• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, yu.liu@freescale.com
5  *
6  * Description:
7  * This file is based on arch/powerpc/kvm/44x_tlb.c,
8  * by Hollis Blanchard <hollisb@us.ibm.com>.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_host.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/hugetlb.h>
28 #include <asm/kvm_ppc.h>
29 #include <asm/kvm_e500.h>
30 
31 #include "../mm/mmu_decl.h"
32 #include "e500_tlb.h"
33 #include "trace.h"
34 #include "timing.h"
35 
36 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
37 
38 struct id {
39 	unsigned long val;
40 	struct id **pentry;
41 };
42 
43 #define NUM_TIDS 256
44 
45 /*
46  * This table provide mappings from:
47  * (guestAS,guestTID,guestPR) --> ID of physical cpu
48  * guestAS	[0..1]
49  * guestTID	[0..255]
50  * guestPR	[0..1]
51  * ID		[1..255]
52  * Each vcpu keeps one vcpu_id_table.
53  */
54 struct vcpu_id_table {
55 	struct id id[2][NUM_TIDS][2];
56 };
57 
58 /*
59  * This table provide reversed mappings of vcpu_id_table:
60  * ID --> address of vcpu_id_table item.
61  * Each physical core has one pcpu_id_table.
62  */
63 struct pcpu_id_table {
64 	struct id *entry[NUM_TIDS];
65 };
66 
67 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
68 
69 /* This variable keeps last used shadow ID on local core.
70  * The valid range of shadow ID is [1..255] */
71 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
72 
73 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
74 
get_entry(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int entry)75 static struct kvm_book3e_206_tlb_entry *get_entry(
76 	struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int entry)
77 {
78 	int offset = vcpu_e500->gtlb_offset[tlbsel];
79 	return &vcpu_e500->gtlb_arch[offset + entry];
80 }
81 
82 /*
83  * Allocate a free shadow id and setup a valid sid mapping in given entry.
84  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
85  *
86  * The caller must have preemption disabled, and keep it that way until
87  * it has finished with the returned shadow id (either written into the
88  * TLB or arch.shadow_pid, or discarded).
89  */
local_sid_setup_one(struct id * entry)90 static inline int local_sid_setup_one(struct id *entry)
91 {
92 	unsigned long sid;
93 	int ret = -1;
94 
95 	sid = ++(__get_cpu_var(pcpu_last_used_sid));
96 	if (sid < NUM_TIDS) {
97 		__get_cpu_var(pcpu_sids).entry[sid] = entry;
98 		entry->val = sid;
99 		entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
100 		ret = sid;
101 	}
102 
103 	/*
104 	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
105 	 * the caller will invalidate everything and start over.
106 	 *
107 	 * sid > NUM_TIDS indicates a race, which we disable preemption to
108 	 * avoid.
109 	 */
110 	WARN_ON(sid > NUM_TIDS);
111 
112 	return ret;
113 }
114 
115 /*
116  * Check if given entry contain a valid shadow id mapping.
117  * An ID mapping is considered valid only if
118  * both vcpu and pcpu know this mapping.
119  *
120  * The caller must have preemption disabled, and keep it that way until
121  * it has finished with the returned shadow id (either written into the
122  * TLB or arch.shadow_pid, or discarded).
123  */
local_sid_lookup(struct id * entry)124 static inline int local_sid_lookup(struct id *entry)
125 {
126 	if (entry && entry->val != 0 &&
127 	    __get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
128 	    entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
129 		return entry->val;
130 	return -1;
131 }
132 
133 /* Invalidate all id mappings on local core -- call with preempt disabled */
local_sid_destroy_all(void)134 static inline void local_sid_destroy_all(void)
135 {
136 	__get_cpu_var(pcpu_last_used_sid) = 0;
137 	memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
138 }
139 
kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 * vcpu_e500)140 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
141 {
142 	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
143 	return vcpu_e500->idt;
144 }
145 
kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 * vcpu_e500)146 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
147 {
148 	kfree(vcpu_e500->idt);
149 }
150 
151 /* Invalidate all mappings on vcpu */
kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 * vcpu_e500)152 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
153 {
154 	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
155 
156 	/* Update shadow pid when mappings are changed */
157 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
158 }
159 
160 /* Invalidate one ID mapping on vcpu */
kvmppc_e500_id_table_reset_one(struct kvmppc_vcpu_e500 * vcpu_e500,int as,int pid,int pr)161 static inline void kvmppc_e500_id_table_reset_one(
162 			       struct kvmppc_vcpu_e500 *vcpu_e500,
163 			       int as, int pid, int pr)
164 {
165 	struct vcpu_id_table *idt = vcpu_e500->idt;
166 
167 	BUG_ON(as >= 2);
168 	BUG_ON(pid >= NUM_TIDS);
169 	BUG_ON(pr >= 2);
170 
171 	idt->id[as][pid][pr].val = 0;
172 	idt->id[as][pid][pr].pentry = NULL;
173 
174 	/* Update shadow pid when mappings are changed */
175 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
176 }
177 
178 /*
179  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
180  * This function first lookup if a valid mapping exists,
181  * if not, then creates a new one.
182  *
183  * The caller must have preemption disabled, and keep it that way until
184  * it has finished with the returned shadow id (either written into the
185  * TLB or arch.shadow_pid, or discarded).
186  */
kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 * vcpu_e500,unsigned int as,unsigned int gid,unsigned int pr,int avoid_recursion)187 static unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
188 					unsigned int as, unsigned int gid,
189 					unsigned int pr, int avoid_recursion)
190 {
191 	struct vcpu_id_table *idt = vcpu_e500->idt;
192 	int sid;
193 
194 	BUG_ON(as >= 2);
195 	BUG_ON(gid >= NUM_TIDS);
196 	BUG_ON(pr >= 2);
197 
198 	sid = local_sid_lookup(&idt->id[as][gid][pr]);
199 
200 	while (sid <= 0) {
201 		/* No mapping yet */
202 		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
203 		if (sid <= 0) {
204 			_tlbil_all();
205 			local_sid_destroy_all();
206 		}
207 
208 		/* Update shadow pid when mappings are changed */
209 		if (!avoid_recursion)
210 			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
211 	}
212 
213 	return sid;
214 }
215 
216 /* Map guest pid to shadow.
217  * We use PID to keep shadow of current guest non-zero PID,
218  * and use PID1 to keep shadow of guest zero PID.
219  * So that guest tlbe with TID=0 can be accessed at any time */
kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 * vcpu_e500)220 void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
221 {
222 	preempt_disable();
223 	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
224 			get_cur_as(&vcpu_e500->vcpu),
225 			get_cur_pid(&vcpu_e500->vcpu),
226 			get_cur_pr(&vcpu_e500->vcpu), 1);
227 	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
228 			get_cur_as(&vcpu_e500->vcpu), 0,
229 			get_cur_pr(&vcpu_e500->vcpu), 1);
230 	preempt_enable();
231 }
232 
gtlb0_get_next_victim(struct kvmppc_vcpu_e500 * vcpu_e500)233 static inline unsigned int gtlb0_get_next_victim(
234 		struct kvmppc_vcpu_e500 *vcpu_e500)
235 {
236 	unsigned int victim;
237 
238 	victim = vcpu_e500->gtlb_nv[0]++;
239 	if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
240 		vcpu_e500->gtlb_nv[0] = 0;
241 
242 	return victim;
243 }
244 
tlb1_max_shadow_size(void)245 static inline unsigned int tlb1_max_shadow_size(void)
246 {
247 	/* reserve one entry for magic page */
248 	return host_tlb_params[1].entries - tlbcam_index - 1;
249 }
250 
tlbe_is_writable(struct kvm_book3e_206_tlb_entry * tlbe)251 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
252 {
253 	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
254 }
255 
e500_shadow_mas3_attrib(u32 mas3,int usermode)256 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
257 {
258 	/* Mask off reserved bits. */
259 	mas3 &= MAS3_ATTRIB_MASK;
260 
261 	if (!usermode) {
262 		/* Guest is in supervisor mode,
263 		 * so we need to translate guest
264 		 * supervisor permissions into user permissions. */
265 		mas3 &= ~E500_TLB_USER_PERM_MASK;
266 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
267 	}
268 
269 	return mas3 | E500_TLB_SUPER_PERM_MASK;
270 }
271 
e500_shadow_mas2_attrib(u32 mas2,int usermode)272 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
273 {
274 #ifdef CONFIG_SMP
275 	return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
276 #else
277 	return mas2 & MAS2_ATTRIB_MASK;
278 #endif
279 }
280 
281 /*
282  * writing shadow tlb entry to host TLB
283  */
__write_host_tlbe(struct kvm_book3e_206_tlb_entry * stlbe,uint32_t mas0)284 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
285 				     uint32_t mas0)
286 {
287 	unsigned long flags;
288 
289 	local_irq_save(flags);
290 	mtspr(SPRN_MAS0, mas0);
291 	mtspr(SPRN_MAS1, stlbe->mas1);
292 	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
293 	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
294 	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
295 	asm volatile("isync; tlbwe" : : : "memory");
296 	local_irq_restore(flags);
297 
298 	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
299 	                              stlbe->mas2, stlbe->mas7_3);
300 }
301 
302 /*
303  * Acquire a mas0 with victim hint, as if we just took a TLB miss.
304  *
305  * We don't care about the address we're searching for, other than that it's
306  * in the right set and is not present in the TLB.  Using a zero PID and a
307  * userspace address means we don't have to set and then restore MAS5, or
308  * calculate a proper MAS6 value.
309  */
get_host_mas0(unsigned long eaddr)310 static u32 get_host_mas0(unsigned long eaddr)
311 {
312 	unsigned long flags;
313 	u32 mas0;
314 
315 	local_irq_save(flags);
316 	mtspr(SPRN_MAS6, 0);
317 	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
318 	mas0 = mfspr(SPRN_MAS0);
319 	local_irq_restore(flags);
320 
321 	return mas0;
322 }
323 
324 /* sesel is for tlb1 only */
write_host_tlbe(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int sesel,struct kvm_book3e_206_tlb_entry * stlbe)325 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
326 		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
327 {
328 	u32 mas0;
329 
330 	if (tlbsel == 0) {
331 		mas0 = get_host_mas0(stlbe->mas2);
332 		__write_host_tlbe(stlbe, mas0);
333 	} else {
334 		__write_host_tlbe(stlbe,
335 				  MAS0_TLBSEL(1) |
336 				  MAS0_ESEL(to_htlb1_esel(sesel)));
337 	}
338 }
339 
kvmppc_map_magic(struct kvm_vcpu * vcpu)340 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
341 {
342 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
343 	struct kvm_book3e_206_tlb_entry magic;
344 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
345 	unsigned int stid;
346 	pfn_t pfn;
347 
348 	pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
349 	get_page(pfn_to_page(pfn));
350 
351 	preempt_disable();
352 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
353 
354 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
355 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
356 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
357 	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
358 		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
359 	magic.mas8 = 0;
360 
361 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
362 	preempt_enable();
363 }
364 
kvmppc_e500_tlb_load(struct kvm_vcpu * vcpu,int cpu)365 void kvmppc_e500_tlb_load(struct kvm_vcpu *vcpu, int cpu)
366 {
367 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
368 
369 	/* Shadow PID may be expired on local core */
370 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
371 }
372 
kvmppc_e500_tlb_put(struct kvm_vcpu * vcpu)373 void kvmppc_e500_tlb_put(struct kvm_vcpu *vcpu)
374 {
375 }
376 
inval_gtlbe_on_host(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)377 static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
378 				int tlbsel, int esel)
379 {
380 	struct kvm_book3e_206_tlb_entry *gtlbe =
381 		get_entry(vcpu_e500, tlbsel, esel);
382 	struct vcpu_id_table *idt = vcpu_e500->idt;
383 	unsigned int pr, tid, ts, pid;
384 	u32 val, eaddr;
385 	unsigned long flags;
386 
387 	ts = get_tlb_ts(gtlbe);
388 	tid = get_tlb_tid(gtlbe);
389 
390 	preempt_disable();
391 
392 	/* One guest ID may be mapped to two shadow IDs */
393 	for (pr = 0; pr < 2; pr++) {
394 		/*
395 		 * The shadow PID can have a valid mapping on at most one
396 		 * host CPU.  In the common case, it will be valid on this
397 		 * CPU, in which case (for TLB0) we do a local invalidation
398 		 * of the specific address.
399 		 *
400 		 * If the shadow PID is not valid on the current host CPU, or
401 		 * if we're invalidating a TLB1 entry, we invalidate the
402 		 * entire shadow PID.
403 		 */
404 		if (tlbsel == 1 ||
405 		    (pid = local_sid_lookup(&idt->id[ts][tid][pr])) <= 0) {
406 			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
407 			continue;
408 		}
409 
410 		/*
411 		 * The guest is invalidating a TLB0 entry which is in a PID
412 		 * that has a valid shadow mapping on this host CPU.  We
413 		 * search host TLB0 to invalidate it's shadow TLB entry,
414 		 * similar to __tlbil_va except that we need to look in AS1.
415 		 */
416 		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
417 		eaddr = get_tlb_eaddr(gtlbe);
418 
419 		local_irq_save(flags);
420 
421 		mtspr(SPRN_MAS6, val);
422 		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
423 		val = mfspr(SPRN_MAS1);
424 		if (val & MAS1_VALID) {
425 			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
426 			asm volatile("tlbwe");
427 		}
428 
429 		local_irq_restore(flags);
430 	}
431 
432 	preempt_enable();
433 }
434 
tlb0_set_base(gva_t addr,int sets,int ways)435 static int tlb0_set_base(gva_t addr, int sets, int ways)
436 {
437 	int set_base;
438 
439 	set_base = (addr >> PAGE_SHIFT) & (sets - 1);
440 	set_base *= ways;
441 
442 	return set_base;
443 }
444 
gtlb0_set_base(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t addr)445 static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
446 {
447 	return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
448 			     vcpu_e500->gtlb_params[0].ways);
449 }
450 
get_tlb_esel(struct kvm_vcpu * vcpu,int tlbsel)451 static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
452 {
453 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
454 	int esel = get_tlb_esel_bit(vcpu);
455 
456 	if (tlbsel == 0) {
457 		esel &= vcpu_e500->gtlb_params[0].ways - 1;
458 		esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
459 	} else {
460 		esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
461 	}
462 
463 	return esel;
464 }
465 
466 /* Search the guest TLB for a matching entry. */
kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 * vcpu_e500,gva_t eaddr,int tlbsel,unsigned int pid,int as)467 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
468 		gva_t eaddr, int tlbsel, unsigned int pid, int as)
469 {
470 	int size = vcpu_e500->gtlb_params[tlbsel].entries;
471 	unsigned int set_base, offset;
472 	int i;
473 
474 	if (tlbsel == 0) {
475 		set_base = gtlb0_set_base(vcpu_e500, eaddr);
476 		size = vcpu_e500->gtlb_params[0].ways;
477 	} else {
478 		set_base = 0;
479 	}
480 
481 	offset = vcpu_e500->gtlb_offset[tlbsel];
482 
483 	for (i = 0; i < size; i++) {
484 		struct kvm_book3e_206_tlb_entry *tlbe =
485 			&vcpu_e500->gtlb_arch[offset + set_base + i];
486 		unsigned int tid;
487 
488 		if (eaddr < get_tlb_eaddr(tlbe))
489 			continue;
490 
491 		if (eaddr > get_tlb_end(tlbe))
492 			continue;
493 
494 		tid = get_tlb_tid(tlbe);
495 		if (tid && (tid != pid))
496 			continue;
497 
498 		if (!get_tlb_v(tlbe))
499 			continue;
500 
501 		if (get_tlb_ts(tlbe) != as && as != -1)
502 			continue;
503 
504 		return set_base + i;
505 	}
506 
507 	return -1;
508 }
509 
kvmppc_e500_ref_setup(struct tlbe_ref * ref,struct kvm_book3e_206_tlb_entry * gtlbe,pfn_t pfn)510 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
511 					 struct kvm_book3e_206_tlb_entry *gtlbe,
512 					 pfn_t pfn)
513 {
514 	ref->pfn = pfn;
515 	ref->flags = E500_TLB_VALID;
516 
517 	if (tlbe_is_writable(gtlbe))
518 		ref->flags |= E500_TLB_DIRTY;
519 }
520 
kvmppc_e500_ref_release(struct tlbe_ref * ref)521 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
522 {
523 	if (ref->flags & E500_TLB_VALID) {
524 		if (ref->flags & E500_TLB_DIRTY)
525 			kvm_release_pfn_dirty(ref->pfn);
526 		else
527 			kvm_release_pfn_clean(ref->pfn);
528 
529 		ref->flags = 0;
530 	}
531 }
532 
clear_tlb_privs(struct kvmppc_vcpu_e500 * vcpu_e500)533 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
534 {
535 	int tlbsel = 0;
536 	int i;
537 
538 	for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
539 		struct tlbe_ref *ref =
540 			&vcpu_e500->gtlb_priv[tlbsel][i].ref;
541 		kvmppc_e500_ref_release(ref);
542 	}
543 }
544 
clear_tlb_refs(struct kvmppc_vcpu_e500 * vcpu_e500)545 static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
546 {
547 	int stlbsel = 1;
548 	int i;
549 
550 	kvmppc_e500_id_table_reset_all(vcpu_e500);
551 
552 	for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
553 		struct tlbe_ref *ref =
554 			&vcpu_e500->tlb_refs[stlbsel][i];
555 		kvmppc_e500_ref_release(ref);
556 	}
557 
558 	clear_tlb_privs(vcpu_e500);
559 }
560 
kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu * vcpu,unsigned int eaddr,int as)561 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
562 		unsigned int eaddr, int as)
563 {
564 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
565 	unsigned int victim, pidsel, tsized;
566 	int tlbsel;
567 
568 	/* since we only have two TLBs, only lower bit is used. */
569 	tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
570 	victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
571 	pidsel = (vcpu->arch.shared->mas4 >> 16) & 0xf;
572 	tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
573 
574 	vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
575 		| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
576 	vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
577 		| MAS1_TID(vcpu_e500->pid[pidsel])
578 		| MAS1_TSIZE(tsized);
579 	vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
580 		| (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
581 	vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
582 	vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
583 		| (get_cur_pid(vcpu) << 16)
584 		| (as ? MAS6_SAS : 0);
585 }
586 
587 /* TID must be supplied by the caller */
kvmppc_e500_setup_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe,int tsize,struct tlbe_ref * ref,u64 gvaddr,struct kvm_book3e_206_tlb_entry * stlbe)588 static inline void kvmppc_e500_setup_stlbe(
589 	struct kvmppc_vcpu_e500 *vcpu_e500,
590 	struct kvm_book3e_206_tlb_entry *gtlbe,
591 	int tsize, struct tlbe_ref *ref, u64 gvaddr,
592 	struct kvm_book3e_206_tlb_entry *stlbe)
593 {
594 	pfn_t pfn = ref->pfn;
595 
596 	BUG_ON(!(ref->flags & E500_TLB_VALID));
597 
598 	/* Force TS=1 IPROT=0 for all guest mappings. */
599 	stlbe->mas1 = MAS1_TSIZE(tsize) | MAS1_TS | MAS1_VALID;
600 	stlbe->mas2 = (gvaddr & MAS2_EPN)
601 		| e500_shadow_mas2_attrib(gtlbe->mas2,
602 				vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
603 	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT)
604 		| e500_shadow_mas3_attrib(gtlbe->mas7_3,
605 				vcpu_e500->vcpu.arch.shared->msr & MSR_PR);
606 }
607 
kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,int tlbsel,struct kvm_book3e_206_tlb_entry * stlbe,struct tlbe_ref * ref)608 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
609 	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
610 	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
611 	struct tlbe_ref *ref)
612 {
613 	struct kvm_memory_slot *slot;
614 	unsigned long pfn, hva;
615 	int pfnmap = 0;
616 	int tsize = BOOK3E_PAGESZ_4K;
617 
618 	/*
619 	 * Translate guest physical to true physical, acquiring
620 	 * a page reference if it is normal, non-reserved memory.
621 	 *
622 	 * gfn_to_memslot() must succeed because otherwise we wouldn't
623 	 * have gotten this far.  Eventually we should just pass the slot
624 	 * pointer through from the first lookup.
625 	 */
626 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
627 	hva = gfn_to_hva_memslot(slot, gfn);
628 
629 	if (tlbsel == 1) {
630 		struct vm_area_struct *vma;
631 		down_read(&current->mm->mmap_sem);
632 
633 		vma = find_vma(current->mm, hva);
634 		if (vma && hva >= vma->vm_start &&
635 		    (vma->vm_flags & VM_PFNMAP)) {
636 			/*
637 			 * This VMA is a physically contiguous region (e.g.
638 			 * /dev/mem) that bypasses normal Linux page
639 			 * management.  Find the overlap between the
640 			 * vma and the memslot.
641 			 */
642 
643 			unsigned long start, end;
644 			unsigned long slot_start, slot_end;
645 
646 			pfnmap = 1;
647 
648 			start = vma->vm_pgoff;
649 			end = start +
650 			      ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
651 
652 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
653 
654 			slot_start = pfn - (gfn - slot->base_gfn);
655 			slot_end = slot_start + slot->npages;
656 
657 			if (start < slot_start)
658 				start = slot_start;
659 			if (end > slot_end)
660 				end = slot_end;
661 
662 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
663 				MAS1_TSIZE_SHIFT;
664 
665 			/*
666 			 * e500 doesn't implement the lowest tsize bit,
667 			 * or 1K pages.
668 			 */
669 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
670 
671 			/*
672 			 * Now find the largest tsize (up to what the guest
673 			 * requested) that will cover gfn, stay within the
674 			 * range, and for which gfn and pfn are mutually
675 			 * aligned.
676 			 */
677 
678 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
679 				unsigned long gfn_start, gfn_end, tsize_pages;
680 				tsize_pages = 1 << (tsize - 2);
681 
682 				gfn_start = gfn & ~(tsize_pages - 1);
683 				gfn_end = gfn_start + tsize_pages;
684 
685 				if (gfn_start + pfn - gfn < start)
686 					continue;
687 				if (gfn_end + pfn - gfn > end)
688 					continue;
689 				if ((gfn & (tsize_pages - 1)) !=
690 				    (pfn & (tsize_pages - 1)))
691 					continue;
692 
693 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
694 				pfn &= ~(tsize_pages - 1);
695 				break;
696 			}
697 		} else if (vma && hva >= vma->vm_start &&
698 			   (vma->vm_flags & VM_HUGETLB)) {
699 			unsigned long psize = vma_kernel_pagesize(vma);
700 
701 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
702 				MAS1_TSIZE_SHIFT;
703 
704 			/*
705 			 * Take the largest page size that satisfies both host
706 			 * and guest mapping
707 			 */
708 			tsize = min(__ilog2(psize) - 10, tsize);
709 
710 			/*
711 			 * e500 doesn't implement the lowest tsize bit,
712 			 * or 1K pages.
713 			 */
714 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
715 		}
716 
717 		up_read(&current->mm->mmap_sem);
718 	}
719 
720 	if (likely(!pfnmap)) {
721 		unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
722 		pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
723 		if (is_error_pfn(pfn)) {
724 			printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
725 					(long)gfn);
726 			kvm_release_pfn_clean(pfn);
727 			return;
728 		}
729 
730 		/* Align guest and physical address to page map boundaries */
731 		pfn &= ~(tsize_pages - 1);
732 		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
733 	}
734 
735 	/* Drop old ref and setup new one. */
736 	kvmppc_e500_ref_release(ref);
737 	kvmppc_e500_ref_setup(ref, gtlbe, pfn);
738 
739 	kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, tsize, ref, gvaddr, stlbe);
740 }
741 
742 /* XXX only map the one-one case, for now use TLB0 */
kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 * vcpu_e500,int esel,struct kvm_book3e_206_tlb_entry * stlbe)743 static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
744 				 int esel,
745 				 struct kvm_book3e_206_tlb_entry *stlbe)
746 {
747 	struct kvm_book3e_206_tlb_entry *gtlbe;
748 	struct tlbe_ref *ref;
749 
750 	gtlbe = get_entry(vcpu_e500, 0, esel);
751 	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
752 
753 	kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
754 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
755 			gtlbe, 0, stlbe, ref);
756 }
757 
758 /* Caller must ensure that the specified guest TLB entry is safe to insert into
759  * the shadow TLB. */
760 /* XXX for both one-one and one-to-many , for now use TLB1 */
kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe)761 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
762 		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
763 		struct kvm_book3e_206_tlb_entry *stlbe)
764 {
765 	struct tlbe_ref *ref;
766 	unsigned int victim;
767 
768 	victim = vcpu_e500->host_tlb1_nv++;
769 
770 	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
771 		vcpu_e500->host_tlb1_nv = 0;
772 
773 	ref = &vcpu_e500->tlb_refs[1][victim];
774 	kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
775 
776 	return victim;
777 }
778 
kvmppc_mmu_msr_notify(struct kvm_vcpu * vcpu,u32 old_msr)779 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
780 {
781 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
782 
783 	/* Recalc shadow pid since MSR changes */
784 	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
785 }
786 
kvmppc_e500_gtlbe_invalidate(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)787 static inline int kvmppc_e500_gtlbe_invalidate(
788 				struct kvmppc_vcpu_e500 *vcpu_e500,
789 				int tlbsel, int esel)
790 {
791 	struct kvm_book3e_206_tlb_entry *gtlbe =
792 		get_entry(vcpu_e500, tlbsel, esel);
793 
794 	if (unlikely(get_tlb_iprot(gtlbe)))
795 		return -1;
796 
797 	gtlbe->mas1 = 0;
798 
799 	return 0;
800 }
801 
kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 * vcpu_e500,ulong value)802 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
803 {
804 	int esel;
805 
806 	if (value & MMUCSR0_TLB0FI)
807 		for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
808 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
809 	if (value & MMUCSR0_TLB1FI)
810 		for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
811 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
812 
813 	/* Invalidate all vcpu id mappings */
814 	kvmppc_e500_id_table_reset_all(vcpu_e500);
815 
816 	return EMULATE_DONE;
817 }
818 
kvmppc_e500_emul_tlbivax(struct kvm_vcpu * vcpu,int ra,int rb)819 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
820 {
821 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
822 	unsigned int ia;
823 	int esel, tlbsel;
824 	gva_t ea;
825 
826 	ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
827 
828 	ia = (ea >> 2) & 0x1;
829 
830 	/* since we only have two TLBs, only lower bit is used. */
831 	tlbsel = (ea >> 3) & 0x1;
832 
833 	if (ia) {
834 		/* invalidate all entries */
835 		for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
836 		     esel++)
837 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
838 	} else {
839 		ea &= 0xfffff000;
840 		esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
841 				get_cur_pid(vcpu), -1);
842 		if (esel >= 0)
843 			kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
844 	}
845 
846 	/* Invalidate all vcpu id mappings */
847 	kvmppc_e500_id_table_reset_all(vcpu_e500);
848 
849 	return EMULATE_DONE;
850 }
851 
kvmppc_e500_emul_tlbre(struct kvm_vcpu * vcpu)852 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
853 {
854 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
855 	int tlbsel, esel;
856 	struct kvm_book3e_206_tlb_entry *gtlbe;
857 
858 	tlbsel = get_tlb_tlbsel(vcpu);
859 	esel = get_tlb_esel(vcpu, tlbsel);
860 
861 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
862 	vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
863 	vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
864 	vcpu->arch.shared->mas1 = gtlbe->mas1;
865 	vcpu->arch.shared->mas2 = gtlbe->mas2;
866 	vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
867 
868 	return EMULATE_DONE;
869 }
870 
kvmppc_e500_emul_tlbsx(struct kvm_vcpu * vcpu,int rb)871 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
872 {
873 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
874 	int as = !!get_cur_sas(vcpu);
875 	unsigned int pid = get_cur_spid(vcpu);
876 	int esel, tlbsel;
877 	struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
878 	gva_t ea;
879 
880 	ea = kvmppc_get_gpr(vcpu, rb);
881 
882 	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
883 		esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
884 		if (esel >= 0) {
885 			gtlbe = get_entry(vcpu_e500, tlbsel, esel);
886 			break;
887 		}
888 	}
889 
890 	if (gtlbe) {
891 		esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
892 
893 		vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
894 			| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
895 		vcpu->arch.shared->mas1 = gtlbe->mas1;
896 		vcpu->arch.shared->mas2 = gtlbe->mas2;
897 		vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
898 	} else {
899 		int victim;
900 
901 		/* since we only have two TLBs, only lower bit is used. */
902 		tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
903 		victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
904 
905 		vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
906 			| MAS0_ESEL(victim)
907 			| MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
908 		vcpu->arch.shared->mas1 =
909 			  (vcpu->arch.shared->mas6 & MAS6_SPID0)
910 			| (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
911 			| (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
912 		vcpu->arch.shared->mas2 &= MAS2_EPN;
913 		vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
914 					   MAS2_ATTRIB_MASK;
915 		vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
916 					     MAS3_U2 | MAS3_U3;
917 	}
918 
919 	kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
920 	return EMULATE_DONE;
921 }
922 
923 /* sesel is for tlb1 only */
write_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int stlbsel,int sesel)924 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
925 			struct kvm_book3e_206_tlb_entry *gtlbe,
926 			struct kvm_book3e_206_tlb_entry *stlbe,
927 			int stlbsel, int sesel)
928 {
929 	int stid;
930 
931 	preempt_disable();
932 	stid = kvmppc_e500_get_sid(vcpu_e500, get_tlb_ts(gtlbe),
933 				   get_tlb_tid(gtlbe),
934 				   get_cur_pr(&vcpu_e500->vcpu), 0);
935 
936 	stlbe->mas1 |= MAS1_TID(stid);
937 	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
938 	preempt_enable();
939 }
940 
kvmppc_e500_emul_tlbwe(struct kvm_vcpu * vcpu)941 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
942 {
943 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
944 	struct kvm_book3e_206_tlb_entry *gtlbe;
945 	int tlbsel, esel;
946 
947 	tlbsel = get_tlb_tlbsel(vcpu);
948 	esel = get_tlb_esel(vcpu, tlbsel);
949 
950 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
951 
952 	if (get_tlb_v(gtlbe))
953 		inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
954 
955 	gtlbe->mas1 = vcpu->arch.shared->mas1;
956 	gtlbe->mas2 = vcpu->arch.shared->mas2;
957 	gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
958 
959 	trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
960 	                              gtlbe->mas2, gtlbe->mas7_3);
961 
962 	/* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
963 	if (tlbe_is_host_safe(vcpu, gtlbe)) {
964 		struct kvm_book3e_206_tlb_entry stlbe;
965 		int stlbsel, sesel;
966 		u64 eaddr;
967 		u64 raddr;
968 
969 		switch (tlbsel) {
970 		case 0:
971 			/* TLB0 */
972 			gtlbe->mas1 &= ~MAS1_TSIZE(~0);
973 			gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
974 
975 			stlbsel = 0;
976 			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
977 			sesel = 0; /* unused */
978 
979 			break;
980 
981 		case 1:
982 			/* TLB1 */
983 			eaddr = get_tlb_eaddr(gtlbe);
984 			raddr = get_tlb_raddr(gtlbe);
985 
986 			/* Create a 4KB mapping on the host.
987 			 * If the guest wanted a large page,
988 			 * only the first 4KB is mapped here and the rest
989 			 * are mapped on the fly. */
990 			stlbsel = 1;
991 			sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
992 					raddr >> PAGE_SHIFT, gtlbe, &stlbe);
993 			break;
994 
995 		default:
996 			BUG();
997 		}
998 
999 		write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
1000 	}
1001 
1002 	kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
1003 	return EMULATE_DONE;
1004 }
1005 
kvmppc_mmu_itlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)1006 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
1007 {
1008 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
1009 
1010 	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
1011 }
1012 
kvmppc_mmu_dtlb_index(struct kvm_vcpu * vcpu,gva_t eaddr)1013 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
1014 {
1015 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
1016 
1017 	return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
1018 }
1019 
kvmppc_mmu_itlb_miss(struct kvm_vcpu * vcpu)1020 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
1021 {
1022 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
1023 
1024 	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
1025 }
1026 
kvmppc_mmu_dtlb_miss(struct kvm_vcpu * vcpu)1027 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
1028 {
1029 	unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
1030 
1031 	kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
1032 }
1033 
kvmppc_mmu_xlate(struct kvm_vcpu * vcpu,unsigned int index,gva_t eaddr)1034 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
1035 			gva_t eaddr)
1036 {
1037 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1038 	struct kvm_book3e_206_tlb_entry *gtlbe;
1039 	u64 pgmask;
1040 
1041 	gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
1042 	pgmask = get_tlb_bytes(gtlbe) - 1;
1043 
1044 	return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
1045 }
1046 
kvmppc_mmu_destroy(struct kvm_vcpu * vcpu)1047 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
1048 {
1049 }
1050 
kvmppc_mmu_map(struct kvm_vcpu * vcpu,u64 eaddr,gpa_t gpaddr,unsigned int index)1051 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
1052 			unsigned int index)
1053 {
1054 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1055 	struct tlbe_priv *priv;
1056 	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
1057 	int tlbsel = tlbsel_of(index);
1058 	int esel = esel_of(index);
1059 	int stlbsel, sesel;
1060 
1061 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
1062 
1063 	switch (tlbsel) {
1064 	case 0:
1065 		stlbsel = 0;
1066 		sesel = 0; /* unused */
1067 		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
1068 
1069 		kvmppc_e500_setup_stlbe(vcpu_e500, gtlbe, BOOK3E_PAGESZ_4K,
1070 					&priv->ref, eaddr, &stlbe);
1071 		break;
1072 
1073 	case 1: {
1074 		gfn_t gfn = gpaddr >> PAGE_SHIFT;
1075 
1076 		stlbsel = 1;
1077 		sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
1078 					     gtlbe, &stlbe);
1079 		break;
1080 	}
1081 
1082 	default:
1083 		BUG();
1084 		break;
1085 	}
1086 
1087 	write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
1088 }
1089 
kvmppc_e500_tlb_search(struct kvm_vcpu * vcpu,gva_t eaddr,unsigned int pid,int as)1090 int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
1091 				gva_t eaddr, unsigned int pid, int as)
1092 {
1093 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1094 	int esel, tlbsel;
1095 
1096 	for (tlbsel = 0; tlbsel < 2; tlbsel++) {
1097 		esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
1098 		if (esel >= 0)
1099 			return index_of(tlbsel, esel);
1100 	}
1101 
1102 	return -1;
1103 }
1104 
kvmppc_set_pid(struct kvm_vcpu * vcpu,u32 pid)1105 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
1106 {
1107 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1108 
1109 	if (vcpu->arch.pid != pid) {
1110 		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
1111 		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
1112 	}
1113 }
1114 
kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 * vcpu_e500)1115 void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
1116 {
1117 	struct kvm_book3e_206_tlb_entry *tlbe;
1118 
1119 	/* Insert large initial mapping for guest. */
1120 	tlbe = get_entry(vcpu_e500, 1, 0);
1121 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
1122 	tlbe->mas2 = 0;
1123 	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
1124 
1125 	/* 4K map for serial output. Used by kernel wrapper. */
1126 	tlbe = get_entry(vcpu_e500, 1, 1);
1127 	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
1128 	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
1129 	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
1130 }
1131 
free_gtlb(struct kvmppc_vcpu_e500 * vcpu_e500)1132 static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
1133 {
1134 	int i;
1135 
1136 	clear_tlb_refs(vcpu_e500);
1137 	kfree(vcpu_e500->gtlb_priv[0]);
1138 	kfree(vcpu_e500->gtlb_priv[1]);
1139 
1140 	if (vcpu_e500->shared_tlb_pages) {
1141 		vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
1142 					  PAGE_SIZE)));
1143 
1144 		for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
1145 			set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
1146 			put_page(vcpu_e500->shared_tlb_pages[i]);
1147 		}
1148 
1149 		vcpu_e500->num_shared_tlb_pages = 0;
1150 		vcpu_e500->shared_tlb_pages = NULL;
1151 	} else {
1152 		kfree(vcpu_e500->gtlb_arch);
1153 	}
1154 
1155 	vcpu_e500->gtlb_arch = NULL;
1156 }
1157 
kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu * vcpu,struct kvm_config_tlb * cfg)1158 int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
1159 			      struct kvm_config_tlb *cfg)
1160 {
1161 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1162 	struct kvm_book3e_206_tlb_params params;
1163 	char *virt;
1164 	struct page **pages;
1165 	struct tlbe_priv *privs[2] = {};
1166 	size_t array_len;
1167 	u32 sets;
1168 	int num_pages, ret, i;
1169 
1170 	if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
1171 		return -EINVAL;
1172 
1173 	if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
1174 			   sizeof(params)))
1175 		return -EFAULT;
1176 
1177 	if (params.tlb_sizes[1] > 64)
1178 		return -EINVAL;
1179 	if (params.tlb_ways[1] != params.tlb_sizes[1])
1180 		return -EINVAL;
1181 	if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
1182 		return -EINVAL;
1183 	if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
1184 		return -EINVAL;
1185 
1186 	if (!is_power_of_2(params.tlb_ways[0]))
1187 		return -EINVAL;
1188 
1189 	sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
1190 	if (!is_power_of_2(sets))
1191 		return -EINVAL;
1192 
1193 	array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
1194 	array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
1195 
1196 	if (cfg->array_len < array_len)
1197 		return -EINVAL;
1198 
1199 	num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
1200 		    cfg->array / PAGE_SIZE;
1201 	pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
1202 	if (!pages)
1203 		return -ENOMEM;
1204 
1205 	ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
1206 	if (ret < 0)
1207 		goto err_pages;
1208 
1209 	if (ret != num_pages) {
1210 		num_pages = ret;
1211 		ret = -EFAULT;
1212 		goto err_put_page;
1213 	}
1214 
1215 	virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
1216 	if (!virt)
1217 		goto err_put_page;
1218 
1219 	privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
1220 			   GFP_KERNEL);
1221 	privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
1222 			   GFP_KERNEL);
1223 
1224 	if (!privs[0] || !privs[1])
1225 		goto err_put_page;
1226 
1227 	free_gtlb(vcpu_e500);
1228 
1229 	vcpu_e500->gtlb_priv[0] = privs[0];
1230 	vcpu_e500->gtlb_priv[1] = privs[1];
1231 
1232 	vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
1233 		(virt + (cfg->array & (PAGE_SIZE - 1)));
1234 
1235 	vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
1236 	vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
1237 
1238 	vcpu_e500->gtlb_offset[0] = 0;
1239 	vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
1240 
1241 	vcpu_e500->tlb0cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1242 	if (params.tlb_sizes[0] <= 2048)
1243 		vcpu_e500->tlb0cfg |= params.tlb_sizes[0];
1244 	vcpu_e500->tlb0cfg |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
1245 
1246 	vcpu_e500->tlb1cfg &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1247 	vcpu_e500->tlb1cfg |= params.tlb_sizes[1];
1248 	vcpu_e500->tlb1cfg |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
1249 
1250 	vcpu_e500->shared_tlb_pages = pages;
1251 	vcpu_e500->num_shared_tlb_pages = num_pages;
1252 
1253 	vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
1254 	vcpu_e500->gtlb_params[0].sets = sets;
1255 
1256 	vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
1257 	vcpu_e500->gtlb_params[1].sets = 1;
1258 
1259 	return 0;
1260 
1261 err_put_page:
1262 	kfree(privs[0]);
1263 	kfree(privs[1]);
1264 
1265 	for (i = 0; i < num_pages; i++)
1266 		put_page(pages[i]);
1267 
1268 err_pages:
1269 	kfree(pages);
1270 	return ret;
1271 }
1272 
kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu * vcpu,struct kvm_dirty_tlb * dirty)1273 int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
1274 			     struct kvm_dirty_tlb *dirty)
1275 {
1276 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1277 
1278 	clear_tlb_refs(vcpu_e500);
1279 	return 0;
1280 }
1281 
kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 * vcpu_e500)1282 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
1283 {
1284 	int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
1285 	int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
1286 
1287 	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
1288 	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
1289 
1290 	/*
1291 	 * This should never happen on real e500 hardware, but is
1292 	 * architecturally possible -- e.g. in some weird nested
1293 	 * virtualization case.
1294 	 */
1295 	if (host_tlb_params[0].entries == 0 ||
1296 	    host_tlb_params[1].entries == 0) {
1297 		pr_err("%s: need to know host tlb size\n", __func__);
1298 		return -ENODEV;
1299 	}
1300 
1301 	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
1302 				  TLBnCFG_ASSOC_SHIFT;
1303 	host_tlb_params[1].ways = host_tlb_params[1].entries;
1304 
1305 	if (!is_power_of_2(host_tlb_params[0].entries) ||
1306 	    !is_power_of_2(host_tlb_params[0].ways) ||
1307 	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
1308 	    host_tlb_params[0].ways == 0) {
1309 		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
1310 		       __func__, host_tlb_params[0].entries,
1311 		       host_tlb_params[0].ways);
1312 		return -ENODEV;
1313 	}
1314 
1315 	host_tlb_params[0].sets =
1316 		host_tlb_params[0].entries / host_tlb_params[0].ways;
1317 	host_tlb_params[1].sets = 1;
1318 
1319 	vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
1320 	vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
1321 
1322 	vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
1323 	vcpu_e500->gtlb_params[0].sets =
1324 		KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
1325 
1326 	vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
1327 	vcpu_e500->gtlb_params[1].sets = 1;
1328 
1329 	vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
1330 	if (!vcpu_e500->gtlb_arch)
1331 		return -ENOMEM;
1332 
1333 	vcpu_e500->gtlb_offset[0] = 0;
1334 	vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
1335 
1336 	vcpu_e500->tlb_refs[0] =
1337 		kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
1338 			GFP_KERNEL);
1339 	if (!vcpu_e500->tlb_refs[0])
1340 		goto err;
1341 
1342 	vcpu_e500->tlb_refs[1] =
1343 		kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
1344 			GFP_KERNEL);
1345 	if (!vcpu_e500->tlb_refs[1])
1346 		goto err;
1347 
1348 	vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
1349 					  vcpu_e500->gtlb_params[0].entries,
1350 					  GFP_KERNEL);
1351 	if (!vcpu_e500->gtlb_priv[0])
1352 		goto err;
1353 
1354 	vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
1355 					  vcpu_e500->gtlb_params[1].entries,
1356 					  GFP_KERNEL);
1357 	if (!vcpu_e500->gtlb_priv[1])
1358 		goto err;
1359 
1360 	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
1361 		goto err;
1362 
1363 	/* Init TLB configuration register */
1364 	vcpu_e500->tlb0cfg = mfspr(SPRN_TLB0CFG) &
1365 			     ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1366 	vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[0].entries;
1367 	vcpu_e500->tlb0cfg |=
1368 		vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
1369 
1370 	vcpu_e500->tlb1cfg = mfspr(SPRN_TLB1CFG) &
1371 			     ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1372 	vcpu_e500->tlb0cfg |= vcpu_e500->gtlb_params[1].entries;
1373 	vcpu_e500->tlb0cfg |=
1374 		vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
1375 
1376 	return 0;
1377 
1378 err:
1379 	free_gtlb(vcpu_e500);
1380 	kfree(vcpu_e500->tlb_refs[0]);
1381 	kfree(vcpu_e500->tlb_refs[1]);
1382 	return -1;
1383 }
1384 
kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)1385 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
1386 {
1387 	free_gtlb(vcpu_e500);
1388 	kvmppc_e500_id_table_free(vcpu_e500);
1389 
1390 	kfree(vcpu_e500->tlb_refs[0]);
1391 	kfree(vcpu_e500->tlb_refs[1]);
1392 }
1393