1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
23
24 struct kmem_cache *key_jar;
25 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
27
28 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
30
31 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
33 unsigned int key_quota_maxkeys = 200; /* general key count quota */
34 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
38
39 /* We serialise key instantiation and link */
40 DEFINE_MUTEX(key_construction_mutex);
41
42 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)43 void __key_check(const struct key *key)
44 {
45 printk("__key_check: key %p {%08x} should be {%08x}\n",
46 key, key->magic, KEY_DEBUG_MAGIC);
47 BUG();
48 }
49 #endif
50
51 /*
52 * Get the key quota record for a user, allocating a new record if one doesn't
53 * already exist.
54 */
key_user_lookup(uid_t uid,struct user_namespace * user_ns)55 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
56 {
57 struct key_user *candidate = NULL, *user;
58 struct rb_node *parent = NULL;
59 struct rb_node **p;
60
61 try_again:
62 p = &key_user_tree.rb_node;
63 spin_lock(&key_user_lock);
64
65 /* search the tree for a user record with a matching UID */
66 while (*p) {
67 parent = *p;
68 user = rb_entry(parent, struct key_user, node);
69
70 if (uid < user->uid)
71 p = &(*p)->rb_left;
72 else if (uid > user->uid)
73 p = &(*p)->rb_right;
74 else if (user_ns < user->user_ns)
75 p = &(*p)->rb_left;
76 else if (user_ns > user->user_ns)
77 p = &(*p)->rb_right;
78 else
79 goto found;
80 }
81
82 /* if we get here, we failed to find a match in the tree */
83 if (!candidate) {
84 /* allocate a candidate user record if we don't already have
85 * one */
86 spin_unlock(&key_user_lock);
87
88 user = NULL;
89 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
90 if (unlikely(!candidate))
91 goto out;
92
93 /* the allocation may have scheduled, so we need to repeat the
94 * search lest someone else added the record whilst we were
95 * asleep */
96 goto try_again;
97 }
98
99 /* if we get here, then the user record still hadn't appeared on the
100 * second pass - so we use the candidate record */
101 atomic_set(&candidate->usage, 1);
102 atomic_set(&candidate->nkeys, 0);
103 atomic_set(&candidate->nikeys, 0);
104 candidate->uid = uid;
105 candidate->user_ns = get_user_ns(user_ns);
106 candidate->qnkeys = 0;
107 candidate->qnbytes = 0;
108 spin_lock_init(&candidate->lock);
109 mutex_init(&candidate->cons_lock);
110
111 rb_link_node(&candidate->node, parent, p);
112 rb_insert_color(&candidate->node, &key_user_tree);
113 spin_unlock(&key_user_lock);
114 user = candidate;
115 goto out;
116
117 /* okay - we found a user record for this UID */
118 found:
119 atomic_inc(&user->usage);
120 spin_unlock(&key_user_lock);
121 kfree(candidate);
122 out:
123 return user;
124 }
125
126 /*
127 * Dispose of a user structure
128 */
key_user_put(struct key_user * user)129 void key_user_put(struct key_user *user)
130 {
131 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
132 rb_erase(&user->node, &key_user_tree);
133 spin_unlock(&key_user_lock);
134 put_user_ns(user->user_ns);
135
136 kfree(user);
137 }
138 }
139
140 /*
141 * Allocate a serial number for a key. These are assigned randomly to avoid
142 * security issues through covert channel problems.
143 */
key_alloc_serial(struct key * key)144 static inline void key_alloc_serial(struct key *key)
145 {
146 struct rb_node *parent, **p;
147 struct key *xkey;
148
149 /* propose a random serial number and look for a hole for it in the
150 * serial number tree */
151 do {
152 get_random_bytes(&key->serial, sizeof(key->serial));
153
154 key->serial >>= 1; /* negative numbers are not permitted */
155 } while (key->serial < 3);
156
157 spin_lock(&key_serial_lock);
158
159 attempt_insertion:
160 parent = NULL;
161 p = &key_serial_tree.rb_node;
162
163 while (*p) {
164 parent = *p;
165 xkey = rb_entry(parent, struct key, serial_node);
166
167 if (key->serial < xkey->serial)
168 p = &(*p)->rb_left;
169 else if (key->serial > xkey->serial)
170 p = &(*p)->rb_right;
171 else
172 goto serial_exists;
173 }
174
175 /* we've found a suitable hole - arrange for this key to occupy it */
176 rb_link_node(&key->serial_node, parent, p);
177 rb_insert_color(&key->serial_node, &key_serial_tree);
178
179 spin_unlock(&key_serial_lock);
180 return;
181
182 /* we found a key with the proposed serial number - walk the tree from
183 * that point looking for the next unused serial number */
184 serial_exists:
185 for (;;) {
186 key->serial++;
187 if (key->serial < 3) {
188 key->serial = 3;
189 goto attempt_insertion;
190 }
191
192 parent = rb_next(parent);
193 if (!parent)
194 goto attempt_insertion;
195
196 xkey = rb_entry(parent, struct key, serial_node);
197 if (key->serial < xkey->serial)
198 goto attempt_insertion;
199 }
200 }
201
202 /**
203 * key_alloc - Allocate a key of the specified type.
204 * @type: The type of key to allocate.
205 * @desc: The key description to allow the key to be searched out.
206 * @uid: The owner of the new key.
207 * @gid: The group ID for the new key's group permissions.
208 * @cred: The credentials specifying UID namespace.
209 * @perm: The permissions mask of the new key.
210 * @flags: Flags specifying quota properties.
211 *
212 * Allocate a key of the specified type with the attributes given. The key is
213 * returned in an uninstantiated state and the caller needs to instantiate the
214 * key before returning.
215 *
216 * The user's key count quota is updated to reflect the creation of the key and
217 * the user's key data quota has the default for the key type reserved. The
218 * instantiation function should amend this as necessary. If insufficient
219 * quota is available, -EDQUOT will be returned.
220 *
221 * The LSM security modules can prevent a key being created, in which case
222 * -EACCES will be returned.
223 *
224 * Returns a pointer to the new key if successful and an error code otherwise.
225 *
226 * Note that the caller needs to ensure the key type isn't uninstantiated.
227 * Internally this can be done by locking key_types_sem. Externally, this can
228 * be done by either never unregistering the key type, or making sure
229 * key_alloc() calls don't race with module unloading.
230 */
key_alloc(struct key_type * type,const char * desc,uid_t uid,gid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags)231 struct key *key_alloc(struct key_type *type, const char *desc,
232 uid_t uid, gid_t gid, const struct cred *cred,
233 key_perm_t perm, unsigned long flags)
234 {
235 struct key_user *user = NULL;
236 struct key *key;
237 size_t desclen, quotalen;
238 int ret;
239
240 key = ERR_PTR(-EINVAL);
241 if (!desc || !*desc)
242 goto error;
243
244 if (type->vet_description) {
245 ret = type->vet_description(desc);
246 if (ret < 0) {
247 key = ERR_PTR(ret);
248 goto error;
249 }
250 }
251
252 desclen = strlen(desc) + 1;
253 quotalen = desclen + type->def_datalen;
254
255 /* get hold of the key tracking for this user */
256 user = key_user_lookup(uid, cred->user->user_ns);
257 if (!user)
258 goto no_memory_1;
259
260 /* check that the user's quota permits allocation of another key and
261 * its description */
262 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
263 unsigned maxkeys = (uid == 0) ?
264 key_quota_root_maxkeys : key_quota_maxkeys;
265 unsigned maxbytes = (uid == 0) ?
266 key_quota_root_maxbytes : key_quota_maxbytes;
267
268 spin_lock(&user->lock);
269 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
270 if (user->qnkeys + 1 >= maxkeys ||
271 user->qnbytes + quotalen >= maxbytes ||
272 user->qnbytes + quotalen < user->qnbytes)
273 goto no_quota;
274 }
275
276 user->qnkeys++;
277 user->qnbytes += quotalen;
278 spin_unlock(&user->lock);
279 }
280
281 /* allocate and initialise the key and its description */
282 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
283 if (!key)
284 goto no_memory_2;
285
286 if (desc) {
287 key->description = kmemdup(desc, desclen, GFP_KERNEL);
288 if (!key->description)
289 goto no_memory_3;
290 }
291
292 atomic_set(&key->usage, 1);
293 init_rwsem(&key->sem);
294 lockdep_set_class(&key->sem, &type->lock_class);
295 key->type = type;
296 key->user = user;
297 key->quotalen = quotalen;
298 key->datalen = type->def_datalen;
299 key->uid = uid;
300 key->gid = gid;
301 key->perm = perm;
302 key->flags = 0;
303 key->expiry = 0;
304 key->payload.data = NULL;
305 key->security = NULL;
306
307 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
308 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
309
310 memset(&key->type_data, 0, sizeof(key->type_data));
311
312 #ifdef KEY_DEBUGGING
313 key->magic = KEY_DEBUG_MAGIC;
314 #endif
315
316 /* let the security module know about the key */
317 ret = security_key_alloc(key, cred, flags);
318 if (ret < 0)
319 goto security_error;
320
321 /* publish the key by giving it a serial number */
322 atomic_inc(&user->nkeys);
323 key_alloc_serial(key);
324
325 error:
326 return key;
327
328 security_error:
329 kfree(key->description);
330 kmem_cache_free(key_jar, key);
331 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
332 spin_lock(&user->lock);
333 user->qnkeys--;
334 user->qnbytes -= quotalen;
335 spin_unlock(&user->lock);
336 }
337 key_user_put(user);
338 key = ERR_PTR(ret);
339 goto error;
340
341 no_memory_3:
342 kmem_cache_free(key_jar, key);
343 no_memory_2:
344 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
345 spin_lock(&user->lock);
346 user->qnkeys--;
347 user->qnbytes -= quotalen;
348 spin_unlock(&user->lock);
349 }
350 key_user_put(user);
351 no_memory_1:
352 key = ERR_PTR(-ENOMEM);
353 goto error;
354
355 no_quota:
356 spin_unlock(&user->lock);
357 key_user_put(user);
358 key = ERR_PTR(-EDQUOT);
359 goto error;
360 }
361 EXPORT_SYMBOL(key_alloc);
362
363 /**
364 * key_payload_reserve - Adjust data quota reservation for the key's payload
365 * @key: The key to make the reservation for.
366 * @datalen: The amount of data payload the caller now wants.
367 *
368 * Adjust the amount of the owning user's key data quota that a key reserves.
369 * If the amount is increased, then -EDQUOT may be returned if there isn't
370 * enough free quota available.
371 *
372 * If successful, 0 is returned.
373 */
key_payload_reserve(struct key * key,size_t datalen)374 int key_payload_reserve(struct key *key, size_t datalen)
375 {
376 int delta = (int)datalen - key->datalen;
377 int ret = 0;
378
379 key_check(key);
380
381 /* contemplate the quota adjustment */
382 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
383 unsigned maxbytes = (key->user->uid == 0) ?
384 key_quota_root_maxbytes : key_quota_maxbytes;
385
386 spin_lock(&key->user->lock);
387
388 if (delta > 0 &&
389 (key->user->qnbytes + delta >= maxbytes ||
390 key->user->qnbytes + delta < key->user->qnbytes)) {
391 ret = -EDQUOT;
392 }
393 else {
394 key->user->qnbytes += delta;
395 key->quotalen += delta;
396 }
397 spin_unlock(&key->user->lock);
398 }
399
400 /* change the recorded data length if that didn't generate an error */
401 if (ret == 0)
402 key->datalen = datalen;
403
404 return ret;
405 }
406 EXPORT_SYMBOL(key_payload_reserve);
407
408 /*
409 * Instantiate a key and link it into the target keyring atomically. Must be
410 * called with the target keyring's semaphore writelocked. The target key's
411 * semaphore need not be locked as instantiation is serialised by
412 * key_construction_mutex.
413 */
__key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey,unsigned long * _prealloc)414 static int __key_instantiate_and_link(struct key *key,
415 const void *data,
416 size_t datalen,
417 struct key *keyring,
418 struct key *authkey,
419 unsigned long *_prealloc)
420 {
421 int ret, awaken;
422
423 key_check(key);
424 key_check(keyring);
425
426 awaken = 0;
427 ret = -EBUSY;
428
429 mutex_lock(&key_construction_mutex);
430
431 /* can't instantiate twice */
432 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
433 /* instantiate the key */
434 ret = key->type->instantiate(key, data, datalen);
435
436 if (ret == 0) {
437 /* mark the key as being instantiated */
438 atomic_inc(&key->user->nikeys);
439 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
440
441 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
442 awaken = 1;
443
444 /* and link it into the destination keyring */
445 if (keyring)
446 __key_link(keyring, key, _prealloc);
447
448 /* disable the authorisation key */
449 if (authkey)
450 key_revoke(authkey);
451 }
452 }
453
454 mutex_unlock(&key_construction_mutex);
455
456 /* wake up anyone waiting for a key to be constructed */
457 if (awaken)
458 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
459
460 return ret;
461 }
462
463 /**
464 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
465 * @key: The key to instantiate.
466 * @data: The data to use to instantiate the keyring.
467 * @datalen: The length of @data.
468 * @keyring: Keyring to create a link in on success (or NULL).
469 * @authkey: The authorisation token permitting instantiation.
470 *
471 * Instantiate a key that's in the uninstantiated state using the provided data
472 * and, if successful, link it in to the destination keyring if one is
473 * supplied.
474 *
475 * If successful, 0 is returned, the authorisation token is revoked and anyone
476 * waiting for the key is woken up. If the key was already instantiated,
477 * -EBUSY will be returned.
478 */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)479 int key_instantiate_and_link(struct key *key,
480 const void *data,
481 size_t datalen,
482 struct key *keyring,
483 struct key *authkey)
484 {
485 unsigned long prealloc;
486 int ret;
487
488 if (keyring) {
489 ret = __key_link_begin(keyring, key->type, key->description,
490 &prealloc);
491 if (ret < 0)
492 return ret;
493 }
494
495 ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
496 &prealloc);
497
498 if (keyring)
499 __key_link_end(keyring, key->type, prealloc);
500
501 return ret;
502 }
503
504 EXPORT_SYMBOL(key_instantiate_and_link);
505
506 /**
507 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
508 * @key: The key to instantiate.
509 * @timeout: The timeout on the negative key.
510 * @error: The error to return when the key is hit.
511 * @keyring: Keyring to create a link in on success (or NULL).
512 * @authkey: The authorisation token permitting instantiation.
513 *
514 * Negatively instantiate a key that's in the uninstantiated state and, if
515 * successful, set its timeout and stored error and link it in to the
516 * destination keyring if one is supplied. The key and any links to the key
517 * will be automatically garbage collected after the timeout expires.
518 *
519 * Negative keys are used to rate limit repeated request_key() calls by causing
520 * them to return the stored error code (typically ENOKEY) until the negative
521 * key expires.
522 *
523 * If successful, 0 is returned, the authorisation token is revoked and anyone
524 * waiting for the key is woken up. If the key was already instantiated,
525 * -EBUSY will be returned.
526 */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)527 int key_reject_and_link(struct key *key,
528 unsigned timeout,
529 unsigned error,
530 struct key *keyring,
531 struct key *authkey)
532 {
533 unsigned long prealloc;
534 struct timespec now;
535 int ret, awaken, link_ret = 0;
536
537 key_check(key);
538 key_check(keyring);
539
540 awaken = 0;
541 ret = -EBUSY;
542
543 if (keyring)
544 link_ret = __key_link_begin(keyring, key->type,
545 key->description, &prealloc);
546
547 mutex_lock(&key_construction_mutex);
548
549 /* can't instantiate twice */
550 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
551 /* mark the key as being negatively instantiated */
552 atomic_inc(&key->user->nikeys);
553 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
554 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
555 key->type_data.reject_error = -error;
556 now = current_kernel_time();
557 key->expiry = now.tv_sec + timeout;
558 key_schedule_gc(key->expiry + key_gc_delay);
559
560 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
561 awaken = 1;
562
563 ret = 0;
564
565 /* and link it into the destination keyring */
566 if (keyring && link_ret == 0)
567 __key_link(keyring, key, &prealloc);
568
569 /* disable the authorisation key */
570 if (authkey)
571 key_revoke(authkey);
572 }
573
574 mutex_unlock(&key_construction_mutex);
575
576 if (keyring && link_ret == 0)
577 __key_link_end(keyring, key->type, prealloc);
578
579 /* wake up anyone waiting for a key to be constructed */
580 if (awaken)
581 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
582
583 return ret == 0 ? link_ret : ret;
584 }
585 EXPORT_SYMBOL(key_reject_and_link);
586
587 /**
588 * key_put - Discard a reference to a key.
589 * @key: The key to discard a reference from.
590 *
591 * Discard a reference to a key, and when all the references are gone, we
592 * schedule the cleanup task to come and pull it out of the tree in process
593 * context at some later time.
594 */
key_put(struct key * key)595 void key_put(struct key *key)
596 {
597 if (key) {
598 key_check(key);
599
600 if (atomic_dec_and_test(&key->usage))
601 queue_work(system_nrt_wq, &key_gc_work);
602 }
603 }
604 EXPORT_SYMBOL(key_put);
605
606 /*
607 * Find a key by its serial number.
608 */
key_lookup(key_serial_t id)609 struct key *key_lookup(key_serial_t id)
610 {
611 struct rb_node *n;
612 struct key *key;
613
614 spin_lock(&key_serial_lock);
615
616 /* search the tree for the specified key */
617 n = key_serial_tree.rb_node;
618 while (n) {
619 key = rb_entry(n, struct key, serial_node);
620
621 if (id < key->serial)
622 n = n->rb_left;
623 else if (id > key->serial)
624 n = n->rb_right;
625 else
626 goto found;
627 }
628
629 not_found:
630 key = ERR_PTR(-ENOKEY);
631 goto error;
632
633 found:
634 /* pretend it doesn't exist if it is awaiting deletion */
635 if (atomic_read(&key->usage) == 0)
636 goto not_found;
637
638 /* this races with key_put(), but that doesn't matter since key_put()
639 * doesn't actually change the key
640 */
641 atomic_inc(&key->usage);
642
643 error:
644 spin_unlock(&key_serial_lock);
645 return key;
646 }
647
648 /*
649 * Find and lock the specified key type against removal.
650 *
651 * We return with the sem read-locked if successful. If the type wasn't
652 * available -ENOKEY is returned instead.
653 */
key_type_lookup(const char * type)654 struct key_type *key_type_lookup(const char *type)
655 {
656 struct key_type *ktype;
657
658 down_read(&key_types_sem);
659
660 /* look up the key type to see if it's one of the registered kernel
661 * types */
662 list_for_each_entry(ktype, &key_types_list, link) {
663 if (strcmp(ktype->name, type) == 0)
664 goto found_kernel_type;
665 }
666
667 up_read(&key_types_sem);
668 ktype = ERR_PTR(-ENOKEY);
669
670 found_kernel_type:
671 return ktype;
672 }
673
key_set_timeout(struct key * key,unsigned timeout)674 void key_set_timeout(struct key *key, unsigned timeout)
675 {
676 struct timespec now;
677 time_t expiry = 0;
678
679 /* make the changes with the locks held to prevent races */
680 down_write(&key->sem);
681
682 if (timeout > 0) {
683 now = current_kernel_time();
684 expiry = now.tv_sec + timeout;
685 }
686
687 key->expiry = expiry;
688 key_schedule_gc(key->expiry + key_gc_delay);
689
690 up_write(&key->sem);
691 }
692 EXPORT_SYMBOL_GPL(key_set_timeout);
693
694 /*
695 * Unlock a key type locked by key_type_lookup().
696 */
key_type_put(struct key_type * ktype)697 void key_type_put(struct key_type *ktype)
698 {
699 up_read(&key_types_sem);
700 }
701
702 /*
703 * Attempt to update an existing key.
704 *
705 * The key is given to us with an incremented refcount that we need to discard
706 * if we get an error.
707 */
__key_update(key_ref_t key_ref,const void * payload,size_t plen)708 static inline key_ref_t __key_update(key_ref_t key_ref,
709 const void *payload, size_t plen)
710 {
711 struct key *key = key_ref_to_ptr(key_ref);
712 int ret;
713
714 /* need write permission on the key to update it */
715 ret = key_permission(key_ref, KEY_WRITE);
716 if (ret < 0)
717 goto error;
718
719 ret = -EEXIST;
720 if (!key->type->update)
721 goto error;
722
723 down_write(&key->sem);
724
725 ret = key->type->update(key, payload, plen);
726 if (ret == 0)
727 /* updating a negative key instantiates it */
728 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
729
730 up_write(&key->sem);
731
732 if (ret < 0)
733 goto error;
734 out:
735 return key_ref;
736
737 error:
738 key_put(key);
739 key_ref = ERR_PTR(ret);
740 goto out;
741 }
742
743 /**
744 * key_create_or_update - Update or create and instantiate a key.
745 * @keyring_ref: A pointer to the destination keyring with possession flag.
746 * @type: The type of key.
747 * @description: The searchable description for the key.
748 * @payload: The data to use to instantiate or update the key.
749 * @plen: The length of @payload.
750 * @perm: The permissions mask for a new key.
751 * @flags: The quota flags for a new key.
752 *
753 * Search the destination keyring for a key of the same description and if one
754 * is found, update it, otherwise create and instantiate a new one and create a
755 * link to it from that keyring.
756 *
757 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
758 * concocted.
759 *
760 * Returns a pointer to the new key if successful, -ENODEV if the key type
761 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
762 * caller isn't permitted to modify the keyring or the LSM did not permit
763 * creation of the key.
764 *
765 * On success, the possession flag from the keyring ref will be tacked on to
766 * the key ref before it is returned.
767 */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)768 key_ref_t key_create_or_update(key_ref_t keyring_ref,
769 const char *type,
770 const char *description,
771 const void *payload,
772 size_t plen,
773 key_perm_t perm,
774 unsigned long flags)
775 {
776 unsigned long prealloc;
777 const struct cred *cred = current_cred();
778 struct key_type *ktype;
779 struct key *keyring, *key = NULL;
780 key_ref_t key_ref;
781 int ret;
782
783 /* look up the key type to see if it's one of the registered kernel
784 * types */
785 ktype = key_type_lookup(type);
786 if (IS_ERR(ktype)) {
787 key_ref = ERR_PTR(-ENODEV);
788 goto error;
789 }
790
791 key_ref = ERR_PTR(-EINVAL);
792 if (!ktype->match || !ktype->instantiate)
793 goto error_2;
794
795 keyring = key_ref_to_ptr(keyring_ref);
796
797 key_check(keyring);
798
799 key_ref = ERR_PTR(-ENOTDIR);
800 if (keyring->type != &key_type_keyring)
801 goto error_2;
802
803 ret = __key_link_begin(keyring, ktype, description, &prealloc);
804 if (ret < 0)
805 goto error_2;
806
807 /* if we're going to allocate a new key, we're going to have
808 * to modify the keyring */
809 ret = key_permission(keyring_ref, KEY_WRITE);
810 if (ret < 0) {
811 key_ref = ERR_PTR(ret);
812 goto error_3;
813 }
814
815 /* if it's possible to update this type of key, search for an existing
816 * key of the same type and description in the destination keyring and
817 * update that instead if possible
818 */
819 if (ktype->update) {
820 key_ref = __keyring_search_one(keyring_ref, ktype, description,
821 0);
822 if (!IS_ERR(key_ref))
823 goto found_matching_key;
824 }
825
826 /* if the client doesn't provide, decide on the permissions we want */
827 if (perm == KEY_PERM_UNDEF) {
828 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
829 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
830
831 if (ktype->read)
832 perm |= KEY_POS_READ | KEY_USR_READ;
833
834 if (ktype == &key_type_keyring || ktype->update)
835 perm |= KEY_USR_WRITE;
836 }
837
838 /* allocate a new key */
839 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
840 perm, flags);
841 if (IS_ERR(key)) {
842 key_ref = ERR_CAST(key);
843 goto error_3;
844 }
845
846 /* instantiate it and link it into the target keyring */
847 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
848 &prealloc);
849 if (ret < 0) {
850 key_put(key);
851 key_ref = ERR_PTR(ret);
852 goto error_3;
853 }
854
855 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
856
857 error_3:
858 __key_link_end(keyring, ktype, prealloc);
859 error_2:
860 key_type_put(ktype);
861 error:
862 return key_ref;
863
864 found_matching_key:
865 /* we found a matching key, so we're going to try to update it
866 * - we can drop the locks first as we have the key pinned
867 */
868 __key_link_end(keyring, ktype, prealloc);
869 key_type_put(ktype);
870
871 key_ref = __key_update(key_ref, payload, plen);
872 goto error;
873 }
874 EXPORT_SYMBOL(key_create_or_update);
875
876 /**
877 * key_update - Update a key's contents.
878 * @key_ref: The pointer (plus possession flag) to the key.
879 * @payload: The data to be used to update the key.
880 * @plen: The length of @payload.
881 *
882 * Attempt to update the contents of a key with the given payload data. The
883 * caller must be granted Write permission on the key. Negative keys can be
884 * instantiated by this method.
885 *
886 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
887 * type does not support updating. The key type may return other errors.
888 */
key_update(key_ref_t key_ref,const void * payload,size_t plen)889 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
890 {
891 struct key *key = key_ref_to_ptr(key_ref);
892 int ret;
893
894 key_check(key);
895
896 /* the key must be writable */
897 ret = key_permission(key_ref, KEY_WRITE);
898 if (ret < 0)
899 goto error;
900
901 /* attempt to update it if supported */
902 ret = -EOPNOTSUPP;
903 if (key->type->update) {
904 down_write(&key->sem);
905
906 ret = key->type->update(key, payload, plen);
907 if (ret == 0)
908 /* updating a negative key instantiates it */
909 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
910
911 up_write(&key->sem);
912 }
913
914 error:
915 return ret;
916 }
917 EXPORT_SYMBOL(key_update);
918
919 /**
920 * key_revoke - Revoke a key.
921 * @key: The key to be revoked.
922 *
923 * Mark a key as being revoked and ask the type to free up its resources. The
924 * revocation timeout is set and the key and all its links will be
925 * automatically garbage collected after key_gc_delay amount of time if they
926 * are not manually dealt with first.
927 */
key_revoke(struct key * key)928 void key_revoke(struct key *key)
929 {
930 struct timespec now;
931 time_t time;
932
933 key_check(key);
934
935 /* make sure no one's trying to change or use the key when we mark it
936 * - we tell lockdep that we might nest because we might be revoking an
937 * authorisation key whilst holding the sem on a key we've just
938 * instantiated
939 */
940 down_write_nested(&key->sem, 1);
941 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
942 key->type->revoke)
943 key->type->revoke(key);
944
945 /* set the death time to no more than the expiry time */
946 now = current_kernel_time();
947 time = now.tv_sec;
948 if (key->revoked_at == 0 || key->revoked_at > time) {
949 key->revoked_at = time;
950 key_schedule_gc(key->revoked_at + key_gc_delay);
951 }
952
953 up_write(&key->sem);
954 }
955 EXPORT_SYMBOL(key_revoke);
956
957 /**
958 * register_key_type - Register a type of key.
959 * @ktype: The new key type.
960 *
961 * Register a new key type.
962 *
963 * Returns 0 on success or -EEXIST if a type of this name already exists.
964 */
register_key_type(struct key_type * ktype)965 int register_key_type(struct key_type *ktype)
966 {
967 struct key_type *p;
968 int ret;
969
970 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
971
972 ret = -EEXIST;
973 down_write(&key_types_sem);
974
975 /* disallow key types with the same name */
976 list_for_each_entry(p, &key_types_list, link) {
977 if (strcmp(p->name, ktype->name) == 0)
978 goto out;
979 }
980
981 /* store the type */
982 list_add(&ktype->link, &key_types_list);
983 ret = 0;
984
985 out:
986 up_write(&key_types_sem);
987 return ret;
988 }
989 EXPORT_SYMBOL(register_key_type);
990
991 /**
992 * unregister_key_type - Unregister a type of key.
993 * @ktype: The key type.
994 *
995 * Unregister a key type and mark all the extant keys of this type as dead.
996 * Those keys of this type are then destroyed to get rid of their payloads and
997 * they and their links will be garbage collected as soon as possible.
998 */
unregister_key_type(struct key_type * ktype)999 void unregister_key_type(struct key_type *ktype)
1000 {
1001 down_write(&key_types_sem);
1002 list_del_init(&ktype->link);
1003 downgrade_write(&key_types_sem);
1004 key_gc_keytype(ktype);
1005 up_read(&key_types_sem);
1006 }
1007 EXPORT_SYMBOL(unregister_key_type);
1008
1009 /*
1010 * Initialise the key management state.
1011 */
key_init(void)1012 void __init key_init(void)
1013 {
1014 /* allocate a slab in which we can store keys */
1015 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1016 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1017
1018 /* add the special key types */
1019 list_add_tail(&key_type_keyring.link, &key_types_list);
1020 list_add_tail(&key_type_dead.link, &key_types_list);
1021 list_add_tail(&key_type_user.link, &key_types_list);
1022 list_add_tail(&key_type_logon.link, &key_types_list);
1023
1024 /* record the root user tracking */
1025 rb_link_node(&root_key_user.node,
1026 NULL,
1027 &key_user_tree.rb_node);
1028
1029 rb_insert_color(&root_key_user.node,
1030 &key_user_tree);
1031 }
1032