->j_devname);
1257 clear_buffer_write_io_error(bh);
1258 set_buffer_uptodate(bh);
1259 }
1260 get_bh(bh);
1261 bh->b_end_io = end_buffer_write_sync;
1262 ret = submit_bh(write_op, bh);
1263 wait_on_buffer(bh);
1264 if (buffer_write_io_error(bh)) {
1265 clear_buffer_write_io_error(bh);
1266 set_buffer_uptodate(bh);
1267 ret = -EIO;
1268 }
1269 if (ret) {
1270 printk(KERN_ERR "JBD2: Error %d detected when updating "
1271 "journal superblock for %s.\n", ret,
1272 journal->j_devname);
1273 }
1274 }
1275
1276 /**
1277 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1278 * @journal: The journal to update.
1279 * @tail_tid: TID of the new transaction at the tail of the log
1280 * @tail_block: The first block of the transaction at the tail of the log
1281 * @write_op: With which operation should we write the journal sb
1282 *
1283 * Update a journal's superblock information about log tail and write it to
1284 * disk, waiting for the IO to complete.
1285 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1286 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1287 unsigned long tail_block, int write_op)
1288 {
1289 journal_superblock_t *sb = journal->j_superblock;
1290
1291 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1292 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1293 tail_block, tail_tid);
1294
1295 sb->s_sequence = cpu_to_be32(tail_tid);
1296 sb->s_start = cpu_to_be32(tail_block);
1297
1298 jbd2_write_superblock(journal, write_op);
1299
1300 /* Log is no longer empty */
1301 write_lock(&journal->j_state_lock);
1302 WARN_ON(!sb->s_sequence);
1303 journal->j_flags &= ~JBD2_FLUSHED;
1304 write_unlock(&journal->j_state_lock);
1305 }
1306
1307 /**
1308 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1309 * @journal: The journal to update.
1310 *
1311 * Update a journal's dynamic superblock fields to show that journal is empty.
1312 * Write updated superblock to disk waiting for IO to complete.
1313 */
jbd2_mark_journal_empty(journal_t * journal)1314 static void jbd2_mark_journal_empty(journal_t *journal)
1315 {
1316 journal_superblock_t *sb = journal->j_superblock;
1317
1318 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1319 read_lock(&journal->j_state_lock);
1320 /* Is it already empty? */
1321 if (sb->s_start == 0) {
1322 read_unlock(&journal->j_state_lock);
1323 return;
1324 }
1325 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1326 journal->j_tail_sequence);
1327
1328 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1329 sb->s_start = cpu_to_be32(0);
1330 read_unlock(&journal->j_state_lock);
1331
1332 jbd2_write_superblock(journal, WRITE_FUA);
1333
1334 /* Log is no longer empty */
1335 write_lock(&journal->j_state_lock);
1336 journal->j_flags |= JBD2_FLUSHED;
1337 write_unlock(&journal->j_state_lock);
1338 }
1339
1340
1341 /**
1342 * jbd2_journal_update_sb_errno() - Update error in the journal.
1343 * @journal: The journal to update.
1344 *
1345 * Update a journal's errno. Write updated superblock to disk waiting for IO
1346 * to complete.
1347 */
jbd2_journal_update_sb_errno(journal_t * journal)1348 void jbd2_journal_update_sb_errno(journal_t *journal)
1349 {
1350 journal_superblock_t *sb = journal->j_superblock;
1351
1352 read_lock(&journal->j_state_lock);
1353 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1354 journal->j_errno);
1355 sb->s_errno = cpu_to_be32(journal->j_errno);
1356 read_unlock(&journal->j_state_lock);
1357
1358 jbd2_write_superblock(journal, WRITE_SYNC);
1359 }
1360 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1361
1362 /*
1363 * Read the superblock for a given journal, performing initial
1364 * validation of the format.
1365 */
journal_get_superblock(journal_t * journal)1366 static int journal_get_superblock(journal_t *journal)
1367 {
1368 struct buffer_head *bh;
1369 journal_superblock_t *sb;
1370 int err = -EIO;
1371
1372 bh = journal->j_sb_buffer;
1373
1374 J_ASSERT(bh != NULL);
1375 if (!buffer_uptodate(bh)) {
1376 ll_rw_block(READ, 1, &bh);
1377 wait_on_buffer(bh);
1378 if (!buffer_uptodate(bh)) {
1379 printk(KERN_ERR
1380 "JBD2: IO error reading journal superblock\n");
1381 goto out;
1382 }
1383 }
1384
1385 sb = journal->j_superblock;
1386
1387 err = -EINVAL;
1388
1389 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1390 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1391 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1392 goto out;
1393 }
1394
1395 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1396 case JBD2_SUPERBLOCK_V1:
1397 journal->j_format_version = 1;
1398 break;
1399 case JBD2_SUPERBLOCK_V2:
1400 journal->j_format_version = 2;
1401 break;
1402 default:
1403 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1404 goto out;
1405 }
1406
1407 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1408 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1409 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1410 printk(KERN_WARNING "JBD2: journal file too short\n");
1411 goto out;
1412 }
1413
1414 if (be32_to_cpu(sb->s_first) == 0 ||
1415 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1416 printk(KERN_WARNING
1417 "JBD2: Invalid start block of journal: %u\n",
1418 be32_to_cpu(sb->s_first));
1419 goto out;
1420 }
1421
1422 return 0;
1423
1424 out:
1425 journal_fail_superblock(journal);
1426 return err;
1427 }
1428
1429 /*
1430 * Load the on-disk journal superblock and read the key fields into the
1431 * journal_t.
1432 */
1433
load_superblock(journal_t * journal)1434 static int load_superblock(journal_t *journal)
1435 {
1436 int err;
1437 journal_superblock_t *sb;
1438
1439 err = journal_get_superblock(journal);
1440 if (err)
1441 return err;
1442
1443 sb = journal->j_superblock;
1444
1445 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1446 journal->j_tail = be32_to_cpu(sb->s_start);
1447 journal->j_first = be32_to_cpu(sb->s_first);
1448 journal->j_last = be32_to_cpu(sb->s_maxlen);
1449 journal->j_errno = be32_to_cpu(sb->s_errno);
1450
1451 return 0;
1452 }
1453
1454
1455 /**
1456 * int jbd2_journal_load() - Read journal from disk.
1457 * @journal: Journal to act on.
1458 *
1459 * Given a journal_t structure which tells us which disk blocks contain
1460 * a journal, read the journal from disk to initialise the in-memory
1461 * structures.
1462 */
jbd2_journal_load(journal_t * journal)1463 int jbd2_journal_load(journal_t *journal)
1464 {
1465 int err;
1466 journal_superblock_t *sb;
1467
1468 err = load_superblock(journal);
1469 if (err)
1470 return err;
1471
1472 sb = journal->j_superblock;
1473 /* If this is a V2 superblock, then we have to check the
1474 * features flags on it. */
1475
1476 if (journal->j_format_version >= 2) {
1477 if ((sb->s_feature_ro_compat &
1478 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1479 (sb->s_feature_incompat &
1480 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1481 printk(KERN_WARNING
1482 "JBD2: Unrecognised features on journal\n");
1483 return -EINVAL;
1484 }
1485 }
1486
1487 /*
1488 * Create a slab for this blocksize
1489 */
1490 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1491 if (err)
1492 return err;
1493
1494 /* Let the recovery code check whether it needs to recover any
1495 * data from the journal. */
1496 if (jbd2_journal_recover(journal))
1497 goto recovery_error;
1498
1499 if (journal->j_failed_commit) {
1500 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1501 "is corrupt.\n", journal->j_failed_commit,
1502 journal->j_devname);
1503 return -EIO;
1504 }
1505
1506 /* OK, we've finished with the dynamic journal bits:
1507 * reinitialise the dynamic contents of the superblock in memory
1508 * and reset them on disk. */
1509 if (journal_reset(journal))
1510 goto recovery_error;
1511
1512 journal->j_flags &= ~JBD2_ABORT;
1513 journal->j_flags |= JBD2_LOADED;
1514 return 0;
1515
1516 recovery_error:
1517 printk(KERN_WARNING "JBD2: recovery failed\n");
1518 return -EIO;
1519 }
1520
1521 /**
1522 * void jbd2_journal_destroy() - Release a journal_t structure.
1523 * @journal: Journal to act on.
1524 *
1525 * Release a journal_t structure once it is no longer in use by the
1526 * journaled object.
1527 * Return <0 if we couldn't clean up the journal.
1528 */
jbd2_journal_destroy(journal_t * journal)1529 int jbd2_journal_destroy(journal_t *journal)
1530 {
1531 int err = 0;
1532
1533 /* Wait for the commit thread to wake up and die. */
1534 journal_kill_thread(journal);
1535
1536 /* Force a final log commit */
1537 if (journal->j_running_transaction)
1538 jbd2_journal_commit_transaction(journal);
1539
1540 /* Force any old transactions to disk */
1541
1542 /* Totally anal locking here... */
1543 spin_lock(&journal->j_list_lock);
1544 while (journal->j_checkpoint_transactions != NULL) {
1545 spin_unlock(&journal->j_list_lock);
1546 mutex_lock(&journal->j_checkpoint_mutex);
1547 jbd2_log_do_checkpoint(journal);
1548 mutex_unlock(&journal->j_checkpoint_mutex);
1549 spin_lock(&journal->j_list_lock);
1550 }
1551
1552 J_ASSERT(journal->j_running_transaction == NULL);
1553 J_ASSERT(journal->j_committing_transaction == NULL);
1554 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1555 spin_unlock(&journal->j_list_lock);
1556
1557 if (journal->j_sb_buffer) {
1558 if (!is_journal_aborted(journal)) {
1559 mutex_lock(&journal->j_checkpoint_mutex);
1560 jbd2_mark_journal_empty(journal);
1561 mutex_unlock(&journal->j_checkpoint_mutex);
1562 } else
1563 err = -EIO;
1564 brelse(journal->j_sb_buffer);
1565 }
1566
1567 if (journal->j_proc_entry)
1568 jbd2_stats_proc_exit(journal);
1569 if (journal->j_inode)
1570 iput(journal->j_inode);
1571 if (journal->j_revoke)
1572 jbd2_journal_destroy_revoke(journal);
1573 kfree(journal->j_wbuf);
1574 kfree(journal);
1575
1576 return err;
1577 }
1578
1579
1580 /**
1581 *int jbd2_journal_check_used_features () - Check if features specified are used.
1582 * @journal: Journal to check.
1583 * @compat: bitmask of compatible features
1584 * @ro: bitmask of features that force read-only mount
1585 * @incompat: bitmask of incompatible features
1586 *
1587 * Check whether the journal uses all of a given set of
1588 * features. Return true (non-zero) if it does.
1589 **/
1590
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1591 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1592 unsigned long ro, unsigned long incompat)
1593 {
1594 journal_superblock_t *sb;
1595
1596 if (!compat && !ro && !incompat)
1597 return 1;
1598 /* Load journal superblock if it is not loaded yet. */
1599 if (journal->j_format_version == 0 &&
1600 journal_get_superblock(journal) != 0)
1601 return 0;
1602 if (journal->j_format_version == 1)
1603 return 0;
1604
1605 sb = journal->j_superblock;
1606
1607 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1608 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1609 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1610 return 1;
1611
1612 return 0;
1613 }
1614
1615 /**
1616 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1617 * @journal: Journal to check.
1618 * @compat: bitmask of compatible features
1619 * @ro: bitmask of features that force read-only mount
1620 * @incompat: bitmask of incompatible features
1621 *
1622 * Check whether the journaling code supports the use of
1623 * all of a given set of features on this journal. Return true
1624 * (non-zero) if it can. */
1625
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1626 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1627 unsigned long ro, unsigned long incompat)
1628 {
1629 if (!compat && !ro && !incompat)
1630 return 1;
1631
1632 /* We can support any known requested features iff the
1633 * superblock is in version 2. Otherwise we fail to support any
1634 * extended sb features. */
1635
1636 if (journal->j_format_version != 2)
1637 return 0;
1638
1639 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1640 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1641 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1642 return 1;
1643
1644 return 0;
1645 }
1646
1647 /**
1648 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1649 * @journal: Journal to act on.
1650 * @compat: bitmask of compatible features
1651 * @ro: bitmask of features that force read-only mount
1652 * @incompat: bitmask of incompatible features
1653 *
1654 * Mark a given journal feature as present on the
1655 * superblock. Returns true if the requested features could be set.
1656 *
1657 */
1658
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1659 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1660 unsigned long ro, unsigned long incompat)
1661 {
1662 journal_superblock_t *sb;
1663
1664 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1665 return 1;
1666
1667 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1668 return 0;
1669
1670 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1671 compat, ro, incompat);
1672
1673 sb = journal->j_superblock;
1674
1675 sb->s_feature_compat |= cpu_to_be32(compat);
1676 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1677 sb->s_feature_incompat |= cpu_to_be32(incompat);
1678
1679 return 1;
1680 }
1681
1682 /*
1683 * jbd2_journal_clear_features () - Clear a given journal feature in the
1684 * superblock
1685 * @journal: Journal to act on.
1686 * @compat: bitmask of compatible features
1687 * @ro: bitmask of features that force read-only mount
1688 * @incompat: bitmask of incompatible features
1689 *
1690 * Clear a given journal feature as present on the
1691 * superblock.
1692 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1693 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1694 unsigned long ro, unsigned long incompat)
1695 {
1696 journal_superblock_t *sb;
1697
1698 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1699 compat, ro, incompat);
1700
1701 sb = journal->j_superblock;
1702
1703 sb->s_feature_compat &= ~cpu_to_be32(compat);
1704 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1705 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1706 }
1707 EXPORT_SYMBOL(jbd2_journal_clear_features);
1708
1709 /**
1710 * int jbd2_journal_flush () - Flush journal
1711 * @journal: Journal to act on.
1712 *
1713 * Flush all data for a given journal to disk and empty the journal.
1714 * Filesystems can use this when remounting readonly to ensure that
1715 * recovery does not need to happen on remount.
1716 */
1717
jbd2_journal_flush(journal_t * journal)1718 int jbd2_journal_flush(journal_t *journal)
1719 {
1720 int err = 0;
1721 transaction_t *transaction = NULL;
1722
1723 write_lock(&journal->j_state_lock);
1724
1725 /* Force everything buffered to the log... */
1726 if (journal->j_running_transaction) {
1727 transaction = journal->j_running_transaction;
1728 __jbd2_log_start_commit(journal, transaction->t_tid);
1729 } else if (journal->j_committing_transaction)
1730 transaction = journal->j_committing_transaction;
1731
1732 /* Wait for the log commit to complete... */
1733 if (transaction) {
1734 tid_t tid = transaction->t_tid;
1735
1736 write_unlock(&journal->j_state_lock);
1737 jbd2_log_wait_commit(journal, tid);
1738 } else {
1739 write_unlock(&journal->j_state_lock);
1740 }
1741
1742 /* ...and flush everything in the log out to disk. */
1743 spin_lock(&journal->j_list_lock);
1744 while (!err && journal->j_checkpoint_transactions != NULL) {
1745 spin_unlock(&journal->j_list_lock);
1746 mutex_lock(&journal->j_checkpoint_mutex);
1747 err = jbd2_log_do_checkpoint(journal);
1748 mutex_unlock(&journal->j_checkpoint_mutex);
1749 spin_lock(&journal->j_list_lock);
1750 }
1751 spin_unlock(&journal->j_list_lock);
1752
1753 if (is_journal_aborted(journal))
1754 return -EIO;
1755
1756 mutex_lock(&journal->j_checkpoint_mutex);
1757 jbd2_cleanup_journal_tail(journal);
1758
1759 /* Finally, mark the journal as really needing no recovery.
1760 * This sets s_start==0 in the underlying superblock, which is
1761 * the magic code for a fully-recovered superblock. Any future
1762 * commits of data to the journal will restore the current
1763 * s_start value. */
1764 jbd2_mark_journal_empty(journal);
1765 mutex_unlock(&journal->j_checkpoint_mutex);
1766 write_lock(&journal->j_state_lock);
1767 J_ASSERT(!journal->j_running_transaction);
1768 J_ASSERT(!journal->j_committing_transaction);
1769 J_ASSERT(!journal->j_checkpoint_transactions);
1770 J_ASSERT(journal->j_head == journal->j_tail);
1771 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1772 write_unlock(&journal->j_state_lock);
1773 return 0;
1774 }
1775
1776 /**
1777 * int jbd2_journal_wipe() - Wipe journal contents
1778 * @journal: Journal to act on.
1779 * @write: flag (see below)
1780 *
1781 * Wipe out all of the contents of a journal, safely. This will produce
1782 * a warning if the journal contains any valid recovery information.
1783 * Must be called between journal_init_*() and jbd2_journal_load().
1784 *
1785 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1786 * we merely suppress recovery.
1787 */
1788
jbd2_journal_wipe(journal_t * journal,int write)1789 int jbd2_journal_wipe(journal_t *journal, int write)
1790 {
1791 int err = 0;
1792
1793 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1794
1795 err = load_superblock(journal);
1796 if (err)
1797 return err;
1798
1799 if (!journal->j_tail)
1800 goto no_recovery;
1801
1802 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1803 write ? "Clearing" : "Ignoring");
1804
1805 err = jbd2_journal_skip_recovery(journal);
1806 if (write) {
1807 /* Lock to make assertions happy... */
1808 mutex_lock(&journal->j_checkpoint_mutex);
1809 jbd2_mark_journal_empty(journal);
1810 mutex_unlock(&journal->j_checkpoint_mutex);
1811 }
1812
1813 no_recovery:
1814 return err;
1815 }
1816
1817 /*
1818 * Journal abort has very specific semantics, which we describe
1819 * for journal abort.
1820 *
1821 * Two internal functions, which provide abort to the jbd layer
1822 * itself are here.
1823 */
1824
1825 /*
1826 * Quick version for internal journal use (doesn't lock the journal).
1827 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1828 * and don't attempt to make any other journal updates.
1829 */
__jbd2_journal_abort_hard(journal_t * journal)1830 void __jbd2_journal_abort_hard(journal_t *journal)
1831 {
1832 transaction_t *transaction;
1833
1834 if (journal->j_flags & JBD2_ABORT)
1835 return;
1836
1837 printk(KERN_ERR "Aborting journal on device %s.\n",
1838 journal->j_devname);
1839
1840 write_lock(&journal->j_state_lock);
1841 journal->j_flags |= JBD2_ABORT;
1842 transaction = journal->j_running_transaction;
1843 if (transaction)
1844 __jbd2_log_start_commit(journal, transaction->t_tid);
1845 write_unlock(&journal->j_state_lock);
1846 }
1847
1848 /* Soft abort: record the abort error status in the journal superblock,
1849 * but don't do any other IO. */
__journal_abort_soft(journal_t * journal,int errno)1850 static void __journal_abort_soft (journal_t *journal, int errno)
1851 {
1852 if (journal->j_flags & JBD2_ABORT)
1853 return;
1854
1855 if (!journal->j_errno)
1856 journal->j_errno = errno;
1857
1858 __jbd2_journal_abort_hard(journal);
1859
1860 if (errno)
1861 jbd2_journal_update_sb_errno(journal);
1862 }
1863
1864 /**
1865 * void jbd2_journal_abort () - Shutdown the journal immediately.
1866 * @journal: the journal to shutdown.
1867 * @errno: an error number to record in the journal indicating
1868 * the reason for the shutdown.
1869 *
1870 * Perform a complete, immediate shutdown of the ENTIRE
1871 * journal (not of a single transaction). This operation cannot be
1872 * undone without closing and reopening the journal.
1873 *
1874 * The jbd2_journal_abort function is intended to support higher level error
1875 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1876 * mode.
1877 *
1878 * Journal abort has very specific semantics. Any existing dirty,
1879 * unjournaled buffers in the main filesystem will still be written to
1880 * disk by bdflush, but the journaling mechanism will be suspended
1881 * immediately and no further transaction commits will be honoured.
1882 *
1883 * Any dirty, journaled buffers will be written back to disk without
1884 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1885 * filesystem, but we _do_ attempt to leave as much data as possible
1886 * behind for fsck to use for cleanup.
1887 *
1888 * Any attempt to get a new transaction handle on a journal which is in
1889 * ABORT state will just result in an -EROFS error return. A
1890 * jbd2_journal_stop on an existing handle will return -EIO if we have
1891 * entered abort state during the update.
1892 *
1893 * Recursive transactions are not disturbed by journal abort until the
1894 * final jbd2_journal_stop, which will receive the -EIO error.
1895 *
1896 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1897 * which will be recorded (if possible) in the journal superblock. This
1898 * allows a client to record failure conditions in the middle of a
1899 * transaction without having to complete the transaction to record the
1900 * failure to disk. ext3_error, for example, now uses this
1901 * functionality.
1902 *
1903 * Errors which originate from within the journaling layer will NOT
1904 * supply an errno; a null errno implies that absolutely no further
1905 * writes are done to the journal (unless there are any already in
1906 * progress).
1907 *
1908 */
1909
jbd2_journal_abort(journal_t * journal,int errno)1910 void jbd2_journal_abort(journal_t *journal, int errno)
1911 {
1912 __journal_abort_soft(journal, errno);
1913 }
1914
1915 /**
1916 * int jbd2_journal_errno () - returns the journal's error state.
1917 * @journal: journal to examine.
1918 *
1919 * This is the errno number set with jbd2_journal_abort(), the last
1920 * time the journal was mounted - if the journal was stopped
1921 * without calling abort this will be 0.
1922 *
1923 * If the journal has been aborted on this mount time -EROFS will
1924 * be returned.
1925 */
jbd2_journal_errno(journal_t * journal)1926 int jbd2_journal_errno(journal_t *journal)
1927 {
1928 int err;
1929
1930 read_lock(&journal->j_state_lock);
1931 if (journal->j_flags & JBD2_ABORT)
1932 err = -EROFS;
1933 else
1934 err = journal->j_errno;
1935 read_unlock(&journal->j_state_lock);
1936 return err;
1937 }
1938
1939 /**
1940 * int jbd2_journal_clear_err () - clears the journal's error state
1941 * @journal: journal to act on.
1942 *
1943 * An error must be cleared or acked to take a FS out of readonly
1944 * mode.
1945 */
jbd2_journal_clear_err(journal_t * journal)1946 int jbd2_journal_clear_err(journal_t *journal)
1947 {
1948 int err = 0;
1949
1950 write_lock(&journal->j_state_lock);
1951 if (journal->j_flags & JBD2_ABORT)
1952 err = -EROFS;
1953 else
1954 journal->j_errno = 0;
1955 write_unlock(&journal->j_state_lock);
1956 return err;
1957 }
1958
1959 /**
1960 * void jbd2_journal_ack_err() - Ack journal err.
1961 * @journal: journal to act on.
1962 *
1963 * An error must be cleared or acked to take a FS out of readonly
1964 * mode.
1965 */
jbd2_journal_ack_err(journal_t * journal)1966 void jbd2_journal_ack_err(journal_t *journal)
1967 {
1968 write_lock(&journal->j_state_lock);
1969 if (journal->j_errno)
1970 journal->j_flags |= JBD2_ACK_ERR;
1971 write_unlock(&journal->j_state_lock);
1972 }
1973
jbd2_journal_blocks_per_page(struct inode * inode)1974 int jbd2_journal_blocks_per_page(struct inode *inode)
1975 {
1976 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1977 }
1978
1979 /*
1980 * helper functions to deal with 32 or 64bit block numbers.
1981 */
journal_tag_bytes(journal_t * journal)1982 size_t journal_tag_bytes(journal_t *journal)
1983 {
1984 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1985 return JBD2_TAG_SIZE64;
1986 else
1987 return JBD2_TAG_SIZE32;
1988 }
1989
1990 /*
1991 * JBD memory management
1992 *
1993 * These functions are used to allocate block-sized chunks of memory
1994 * used for making copies of buffer_head data. Very often it will be
1995 * page-sized chunks of data, but sometimes it will be in
1996 * sub-page-size chunks. (For example, 16k pages on Power systems
1997 * with a 4k block file system.) For blocks smaller than a page, we
1998 * use a SLAB allocator. There are slab caches for each block size,
1999 * which are allocated at mount time, if necessary, and we only free
2000 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2001 * this reason we don't need to a mutex to protect access to
2002 * jbd2_slab[] allocating or releasing memory; only in
2003 * jbd2_journal_create_slab().
2004 */
2005 #define JBD2_MAX_SLABS 8
2006 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2007
2008 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2009 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2010 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2011 };
2012
2013
jbd2_journal_destroy_slabs(void)2014 static void jbd2_journal_destroy_slabs(void)
2015 {
2016 int i;
2017
2018 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2019 if (jbd2_slab[i])
2020 kmem_cache_destroy(jbd2_slab[i]);
2021 jbd2_slab[i] = NULL;
2022 }
2023 }
2024
jbd2_journal_create_slab(size_t size)2025 static int jbd2_journal_create_slab(size_t size)
2026 {
2027 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2028 int i = order_base_2(size) - 10;
2029 size_t slab_size;
2030
2031 if (size == PAGE_SIZE)
2032 return 0;
2033
2034 if (i >= JBD2_MAX_SLABS)
2035 return -EINVAL;
2036
2037 if (unlikely(i < 0))
2038 i = 0;
2039 mutex_lock(&jbd2_slab_create_mutex);
2040 if (jbd2_slab[i]) {
2041 mutex_unlock(&jbd2_slab_create_mutex);
2042 return 0; /* Already created */
2043 }
2044
2045 slab_size = 1 << (i+10);
2046 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2047 slab_size, 0, NULL);
2048 mutex_unlock(&jbd2_slab_create_mutex);
2049 if (!jbd2_slab[i]) {
2050 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2051 return -ENOMEM;
2052 }
2053 return 0;
2054 }
2055
get_slab(size_t size)2056 static struct kmem_cache *get_slab(size_t size)
2057 {
2058 int i = order_base_2(size) - 10;
2059
2060 BUG_ON(i >= JBD2_MAX_SLABS);
2061 if (unlikely(i < 0))
2062 i = 0;
2063 BUG_ON(jbd2_slab[i] == NULL);
2064 return jbd2_slab[i];
2065 }
2066
jbd2_alloc(size_t size,gfp_t flags)2067 void *jbd2_alloc(size_t size, gfp_t flags)
2068 {
2069 void *ptr;
2070
2071 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2072
2073 flags |= __GFP_REPEAT;
2074 if (size == PAGE_SIZE)
2075 ptr = (void *)__get_free_pages(flags, 0);
2076 else if (size > PAGE_SIZE) {
2077 int order = get_order(size);
2078
2079 if (order < 3)
2080 ptr = (void *)__get_free_pages(flags, order);
2081 else
2082 ptr = vmalloc(size);
2083 } else
2084 ptr = kmem_cache_alloc(get_slab(size), flags);
2085
2086 /* Check alignment; SLUB has gotten this wrong in the past,
2087 * and this can lead to user data corruption! */
2088 BUG_ON(((unsigned long) ptr) & (size-1));
2089
2090 return ptr;
2091 }
2092
jbd2_free(void * ptr,size_t size)2093 void jbd2_free(void *ptr, size_t size)
2094 {
2095 if (size == PAGE_SIZE) {
2096 free_pages((unsigned long)ptr, 0);
2097 return;
2098 }
2099 if (size > PAGE_SIZE) {
2100 int order = get_order(size);
2101
2102 if (order < 3)
2103 free_pages((unsigned long)ptr, order);
2104 else
2105 vfree(ptr);
2106 return;
2107 }
2108 kmem_cache_free(get_slab(size), ptr);
2109 };
2110
2111 /*
2112 * Journal_head storage management
2113 */
2114 static struct kmem_cache *jbd2_journal_head_cache;
2115 #ifdef CONFIG_JBD2_DEBUG
2116 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2117 #endif
2118
jbd2_journal_init_journal_head_cache(void)2119 static int jbd2_journal_init_journal_head_cache(void)
2120 {
2121 int retval;
2122
2123 J_ASSERT(jbd2_journal_head_cache == NULL);
2124 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2125 sizeof(struct journal_head),
2126 0, /* offset */
2127 SLAB_TEMPORARY, /* flags */
2128 NULL); /* ctor */
2129 retval = 0;
2130 if (!jbd2_journal_head_cache) {
2131 retval = -ENOMEM;
2132 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2133 }
2134 return retval;
2135 }
2136
jbd2_journal_destroy_journal_head_cache(void)2137 static void jbd2_journal_destroy_journal_head_cache(void)
2138 {
2139 if (jbd2_journal_head_cache) {
2140 kmem_cache_destroy(jbd2_journal_head_cache);
2141 jbd2_journal_head_cache = NULL;
2142 }
2143 }
2144
2145 /*
2146 * journal_head splicing and dicing
2147 */
journal_alloc_journal_head(void)2148 static struct journal_head *journal_alloc_journal_head(void)
2149 {
2150 struct journal_head *ret;
2151
2152 #ifdef CONFIG_JBD2_DEBUG
2153 atomic_inc(&nr_journal_heads);
2154 #endif
2155 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2156 if (!ret) {
2157 jbd_debug(1, "out of memory for journal_head\n");
2158 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2159 while (!ret) {
2160 yield();
2161 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2162 }
2163 }
2164 return ret;
2165 }
2166
journal_free_journal_head(struct journal_head * jh)2167 static void journal_free_journal_head(struct journal_head *jh)
2168 {
2169 #ifdef CONFIG_JBD2_DEBUG
2170 atomic_dec(&nr_journal_heads);
2171 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2172 #endif
2173 kmem_cache_free(jbd2_journal_head_cache, jh);
2174 }
2175
2176 /*
2177 * A journal_head is attached to a buffer_head whenever JBD has an
2178 * interest in the buffer.
2179 *
2180 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2181 * is set. This bit is tested in core kernel code where we need to take
2182 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2183 * there.
2184 *
2185 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2186 *
2187 * When a buffer has its BH_JBD bit set it is immune from being released by
2188 * core kernel code, mainly via ->b_count.
2189 *
2190 * A journal_head is detached from its buffer_head when the journal_head's
2191 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2192 * transaction (b_cp_transaction) hold their references to b_jcount.
2193 *
2194 * Various places in the kernel want to attach a journal_head to a buffer_head
2195 * _before_ attaching the journal_head to a transaction. To protect the
2196 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2197 * journal_head's b_jcount refcount by one. The caller must call
2198 * jbd2_journal_put_journal_head() to undo this.
2199 *
2200 * So the typical usage would be:
2201 *
2202 * (Attach a journal_head if needed. Increments b_jcount)
2203 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2204 * ...
2205 * (Get another reference for transaction)
2206 * jbd2_journal_grab_journal_head(bh);
2207 * jh->b_transaction = xxx;
2208 * (Put original reference)
2209 * jbd2_journal_put_journal_head(jh);
2210 */
2211
2212 /*
2213 * Give a buffer_head a journal_head.
2214 *
2215 * May sleep.
2216 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2217 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2218 {
2219 struct journal_head *jh;
2220 struct journal_head *new_jh = NULL;
2221
2222 repeat:
2223 if (!buffer_jbd(bh)) {
2224 new_jh = journal_alloc_journal_head();
2225 memset(new_jh, 0, sizeof(*new_jh));
2226 }
2227
2228 jbd_lock_bh_journal_head(bh);
2229 if (buffer_jbd(bh)) {
2230 jh = bh2jh(bh);
2231 } else {
2232 J_ASSERT_BH(bh,
2233 (atomic_read(&bh->b_count) > 0) ||
2234 (bh->b_page && bh->b_page->mapping));
2235
2236 if (!new_jh) {
2237 jbd_unlock_bh_journal_head(bh);
2238 goto repeat;
2239 }
2240
2241 jh = new_jh;
2242 new_jh = NULL; /* We consumed it */
2243 set_buffer_jbd(bh);
2244 bh->b_private = jh;
2245 jh->b_bh = bh;
2246 get_bh(bh);
2247 BUFFER_TRACE(bh, "added journal_head");
2248 }
2249 jh->b_jcount++;
2250 jbd_unlock_bh_journal_head(bh);
2251 if (new_jh)
2252 journal_free_journal_head(new_jh);
2253 return bh->b_private;
2254 }
2255
2256 /*
2257 * Grab a ref against this buffer_head's journal_head. If it ended up not
2258 * having a journal_head, return NULL
2259 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2260 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2261 {
2262 struct journal_head *jh = NULL;
2263
2264 jbd_lock_bh_journal_head(bh);
2265 if (buffer_jbd(bh)) {
2266 jh = bh2jh(bh);
2267 jh->b_jcount++;
2268 }
2269 jbd_unlock_bh_journal_head(bh);
2270 return jh;
2271 }
2272
__journal_remove_journal_head(struct buffer_head * bh)2273 static void __journal_remove_journal_head(struct buffer_head *bh)
2274 {
2275 struct journal_head *jh = bh2jh(bh);
2276
2277 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2278 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2279 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2280 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2281 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2282 J_ASSERT_BH(bh, buffer_jbd(bh));
2283 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2284 BUFFER_TRACE(bh, "remove journal_head");
2285 if (jh->b_frozen_data) {
2286 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2287 jbd2_free(jh->b_frozen_data, bh->b_size);
2288 }
2289 if (jh->b_committed_data) {
2290 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2291 jbd2_free(jh->b_committed_data, bh->b_size);
2292 }
2293 bh->b_private = NULL;
2294 jh->b_bh = NULL; /* debug, really */
2295 clear_buffer_jbd(bh);
2296 journal_free_journal_head(jh);
2297 }
2298
2299 /*
2300 * Drop a reference on the passed journal_head. If it fell to zero then
2301 * release the journal_head from the buffer_head.
2302 */
jbd2_journal_put_journal_head(struct journal_head * jh)2303 void jbd2_journal_put_journal_head(struct journal_head *jh)
2304 {
2305 struct buffer_head *bh = jh2bh(jh);
2306
2307 jbd_lock_bh_journal_head(bh);
2308 J_ASSERT_JH(jh, jh->b_jcount > 0);
2309 --jh->b_jcount;
2310 if (!jh->b_jcount) {
2311 __journal_remove_journal_head(bh);
2312 jbd_unlock_bh_journal_head(bh);
2313 __brelse(bh);
2314 } else
2315 jbd_unlock_bh_journal_head(bh);
2316 }
2317
2318 /*
2319 * Initialize jbd inode head
2320 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2321 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2322 {
2323 jinode->i_transaction = NULL;
2324 jinode->i_next_transaction = NULL;
2325 jinode->i_vfs_inode = inode;
2326 jinode->i_flags = 0;
2327 INIT_LIST_HEAD(&jinode->i_list);
2328 }
2329
2330 /*
2331 * Function to be called before we start removing inode from memory (i.e.,
2332 * clear_inode() is a fine place to be called from). It removes inode from
2333 * transaction's lists.
2334 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2335 void jbd2_journal_release_jbd_inode(journal_t *journal,
2336 struct jbd2_inode *jinode)
2337 {
2338 if (!journal)
2339 return;
2340 restart:
2341 spin_lock(&journal->j_list_lock);
2342 /* Is commit writing out inode - we have to wait */
2343 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2344 wait_queue_head_t *wq;
2345 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2346 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2347 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2348 spin_unlock(&journal->j_list_lock);
2349 schedule();
2350 finish_wait(wq, &wait.wait);
2351 goto restart;
2352 }
2353
2354 if (jinode->i_transaction) {
2355 list_del(&jinode->i_list);
2356 jinode->i_transaction = NULL;
2357 }
2358 spin_unlock(&journal->j_list_lock);
2359 }
2360
2361 /*
2362 * debugfs tunables
2363 */
2364 #ifdef CONFIG_JBD2_DEBUG
2365 u8 jbd2_journal_enable_debug __read_mostly;
2366 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2367
2368 #define JBD2_DEBUG_NAME "jbd2-debug"
2369
2370 static struct dentry *jbd2_debugfs_dir;
2371 static struct dentry *jbd2_debug;
2372
jbd2_create_debugfs_entry(void)2373 static void __init jbd2_create_debugfs_entry(void)
2374 {
2375 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2376 if (jbd2_debugfs_dir)
2377 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2378 S_IRUGO | S_IWUSR,
2379 jbd2_debugfs_dir,
2380 &jbd2_journal_enable_debug);
2381 }
2382
jbd2_remove_debugfs_entry(void)2383 static void __exit jbd2_remove_debugfs_entry(void)
2384 {
2385 debugfs_remove(jbd2_debug);
2386 debugfs_remove(jbd2_debugfs_dir);
2387 }
2388
2389 #else
2390
jbd2_create_debugfs_entry(void)2391 static void __init jbd2_create_debugfs_entry(void)
2392 {
2393 }
2394
jbd2_remove_debugfs_entry(void)2395 static void __exit jbd2_remove_debugfs_entry(void)
2396 {
2397 }
2398
2399 #endif
2400
2401 #ifdef CONFIG_PROC_FS
2402
2403 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2404
jbd2_create_jbd_stats_proc_entry(void)2405 static void __init jbd2_create_jbd_stats_proc_entry(void)
2406 {
2407 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2408 }
2409
jbd2_remove_jbd_stats_proc_entry(void)2410 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2411 {
2412 if (proc_jbd2_stats)
2413 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2414 }
2415
2416 #else
2417
2418 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2419 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2420
2421 #endif
2422
2423 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2424
jbd2_journal_init_handle_cache(void)2425 static int __init jbd2_journal_init_handle_cache(void)
2426 {
2427 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2428 if (jbd2_handle_cache == NULL) {
2429 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2430 return -ENOMEM;
2431 }
2432 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2433 if (jbd2_inode_cache == NULL) {
2434 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2435 kmem_cache_destroy(jbd2_handle_cache);
2436 return -ENOMEM;
2437 }
2438 return 0;
2439 }
2440
jbd2_journal_destroy_handle_cache(void)2441 static void jbd2_journal_destroy_handle_cache(void)
2442 {
2443 if (jbd2_handle_cache)
2444 kmem_cache_destroy(jbd2_handle_cache);
2445 if (jbd2_inode_cache)
2446 kmem_cache_destroy(jbd2_inode_cache);
2447
2448 }
2449
2450 /*
2451 * Module startup and shutdown
2452 */
2453
journal_init_caches(void)2454 static int __init journal_init_caches(void)
2455 {
2456 int ret;
2457
2458 ret = jbd2_journal_init_revoke_caches();
2459 if (ret == 0)
2460 ret = jbd2_journal_init_journal_head_cache();
2461 if (ret == 0)
2462 ret = jbd2_journal_init_handle_cache();
2463 if (ret == 0)
2464 ret = jbd2_journal_init_transaction_cache();
2465 return ret;
2466 }
2467
jbd2_journal_destroy_caches(void)2468 static void jbd2_journal_destroy_caches(void)
2469 {
2470 jbd2_journal_destroy_revoke_caches();
2471 jbd2_journal_destroy_journal_head_cache();
2472 jbd2_journal_destroy_handle_cache();
2473 jbd2_journal_destroy_transaction_cache();
2474 jbd2_journal_destroy_slabs();
2475 }
2476
journal_init(void)2477 static int __init journal_init(void)
2478 {
2479 int ret;
2480
2481 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2482
2483 ret = journal_init_caches();
2484 if (ret == 0) {
2485 jbd2_create_debugfs_entry();
2486 jbd2_create_jbd_stats_proc_entry();
2487 } else {
2488 jbd2_journal_destroy_caches();
2489 }
2490 return ret;
2491 }
2492
journal_exit(void)2493 static void __exit journal_exit(void)
2494 {
2495 #ifdef CONFIG_JBD2_DEBUG
2496 int n = atomic_read(&nr_journal_heads);
2497 if (n)
2498 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2499 #endif
2500 jbd2_remove_debugfs_entry();
2501 jbd2_remove_jbd_stats_proc_entry();
2502 jbd2_journal_destroy_caches();
2503 }
2504
2505 MODULE_LICENSE("GPL");
2506 module_init(journal_init);
2507 module_exit(journal_exit);
2508
2509