• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME	"memory"
32 
33 static int sections_per_block;
34 
base_memory_block_id(int section_nr)35 static inline int base_memory_block_id(int section_nr)
36 {
37 	return section_nr / sections_per_block;
38 }
39 
40 static struct bus_type memory_subsys = {
41 	.name = MEMORY_CLASS_NAME,
42 	.dev_name = MEMORY_CLASS_NAME,
43 };
44 
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46 
register_memory_notifier(struct notifier_block * nb)47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52 
unregister_memory_notifier(struct notifier_block * nb)53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58 
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60 
register_memory_isolate_notifier(struct notifier_block * nb)61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66 
unregister_memory_isolate_notifier(struct notifier_block * nb)67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72 
73 /*
74  * register_memory - Setup a sysfs device for a memory block
75  */
76 static
register_memory(struct memory_block * memory)77 int register_memory(struct memory_block *memory)
78 {
79 	int error;
80 
81 	memory->dev.bus = &memory_subsys;
82 	memory->dev.id = memory->start_section_nr / sections_per_block;
83 
84 	error = device_register(&memory->dev);
85 	return error;
86 }
87 
88 static void
unregister_memory(struct memory_block * memory)89 unregister_memory(struct memory_block *memory)
90 {
91 	BUG_ON(memory->dev.bus != &memory_subsys);
92 
93 	/* drop the ref. we got in remove_memory_block() */
94 	kobject_put(&memory->dev.kobj);
95 	device_unregister(&memory->dev);
96 }
97 
memory_block_size_bytes(void)98 unsigned long __weak memory_block_size_bytes(void)
99 {
100 	return MIN_MEMORY_BLOCK_SIZE;
101 }
102 
get_memory_block_size(void)103 static unsigned long get_memory_block_size(void)
104 {
105 	unsigned long block_sz;
106 
107 	block_sz = memory_block_size_bytes();
108 
109 	/* Validate blk_sz is a power of 2 and not less than section size */
110 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111 		WARN_ON(1);
112 		block_sz = MIN_MEMORY_BLOCK_SIZE;
113 	}
114 
115 	return block_sz;
116 }
117 
118 /*
119  * use this as the physical section index that this memsection
120  * uses.
121  */
122 
show_mem_start_phys_index(struct device * dev,struct device_attribute * attr,char * buf)123 static ssize_t show_mem_start_phys_index(struct device *dev,
124 			struct device_attribute *attr, char *buf)
125 {
126 	struct memory_block *mem =
127 		container_of(dev, struct memory_block, dev);
128 	unsigned long phys_index;
129 
130 	phys_index = mem->start_section_nr / sections_per_block;
131 	return sprintf(buf, "%08lx\n", phys_index);
132 }
133 
show_mem_end_phys_index(struct device * dev,struct device_attribute * attr,char * buf)134 static ssize_t show_mem_end_phys_index(struct device *dev,
135 			struct device_attribute *attr, char *buf)
136 {
137 	struct memory_block *mem =
138 		container_of(dev, struct memory_block, dev);
139 	unsigned long phys_index;
140 
141 	phys_index = mem->end_section_nr / sections_per_block;
142 	return sprintf(buf, "%08lx\n", phys_index);
143 }
144 
145 /*
146  * Show whether the section of memory is likely to be hot-removable
147  */
show_mem_removable(struct device * dev,struct device_attribute * attr,char * buf)148 static ssize_t show_mem_removable(struct device *dev,
149 			struct device_attribute *attr, char *buf)
150 {
151 	unsigned long i, pfn;
152 	int ret = 1;
153 	struct memory_block *mem =
154 		container_of(dev, struct memory_block, dev);
155 
156 	for (i = 0; i < sections_per_block; i++) {
157 		if (!present_section_nr(mem->start_section_nr + i))
158 			continue;
159 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
160 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
161 	}
162 
163 	return sprintf(buf, "%d\n", ret);
164 }
165 
166 /*
167  * online, offline, going offline, etc.
168  */
show_mem_state(struct device * dev,struct device_attribute * attr,char * buf)169 static ssize_t show_mem_state(struct device *dev,
170 			struct device_attribute *attr, char *buf)
171 {
172 	struct memory_block *mem =
173 		container_of(dev, struct memory_block, dev);
174 	ssize_t len = 0;
175 
176 	/*
177 	 * We can probably put these states in a nice little array
178 	 * so that they're not open-coded
179 	 */
180 	switch (mem->state) {
181 		case MEM_ONLINE:
182 			len = sprintf(buf, "online\n");
183 			break;
184 		case MEM_OFFLINE:
185 			len = sprintf(buf, "offline\n");
186 			break;
187 		case MEM_GOING_OFFLINE:
188 			len = sprintf(buf, "going-offline\n");
189 			break;
190 		default:
191 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
192 					mem->state);
193 			WARN_ON(1);
194 			break;
195 	}
196 
197 	return len;
198 }
199 
memory_notify(unsigned long val,void * v)200 int memory_notify(unsigned long val, void *v)
201 {
202 	return blocking_notifier_call_chain(&memory_chain, val, v);
203 }
204 
memory_isolate_notify(unsigned long val,void * v)205 int memory_isolate_notify(unsigned long val, void *v)
206 {
207 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
208 }
209 
210 /*
211  * The probe routines leave the pages reserved, just as the bootmem code does.
212  * Make sure they're still that way.
213  */
pages_correctly_reserved(unsigned long start_pfn,unsigned long nr_pages)214 static bool pages_correctly_reserved(unsigned long start_pfn,
215 					unsigned long nr_pages)
216 {
217 	int i, j;
218 	struct page *page;
219 	unsigned long pfn = start_pfn;
220 
221 	/*
222 	 * memmap between sections is not contiguous except with
223 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
224 	 * and assume memmap is contiguous within each section
225 	 */
226 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
227 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
228 			return false;
229 		page = pfn_to_page(pfn);
230 
231 		for (j = 0; j < PAGES_PER_SECTION; j++) {
232 			if (PageReserved(page + j))
233 				continue;
234 
235 			printk(KERN_WARNING "section number %ld page number %d "
236 				"not reserved, was it already online?\n",
237 				pfn_to_section_nr(pfn), j);
238 
239 			return false;
240 		}
241 	}
242 
243 	return true;
244 }
245 
246 /*
247  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
248  * OK to have direct references to sparsemem variables in here.
249  */
250 static int
memory_block_action(unsigned long phys_index,unsigned long action)251 memory_block_action(unsigned long phys_index, unsigned long action)
252 {
253 	unsigned long start_pfn, start_paddr;
254 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
255 	struct page *first_page;
256 	int ret;
257 
258 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
259 
260 	switch (action) {
261 		case MEM_ONLINE:
262 			start_pfn = page_to_pfn(first_page);
263 
264 			if (!pages_correctly_reserved(start_pfn, nr_pages))
265 				return -EBUSY;
266 
267 			ret = online_pages(start_pfn, nr_pages);
268 			break;
269 		case MEM_OFFLINE:
270 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
271 			ret = remove_memory(start_paddr,
272 					    nr_pages << PAGE_SHIFT);
273 			break;
274 		default:
275 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
276 			     "%ld\n", __func__, phys_index, action, action);
277 			ret = -EINVAL;
278 	}
279 
280 	return ret;
281 }
282 
memory_block_change_state(struct memory_block * mem,unsigned long to_state,unsigned long from_state_req)283 static int memory_block_change_state(struct memory_block *mem,
284 		unsigned long to_state, unsigned long from_state_req)
285 {
286 	int ret = 0;
287 
288 	mutex_lock(&mem->state_mutex);
289 
290 	if (mem->state != from_state_req) {
291 		ret = -EINVAL;
292 		goto out;
293 	}
294 
295 	if (to_state == MEM_OFFLINE)
296 		mem->state = MEM_GOING_OFFLINE;
297 
298 	ret = memory_block_action(mem->start_section_nr, to_state);
299 
300 	if (ret) {
301 		mem->state = from_state_req;
302 		goto out;
303 	}
304 
305 	mem->state = to_state;
306 	switch (mem->state) {
307 	case MEM_OFFLINE:
308 		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
309 		break;
310 	case MEM_ONLINE:
311 		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
312 		break;
313 	default:
314 		break;
315 	}
316 out:
317 	mutex_unlock(&mem->state_mutex);
318 	return ret;
319 }
320 
321 static ssize_t
store_mem_state(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)322 store_mem_state(struct device *dev,
323 		struct device_attribute *attr, const char *buf, size_t count)
324 {
325 	struct memory_block *mem;
326 	int ret = -EINVAL;
327 
328 	mem = container_of(dev, struct memory_block, dev);
329 
330 	if (!strncmp(buf, "online", min((int)count, 6)))
331 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
332 	else if(!strncmp(buf, "offline", min((int)count, 7)))
333 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
334 
335 	if (ret)
336 		return ret;
337 	return count;
338 }
339 
340 /*
341  * phys_device is a bad name for this.  What I really want
342  * is a way to differentiate between memory ranges that
343  * are part of physical devices that constitute
344  * a complete removable unit or fru.
345  * i.e. do these ranges belong to the same physical device,
346  * s.t. if I offline all of these sections I can then
347  * remove the physical device?
348  */
show_phys_device(struct device * dev,struct device_attribute * attr,char * buf)349 static ssize_t show_phys_device(struct device *dev,
350 				struct device_attribute *attr, char *buf)
351 {
352 	struct memory_block *mem =
353 		container_of(dev, struct memory_block, dev);
354 	return sprintf(buf, "%d\n", mem->phys_device);
355 }
356 
357 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
358 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
359 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
360 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
361 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
362 
363 #define mem_create_simple_file(mem, attr_name)	\
364 	device_create_file(&mem->dev, &dev_attr_##attr_name)
365 #define mem_remove_simple_file(mem, attr_name)	\
366 	device_remove_file(&mem->dev, &dev_attr_##attr_name)
367 
368 /*
369  * Block size attribute stuff
370  */
371 static ssize_t
print_block_size(struct device * dev,struct device_attribute * attr,char * buf)372 print_block_size(struct device *dev, struct device_attribute *attr,
373 		 char *buf)
374 {
375 	return sprintf(buf, "%lx\n", get_memory_block_size());
376 }
377 
378 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
379 
block_size_init(void)380 static int block_size_init(void)
381 {
382 	return device_create_file(memory_subsys.dev_root,
383 				  &dev_attr_block_size_bytes);
384 }
385 
386 /*
387  * Some architectures will have custom drivers to do this, and
388  * will not need to do it from userspace.  The fake hot-add code
389  * as well as ppc64 will do all of their discovery in userspace
390  * and will require this interface.
391  */
392 #ifdef CONFIG_ARCH_MEMORY_PROBE
393 static ssize_t
memory_probe_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)394 memory_probe_store(struct device *dev, struct device_attribute *attr,
395 		   const char *buf, size_t count)
396 {
397 	u64 phys_addr;
398 	int nid;
399 	int i, ret;
400 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
401 
402 	phys_addr = simple_strtoull(buf, NULL, 0);
403 
404 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
405 		return -EINVAL;
406 
407 	for (i = 0; i < sections_per_block; i++) {
408 		nid = memory_add_physaddr_to_nid(phys_addr);
409 		ret = add_memory(nid, phys_addr,
410 				 PAGES_PER_SECTION << PAGE_SHIFT);
411 		if (ret)
412 			goto out;
413 
414 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
415 	}
416 
417 	ret = count;
418 out:
419 	return ret;
420 }
421 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
422 
memory_probe_init(void)423 static int memory_probe_init(void)
424 {
425 	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
426 }
427 #else
memory_probe_init(void)428 static inline int memory_probe_init(void)
429 {
430 	return 0;
431 }
432 #endif
433 
434 #ifdef CONFIG_MEMORY_FAILURE
435 /*
436  * Support for offlining pages of memory
437  */
438 
439 /* Soft offline a page */
440 static ssize_t
store_soft_offline_page(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)441 store_soft_offline_page(struct device *dev,
442 			struct device_attribute *attr,
443 			const char *buf, size_t count)
444 {
445 	int ret;
446 	u64 pfn;
447 	if (!capable(CAP_SYS_ADMIN))
448 		return -EPERM;
449 	if (strict_strtoull(buf, 0, &pfn) < 0)
450 		return -EINVAL;
451 	pfn >>= PAGE_SHIFT;
452 	if (!pfn_valid(pfn))
453 		return -ENXIO;
454 	ret = soft_offline_page(pfn_to_page(pfn), 0);
455 	return ret == 0 ? count : ret;
456 }
457 
458 /* Forcibly offline a page, including killing processes. */
459 static ssize_t
store_hard_offline_page(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)460 store_hard_offline_page(struct device *dev,
461 			struct device_attribute *attr,
462 			const char *buf, size_t count)
463 {
464 	int ret;
465 	u64 pfn;
466 	if (!capable(CAP_SYS_ADMIN))
467 		return -EPERM;
468 	if (strict_strtoull(buf, 0, &pfn) < 0)
469 		return -EINVAL;
470 	pfn >>= PAGE_SHIFT;
471 	ret = memory_failure(pfn, 0, 0);
472 	return ret ? ret : count;
473 }
474 
475 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
476 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
477 
memory_fail_init(void)478 static __init int memory_fail_init(void)
479 {
480 	int err;
481 
482 	err = device_create_file(memory_subsys.dev_root,
483 				&dev_attr_soft_offline_page);
484 	if (!err)
485 		err = device_create_file(memory_subsys.dev_root,
486 				&dev_attr_hard_offline_page);
487 	return err;
488 }
489 #else
memory_fail_init(void)490 static inline int memory_fail_init(void)
491 {
492 	return 0;
493 }
494 #endif
495 
496 /*
497  * Note that phys_device is optional.  It is here to allow for
498  * differentiation between which *physical* devices each
499  * section belongs to...
500  */
arch_get_memory_phys_device(unsigned long start_pfn)501 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
502 {
503 	return 0;
504 }
505 
506 /*
507  * A reference for the returned object is held and the reference for the
508  * hinted object is released.
509  */
find_memory_block_hinted(struct mem_section * section,struct memory_block * hint)510 struct memory_block *find_memory_block_hinted(struct mem_section *section,
511 					      struct memory_block *hint)
512 {
513 	int block_id = base_memory_block_id(__section_nr(section));
514 	struct device *hintdev = hint ? &hint->dev : NULL;
515 	struct device *dev;
516 
517 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
518 	if (hint)
519 		put_device(&hint->dev);
520 	if (!dev)
521 		return NULL;
522 	return container_of(dev, struct memory_block, dev);
523 }
524 
525 /*
526  * For now, we have a linear search to go find the appropriate
527  * memory_block corresponding to a particular phys_index. If
528  * this gets to be a real problem, we can always use a radix
529  * tree or something here.
530  *
531  * This could be made generic for all device subsystems.
532  */
find_memory_block(struct mem_section * section)533 struct memory_block *find_memory_block(struct mem_section *section)
534 {
535 	return find_memory_block_hinted(section, NULL);
536 }
537 
init_memory_block(struct memory_block ** memory,struct mem_section * section,unsigned long state)538 static int init_memory_block(struct memory_block **memory,
539 			     struct mem_section *section, unsigned long state)
540 {
541 	struct memory_block *mem;
542 	unsigned long start_pfn;
543 	int scn_nr;
544 	int ret = 0;
545 
546 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
547 	if (!mem)
548 		return -ENOMEM;
549 
550 	scn_nr = __section_nr(section);
551 	mem->start_section_nr =
552 			base_memory_block_id(scn_nr) * sections_per_block;
553 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
554 	mem->state = state;
555 	mem->section_count++;
556 	mutex_init(&mem->state_mutex);
557 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
558 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
559 
560 	ret = register_memory(mem);
561 	if (!ret)
562 		ret = mem_create_simple_file(mem, phys_index);
563 	if (!ret)
564 		ret = mem_create_simple_file(mem, end_phys_index);
565 	if (!ret)
566 		ret = mem_create_simple_file(mem, state);
567 	if (!ret)
568 		ret = mem_create_simple_file(mem, phys_device);
569 	if (!ret)
570 		ret = mem_create_simple_file(mem, removable);
571 
572 	*memory = mem;
573 	return ret;
574 }
575 
add_memory_section(int nid,struct mem_section * section,struct memory_block ** mem_p,unsigned long state,enum mem_add_context context)576 static int add_memory_section(int nid, struct mem_section *section,
577 			struct memory_block **mem_p,
578 			unsigned long state, enum mem_add_context context)
579 {
580 	struct memory_block *mem = NULL;
581 	int scn_nr = __section_nr(section);
582 	int ret = 0;
583 
584 	mutex_lock(&mem_sysfs_mutex);
585 
586 	if (context == BOOT) {
587 		/* same memory block ? */
588 		if (mem_p && *mem_p)
589 			if (scn_nr >= (*mem_p)->start_section_nr &&
590 			    scn_nr <= (*mem_p)->end_section_nr) {
591 				mem = *mem_p;
592 				kobject_get(&mem->dev.kobj);
593 			}
594 	} else
595 		mem = find_memory_block(section);
596 
597 	if (mem) {
598 		mem->section_count++;
599 		kobject_put(&mem->dev.kobj);
600 	} else {
601 		ret = init_memory_block(&mem, section, state);
602 		/* store memory_block pointer for next loop */
603 		if (!ret && context == BOOT)
604 			if (mem_p)
605 				*mem_p = mem;
606 	}
607 
608 	if (!ret) {
609 		if (context == HOTPLUG &&
610 		    mem->section_count == sections_per_block)
611 			ret = register_mem_sect_under_node(mem, nid);
612 	}
613 
614 	mutex_unlock(&mem_sysfs_mutex);
615 	return ret;
616 }
617 
remove_memory_block(unsigned long node_id,struct mem_section * section,int phys_device)618 int remove_memory_block(unsigned long node_id, struct mem_section *section,
619 		int phys_device)
620 {
621 	struct memory_block *mem;
622 
623 	mutex_lock(&mem_sysfs_mutex);
624 	mem = find_memory_block(section);
625 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
626 
627 	mem->section_count--;
628 	if (mem->section_count == 0) {
629 		mem_remove_simple_file(mem, phys_index);
630 		mem_remove_simple_file(mem, end_phys_index);
631 		mem_remove_simple_file(mem, state);
632 		mem_remove_simple_file(mem, phys_device);
633 		mem_remove_simple_file(mem, removable);
634 		unregister_memory(mem);
635 		kfree(mem);
636 	} else
637 		kobject_put(&mem->dev.kobj);
638 
639 	mutex_unlock(&mem_sysfs_mutex);
640 	return 0;
641 }
642 
643 /*
644  * need an interface for the VM to add new memory regions,
645  * but without onlining it.
646  */
register_new_memory(int nid,struct mem_section * section)647 int register_new_memory(int nid, struct mem_section *section)
648 {
649 	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
650 }
651 
unregister_memory_section(struct mem_section * section)652 int unregister_memory_section(struct mem_section *section)
653 {
654 	if (!present_section(section))
655 		return -EINVAL;
656 
657 	return remove_memory_block(0, section, 0);
658 }
659 
660 /*
661  * Initialize the sysfs support for memory devices...
662  */
memory_dev_init(void)663 int __init memory_dev_init(void)
664 {
665 	unsigned int i;
666 	int ret;
667 	int err;
668 	unsigned long block_sz;
669 	struct memory_block *mem = NULL;
670 
671 	ret = subsys_system_register(&memory_subsys, NULL);
672 	if (ret)
673 		goto out;
674 
675 	block_sz = get_memory_block_size();
676 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
677 
678 	/*
679 	 * Create entries for memory sections that were found
680 	 * during boot and have been initialized
681 	 */
682 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
683 		if (!present_section_nr(i))
684 			continue;
685 		/* don't need to reuse memory_block if only one per block */
686 		err = add_memory_section(0, __nr_to_section(i),
687 				 (sections_per_block == 1) ? NULL : &mem,
688 					 MEM_ONLINE,
689 					 BOOT);
690 		if (!ret)
691 			ret = err;
692 	}
693 
694 	err = memory_probe_init();
695 	if (!ret)
696 		ret = err;
697 	err = memory_fail_init();
698 	if (!ret)
699 		ret = err;
700 	err = block_size_init();
701 	if (!ret)
702 		ret = err;
703 out:
704 	if (ret)
705 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
706 	return ret;
707 }
708