• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
3  * Copyright (C) 2007, Jes Sorensen <jes@sgi.com> SGI.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  * NON INFRINGEMENT.  See the GNU General Public License for more
14  * details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 /*P:450
21  * This file contains the x86-specific lguest code.  It used to be all
22  * mixed in with drivers/lguest/core.c but several foolhardy code slashers
23  * wrestled most of the dependencies out to here in preparation for porting
24  * lguest to other architectures (see what I mean by foolhardy?).
25  *
26  * This also contains a couple of non-obvious setup and teardown pieces which
27  * were implemented after days of debugging pain.
28 :*/
29 #include <linux/kernel.h>
30 #include <linux/start_kernel.h>
31 #include <linux/string.h>
32 #include <linux/console.h>
33 #include <linux/screen_info.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/clocksource.h>
37 #include <linux/clockchips.h>
38 #include <linux/cpu.h>
39 #include <linux/lguest.h>
40 #include <linux/lguest_launcher.h>
41 #include <asm/paravirt.h>
42 #include <asm/param.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/desc.h>
46 #include <asm/setup.h>
47 #include <asm/lguest.h>
48 #include <asm/uaccess.h>
49 #include <asm/i387.h>
50 #include "../lg.h"
51 
52 static int cpu_had_pge;
53 
54 static struct {
55 	unsigned long offset;
56 	unsigned short segment;
57 } lguest_entry;
58 
59 /* Offset from where switcher.S was compiled to where we've copied it */
switcher_offset(void)60 static unsigned long switcher_offset(void)
61 {
62 	return SWITCHER_ADDR - (unsigned long)start_switcher_text;
63 }
64 
65 /* This cpu's struct lguest_pages. */
lguest_pages(unsigned int cpu)66 static struct lguest_pages *lguest_pages(unsigned int cpu)
67 {
68 	return &(((struct lguest_pages *)
69 		  (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
70 }
71 
72 static DEFINE_PER_CPU(struct lg_cpu *, lg_last_cpu);
73 
74 /*S:010
75  * We approach the Switcher.
76  *
77  * Remember that each CPU has two pages which are visible to the Guest when it
78  * runs on that CPU.  This has to contain the state for that Guest: we copy the
79  * state in just before we run the Guest.
80  *
81  * Each Guest has "changed" flags which indicate what has changed in the Guest
82  * since it last ran.  We saw this set in interrupts_and_traps.c and
83  * segments.c.
84  */
copy_in_guest_info(struct lg_cpu * cpu,struct lguest_pages * pages)85 static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
86 {
87 	/*
88 	 * Copying all this data can be quite expensive.  We usually run the
89 	 * same Guest we ran last time (and that Guest hasn't run anywhere else
90 	 * meanwhile).  If that's not the case, we pretend everything in the
91 	 * Guest has changed.
92 	 */
93 	if (__this_cpu_read(lg_last_cpu) != cpu || cpu->last_pages != pages) {
94 		__this_cpu_write(lg_last_cpu, cpu);
95 		cpu->last_pages = pages;
96 		cpu->changed = CHANGED_ALL;
97 	}
98 
99 	/*
100 	 * These copies are pretty cheap, so we do them unconditionally: */
101 	/* Save the current Host top-level page directory.
102 	 */
103 	pages->state.host_cr3 = __pa(current->mm->pgd);
104 	/*
105 	 * Set up the Guest's page tables to see this CPU's pages (and no
106 	 * other CPU's pages).
107 	 */
108 	map_switcher_in_guest(cpu, pages);
109 	/*
110 	 * Set up the two "TSS" members which tell the CPU what stack to use
111 	 * for traps which do directly into the Guest (ie. traps at privilege
112 	 * level 1).
113 	 */
114 	pages->state.guest_tss.sp1 = cpu->esp1;
115 	pages->state.guest_tss.ss1 = cpu->ss1;
116 
117 	/* Copy direct-to-Guest trap entries. */
118 	if (cpu->changed & CHANGED_IDT)
119 		copy_traps(cpu, pages->state.guest_idt, default_idt_entries);
120 
121 	/* Copy all GDT entries which the Guest can change. */
122 	if (cpu->changed & CHANGED_GDT)
123 		copy_gdt(cpu, pages->state.guest_gdt);
124 	/* If only the TLS entries have changed, copy them. */
125 	else if (cpu->changed & CHANGED_GDT_TLS)
126 		copy_gdt_tls(cpu, pages->state.guest_gdt);
127 
128 	/* Mark the Guest as unchanged for next time. */
129 	cpu->changed = 0;
130 }
131 
132 /* Finally: the code to actually call into the Switcher to run the Guest. */
run_guest_once(struct lg_cpu * cpu,struct lguest_pages * pages)133 static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
134 {
135 	/* This is a dummy value we need for GCC's sake. */
136 	unsigned int clobber;
137 
138 	/*
139 	 * Copy the guest-specific information into this CPU's "struct
140 	 * lguest_pages".
141 	 */
142 	copy_in_guest_info(cpu, pages);
143 
144 	/*
145 	 * Set the trap number to 256 (impossible value).  If we fault while
146 	 * switching to the Guest (bad segment registers or bug), this will
147 	 * cause us to abort the Guest.
148 	 */
149 	cpu->regs->trapnum = 256;
150 
151 	/*
152 	 * Now: we push the "eflags" register on the stack, then do an "lcall".
153 	 * This is how we change from using the kernel code segment to using
154 	 * the dedicated lguest code segment, as well as jumping into the
155 	 * Switcher.
156 	 *
157 	 * The lcall also pushes the old code segment (KERNEL_CS) onto the
158 	 * stack, then the address of this call.  This stack layout happens to
159 	 * exactly match the stack layout created by an interrupt...
160 	 */
161 	asm volatile("pushf; lcall *lguest_entry"
162 		     /*
163 		      * This is how we tell GCC that %eax ("a") and %ebx ("b")
164 		      * are changed by this routine.  The "=" means output.
165 		      */
166 		     : "=a"(clobber), "=b"(clobber)
167 		     /*
168 		      * %eax contains the pages pointer.  ("0" refers to the
169 		      * 0-th argument above, ie "a").  %ebx contains the
170 		      * physical address of the Guest's top-level page
171 		      * directory.
172 		      */
173 		     : "0"(pages), "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir))
174 		     /*
175 		      * We tell gcc that all these registers could change,
176 		      * which means we don't have to save and restore them in
177 		      * the Switcher.
178 		      */
179 		     : "memory", "%edx", "%ecx", "%edi", "%esi");
180 }
181 /*:*/
182 
183 /*M:002
184  * There are hooks in the scheduler which we can register to tell when we
185  * get kicked off the CPU (preempt_notifier_register()).  This would allow us
186  * to lazily disable SYSENTER which would regain some performance, and should
187  * also simplify copy_in_guest_info().  Note that we'd still need to restore
188  * things when we exit to Launcher userspace, but that's fairly easy.
189  *
190  * We could also try using these hooks for PGE, but that might be too expensive.
191  *
192  * The hooks were designed for KVM, but we can also put them to good use.
193 :*/
194 
195 /*H:040
196  * This is the i386-specific code to setup and run the Guest.  Interrupts
197  * are disabled: we own the CPU.
198  */
lguest_arch_run_guest(struct lg_cpu * cpu)199 void lguest_arch_run_guest(struct lg_cpu *cpu)
200 {
201 	/*
202 	 * Remember the awfully-named TS bit?  If the Guest has asked to set it
203 	 * we set it now, so we can trap and pass that trap to the Guest if it
204 	 * uses the FPU.
205 	 */
206 	if (cpu->ts)
207 		unlazy_fpu(current);
208 
209 	/*
210 	 * SYSENTER is an optimized way of doing system calls.  We can't allow
211 	 * it because it always jumps to privilege level 0.  A normal Guest
212 	 * won't try it because we don't advertise it in CPUID, but a malicious
213 	 * Guest (or malicious Guest userspace program) could, so we tell the
214 	 * CPU to disable it before running the Guest.
215 	 */
216 	if (boot_cpu_has(X86_FEATURE_SEP))
217 		wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
218 
219 	/*
220 	 * Now we actually run the Guest.  It will return when something
221 	 * interesting happens, and we can examine its registers to see what it
222 	 * was doing.
223 	 */
224 	run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
225 
226 	/*
227 	 * Note that the "regs" structure contains two extra entries which are
228 	 * not really registers: a trap number which says what interrupt or
229 	 * trap made the switcher code come back, and an error code which some
230 	 * traps set.
231 	 */
232 
233 	 /* Restore SYSENTER if it's supposed to be on. */
234 	 if (boot_cpu_has(X86_FEATURE_SEP))
235 		wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
236 
237 	/*
238 	 * If the Guest page faulted, then the cr2 register will tell us the
239 	 * bad virtual address.  We have to grab this now, because once we
240 	 * re-enable interrupts an interrupt could fault and thus overwrite
241 	 * cr2, or we could even move off to a different CPU.
242 	 */
243 	if (cpu->regs->trapnum == 14)
244 		cpu->arch.last_pagefault = read_cr2();
245 	/*
246 	 * Similarly, if we took a trap because the Guest used the FPU,
247 	 * we have to restore the FPU it expects to see.
248 	 * math_state_restore() may sleep and we may even move off to
249 	 * a different CPU. So all the critical stuff should be done
250 	 * before this.
251 	 */
252 	else if (cpu->regs->trapnum == 7)
253 		math_state_restore();
254 }
255 
256 /*H:130
257  * Now we've examined the hypercall code; our Guest can make requests.
258  * Our Guest is usually so well behaved; it never tries to do things it isn't
259  * allowed to, and uses hypercalls instead.  Unfortunately, Linux's paravirtual
260  * infrastructure isn't quite complete, because it doesn't contain replacements
261  * for the Intel I/O instructions.  As a result, the Guest sometimes fumbles
262  * across one during the boot process as it probes for various things which are
263  * usually attached to a PC.
264  *
265  * When the Guest uses one of these instructions, we get a trap (General
266  * Protection Fault) and come here.  We see if it's one of those troublesome
267  * instructions and skip over it.  We return true if we did.
268  */
emulate_insn(struct lg_cpu * cpu)269 static int emulate_insn(struct lg_cpu *cpu)
270 {
271 	u8 insn;
272 	unsigned int insnlen = 0, in = 0, small_operand = 0;
273 	/*
274 	 * The eip contains the *virtual* address of the Guest's instruction:
275 	 * walk the Guest's page tables to find the "physical" address.
276 	 */
277 	unsigned long physaddr = guest_pa(cpu, cpu->regs->eip);
278 
279 	/*
280 	 * This must be the Guest kernel trying to do something, not userspace!
281 	 * The bottom two bits of the CS segment register are the privilege
282 	 * level.
283 	 */
284 	if ((cpu->regs->cs & 3) != GUEST_PL)
285 		return 0;
286 
287 	/* Decoding x86 instructions is icky. */
288 	insn = lgread(cpu, physaddr, u8);
289 
290 	/*
291 	 * Around 2.6.33, the kernel started using an emulation for the
292 	 * cmpxchg8b instruction in early boot on many configurations.  This
293 	 * code isn't paravirtualized, and it tries to disable interrupts.
294 	 * Ignore it, which will Mostly Work.
295 	 */
296 	if (insn == 0xfa) {
297 		/* "cli", or Clear Interrupt Enable instruction.  Skip it. */
298 		cpu->regs->eip++;
299 		return 1;
300 	}
301 
302 	/*
303 	 * 0x66 is an "operand prefix".  It means a 16, not 32 bit in/out.
304 	 */
305 	if (insn == 0x66) {
306 		small_operand = 1;
307 		/* The instruction is 1 byte so far, read the next byte. */
308 		insnlen = 1;
309 		insn = lgread(cpu, physaddr + insnlen, u8);
310 	}
311 
312 	/*
313 	 * We can ignore the lower bit for the moment and decode the 4 opcodes
314 	 * we need to emulate.
315 	 */
316 	switch (insn & 0xFE) {
317 	case 0xE4: /* in     <next byte>,%al */
318 		insnlen += 2;
319 		in = 1;
320 		break;
321 	case 0xEC: /* in     (%dx),%al */
322 		insnlen += 1;
323 		in = 1;
324 		break;
325 	case 0xE6: /* out    %al,<next byte> */
326 		insnlen += 2;
327 		break;
328 	case 0xEE: /* out    %al,(%dx) */
329 		insnlen += 1;
330 		break;
331 	default:
332 		/* OK, we don't know what this is, can't emulate. */
333 		return 0;
334 	}
335 
336 	/*
337 	 * If it was an "IN" instruction, they expect the result to be read
338 	 * into %eax, so we change %eax.  We always return all-ones, which
339 	 * traditionally means "there's nothing there".
340 	 */
341 	if (in) {
342 		/* Lower bit tells means it's a 32/16 bit access */
343 		if (insn & 0x1) {
344 			if (small_operand)
345 				cpu->regs->eax |= 0xFFFF;
346 			else
347 				cpu->regs->eax = 0xFFFFFFFF;
348 		} else
349 			cpu->regs->eax |= 0xFF;
350 	}
351 	/* Finally, we've "done" the instruction, so move past it. */
352 	cpu->regs->eip += insnlen;
353 	/* Success! */
354 	return 1;
355 }
356 
357 /*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
lguest_arch_handle_trap(struct lg_cpu * cpu)358 void lguest_arch_handle_trap(struct lg_cpu *cpu)
359 {
360 	switch (cpu->regs->trapnum) {
361 	case 13: /* We've intercepted a General Protection Fault. */
362 		/*
363 		 * Check if this was one of those annoying IN or OUT
364 		 * instructions which we need to emulate.  If so, we just go
365 		 * back into the Guest after we've done it.
366 		 */
367 		if (cpu->regs->errcode == 0) {
368 			if (emulate_insn(cpu))
369 				return;
370 		}
371 		break;
372 	case 14: /* We've intercepted a Page Fault. */
373 		/*
374 		 * The Guest accessed a virtual address that wasn't mapped.
375 		 * This happens a lot: we don't actually set up most of the page
376 		 * tables for the Guest at all when we start: as it runs it asks
377 		 * for more and more, and we set them up as required. In this
378 		 * case, we don't even tell the Guest that the fault happened.
379 		 *
380 		 * The errcode tells whether this was a read or a write, and
381 		 * whether kernel or userspace code.
382 		 */
383 		if (demand_page(cpu, cpu->arch.last_pagefault,
384 				cpu->regs->errcode))
385 			return;
386 
387 		/*
388 		 * OK, it's really not there (or not OK): the Guest needs to
389 		 * know.  We write out the cr2 value so it knows where the
390 		 * fault occurred.
391 		 *
392 		 * Note that if the Guest were really messed up, this could
393 		 * happen before it's done the LHCALL_LGUEST_INIT hypercall, so
394 		 * lg->lguest_data could be NULL
395 		 */
396 		if (cpu->lg->lguest_data &&
397 		    put_user(cpu->arch.last_pagefault,
398 			     &cpu->lg->lguest_data->cr2))
399 			kill_guest(cpu, "Writing cr2");
400 		break;
401 	case 7: /* We've intercepted a Device Not Available fault. */
402 		/*
403 		 * If the Guest doesn't want to know, we already restored the
404 		 * Floating Point Unit, so we just continue without telling it.
405 		 */
406 		if (!cpu->ts)
407 			return;
408 		break;
409 	case 32 ... 255:
410 		/*
411 		 * These values mean a real interrupt occurred, in which case
412 		 * the Host handler has already been run. We just do a
413 		 * friendly check if another process should now be run, then
414 		 * return to run the Guest again.
415 		 */
416 		cond_resched();
417 		return;
418 	case LGUEST_TRAP_ENTRY:
419 		/*
420 		 * Our 'struct hcall_args' maps directly over our regs: we set
421 		 * up the pointer now to indicate a hypercall is pending.
422 		 */
423 		cpu->hcall = (struct hcall_args *)cpu->regs;
424 		return;
425 	}
426 
427 	/* We didn't handle the trap, so it needs to go to the Guest. */
428 	if (!deliver_trap(cpu, cpu->regs->trapnum))
429 		/*
430 		 * If the Guest doesn't have a handler (either it hasn't
431 		 * registered any yet, or it's one of the faults we don't let
432 		 * it handle), it dies with this cryptic error message.
433 		 */
434 		kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
435 			   cpu->regs->trapnum, cpu->regs->eip,
436 			   cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
437 			   : cpu->regs->errcode);
438 }
439 
440 /*
441  * Now we can look at each of the routines this calls, in increasing order of
442  * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
443  * deliver_trap() and demand_page().  After all those, we'll be ready to
444  * examine the Switcher, and our philosophical understanding of the Host/Guest
445  * duality will be complete.
446 :*/
adjust_pge(void * on)447 static void adjust_pge(void *on)
448 {
449 	if (on)
450 		write_cr4(read_cr4() | X86_CR4_PGE);
451 	else
452 		write_cr4(read_cr4() & ~X86_CR4_PGE);
453 }
454 
455 /*H:020
456  * Now the Switcher is mapped and every thing else is ready, we need to do
457  * some more i386-specific initialization.
458  */
lguest_arch_host_init(void)459 void __init lguest_arch_host_init(void)
460 {
461 	int i;
462 
463 	/*
464 	 * Most of the x86/switcher_32.S doesn't care that it's been moved; on
465 	 * Intel, jumps are relative, and it doesn't access any references to
466 	 * external code or data.
467 	 *
468 	 * The only exception is the interrupt handlers in switcher.S: their
469 	 * addresses are placed in a table (default_idt_entries), so we need to
470 	 * update the table with the new addresses.  switcher_offset() is a
471 	 * convenience function which returns the distance between the
472 	 * compiled-in switcher code and the high-mapped copy we just made.
473 	 */
474 	for (i = 0; i < IDT_ENTRIES; i++)
475 		default_idt_entries[i] += switcher_offset();
476 
477 	/*
478 	 * Set up the Switcher's per-cpu areas.
479 	 *
480 	 * Each CPU gets two pages of its own within the high-mapped region
481 	 * (aka. "struct lguest_pages").  Much of this can be initialized now,
482 	 * but some depends on what Guest we are running (which is set up in
483 	 * copy_in_guest_info()).
484 	 */
485 	for_each_possible_cpu(i) {
486 		/* lguest_pages() returns this CPU's two pages. */
487 		struct lguest_pages *pages = lguest_pages(i);
488 		/* This is a convenience pointer to make the code neater. */
489 		struct lguest_ro_state *state = &pages->state;
490 
491 		/*
492 		 * The Global Descriptor Table: the Host has a different one
493 		 * for each CPU.  We keep a descriptor for the GDT which says
494 		 * where it is and how big it is (the size is actually the last
495 		 * byte, not the size, hence the "-1").
496 		 */
497 		state->host_gdt_desc.size = GDT_SIZE-1;
498 		state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
499 
500 		/*
501 		 * All CPUs on the Host use the same Interrupt Descriptor
502 		 * Table, so we just use store_idt(), which gets this CPU's IDT
503 		 * descriptor.
504 		 */
505 		store_idt(&state->host_idt_desc);
506 
507 		/*
508 		 * The descriptors for the Guest's GDT and IDT can be filled
509 		 * out now, too.  We copy the GDT & IDT into ->guest_gdt and
510 		 * ->guest_idt before actually running the Guest.
511 		 */
512 		state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
513 		state->guest_idt_desc.address = (long)&state->guest_idt;
514 		state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
515 		state->guest_gdt_desc.address = (long)&state->guest_gdt;
516 
517 		/*
518 		 * We know where we want the stack to be when the Guest enters
519 		 * the Switcher: in pages->regs.  The stack grows upwards, so
520 		 * we start it at the end of that structure.
521 		 */
522 		state->guest_tss.sp0 = (long)(&pages->regs + 1);
523 		/*
524 		 * And this is the GDT entry to use for the stack: we keep a
525 		 * couple of special LGUEST entries.
526 		 */
527 		state->guest_tss.ss0 = LGUEST_DS;
528 
529 		/*
530 		 * x86 can have a finegrained bitmap which indicates what I/O
531 		 * ports the process can use.  We set it to the end of our
532 		 * structure, meaning "none".
533 		 */
534 		state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
535 
536 		/*
537 		 * Some GDT entries are the same across all Guests, so we can
538 		 * set them up now.
539 		 */
540 		setup_default_gdt_entries(state);
541 		/* Most IDT entries are the same for all Guests, too.*/
542 		setup_default_idt_entries(state, default_idt_entries);
543 
544 		/*
545 		 * The Host needs to be able to use the LGUEST segments on this
546 		 * CPU, too, so put them in the Host GDT.
547 		 */
548 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
549 		get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
550 	}
551 
552 	/*
553 	 * In the Switcher, we want the %cs segment register to use the
554 	 * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
555 	 * it will be undisturbed when we switch.  To change %cs and jump we
556 	 * need this structure to feed to Intel's "lcall" instruction.
557 	 */
558 	lguest_entry.offset = (long)switch_to_guest + switcher_offset();
559 	lguest_entry.segment = LGUEST_CS;
560 
561 	/*
562 	 * Finally, we need to turn off "Page Global Enable".  PGE is an
563 	 * optimization where page table entries are specially marked to show
564 	 * they never change.  The Host kernel marks all the kernel pages this
565 	 * way because it's always present, even when userspace is running.
566 	 *
567 	 * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
568 	 * switch to the Guest kernel.  If you don't disable this on all CPUs,
569 	 * you'll get really weird bugs that you'll chase for two days.
570 	 *
571 	 * I used to turn PGE off every time we switched to the Guest and back
572 	 * on when we return, but that slowed the Switcher down noticibly.
573 	 */
574 
575 	/*
576 	 * We don't need the complexity of CPUs coming and going while we're
577 	 * doing this.
578 	 */
579 	get_online_cpus();
580 	if (cpu_has_pge) { /* We have a broader idea of "global". */
581 		/* Remember that this was originally set (for cleanup). */
582 		cpu_had_pge = 1;
583 		/*
584 		 * adjust_pge is a helper function which sets or unsets the PGE
585 		 * bit on its CPU, depending on the argument (0 == unset).
586 		 */
587 		on_each_cpu(adjust_pge, (void *)0, 1);
588 		/* Turn off the feature in the global feature set. */
589 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
590 	}
591 	put_online_cpus();
592 }
593 /*:*/
594 
lguest_arch_host_fini(void)595 void __exit lguest_arch_host_fini(void)
596 {
597 	/* If we had PGE before we started, turn it back on now. */
598 	get_online_cpus();
599 	if (cpu_had_pge) {
600 		set_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
601 		/* adjust_pge's argument "1" means set PGE. */
602 		on_each_cpu(adjust_pge, (void *)1, 1);
603 	}
604 	put_online_cpus();
605 }
606 
607 
608 /*H:122 The i386-specific hypercalls simply farm out to the right functions. */
lguest_arch_do_hcall(struct lg_cpu * cpu,struct hcall_args * args)609 int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
610 {
611 	switch (args->arg0) {
612 	case LHCALL_LOAD_GDT_ENTRY:
613 		load_guest_gdt_entry(cpu, args->arg1, args->arg2, args->arg3);
614 		break;
615 	case LHCALL_LOAD_IDT_ENTRY:
616 		load_guest_idt_entry(cpu, args->arg1, args->arg2, args->arg3);
617 		break;
618 	case LHCALL_LOAD_TLS:
619 		guest_load_tls(cpu, args->arg1);
620 		break;
621 	default:
622 		/* Bad Guest.  Bad! */
623 		return -EIO;
624 	}
625 	return 0;
626 }
627 
628 /*H:126 i386-specific hypercall initialization: */
lguest_arch_init_hypercalls(struct lg_cpu * cpu)629 int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
630 {
631 	u32 tsc_speed;
632 
633 	/*
634 	 * The pointer to the Guest's "struct lguest_data" is the only argument.
635 	 * We check that address now.
636 	 */
637 	if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
638 			       sizeof(*cpu->lg->lguest_data)))
639 		return -EFAULT;
640 
641 	/*
642 	 * Having checked it, we simply set lg->lguest_data to point straight
643 	 * into the Launcher's memory at the right place and then use
644 	 * copy_to_user/from_user from now on, instead of lgread/write.  I put
645 	 * this in to show that I'm not immune to writing stupid
646 	 * optimizations.
647 	 */
648 	cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
649 
650 	/*
651 	 * We insist that the Time Stamp Counter exist and doesn't change with
652 	 * cpu frequency.  Some devious chip manufacturers decided that TSC
653 	 * changes could be handled in software.  I decided that time going
654 	 * backwards might be good for benchmarks, but it's bad for users.
655 	 *
656 	 * We also insist that the TSC be stable: the kernel detects unreliable
657 	 * TSCs for its own purposes, and we use that here.
658 	 */
659 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
660 		tsc_speed = tsc_khz;
661 	else
662 		tsc_speed = 0;
663 	if (put_user(tsc_speed, &cpu->lg->lguest_data->tsc_khz))
664 		return -EFAULT;
665 
666 	/* The interrupt code might not like the system call vector. */
667 	if (!check_syscall_vector(cpu->lg))
668 		kill_guest(cpu, "bad syscall vector");
669 
670 	return 0;
671 }
672 /*:*/
673 
674 /*L:030
675  * Most of the Guest's registers are left alone: we used get_zeroed_page() to
676  * allocate the structure, so they will be 0.
677  */
lguest_arch_setup_regs(struct lg_cpu * cpu,unsigned long start)678 void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
679 {
680 	struct lguest_regs *regs = cpu->regs;
681 
682 	/*
683 	 * There are four "segment" registers which the Guest needs to boot:
684 	 * The "code segment" register (cs) refers to the kernel code segment
685 	 * __KERNEL_CS, and the "data", "extra" and "stack" segment registers
686 	 * refer to the kernel data segment __KERNEL_DS.
687 	 *
688 	 * The privilege level is packed into the lower bits.  The Guest runs
689 	 * at privilege level 1 (GUEST_PL).
690 	 */
691 	regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
692 	regs->cs = __KERNEL_CS|GUEST_PL;
693 
694 	/*
695 	 * The "eflags" register contains miscellaneous flags.  Bit 1 (0x002)
696 	 * is supposed to always be "1".  Bit 9 (0x200) controls whether
697 	 * interrupts are enabled.  We always leave interrupts enabled while
698 	 * running the Guest.
699 	 */
700 	regs->eflags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
701 
702 	/*
703 	 * The "Extended Instruction Pointer" register says where the Guest is
704 	 * running.
705 	 */
706 	regs->eip = start;
707 
708 	/*
709 	 * %esi points to our boot information, at physical address 0, so don't
710 	 * touch it.
711 	 */
712 
713 	/* There are a couple of GDT entries the Guest expects at boot. */
714 	setup_guest_gdt(cpu);
715 }
716