• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Key garbage collector
2  *
3  * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public Licence
8  * as published by the Free Software Foundation; either version
9  * 2 of the Licence, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/security.h>
15 #include <keys/keyring-type.h>
16 #include "internal.h"
17 
18 /*
19  * Delay between key revocation/expiry in seconds
20  */
21 unsigned key_gc_delay = 5 * 60;
22 
23 /*
24  * Reaper for unused keys.
25  */
26 static void key_garbage_collector(struct work_struct *work);
27 DECLARE_WORK(key_gc_work, key_garbage_collector);
28 
29 /*
30  * Reaper for links from keyrings to dead keys.
31  */
32 static void key_gc_timer_func(unsigned long);
33 static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
34 
35 static time_t key_gc_next_run = LONG_MAX;
36 static struct key_type *key_gc_dead_keytype;
37 
38 static unsigned long key_gc_flags;
39 #define KEY_GC_KEY_EXPIRED	0	/* A key expired and needs unlinking */
40 #define KEY_GC_REAP_KEYTYPE	1	/* A keytype is being unregistered */
41 #define KEY_GC_REAPING_KEYTYPE	2	/* Cleared when keytype reaped */
42 
43 
44 /*
45  * Any key whose type gets unregistered will be re-typed to this if it can't be
46  * immediately unlinked.
47  */
48 struct key_type key_type_dead = {
49 	.name = "dead",
50 };
51 
52 /*
53  * Schedule a garbage collection run.
54  * - time precision isn't particularly important
55  */
key_schedule_gc(time_t gc_at)56 void key_schedule_gc(time_t gc_at)
57 {
58 	unsigned long expires;
59 	time_t now = current_kernel_time().tv_sec;
60 
61 	kenter("%ld", gc_at - now);
62 
63 	if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
64 		kdebug("IMMEDIATE");
65 		queue_work(system_nrt_wq, &key_gc_work);
66 	} else if (gc_at < key_gc_next_run) {
67 		kdebug("DEFERRED");
68 		key_gc_next_run = gc_at;
69 		expires = jiffies + (gc_at - now) * HZ;
70 		mod_timer(&key_gc_timer, expires);
71 	}
72 }
73 
74 /*
75  * Some key's cleanup time was met after it expired, so we need to get the
76  * reaper to go through a cycle finding expired keys.
77  */
key_gc_timer_func(unsigned long data)78 static void key_gc_timer_func(unsigned long data)
79 {
80 	kenter("");
81 	key_gc_next_run = LONG_MAX;
82 	set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
83 	queue_work(system_nrt_wq, &key_gc_work);
84 }
85 
86 /*
87  * wait_on_bit() sleep function for uninterruptible waiting
88  */
key_gc_wait_bit(void * flags)89 static int key_gc_wait_bit(void *flags)
90 {
91 	schedule();
92 	return 0;
93 }
94 
95 /*
96  * Reap keys of dead type.
97  *
98  * We use three flags to make sure we see three complete cycles of the garbage
99  * collector: the first to mark keys of that type as being dead, the second to
100  * collect dead links and the third to clean up the dead keys.  We have to be
101  * careful as there may already be a cycle in progress.
102  *
103  * The caller must be holding key_types_sem.
104  */
key_gc_keytype(struct key_type * ktype)105 void key_gc_keytype(struct key_type *ktype)
106 {
107 	kenter("%s", ktype->name);
108 
109 	key_gc_dead_keytype = ktype;
110 	set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
111 	smp_mb();
112 	set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
113 
114 	kdebug("schedule");
115 	queue_work(system_nrt_wq, &key_gc_work);
116 
117 	kdebug("sleep");
118 	wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE, key_gc_wait_bit,
119 		    TASK_UNINTERRUPTIBLE);
120 
121 	key_gc_dead_keytype = NULL;
122 	kleave("");
123 }
124 
125 /*
126  * Garbage collect pointers from a keyring.
127  *
128  * Not called with any locks held.  The keyring's key struct will not be
129  * deallocated under us as only our caller may deallocate it.
130  */
key_gc_keyring(struct key * keyring,time_t limit)131 static void key_gc_keyring(struct key *keyring, time_t limit)
132 {
133 	struct keyring_list *klist;
134 	struct key *key;
135 	int loop;
136 
137 	kenter("%x", key_serial(keyring));
138 
139 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
140 		goto dont_gc;
141 
142 	/* scan the keyring looking for dead keys */
143 	rcu_read_lock();
144 	klist = rcu_dereference(keyring->payload.subscriptions);
145 	if (!klist)
146 		goto unlock_dont_gc;
147 
148 	loop = klist->nkeys;
149 	smp_rmb();
150 	for (loop--; loop >= 0; loop--) {
151 		key = klist->keys[loop];
152 		if (test_bit(KEY_FLAG_DEAD, &key->flags) ||
153 		    (key->expiry > 0 && key->expiry <= limit))
154 			goto do_gc;
155 	}
156 
157 unlock_dont_gc:
158 	rcu_read_unlock();
159 dont_gc:
160 	kleave(" [no gc]");
161 	return;
162 
163 do_gc:
164 	rcu_read_unlock();
165 
166 	keyring_gc(keyring, limit);
167 	kleave(" [gc]");
168 }
169 
170 /*
171  * Garbage collect an unreferenced, detached key
172  */
key_gc_unused_key(struct key * key)173 static noinline void key_gc_unused_key(struct key *key)
174 {
175 	key_check(key);
176 
177 	security_key_free(key);
178 
179 	/* deal with the user's key tracking and quota */
180 	if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
181 		spin_lock(&key->user->lock);
182 		key->user->qnkeys--;
183 		key->user->qnbytes -= key->quotalen;
184 		spin_unlock(&key->user->lock);
185 	}
186 
187 	atomic_dec(&key->user->nkeys);
188 	if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
189 		atomic_dec(&key->user->nikeys);
190 
191 	/* now throw away the key memory */
192 	if (key->type->destroy)
193 		key->type->destroy(key);
194 
195 	key_user_put(key->user);
196 
197 	kfree(key->description);
198 
199 #ifdef KEY_DEBUGGING
200 	key->magic = KEY_DEBUG_MAGIC_X;
201 #endif
202 	kmem_cache_free(key_jar, key);
203 }
204 
205 /*
206  * Garbage collector for unused keys.
207  *
208  * This is done in process context so that we don't have to disable interrupts
209  * all over the place.  key_put() schedules this rather than trying to do the
210  * cleanup itself, which means key_put() doesn't have to sleep.
211  */
key_garbage_collector(struct work_struct * work)212 static void key_garbage_collector(struct work_struct *work)
213 {
214 	static u8 gc_state;		/* Internal persistent state */
215 #define KEY_GC_REAP_AGAIN	0x01	/* - Need another cycle */
216 #define KEY_GC_REAPING_LINKS	0x02	/* - We need to reap links */
217 #define KEY_GC_SET_TIMER	0x04	/* - We need to restart the timer */
218 #define KEY_GC_REAPING_DEAD_1	0x10	/* - We need to mark dead keys */
219 #define KEY_GC_REAPING_DEAD_2	0x20	/* - We need to reap dead key links */
220 #define KEY_GC_REAPING_DEAD_3	0x40	/* - We need to reap dead keys */
221 #define KEY_GC_FOUND_DEAD_KEY	0x80	/* - We found at least one dead key */
222 
223 	struct rb_node *cursor;
224 	struct key *key;
225 	time_t new_timer, limit;
226 
227 	kenter("[%lx,%x]", key_gc_flags, gc_state);
228 
229 	limit = current_kernel_time().tv_sec;
230 	if (limit > key_gc_delay)
231 		limit -= key_gc_delay;
232 	else
233 		limit = key_gc_delay;
234 
235 	/* Work out what we're going to be doing in this pass */
236 	gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
237 	gc_state <<= 1;
238 	if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
239 		gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
240 
241 	if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
242 		gc_state |= KEY_GC_REAPING_DEAD_1;
243 	kdebug("new pass %x", gc_state);
244 
245 	new_timer = LONG_MAX;
246 
247 	/* As only this function is permitted to remove things from the key
248 	 * serial tree, if cursor is non-NULL then it will always point to a
249 	 * valid node in the tree - even if lock got dropped.
250 	 */
251 	spin_lock(&key_serial_lock);
252 	cursor = rb_first(&key_serial_tree);
253 
254 continue_scanning:
255 	while (cursor) {
256 		key = rb_entry(cursor, struct key, serial_node);
257 		cursor = rb_next(cursor);
258 
259 		if (atomic_read(&key->usage) == 0)
260 			goto found_unreferenced_key;
261 
262 		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
263 			if (key->type == key_gc_dead_keytype) {
264 				gc_state |= KEY_GC_FOUND_DEAD_KEY;
265 				set_bit(KEY_FLAG_DEAD, &key->flags);
266 				key->perm = 0;
267 				goto skip_dead_key;
268 			}
269 		}
270 
271 		if (gc_state & KEY_GC_SET_TIMER) {
272 			if (key->expiry > limit && key->expiry < new_timer) {
273 				kdebug("will expire %x in %ld",
274 				       key_serial(key), key->expiry - limit);
275 				new_timer = key->expiry;
276 			}
277 		}
278 
279 		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
280 			if (key->type == key_gc_dead_keytype)
281 				gc_state |= KEY_GC_FOUND_DEAD_KEY;
282 
283 		if ((gc_state & KEY_GC_REAPING_LINKS) ||
284 		    unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
285 			if (key->type == &key_type_keyring)
286 				goto found_keyring;
287 		}
288 
289 		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
290 			if (key->type == key_gc_dead_keytype)
291 				goto destroy_dead_key;
292 
293 	skip_dead_key:
294 		if (spin_is_contended(&key_serial_lock) || need_resched())
295 			goto contended;
296 	}
297 
298 contended:
299 	spin_unlock(&key_serial_lock);
300 
301 maybe_resched:
302 	if (cursor) {
303 		cond_resched();
304 		spin_lock(&key_serial_lock);
305 		goto continue_scanning;
306 	}
307 
308 	/* We've completed the pass.  Set the timer if we need to and queue a
309 	 * new cycle if necessary.  We keep executing cycles until we find one
310 	 * where we didn't reap any keys.
311 	 */
312 	kdebug("pass complete");
313 
314 	if (gc_state & KEY_GC_SET_TIMER && new_timer != (time_t)LONG_MAX) {
315 		new_timer += key_gc_delay;
316 		key_schedule_gc(new_timer);
317 	}
318 
319 	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
320 		/* Make sure everyone revalidates their keys if we marked a
321 		 * bunch as being dead and make sure all keyring ex-payloads
322 		 * are destroyed.
323 		 */
324 		kdebug("dead sync");
325 		synchronize_rcu();
326 	}
327 
328 	if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
329 				 KEY_GC_REAPING_DEAD_2))) {
330 		if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
331 			/* No remaining dead keys: short circuit the remaining
332 			 * keytype reap cycles.
333 			 */
334 			kdebug("dead short");
335 			gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
336 			gc_state |= KEY_GC_REAPING_DEAD_3;
337 		} else {
338 			gc_state |= KEY_GC_REAP_AGAIN;
339 		}
340 	}
341 
342 	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
343 		kdebug("dead wake");
344 		smp_mb();
345 		clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
346 		wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
347 	}
348 
349 	if (gc_state & KEY_GC_REAP_AGAIN)
350 		queue_work(system_nrt_wq, &key_gc_work);
351 	kleave(" [end %x]", gc_state);
352 	return;
353 
354 	/* We found an unreferenced key - once we've removed it from the tree,
355 	 * we can safely drop the lock.
356 	 */
357 found_unreferenced_key:
358 	kdebug("unrefd key %d", key->serial);
359 	rb_erase(&key->serial_node, &key_serial_tree);
360 	spin_unlock(&key_serial_lock);
361 
362 	key_gc_unused_key(key);
363 	gc_state |= KEY_GC_REAP_AGAIN;
364 	goto maybe_resched;
365 
366 	/* We found a keyring and we need to check the payload for links to
367 	 * dead or expired keys.  We don't flag another reap immediately as we
368 	 * have to wait for the old payload to be destroyed by RCU before we
369 	 * can reap the keys to which it refers.
370 	 */
371 found_keyring:
372 	spin_unlock(&key_serial_lock);
373 	kdebug("scan keyring %d", key->serial);
374 	key_gc_keyring(key, limit);
375 	goto maybe_resched;
376 
377 	/* We found a dead key that is still referenced.  Reset its type and
378 	 * destroy its payload with its semaphore held.
379 	 */
380 destroy_dead_key:
381 	spin_unlock(&key_serial_lock);
382 	kdebug("destroy key %d", key->serial);
383 	down_write(&key->sem);
384 	key->type = &key_type_dead;
385 	if (key_gc_dead_keytype->destroy)
386 		key_gc_dead_keytype->destroy(key);
387 	memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
388 	up_write(&key->sem);
389 	goto maybe_resched;
390 }
391