• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1995  Linus Torvalds
3  * Copyright 2010 Tilera Corporation. All Rights Reserved.
4  *
5  *   This program is free software; you can redistribute it and/or
6  *   modify it under the terms of the GNU General Public License
7  *   as published by the Free Software Foundation, version 2.
8  *
9  *   This program is distributed in the hope that it will be useful, but
10  *   WITHOUT ANY WARRANTY; without even the implied warranty of
11  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *   NON INFRINGEMENT.  See the GNU General Public License for
13  *   more details.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/tlb.h>
46 #include <asm/tlbflush.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/homecache.h>
50 #include <hv/hypervisor.h>
51 #include <arch/chip.h>
52 
53 #include "migrate.h"
54 
55 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
56 
57 #ifndef __tilegx__
58 unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
59 EXPORT_SYMBOL(VMALLOC_RESERVE);
60 #endif
61 
62 /* Create an L2 page table */
alloc_pte(void)63 static pte_t * __init alloc_pte(void)
64 {
65 	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
66 }
67 
68 /*
69  * L2 page tables per controller.  We allocate these all at once from
70  * the bootmem allocator and store them here.  This saves on kernel L2
71  * page table memory, compared to allocating a full 64K page per L2
72  * page table, and also means that in cases where we use huge pages,
73  * we are guaranteed to later be able to shatter those huge pages and
74  * switch to using these page tables instead, without requiring
75  * further allocation.  Each l2_ptes[] entry points to the first page
76  * table for the first hugepage-size piece of memory on the
77  * controller; other page tables are just indexed directly, i.e. the
78  * L2 page tables are contiguous in memory for each controller.
79  */
80 static pte_t *l2_ptes[MAX_NUMNODES];
81 static int num_l2_ptes[MAX_NUMNODES];
82 
init_prealloc_ptes(int node,int pages)83 static void init_prealloc_ptes(int node, int pages)
84 {
85 	BUG_ON(pages & (HV_L2_ENTRIES-1));
86 	if (pages) {
87 		num_l2_ptes[node] = pages;
88 		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
89 						HV_PAGE_TABLE_ALIGN, 0);
90 	}
91 }
92 
get_prealloc_pte(unsigned long pfn)93 pte_t *get_prealloc_pte(unsigned long pfn)
94 {
95 	int node = pfn_to_nid(pfn);
96 	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
97 	BUG_ON(node >= MAX_NUMNODES);
98 	BUG_ON(pfn >= num_l2_ptes[node]);
99 	return &l2_ptes[node][pfn];
100 }
101 
102 /*
103  * What caching do we expect pages from the heap to have when
104  * they are allocated during bootup?  (Once we've installed the
105  * "real" swapper_pg_dir.)
106  */
initial_heap_home(void)107 static int initial_heap_home(void)
108 {
109 #if CHIP_HAS_CBOX_HOME_MAP()
110 	if (hash_default)
111 		return PAGE_HOME_HASH;
112 #endif
113 	return smp_processor_id();
114 }
115 
116 /*
117  * Place a pointer to an L2 page table in a middle page
118  * directory entry.
119  */
assign_pte(pmd_t * pmd,pte_t * page_table)120 static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
121 {
122 	phys_addr_t pa = __pa(page_table);
123 	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
124 	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
125 	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
126 	pteval = pte_set_home(pteval, initial_heap_home());
127 	*(pte_t *)pmd = pteval;
128 	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
129 		BUG();
130 }
131 
132 #ifdef __tilegx__
133 
134 #if HV_L1_SIZE != HV_L2_SIZE
135 # error Rework assumption that L1 and L2 page tables are same size.
136 #endif
137 
138 /* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
alloc_pmd(void)139 static inline pmd_t *alloc_pmd(void)
140 {
141 	return (pmd_t *)alloc_pte();
142 }
143 
assign_pmd(pud_t * pud,pmd_t * pmd)144 static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
145 {
146 	assign_pte((pmd_t *)pud, (pte_t *)pmd);
147 }
148 
149 #endif /* __tilegx__ */
150 
151 /* Replace the given pmd with a full PTE table. */
shatter_pmd(pmd_t * pmd)152 void __init shatter_pmd(pmd_t *pmd)
153 {
154 	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
155 	assign_pte(pmd, pte);
156 }
157 
158 #ifdef CONFIG_HIGHMEM
159 /*
160  * This function initializes a certain range of kernel virtual memory
161  * with new bootmem page tables, everywhere page tables are missing in
162  * the given range.
163  */
164 
165 /*
166  * NOTE: The pagetables are allocated contiguous on the physical space
167  * so we can cache the place of the first one and move around without
168  * checking the pgd every time.
169  */
page_table_range_init(unsigned long start,unsigned long end,pgd_t * pgd_base)170 static void __init page_table_range_init(unsigned long start,
171 					 unsigned long end, pgd_t *pgd_base)
172 {
173 	pgd_t *pgd;
174 	int pgd_idx;
175 	unsigned long vaddr;
176 
177 	vaddr = start;
178 	pgd_idx = pgd_index(vaddr);
179 	pgd = pgd_base + pgd_idx;
180 
181 	for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
182 		pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
183 		if (pmd_none(*pmd))
184 			assign_pte(pmd, alloc_pte());
185 		vaddr += PMD_SIZE;
186 	}
187 }
188 #endif /* CONFIG_HIGHMEM */
189 
190 
191 #if CHIP_HAS_CBOX_HOME_MAP()
192 
193 static int __initdata ktext_hash = 1;  /* .text pages */
194 static int __initdata kdata_hash = 1;  /* .data and .bss pages */
195 int __write_once hash_default = 1;     /* kernel allocator pages */
196 EXPORT_SYMBOL(hash_default);
197 int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
198 #endif /* CHIP_HAS_CBOX_HOME_MAP */
199 
200 /*
201  * CPUs to use to for striping the pages of kernel data.  If hash-for-home
202  * is available, this is only relevant if kcache_hash sets up the
203  * .data and .bss to be page-homed, and we don't want the default mode
204  * of using the full set of kernel cpus for the striping.
205  */
206 static __initdata struct cpumask kdata_mask;
207 static __initdata int kdata_arg_seen;
208 
209 int __write_once kdata_huge;       /* if no homecaching, small pages */
210 
211 
212 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
construct_pgprot(pgprot_t prot,int home)213 static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
214 {
215 	prot = pte_set_home(prot, home);
216 #if CHIP_HAS_CBOX_HOME_MAP()
217 	if (home == PAGE_HOME_IMMUTABLE) {
218 		if (ktext_hash)
219 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
220 		else
221 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
222 	}
223 #endif
224 	return prot;
225 }
226 
227 /*
228  * For a given kernel data VA, how should it be cached?
229  * We return the complete pgprot_t with caching bits set.
230  */
init_pgprot(ulong address)231 static pgprot_t __init init_pgprot(ulong address)
232 {
233 	int cpu;
234 	unsigned long page;
235 	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
236 
237 #if CHIP_HAS_CBOX_HOME_MAP()
238 	/* For kdata=huge, everything is just hash-for-home. */
239 	if (kdata_huge)
240 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
241 #endif
242 
243 	/* We map the aliased pages of permanent text inaccessible. */
244 	if (address < (ulong) _sinittext - CODE_DELTA)
245 		return PAGE_NONE;
246 
247 	/*
248 	 * We map read-only data non-coherent for performance.  We could
249 	 * use neighborhood caching on TILE64, but it's not clear it's a win.
250 	 */
251 	if ((address >= (ulong) __start_rodata &&
252 	     address < (ulong) __end_rodata) ||
253 	    address == (ulong) empty_zero_page) {
254 		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
255 	}
256 
257 #ifndef __tilegx__
258 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
259 	/* Force the atomic_locks[] array page to be hash-for-home. */
260 	if (address == (ulong) atomic_locks)
261 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
262 #endif
263 #endif
264 
265 	/*
266 	 * Everything else that isn't data or bss is heap, so mark it
267 	 * with the initial heap home (hash-for-home, or this cpu).  This
268 	 * includes any addresses after the loaded image and any address before
269 	 * _einitdata, since we already captured the case of text before
270 	 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
271 	 *
272 	 * All the LOWMEM pages that we mark this way will get their
273 	 * struct page homecache properly marked later, in set_page_homes().
274 	 * The HIGHMEM pages we leave with a default zero for their
275 	 * homes, but with a zero free_time we don't have to actually
276 	 * do a flush action the first time we use them, either.
277 	 */
278 	if (address >= (ulong) _end || address < (ulong) _einitdata)
279 		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
280 
281 #if CHIP_HAS_CBOX_HOME_MAP()
282 	/* Use hash-for-home if requested for data/bss. */
283 	if (kdata_hash)
284 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
285 #endif
286 
287 	/*
288 	 * Make the w1data homed like heap to start with, to avoid
289 	 * making it part of the page-striped data area when we're just
290 	 * going to convert it to read-only soon anyway.
291 	 */
292 	if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
293 		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
294 
295 	/*
296 	 * Otherwise we just hand out consecutive cpus.  To avoid
297 	 * requiring this function to hold state, we just walk forward from
298 	 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
299 	 * the requested address, while walking cpu home around kdata_mask.
300 	 * This is typically no more than a dozen or so iterations.
301 	 */
302 	page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
303 	BUG_ON(address < page || address >= (ulong)_end);
304 	cpu = cpumask_first(&kdata_mask);
305 	for (; page < address; page += PAGE_SIZE) {
306 		if (page >= (ulong)&init_thread_union &&
307 		    page < (ulong)&init_thread_union + THREAD_SIZE)
308 			continue;
309 		if (page == (ulong)empty_zero_page)
310 			continue;
311 #ifndef __tilegx__
312 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
313 		if (page == (ulong)atomic_locks)
314 			continue;
315 #endif
316 #endif
317 		cpu = cpumask_next(cpu, &kdata_mask);
318 		if (cpu == NR_CPUS)
319 			cpu = cpumask_first(&kdata_mask);
320 	}
321 	return construct_pgprot(PAGE_KERNEL, cpu);
322 }
323 
324 /*
325  * This function sets up how we cache the kernel text.  If we have
326  * hash-for-home support, normally that is used instead (see the
327  * kcache_hash boot flag for more information).  But if we end up
328  * using a page-based caching technique, this option sets up the
329  * details of that.  In addition, the "ktext=nocache" option may
330  * always be used to disable local caching of text pages, if desired.
331  */
332 
333 static int __initdata ktext_arg_seen;
334 static int __initdata ktext_small;
335 static int __initdata ktext_local;
336 static int __initdata ktext_all;
337 static int __initdata ktext_nondataplane;
338 static int __initdata ktext_nocache;
339 static struct cpumask __initdata ktext_mask;
340 
setup_ktext(char * str)341 static int __init setup_ktext(char *str)
342 {
343 	if (str == NULL)
344 		return -EINVAL;
345 
346 	/* If you have a leading "nocache", turn off ktext caching */
347 	if (strncmp(str, "nocache", 7) == 0) {
348 		ktext_nocache = 1;
349 		pr_info("ktext: disabling local caching of kernel text\n");
350 		str += 7;
351 		if (*str == ',')
352 			++str;
353 		if (*str == '\0')
354 			return 0;
355 	}
356 
357 	ktext_arg_seen = 1;
358 
359 	/* Default setting on Tile64: use a huge page */
360 	if (strcmp(str, "huge") == 0)
361 		pr_info("ktext: using one huge locally cached page\n");
362 
363 	/* Pay TLB cost but get no cache benefit: cache small pages locally */
364 	else if (strcmp(str, "local") == 0) {
365 		ktext_small = 1;
366 		ktext_local = 1;
367 		pr_info("ktext: using small pages with local caching\n");
368 	}
369 
370 	/* Neighborhood cache ktext pages on all cpus. */
371 	else if (strcmp(str, "all") == 0) {
372 		ktext_small = 1;
373 		ktext_all = 1;
374 		pr_info("ktext: using maximal caching neighborhood\n");
375 	}
376 
377 
378 	/* Neighborhood ktext pages on specified mask */
379 	else if (cpulist_parse(str, &ktext_mask) == 0) {
380 		char buf[NR_CPUS * 5];
381 		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
382 		if (cpumask_weight(&ktext_mask) > 1) {
383 			ktext_small = 1;
384 			pr_info("ktext: using caching neighborhood %s "
385 			       "with small pages\n", buf);
386 		} else {
387 			pr_info("ktext: caching on cpu %s with one huge page\n",
388 			       buf);
389 		}
390 	}
391 
392 	else if (*str)
393 		return -EINVAL;
394 
395 	return 0;
396 }
397 
398 early_param("ktext", setup_ktext);
399 
400 
ktext_set_nocache(pgprot_t prot)401 static inline pgprot_t ktext_set_nocache(pgprot_t prot)
402 {
403 	if (!ktext_nocache)
404 		prot = hv_pte_set_nc(prot);
405 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
406 	else
407 		prot = hv_pte_set_no_alloc_l2(prot);
408 #endif
409 	return prot;
410 }
411 
412 #ifndef __tilegx__
get_pmd(pgd_t pgtables[],unsigned long va)413 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
414 {
415 	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
416 }
417 #else
get_pmd(pgd_t pgtables[],unsigned long va)418 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
419 {
420 	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
421 	if (pud_none(*pud))
422 		assign_pmd(pud, alloc_pmd());
423 	return pmd_offset(pud, va);
424 }
425 #endif
426 
427 /* Temporary page table we use for staging. */
428 static pgd_t pgtables[PTRS_PER_PGD]
429  __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
430 
431 /*
432  * This maps the physical memory to kernel virtual address space, a total
433  * of max_low_pfn pages, by creating page tables starting from address
434  * PAGE_OFFSET.
435  *
436  * This routine transitions us from using a set of compiled-in large
437  * pages to using some more precise caching, including removing access
438  * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
439  * marking read-only data as locally cacheable, striping the remaining
440  * .data and .bss across all the available tiles, and removing access
441  * to pages above the top of RAM (thus ensuring a page fault from a bad
442  * virtual address rather than a hypervisor shoot down for accessing
443  * memory outside the assigned limits).
444  */
kernel_physical_mapping_init(pgd_t * pgd_base)445 static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
446 {
447 	unsigned long address, pfn;
448 	pmd_t *pmd;
449 	pte_t *pte;
450 	int pte_ofs;
451 	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
452 	struct cpumask kstripe_mask;
453 	int rc, i;
454 
455 #if CHIP_HAS_CBOX_HOME_MAP()
456 	if (ktext_arg_seen && ktext_hash) {
457 		pr_warning("warning: \"ktext\" boot argument ignored"
458 			   " if \"kcache_hash\" sets up text hash-for-home\n");
459 		ktext_small = 0;
460 	}
461 
462 	if (kdata_arg_seen && kdata_hash) {
463 		pr_warning("warning: \"kdata\" boot argument ignored"
464 			   " if \"kcache_hash\" sets up data hash-for-home\n");
465 	}
466 
467 	if (kdata_huge && !hash_default) {
468 		pr_warning("warning: disabling \"kdata=huge\"; requires"
469 			  " kcache_hash=all or =allbutstack\n");
470 		kdata_huge = 0;
471 	}
472 #endif
473 
474 	/*
475 	 * Set up a mask for cpus to use for kernel striping.
476 	 * This is normally all cpus, but minus dataplane cpus if any.
477 	 * If the dataplane covers the whole chip, we stripe over
478 	 * the whole chip too.
479 	 */
480 	cpumask_copy(&kstripe_mask, cpu_possible_mask);
481 	if (!kdata_arg_seen)
482 		kdata_mask = kstripe_mask;
483 
484 	/* Allocate and fill in L2 page tables */
485 	for (i = 0; i < MAX_NUMNODES; ++i) {
486 #ifdef CONFIG_HIGHMEM
487 		unsigned long end_pfn = node_lowmem_end_pfn[i];
488 #else
489 		unsigned long end_pfn = node_end_pfn[i];
490 #endif
491 		unsigned long end_huge_pfn = 0;
492 
493 		/* Pre-shatter the last huge page to allow per-cpu pages. */
494 		if (kdata_huge)
495 			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
496 
497 		pfn = node_start_pfn[i];
498 
499 		/* Allocate enough memory to hold L2 page tables for node. */
500 		init_prealloc_ptes(i, end_pfn - pfn);
501 
502 		address = (unsigned long) pfn_to_kaddr(pfn);
503 		while (pfn < end_pfn) {
504 			BUG_ON(address & (HPAGE_SIZE-1));
505 			pmd = get_pmd(pgtables, address);
506 			pte = get_prealloc_pte(pfn);
507 			if (pfn < end_huge_pfn) {
508 				pgprot_t prot = init_pgprot(address);
509 				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
510 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
511 				     pfn++, pte_ofs++, address += PAGE_SIZE)
512 					pte[pte_ofs] = pfn_pte(pfn, prot);
513 			} else {
514 				if (kdata_huge)
515 					printk(KERN_DEBUG "pre-shattered huge"
516 					       " page at %#lx\n", address);
517 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
518 				     pfn++, pte_ofs++, address += PAGE_SIZE) {
519 					pgprot_t prot = init_pgprot(address);
520 					pte[pte_ofs] = pfn_pte(pfn, prot);
521 				}
522 				assign_pte(pmd, pte);
523 			}
524 		}
525 	}
526 
527 	/*
528 	 * Set or check ktext_map now that we have cpu_possible_mask
529 	 * and kstripe_mask to work with.
530 	 */
531 	if (ktext_all)
532 		cpumask_copy(&ktext_mask, cpu_possible_mask);
533 	else if (ktext_nondataplane)
534 		ktext_mask = kstripe_mask;
535 	else if (!cpumask_empty(&ktext_mask)) {
536 		/* Sanity-check any mask that was requested */
537 		struct cpumask bad;
538 		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
539 		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
540 		if (!cpumask_empty(&bad)) {
541 			char buf[NR_CPUS * 5];
542 			cpulist_scnprintf(buf, sizeof(buf), &bad);
543 			pr_info("ktext: not using unavailable cpus %s\n", buf);
544 		}
545 		if (cpumask_empty(&ktext_mask)) {
546 			pr_warning("ktext: no valid cpus; caching on %d.\n",
547 				   smp_processor_id());
548 			cpumask_copy(&ktext_mask,
549 				     cpumask_of(smp_processor_id()));
550 		}
551 	}
552 
553 	address = MEM_SV_INTRPT;
554 	pmd = get_pmd(pgtables, address);
555 	pfn = 0;  /* code starts at PA 0 */
556 	if (ktext_small) {
557 		/* Allocate an L2 PTE for the kernel text */
558 		int cpu = 0;
559 		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
560 						 PAGE_HOME_IMMUTABLE);
561 
562 		if (ktext_local) {
563 			if (ktext_nocache)
564 				prot = hv_pte_set_mode(prot,
565 						       HV_PTE_MODE_UNCACHED);
566 			else
567 				prot = hv_pte_set_mode(prot,
568 						       HV_PTE_MODE_CACHE_NO_L3);
569 		} else {
570 			prot = hv_pte_set_mode(prot,
571 					       HV_PTE_MODE_CACHE_TILE_L3);
572 			cpu = cpumask_first(&ktext_mask);
573 
574 			prot = ktext_set_nocache(prot);
575 		}
576 
577 		BUG_ON(address != (unsigned long)_stext);
578 		pte = NULL;
579 		for (; address < (unsigned long)_einittext;
580 		     pfn++, address += PAGE_SIZE) {
581 			pte_ofs = pte_index(address);
582 			if (pte_ofs == 0) {
583 				if (pte)
584 					assign_pte(pmd++, pte);
585 				pte = alloc_pte();
586 			}
587 			if (!ktext_local) {
588 				prot = set_remote_cache_cpu(prot, cpu);
589 				cpu = cpumask_next(cpu, &ktext_mask);
590 				if (cpu == NR_CPUS)
591 					cpu = cpumask_first(&ktext_mask);
592 			}
593 			pte[pte_ofs] = pfn_pte(pfn, prot);
594 		}
595 		if (pte)
596 			assign_pte(pmd, pte);
597 	} else {
598 		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
599 		pteval = pte_mkhuge(pteval);
600 #if CHIP_HAS_CBOX_HOME_MAP()
601 		if (ktext_hash) {
602 			pteval = hv_pte_set_mode(pteval,
603 						 HV_PTE_MODE_CACHE_HASH_L3);
604 			pteval = ktext_set_nocache(pteval);
605 		} else
606 #endif /* CHIP_HAS_CBOX_HOME_MAP() */
607 		if (cpumask_weight(&ktext_mask) == 1) {
608 			pteval = set_remote_cache_cpu(pteval,
609 					      cpumask_first(&ktext_mask));
610 			pteval = hv_pte_set_mode(pteval,
611 						 HV_PTE_MODE_CACHE_TILE_L3);
612 			pteval = ktext_set_nocache(pteval);
613 		} else if (ktext_nocache)
614 			pteval = hv_pte_set_mode(pteval,
615 						 HV_PTE_MODE_UNCACHED);
616 		else
617 			pteval = hv_pte_set_mode(pteval,
618 						 HV_PTE_MODE_CACHE_NO_L3);
619 		for (; address < (unsigned long)_einittext;
620 		     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
621 			*(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
622 	}
623 
624 	/* Set swapper_pgprot here so it is flushed to memory right away. */
625 	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
626 
627 	/*
628 	 * Since we may be changing the caching of the stack and page
629 	 * table itself, we invoke an assembly helper to do the
630 	 * following steps:
631 	 *
632 	 *  - flush the cache so we start with an empty slate
633 	 *  - install pgtables[] as the real page table
634 	 *  - flush the TLB so the new page table takes effect
635 	 */
636 	rc = flush_and_install_context(__pa(pgtables),
637 				       init_pgprot((unsigned long)pgtables),
638 				       __get_cpu_var(current_asid),
639 				       cpumask_bits(my_cpu_mask));
640 	BUG_ON(rc != 0);
641 
642 	/* Copy the page table back to the normal swapper_pg_dir. */
643 	memcpy(pgd_base, pgtables, sizeof(pgtables));
644 	__install_page_table(pgd_base, __get_cpu_var(current_asid),
645 			     swapper_pgprot);
646 
647 	/*
648 	 * We just read swapper_pgprot and thus brought it into the cache,
649 	 * with its new home & caching mode.  When we start the other CPUs,
650 	 * they're going to reference swapper_pgprot via their initial fake
651 	 * VA-is-PA mappings, which cache everything locally.  At that
652 	 * time, if it's in our cache with a conflicting home, the
653 	 * simulator's coherence checker will complain.  So, flush it out
654 	 * of our cache; we're not going to ever use it again anyway.
655 	 */
656 	__insn_finv(&swapper_pgprot);
657 }
658 
659 /*
660  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
661  * is valid. The argument is a physical page number.
662  *
663  * On Tile, the only valid things for which we can just hand out unchecked
664  * PTEs are the kernel code and data.  Anything else might change its
665  * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
666  * Note that init_thread_union is released to heap soon after boot,
667  * so we include it in the init data.
668  *
669  * For TILE-Gx, we might want to consider allowing access to PA
670  * regions corresponding to PCI space, etc.
671  */
devmem_is_allowed(unsigned long pagenr)672 int devmem_is_allowed(unsigned long pagenr)
673 {
674 	return pagenr < kaddr_to_pfn(_end) &&
675 		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
676 		  pagenr < kaddr_to_pfn(_einitdata)) &&
677 		!(pagenr >= kaddr_to_pfn(_sinittext) ||
678 		  pagenr <= kaddr_to_pfn(_einittext-1));
679 }
680 
681 #ifdef CONFIG_HIGHMEM
permanent_kmaps_init(pgd_t * pgd_base)682 static void __init permanent_kmaps_init(pgd_t *pgd_base)
683 {
684 	pgd_t *pgd;
685 	pud_t *pud;
686 	pmd_t *pmd;
687 	pte_t *pte;
688 	unsigned long vaddr;
689 
690 	vaddr = PKMAP_BASE;
691 	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
692 
693 	pgd = swapper_pg_dir + pgd_index(vaddr);
694 	pud = pud_offset(pgd, vaddr);
695 	pmd = pmd_offset(pud, vaddr);
696 	pte = pte_offset_kernel(pmd, vaddr);
697 	pkmap_page_table = pte;
698 }
699 #endif /* CONFIG_HIGHMEM */
700 
701 
init_free_pfn_range(unsigned long start,unsigned long end)702 static void __init init_free_pfn_range(unsigned long start, unsigned long end)
703 {
704 	unsigned long pfn;
705 	struct page *page = pfn_to_page(start);
706 
707 	for (pfn = start; pfn < end; ) {
708 		/* Optimize by freeing pages in large batches */
709 		int order = __ffs(pfn);
710 		int count, i;
711 		struct page *p;
712 
713 		if (order >= MAX_ORDER)
714 			order = MAX_ORDER-1;
715 		count = 1 << order;
716 		while (pfn + count > end) {
717 			count >>= 1;
718 			--order;
719 		}
720 		for (p = page, i = 0; i < count; ++i, ++p) {
721 			__ClearPageReserved(p);
722 			/*
723 			 * Hacky direct set to avoid unnecessary
724 			 * lock take/release for EVERY page here.
725 			 */
726 			p->_count.counter = 0;
727 			p->_mapcount.counter = -1;
728 		}
729 		init_page_count(page);
730 		__free_pages(page, order);
731 		totalram_pages += count;
732 
733 		page += count;
734 		pfn += count;
735 	}
736 }
737 
set_non_bootmem_pages_init(void)738 static void __init set_non_bootmem_pages_init(void)
739 {
740 	struct zone *z;
741 	for_each_zone(z) {
742 		unsigned long start, end;
743 		int nid = z->zone_pgdat->node_id;
744 		int idx = zone_idx(z);
745 
746 		start = z->zone_start_pfn;
747 		if (start == 0)
748 			continue;  /* bootmem */
749 		end = start + z->spanned_pages;
750 		if (idx == ZONE_NORMAL) {
751 			BUG_ON(start != node_start_pfn[nid]);
752 			start = node_free_pfn[nid];
753 		}
754 #ifdef CONFIG_HIGHMEM
755 		if (idx == ZONE_HIGHMEM)
756 			totalhigh_pages += z->spanned_pages;
757 #endif
758 		if (kdata_huge) {
759 			unsigned long percpu_pfn = node_percpu_pfn[nid];
760 			if (start < percpu_pfn && end > percpu_pfn)
761 				end = percpu_pfn;
762 		}
763 #ifdef CONFIG_PCI
764 		if (start <= pci_reserve_start_pfn &&
765 		    end > pci_reserve_start_pfn) {
766 			if (end > pci_reserve_end_pfn)
767 				init_free_pfn_range(pci_reserve_end_pfn, end);
768 			end = pci_reserve_start_pfn;
769 		}
770 #endif
771 		init_free_pfn_range(start, end);
772 	}
773 }
774 
775 /*
776  * paging_init() sets up the page tables - note that all of lowmem is
777  * already mapped by head.S.
778  */
paging_init(void)779 void __init paging_init(void)
780 {
781 #ifdef CONFIG_HIGHMEM
782 	unsigned long vaddr, end;
783 #endif
784 #ifdef __tilegx__
785 	pud_t *pud;
786 #endif
787 	pgd_t *pgd_base = swapper_pg_dir;
788 
789 	kernel_physical_mapping_init(pgd_base);
790 
791 #ifdef CONFIG_HIGHMEM
792 	/*
793 	 * Fixed mappings, only the page table structure has to be
794 	 * created - mappings will be set by set_fixmap():
795 	 */
796 	vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
797 	end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
798 	page_table_range_init(vaddr, end, pgd_base);
799 	permanent_kmaps_init(pgd_base);
800 #endif
801 
802 #ifdef __tilegx__
803 	/*
804 	 * Since GX allocates just one pmd_t array worth of vmalloc space,
805 	 * we go ahead and allocate it statically here, then share it
806 	 * globally.  As a result we don't have to worry about any task
807 	 * changing init_mm once we get up and running, and there's no
808 	 * need for e.g. vmalloc_sync_all().
809 	 */
810 	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
811 	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
812 	assign_pmd(pud, alloc_pmd());
813 #endif
814 }
815 
816 
817 /*
818  * Walk the kernel page tables and derive the page_home() from
819  * the PTEs, so that set_pte() can properly validate the caching
820  * of all PTEs it sees.
821  */
set_page_homes(void)822 void __init set_page_homes(void)
823 {
824 }
825 
set_max_mapnr_init(void)826 static void __init set_max_mapnr_init(void)
827 {
828 #ifdef CONFIG_FLATMEM
829 	max_mapnr = max_low_pfn;
830 #endif
831 }
832 
mem_init(void)833 void __init mem_init(void)
834 {
835 	int codesize, datasize, initsize;
836 	int i;
837 #ifndef __tilegx__
838 	void *last;
839 #endif
840 
841 #ifdef CONFIG_FLATMEM
842 	BUG_ON(!mem_map);
843 #endif
844 
845 #ifdef CONFIG_HIGHMEM
846 	/* check that fixmap and pkmap do not overlap */
847 	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
848 		pr_err("fixmap and kmap areas overlap"
849 		       " - this will crash\n");
850 		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
851 		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
852 		       FIXADDR_START);
853 		BUG();
854 	}
855 #endif
856 
857 	set_max_mapnr_init();
858 
859 	/* this will put all bootmem onto the freelists */
860 	totalram_pages += free_all_bootmem();
861 
862 	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
863 	set_non_bootmem_pages_init();
864 
865 	codesize =  (unsigned long)&_etext - (unsigned long)&_text;
866 	datasize =  (unsigned long)&_end - (unsigned long)&_sdata;
867 	initsize =  (unsigned long)&_einittext - (unsigned long)&_sinittext;
868 	initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
869 
870 	pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
871 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
872 		num_physpages << (PAGE_SHIFT-10),
873 		codesize >> 10,
874 		datasize >> 10,
875 		initsize >> 10,
876 		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
877 	       );
878 
879 	/*
880 	 * In debug mode, dump some interesting memory mappings.
881 	 */
882 #ifdef CONFIG_HIGHMEM
883 	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
884 	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
885 	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
886 	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
887 #endif
888 #ifdef CONFIG_HUGEVMAP
889 	printk(KERN_DEBUG "  HUGEMAP %#lx - %#lx\n",
890 	       HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
891 #endif
892 	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
893 	       _VMALLOC_START, _VMALLOC_END - 1);
894 #ifdef __tilegx__
895 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
896 		struct pglist_data *node = &node_data[i];
897 		if (node->node_present_pages) {
898 			unsigned long start = (unsigned long)
899 				pfn_to_kaddr(node->node_start_pfn);
900 			unsigned long end = start +
901 				(node->node_present_pages << PAGE_SHIFT);
902 			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
903 			       i, start, end - 1);
904 		}
905 	}
906 #else
907 	last = high_memory;
908 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
909 		if ((unsigned long)vbase_map[i] != -1UL) {
910 			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
911 			       i, (unsigned long) (vbase_map[i]),
912 			       (unsigned long) (last-1));
913 			last = vbase_map[i];
914 		}
915 	}
916 #endif
917 
918 #ifndef __tilegx__
919 	/*
920 	 * Convert from using one lock for all atomic operations to
921 	 * one per cpu.
922 	 */
923 	__init_atomic_per_cpu();
924 #endif
925 }
926 
927 /*
928  * this is for the non-NUMA, single node SMP system case.
929  * Specifically, in the case of x86, we will always add
930  * memory to the highmem for now.
931  */
932 #ifndef CONFIG_NEED_MULTIPLE_NODES
arch_add_memory(u64 start,u64 size)933 int arch_add_memory(u64 start, u64 size)
934 {
935 	struct pglist_data *pgdata = &contig_page_data;
936 	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
937 	unsigned long start_pfn = start >> PAGE_SHIFT;
938 	unsigned long nr_pages = size >> PAGE_SHIFT;
939 
940 	return __add_pages(zone, start_pfn, nr_pages);
941 }
942 
remove_memory(u64 start,u64 size)943 int remove_memory(u64 start, u64 size)
944 {
945 	return -EINVAL;
946 }
947 #endif
948 
949 struct kmem_cache *pgd_cache;
950 
pgtable_cache_init(void)951 void __init pgtable_cache_init(void)
952 {
953 	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
954 	if (!pgd_cache)
955 		panic("pgtable_cache_init(): Cannot create pgd cache");
956 }
957 
958 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
959 /*
960  * The __w1data area holds data that is only written during initialization,
961  * and is read-only and thus freely cacheable thereafter.  Fix the page
962  * table entries that cover that region accordingly.
963  */
mark_w1data_ro(void)964 static void mark_w1data_ro(void)
965 {
966 	/* Loop over page table entries */
967 	unsigned long addr = (unsigned long)__w1data_begin;
968 	BUG_ON((addr & (PAGE_SIZE-1)) != 0);
969 	for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
970 		unsigned long pfn = kaddr_to_pfn((void *)addr);
971 		pte_t *ptep = virt_to_pte(NULL, addr);
972 		BUG_ON(pte_huge(*ptep));   /* not relevant for kdata_huge */
973 		set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
974 	}
975 }
976 #endif
977 
978 #ifdef CONFIG_DEBUG_PAGEALLOC
979 static long __write_once initfree;
980 #else
981 static long __write_once initfree = 1;
982 #endif
983 
984 /* Select whether to free (1) or mark unusable (0) the __init pages. */
set_initfree(char * str)985 static int __init set_initfree(char *str)
986 {
987 	long val;
988 	if (strict_strtol(str, 0, &val) == 0) {
989 		initfree = val;
990 		pr_info("initfree: %s free init pages\n",
991 			initfree ? "will" : "won't");
992 	}
993 	return 1;
994 }
995 __setup("initfree=", set_initfree);
996 
free_init_pages(char * what,unsigned long begin,unsigned long end)997 static void free_init_pages(char *what, unsigned long begin, unsigned long end)
998 {
999 	unsigned long addr = (unsigned long) begin;
1000 
1001 	if (kdata_huge && !initfree) {
1002 		pr_warning("Warning: ignoring initfree=0:"
1003 			   " incompatible with kdata=huge\n");
1004 		initfree = 1;
1005 	}
1006 	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1007 	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1008 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1009 		/*
1010 		 * Note we just reset the home here directly in the
1011 		 * page table.  We know this is safe because our caller
1012 		 * just flushed the caches on all the other cpus,
1013 		 * and they won't be touching any of these pages.
1014 		 */
1015 		int pfn = kaddr_to_pfn((void *)addr);
1016 		struct page *page = pfn_to_page(pfn);
1017 		pte_t *ptep = virt_to_pte(NULL, addr);
1018 		if (!initfree) {
1019 			/*
1020 			 * If debugging page accesses then do not free
1021 			 * this memory but mark them not present - any
1022 			 * buggy init-section access will create a
1023 			 * kernel page fault:
1024 			 */
1025 			pte_clear(&init_mm, addr, ptep);
1026 			continue;
1027 		}
1028 		__ClearPageReserved(page);
1029 		init_page_count(page);
1030 		if (pte_huge(*ptep))
1031 			BUG_ON(!kdata_huge);
1032 		else
1033 			set_pte_at(&init_mm, addr, ptep,
1034 				   pfn_pte(pfn, PAGE_KERNEL));
1035 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1036 		free_page(addr);
1037 		totalram_pages++;
1038 	}
1039 	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1040 }
1041 
free_initmem(void)1042 void free_initmem(void)
1043 {
1044 	const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1045 
1046 	/*
1047 	 * Evict the dirty initdata on the boot cpu, evict the w1data
1048 	 * wherever it's homed, and evict all the init code everywhere.
1049 	 * We are guaranteed that no one will touch the init pages any
1050 	 * more, and although other cpus may be touching the w1data,
1051 	 * we only actually change the caching on tile64, which won't
1052 	 * be keeping local copies in the other tiles' caches anyway.
1053 	 */
1054 	homecache_evict(&cpu_cacheable_map);
1055 
1056 	/* Free the data pages that we won't use again after init. */
1057 	free_init_pages("unused kernel data",
1058 			(unsigned long)_sinitdata,
1059 			(unsigned long)_einitdata);
1060 
1061 	/*
1062 	 * Free the pages mapped from 0xc0000000 that correspond to code
1063 	 * pages from MEM_SV_INTRPT that we won't use again after init.
1064 	 */
1065 	free_init_pages("unused kernel text",
1066 			(unsigned long)_sinittext - text_delta,
1067 			(unsigned long)_einittext - text_delta);
1068 
1069 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1070 	/*
1071 	 * Upgrade the .w1data section to globally cached.
1072 	 * We don't do this on tilepro, since the cache architecture
1073 	 * pretty much makes it irrelevant, and in any case we end
1074 	 * up having racing issues with other tiles that may touch
1075 	 * the data after we flush the cache but before we update
1076 	 * the PTEs and flush the TLBs, causing sharer shootdowns
1077 	 * later.  Even though this is to clean data, it seems like
1078 	 * an unnecessary complication.
1079 	 */
1080 	mark_w1data_ro();
1081 #endif
1082 
1083 	/* Do a global TLB flush so everyone sees the changes. */
1084 	flush_tlb_all();
1085 }
1086