• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include "internal.h"
37 
38 
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41 
42 /*
43  * One thing we have to be careful of with a per-sb shrinker is that we don't
44  * drop the last active reference to the superblock from within the shrinker.
45  * If that happens we could trigger unregistering the shrinker from within the
46  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
47  * take a passive reference to the superblock to avoid this from occurring.
48  */
prune_super(struct shrinker * shrink,struct shrink_control * sc)49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
50 {
51 	struct super_block *sb;
52 	int	fs_objects = 0;
53 	int	total_objects;
54 
55 	sb = container_of(shrink, struct super_block, s_shrink);
56 
57 	/*
58 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
59 	 * to recurse into the FS that called us in clear_inode() and friends..
60 	 */
61 	if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
62 		return -1;
63 
64 	if (!grab_super_passive(sb))
65 		return !sc->nr_to_scan ? 0 : -1;
66 
67 	if (sb->s_op && sb->s_op->nr_cached_objects)
68 		fs_objects = sb->s_op->nr_cached_objects(sb);
69 
70 	total_objects = sb->s_nr_dentry_unused +
71 			sb->s_nr_inodes_unused + fs_objects + 1;
72 
73 	if (sc->nr_to_scan) {
74 		int	dentries;
75 		int	inodes;
76 
77 		/* proportion the scan between the caches */
78 		dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
79 							total_objects;
80 		inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
81 							total_objects;
82 		if (fs_objects)
83 			fs_objects = (sc->nr_to_scan * fs_objects) /
84 							total_objects;
85 		/*
86 		 * prune the dcache first as the icache is pinned by it, then
87 		 * prune the icache, followed by the filesystem specific caches
88 		 */
89 		prune_dcache_sb(sb, dentries);
90 		prune_icache_sb(sb, inodes);
91 
92 		if (fs_objects && sb->s_op->free_cached_objects) {
93 			sb->s_op->free_cached_objects(sb, fs_objects);
94 			fs_objects = sb->s_op->nr_cached_objects(sb);
95 		}
96 		total_objects = sb->s_nr_dentry_unused +
97 				sb->s_nr_inodes_unused + fs_objects;
98 	}
99 
100 	total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
101 	drop_super(sb);
102 	return total_objects;
103 }
104 
105 /**
106  *	alloc_super	-	create new superblock
107  *	@type:	filesystem type superblock should belong to
108  *
109  *	Allocates and initializes a new &struct super_block.  alloc_super()
110  *	returns a pointer new superblock or %NULL if allocation had failed.
111  */
alloc_super(struct file_system_type * type)112 static struct super_block *alloc_super(struct file_system_type *type)
113 {
114 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
115 	static const struct super_operations default_op;
116 
117 	if (s) {
118 		if (security_sb_alloc(s)) {
119 			kfree(s);
120 			s = NULL;
121 			goto out;
122 		}
123 #ifdef CONFIG_SMP
124 		s->s_files = alloc_percpu(struct list_head);
125 		if (!s->s_files) {
126 			security_sb_free(s);
127 			kfree(s);
128 			s = NULL;
129 			goto out;
130 		} else {
131 			int i;
132 
133 			for_each_possible_cpu(i)
134 				INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
135 		}
136 #else
137 		INIT_LIST_HEAD(&s->s_files);
138 #endif
139 		s->s_bdi = &default_backing_dev_info;
140 		INIT_HLIST_NODE(&s->s_instances);
141 		INIT_HLIST_BL_HEAD(&s->s_anon);
142 		INIT_LIST_HEAD(&s->s_inodes);
143 		INIT_LIST_HEAD(&s->s_dentry_lru);
144 		INIT_LIST_HEAD(&s->s_inode_lru);
145 		spin_lock_init(&s->s_inode_lru_lock);
146 		INIT_LIST_HEAD(&s->s_mounts);
147 		init_rwsem(&s->s_umount);
148 		mutex_init(&s->s_lock);
149 		lockdep_set_class(&s->s_umount, &type->s_umount_key);
150 		/*
151 		 * The locking rules for s_lock are up to the
152 		 * filesystem. For example ext3fs has different
153 		 * lock ordering than usbfs:
154 		 */
155 		lockdep_set_class(&s->s_lock, &type->s_lock_key);
156 		/*
157 		 * sget() can have s_umount recursion.
158 		 *
159 		 * When it cannot find a suitable sb, it allocates a new
160 		 * one (this one), and tries again to find a suitable old
161 		 * one.
162 		 *
163 		 * In case that succeeds, it will acquire the s_umount
164 		 * lock of the old one. Since these are clearly distrinct
165 		 * locks, and this object isn't exposed yet, there's no
166 		 * risk of deadlocks.
167 		 *
168 		 * Annotate this by putting this lock in a different
169 		 * subclass.
170 		 */
171 		down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
172 		s->s_count = 1;
173 		atomic_set(&s->s_active, 1);
174 		mutex_init(&s->s_vfs_rename_mutex);
175 		lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
176 		mutex_init(&s->s_dquot.dqio_mutex);
177 		mutex_init(&s->s_dquot.dqonoff_mutex);
178 		init_rwsem(&s->s_dquot.dqptr_sem);
179 		init_waitqueue_head(&s->s_wait_unfrozen);
180 		s->s_maxbytes = MAX_NON_LFS;
181 		s->s_op = &default_op;
182 		s->s_time_gran = 1000000000;
183 		s->cleancache_poolid = -1;
184 
185 		s->s_shrink.seeks = DEFAULT_SEEKS;
186 		s->s_shrink.shrink = prune_super;
187 		s->s_shrink.batch = 1024;
188 	}
189 out:
190 	return s;
191 }
192 
193 /**
194  *	destroy_super	-	frees a superblock
195  *	@s: superblock to free
196  *
197  *	Frees a superblock.
198  */
destroy_super(struct super_block * s)199 static inline void destroy_super(struct super_block *s)
200 {
201 #ifdef CONFIG_SMP
202 	free_percpu(s->s_files);
203 #endif
204 	security_sb_free(s);
205 	WARN_ON(!list_empty(&s->s_mounts));
206 	kfree(s->s_subtype);
207 	kfree(s->s_options);
208 	kfree(s);
209 }
210 
211 /* Superblock refcounting  */
212 
213 /*
214  * Drop a superblock's refcount.  The caller must hold sb_lock.
215  */
__put_super(struct super_block * sb)216 static void __put_super(struct super_block *sb)
217 {
218 	if (!--sb->s_count) {
219 		list_del_init(&sb->s_list);
220 		destroy_super(sb);
221 	}
222 }
223 
224 /**
225  *	put_super	-	drop a temporary reference to superblock
226  *	@sb: superblock in question
227  *
228  *	Drops a temporary reference, frees superblock if there's no
229  *	references left.
230  */
put_super(struct super_block * sb)231 static void put_super(struct super_block *sb)
232 {
233 	spin_lock(&sb_lock);
234 	__put_super(sb);
235 	spin_unlock(&sb_lock);
236 }
237 
238 
239 /**
240  *	deactivate_locked_super	-	drop an active reference to superblock
241  *	@s: superblock to deactivate
242  *
243  *	Drops an active reference to superblock, converting it into a temprory
244  *	one if there is no other active references left.  In that case we
245  *	tell fs driver to shut it down and drop the temporary reference we
246  *	had just acquired.
247  *
248  *	Caller holds exclusive lock on superblock; that lock is released.
249  */
deactivate_locked_super(struct super_block * s)250 void deactivate_locked_super(struct super_block *s)
251 {
252 	struct file_system_type *fs = s->s_type;
253 	if (atomic_dec_and_test(&s->s_active)) {
254 		cleancache_invalidate_fs(s);
255 		fs->kill_sb(s);
256 
257 		/* caches are now gone, we can safely kill the shrinker now */
258 		unregister_shrinker(&s->s_shrink);
259 
260 		/*
261 		 * We need to call rcu_barrier so all the delayed rcu free
262 		 * inodes are flushed before we release the fs module.
263 		 */
264 		rcu_barrier();
265 		put_filesystem(fs);
266 		put_super(s);
267 	} else {
268 		up_write(&s->s_umount);
269 	}
270 }
271 
272 EXPORT_SYMBOL(deactivate_locked_super);
273 
274 /**
275  *	deactivate_super	-	drop an active reference to superblock
276  *	@s: superblock to deactivate
277  *
278  *	Variant of deactivate_locked_super(), except that superblock is *not*
279  *	locked by caller.  If we are going to drop the final active reference,
280  *	lock will be acquired prior to that.
281  */
deactivate_super(struct super_block * s)282 void deactivate_super(struct super_block *s)
283 {
284         if (!atomic_add_unless(&s->s_active, -1, 1)) {
285 		down_write(&s->s_umount);
286 		deactivate_locked_super(s);
287 	}
288 }
289 
290 EXPORT_SYMBOL(deactivate_super);
291 
292 /**
293  *	grab_super - acquire an active reference
294  *	@s: reference we are trying to make active
295  *
296  *	Tries to acquire an active reference.  grab_super() is used when we
297  * 	had just found a superblock in super_blocks or fs_type->fs_supers
298  *	and want to turn it into a full-blown active reference.  grab_super()
299  *	is called with sb_lock held and drops it.  Returns 1 in case of
300  *	success, 0 if we had failed (superblock contents was already dead or
301  *	dying when grab_super() had been called).  Note that this is only
302  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
303  *	of their type), so increment of ->s_count is OK here.
304  */
grab_super(struct super_block * s)305 static int grab_super(struct super_block *s) __releases(sb_lock)
306 {
307 	s->s_count++;
308 	spin_unlock(&sb_lock);
309 	down_write(&s->s_umount);
310 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
311 		put_super(s);
312 		return 1;
313 	}
314 	up_write(&s->s_umount);
315 	put_super(s);
316 	return 0;
317 }
318 
319 /*
320  *	grab_super_passive - acquire a passive reference
321  *	@s: reference we are trying to grab
322  *
323  *	Tries to acquire a passive reference. This is used in places where we
324  *	cannot take an active reference but we need to ensure that the
325  *	superblock does not go away while we are working on it. It returns
326  *	false if a reference was not gained, and returns true with the s_umount
327  *	lock held in read mode if a reference is gained. On successful return,
328  *	the caller must drop the s_umount lock and the passive reference when
329  *	done.
330  */
grab_super_passive(struct super_block * sb)331 bool grab_super_passive(struct super_block *sb)
332 {
333 	spin_lock(&sb_lock);
334 	if (hlist_unhashed(&sb->s_instances)) {
335 		spin_unlock(&sb_lock);
336 		return false;
337 	}
338 
339 	sb->s_count++;
340 	spin_unlock(&sb_lock);
341 
342 	if (down_read_trylock(&sb->s_umount)) {
343 		if (sb->s_root && (sb->s_flags & MS_BORN))
344 			return true;
345 		up_read(&sb->s_umount);
346 	}
347 
348 	put_super(sb);
349 	return false;
350 }
351 
352 /*
353  * Superblock locking.  We really ought to get rid of these two.
354  */
lock_super(struct super_block * sb)355 void lock_super(struct super_block * sb)
356 {
357 	mutex_lock(&sb->s_lock);
358 }
359 
unlock_super(struct super_block * sb)360 void unlock_super(struct super_block * sb)
361 {
362 	mutex_unlock(&sb->s_lock);
363 }
364 
365 EXPORT_SYMBOL(lock_super);
366 EXPORT_SYMBOL(unlock_super);
367 
368 /**
369  *	generic_shutdown_super	-	common helper for ->kill_sb()
370  *	@sb: superblock to kill
371  *
372  *	generic_shutdown_super() does all fs-independent work on superblock
373  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
374  *	that need destruction out of superblock, call generic_shutdown_super()
375  *	and release aforementioned objects.  Note: dentries and inodes _are_
376  *	taken care of and do not need specific handling.
377  *
378  *	Upon calling this function, the filesystem may no longer alter or
379  *	rearrange the set of dentries belonging to this super_block, nor may it
380  *	change the attachments of dentries to inodes.
381  */
generic_shutdown_super(struct super_block * sb)382 void generic_shutdown_super(struct super_block *sb)
383 {
384 	const struct super_operations *sop = sb->s_op;
385 
386 	if (sb->s_root) {
387 		shrink_dcache_for_umount(sb);
388 		sync_filesystem(sb);
389 		sb->s_flags &= ~MS_ACTIVE;
390 
391 		fsnotify_unmount_inodes(&sb->s_inodes);
392 
393 		evict_inodes(sb);
394 
395 		if (sop->put_super)
396 			sop->put_super(sb);
397 
398 		if (!list_empty(&sb->s_inodes)) {
399 			printk("VFS: Busy inodes after unmount of %s. "
400 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
401 			   sb->s_id);
402 		}
403 	}
404 	spin_lock(&sb_lock);
405 	/* should be initialized for __put_super_and_need_restart() */
406 	hlist_del_init(&sb->s_instances);
407 	spin_unlock(&sb_lock);
408 	up_write(&sb->s_umount);
409 }
410 
411 EXPORT_SYMBOL(generic_shutdown_super);
412 
413 /**
414  *	sget	-	find or create a superblock
415  *	@type:	filesystem type superblock should belong to
416  *	@test:	comparison callback
417  *	@set:	setup callback
418  *	@data:	argument to each of them
419  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),void * data)420 struct super_block *sget(struct file_system_type *type,
421 			int (*test)(struct super_block *,void *),
422 			int (*set)(struct super_block *,void *),
423 			void *data)
424 {
425 	struct super_block *s = NULL;
426 	struct hlist_node *node;
427 	struct super_block *old;
428 	int err;
429 
430 retry:
431 	spin_lock(&sb_lock);
432 	if (test) {
433 		hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
434 			if (!test(old, data))
435 				continue;
436 			if (!grab_super(old))
437 				goto retry;
438 			if (s) {
439 				up_write(&s->s_umount);
440 				destroy_super(s);
441 				s = NULL;
442 			}
443 			return old;
444 		}
445 	}
446 	if (!s) {
447 		spin_unlock(&sb_lock);
448 		s = alloc_super(type);
449 		if (!s)
450 			return ERR_PTR(-ENOMEM);
451 		goto retry;
452 	}
453 
454 	err = set(s, data);
455 	if (err) {
456 		spin_unlock(&sb_lock);
457 		up_write(&s->s_umount);
458 		destroy_super(s);
459 		return ERR_PTR(err);
460 	}
461 	s->s_type = type;
462 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
463 	list_add_tail(&s->s_list, &super_blocks);
464 	hlist_add_head(&s->s_instances, &type->fs_supers);
465 	spin_unlock(&sb_lock);
466 	get_filesystem(type);
467 	register_shrinker(&s->s_shrink);
468 	return s;
469 }
470 
471 EXPORT_SYMBOL(sget);
472 
drop_super(struct super_block * sb)473 void drop_super(struct super_block *sb)
474 {
475 	up_read(&sb->s_umount);
476 	put_super(sb);
477 }
478 
479 EXPORT_SYMBOL(drop_super);
480 
481 /**
482  * sync_supers - helper for periodic superblock writeback
483  *
484  * Call the write_super method if present on all dirty superblocks in
485  * the system.  This is for the periodic writeback used by most older
486  * filesystems.  For data integrity superblock writeback use
487  * sync_filesystems() instead.
488  *
489  * Note: check the dirty flag before waiting, so we don't
490  * hold up the sync while mounting a device. (The newly
491  * mounted device won't need syncing.)
492  */
sync_supers(void)493 void sync_supers(void)
494 {
495 	struct super_block *sb, *p = NULL;
496 
497 	spin_lock(&sb_lock);
498 	list_for_each_entry(sb, &super_blocks, s_list) {
499 		if (hlist_unhashed(&sb->s_instances))
500 			continue;
501 		if (sb->s_op->write_super && sb->s_dirt) {
502 			sb->s_count++;
503 			spin_unlock(&sb_lock);
504 
505 			down_read(&sb->s_umount);
506 			if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
507 				sb->s_op->write_super(sb);
508 			up_read(&sb->s_umount);
509 
510 			spin_lock(&sb_lock);
511 			if (p)
512 				__put_super(p);
513 			p = sb;
514 		}
515 	}
516 	if (p)
517 		__put_super(p);
518 	spin_unlock(&sb_lock);
519 }
520 
521 /**
522  *	iterate_supers - call function for all active superblocks
523  *	@f: function to call
524  *	@arg: argument to pass to it
525  *
526  *	Scans the superblock list and calls given function, passing it
527  *	locked superblock and given argument.
528  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)529 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
530 {
531 	struct super_block *sb, *p = NULL;
532 
533 	spin_lock(&sb_lock);
534 	list_for_each_entry(sb, &super_blocks, s_list) {
535 		if (hlist_unhashed(&sb->s_instances))
536 			continue;
537 		sb->s_count++;
538 		spin_unlock(&sb_lock);
539 
540 		down_read(&sb->s_umount);
541 		if (sb->s_root && (sb->s_flags & MS_BORN))
542 			f(sb, arg);
543 		up_read(&sb->s_umount);
544 
545 		spin_lock(&sb_lock);
546 		if (p)
547 			__put_super(p);
548 		p = sb;
549 	}
550 	if (p)
551 		__put_super(p);
552 	spin_unlock(&sb_lock);
553 }
554 
555 /**
556  *	iterate_supers_type - call function for superblocks of given type
557  *	@type: fs type
558  *	@f: function to call
559  *	@arg: argument to pass to it
560  *
561  *	Scans the superblock list and calls given function, passing it
562  *	locked superblock and given argument.
563  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)564 void iterate_supers_type(struct file_system_type *type,
565 	void (*f)(struct super_block *, void *), void *arg)
566 {
567 	struct super_block *sb, *p = NULL;
568 	struct hlist_node *node;
569 
570 	spin_lock(&sb_lock);
571 	hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
572 		sb->s_count++;
573 		spin_unlock(&sb_lock);
574 
575 		down_read(&sb->s_umount);
576 		if (sb->s_root && (sb->s_flags & MS_BORN))
577 			f(sb, arg);
578 		up_read(&sb->s_umount);
579 
580 		spin_lock(&sb_lock);
581 		if (p)
582 			__put_super(p);
583 		p = sb;
584 	}
585 	if (p)
586 		__put_super(p);
587 	spin_unlock(&sb_lock);
588 }
589 
590 EXPORT_SYMBOL(iterate_supers_type);
591 
592 /**
593  *	get_super - get the superblock of a device
594  *	@bdev: device to get the superblock for
595  *
596  *	Scans the superblock list and finds the superblock of the file system
597  *	mounted on the device given. %NULL is returned if no match is found.
598  */
599 
get_super(struct block_device * bdev)600 struct super_block *get_super(struct block_device *bdev)
601 {
602 	struct super_block *sb;
603 
604 	if (!bdev)
605 		return NULL;
606 
607 	spin_lock(&sb_lock);
608 rescan:
609 	list_for_each_entry(sb, &super_blocks, s_list) {
610 		if (hlist_unhashed(&sb->s_instances))
611 			continue;
612 		if (sb->s_bdev == bdev) {
613 			sb->s_count++;
614 			spin_unlock(&sb_lock);
615 			down_read(&sb->s_umount);
616 			/* still alive? */
617 			if (sb->s_root && (sb->s_flags & MS_BORN))
618 				return sb;
619 			up_read(&sb->s_umount);
620 			/* nope, got unmounted */
621 			spin_lock(&sb_lock);
622 			__put_super(sb);
623 			goto rescan;
624 		}
625 	}
626 	spin_unlock(&sb_lock);
627 	return NULL;
628 }
629 
630 EXPORT_SYMBOL(get_super);
631 
632 /**
633  *	get_super_thawed - get thawed superblock of a device
634  *	@bdev: device to get the superblock for
635  *
636  *	Scans the superblock list and finds the superblock of the file system
637  *	mounted on the device. The superblock is returned once it is thawed
638  *	(or immediately if it was not frozen). %NULL is returned if no match
639  *	is found.
640  */
get_super_thawed(struct block_device * bdev)641 struct super_block *get_super_thawed(struct block_device *bdev)
642 {
643 	while (1) {
644 		struct super_block *s = get_super(bdev);
645 		if (!s || s->s_frozen == SB_UNFROZEN)
646 			return s;
647 		up_read(&s->s_umount);
648 		vfs_check_frozen(s, SB_FREEZE_WRITE);
649 		put_super(s);
650 	}
651 }
652 EXPORT_SYMBOL(get_super_thawed);
653 
654 /**
655  * get_active_super - get an active reference to the superblock of a device
656  * @bdev: device to get the superblock for
657  *
658  * Scans the superblock list and finds the superblock of the file system
659  * mounted on the device given.  Returns the superblock with an active
660  * reference or %NULL if none was found.
661  */
get_active_super(struct block_device * bdev)662 struct super_block *get_active_super(struct block_device *bdev)
663 {
664 	struct super_block *sb;
665 
666 	if (!bdev)
667 		return NULL;
668 
669 restart:
670 	spin_lock(&sb_lock);
671 	list_for_each_entry(sb, &super_blocks, s_list) {
672 		if (hlist_unhashed(&sb->s_instances))
673 			continue;
674 		if (sb->s_bdev == bdev) {
675 			if (!grab_super(sb))
676 				goto restart;
677 			up_write(&sb->s_umount);
678 			return sb;
679 		}
680 	}
681 	spin_unlock(&sb_lock);
682 	return NULL;
683 }
684 
user_get_super(dev_t dev)685 struct super_block *user_get_super(dev_t dev)
686 {
687 	struct super_block *sb;
688 
689 	spin_lock(&sb_lock);
690 rescan:
691 	list_for_each_entry(sb, &super_blocks, s_list) {
692 		if (hlist_unhashed(&sb->s_instances))
693 			continue;
694 		if (sb->s_dev ==  dev) {
695 			sb->s_count++;
696 			spin_unlock(&sb_lock);
697 			down_read(&sb->s_umount);
698 			/* still alive? */
699 			if (sb->s_root && (sb->s_flags & MS_BORN))
700 				return sb;
701 			up_read(&sb->s_umount);
702 			/* nope, got unmounted */
703 			spin_lock(&sb_lock);
704 			__put_super(sb);
705 			goto rescan;
706 		}
707 	}
708 	spin_unlock(&sb_lock);
709 	return NULL;
710 }
711 
712 /**
713  *	do_remount_sb - asks filesystem to change mount options.
714  *	@sb:	superblock in question
715  *	@flags:	numeric part of options
716  *	@data:	the rest of options
717  *      @force: whether or not to force the change
718  *
719  *	Alters the mount options of a mounted file system.
720  */
do_remount_sb(struct super_block * sb,int flags,void * data,int force)721 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
722 {
723 	int retval;
724 	int remount_ro;
725 
726 	if (sb->s_frozen != SB_UNFROZEN)
727 		return -EBUSY;
728 
729 #ifdef CONFIG_BLOCK
730 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
731 		return -EACCES;
732 #endif
733 
734 	if (flags & MS_RDONLY)
735 		acct_auto_close(sb);
736 	shrink_dcache_sb(sb);
737 	sync_filesystem(sb);
738 
739 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
740 
741 	/* If we are remounting RDONLY and current sb is read/write,
742 	   make sure there are no rw files opened */
743 	if (remount_ro) {
744 		if (force) {
745 			mark_files_ro(sb);
746 		} else {
747 			retval = sb_prepare_remount_readonly(sb);
748 			if (retval)
749 				return retval;
750 		}
751 	}
752 
753 	if (sb->s_op->remount_fs) {
754 		retval = sb->s_op->remount_fs(sb, &flags, data);
755 		if (retval) {
756 			if (!force)
757 				goto cancel_readonly;
758 			/* If forced remount, go ahead despite any errors */
759 			WARN(1, "forced remount of a %s fs returned %i\n",
760 			     sb->s_type->name, retval);
761 		}
762 	}
763 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
764 	/* Needs to be ordered wrt mnt_is_readonly() */
765 	smp_wmb();
766 	sb->s_readonly_remount = 0;
767 
768 	/*
769 	 * Some filesystems modify their metadata via some other path than the
770 	 * bdev buffer cache (eg. use a private mapping, or directories in
771 	 * pagecache, etc). Also file data modifications go via their own
772 	 * mappings. So If we try to mount readonly then copy the filesystem
773 	 * from bdev, we could get stale data, so invalidate it to give a best
774 	 * effort at coherency.
775 	 */
776 	if (remount_ro && sb->s_bdev)
777 		invalidate_bdev(sb->s_bdev);
778 	return 0;
779 
780 cancel_readonly:
781 	sb->s_readonly_remount = 0;
782 	return retval;
783 }
784 
do_emergency_remount(struct work_struct * work)785 static void do_emergency_remount(struct work_struct *work)
786 {
787 	struct super_block *sb, *p = NULL;
788 
789 	spin_lock(&sb_lock);
790 	list_for_each_entry(sb, &super_blocks, s_list) {
791 		if (hlist_unhashed(&sb->s_instances))
792 			continue;
793 		sb->s_count++;
794 		spin_unlock(&sb_lock);
795 		down_write(&sb->s_umount);
796 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
797 		    !(sb->s_flags & MS_RDONLY)) {
798 			/*
799 			 * What lock protects sb->s_flags??
800 			 */
801 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
802 		}
803 		up_write(&sb->s_umount);
804 		spin_lock(&sb_lock);
805 		if (p)
806 			__put_super(p);
807 		p = sb;
808 	}
809 	if (p)
810 		__put_super(p);
811 	spin_unlock(&sb_lock);
812 	kfree(work);
813 	printk("Emergency Remount complete\n");
814 }
815 
emergency_remount(void)816 void emergency_remount(void)
817 {
818 	struct work_struct *work;
819 
820 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
821 	if (work) {
822 		INIT_WORK(work, do_emergency_remount);
823 		schedule_work(work);
824 	}
825 }
826 
827 /*
828  * Unnamed block devices are dummy devices used by virtual
829  * filesystems which don't use real block-devices.  -- jrs
830  */
831 
832 static DEFINE_IDA(unnamed_dev_ida);
833 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
834 static int unnamed_dev_start = 0; /* don't bother trying below it */
835 
get_anon_bdev(dev_t * p)836 int get_anon_bdev(dev_t *p)
837 {
838 	int dev;
839 	int error;
840 
841  retry:
842 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
843 		return -ENOMEM;
844 	spin_lock(&unnamed_dev_lock);
845 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
846 	if (!error)
847 		unnamed_dev_start = dev + 1;
848 	spin_unlock(&unnamed_dev_lock);
849 	if (error == -EAGAIN)
850 		/* We raced and lost with another CPU. */
851 		goto retry;
852 	else if (error)
853 		return -EAGAIN;
854 
855 	if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
856 		spin_lock(&unnamed_dev_lock);
857 		ida_remove(&unnamed_dev_ida, dev);
858 		if (unnamed_dev_start > dev)
859 			unnamed_dev_start = dev;
860 		spin_unlock(&unnamed_dev_lock);
861 		return -EMFILE;
862 	}
863 	*p = MKDEV(0, dev & MINORMASK);
864 	return 0;
865 }
866 EXPORT_SYMBOL(get_anon_bdev);
867 
free_anon_bdev(dev_t dev)868 void free_anon_bdev(dev_t dev)
869 {
870 	int slot = MINOR(dev);
871 	spin_lock(&unnamed_dev_lock);
872 	ida_remove(&unnamed_dev_ida, slot);
873 	if (slot < unnamed_dev_start)
874 		unnamed_dev_start = slot;
875 	spin_unlock(&unnamed_dev_lock);
876 }
877 EXPORT_SYMBOL(free_anon_bdev);
878 
set_anon_super(struct super_block * s,void * data)879 int set_anon_super(struct super_block *s, void *data)
880 {
881 	int error = get_anon_bdev(&s->s_dev);
882 	if (!error)
883 		s->s_bdi = &noop_backing_dev_info;
884 	return error;
885 }
886 
887 EXPORT_SYMBOL(set_anon_super);
888 
kill_anon_super(struct super_block * sb)889 void kill_anon_super(struct super_block *sb)
890 {
891 	dev_t dev = sb->s_dev;
892 	generic_shutdown_super(sb);
893 	free_anon_bdev(dev);
894 }
895 
896 EXPORT_SYMBOL(kill_anon_super);
897 
kill_litter_super(struct super_block * sb)898 void kill_litter_super(struct super_block *sb)
899 {
900 	if (sb->s_root)
901 		d_genocide(sb->s_root);
902 	kill_anon_super(sb);
903 }
904 
905 EXPORT_SYMBOL(kill_litter_super);
906 
ns_test_super(struct super_block * sb,void * data)907 static int ns_test_super(struct super_block *sb, void *data)
908 {
909 	return sb->s_fs_info == data;
910 }
911 
ns_set_super(struct super_block * sb,void * data)912 static int ns_set_super(struct super_block *sb, void *data)
913 {
914 	sb->s_fs_info = data;
915 	return set_anon_super(sb, NULL);
916 }
917 
mount_ns(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))918 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
919 	void *data, int (*fill_super)(struct super_block *, void *, int))
920 {
921 	struct super_block *sb;
922 
923 	sb = sget(fs_type, ns_test_super, ns_set_super, data);
924 	if (IS_ERR(sb))
925 		return ERR_CAST(sb);
926 
927 	if (!sb->s_root) {
928 		int err;
929 		sb->s_flags = flags;
930 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
931 		if (err) {
932 			deactivate_locked_super(sb);
933 			return ERR_PTR(err);
934 		}
935 
936 		sb->s_flags |= MS_ACTIVE;
937 	}
938 
939 	return dget(sb->s_root);
940 }
941 
942 EXPORT_SYMBOL(mount_ns);
943 
944 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)945 static int set_bdev_super(struct super_block *s, void *data)
946 {
947 	s->s_bdev = data;
948 	s->s_dev = s->s_bdev->bd_dev;
949 
950 	/*
951 	 * We set the bdi here to the queue backing, file systems can
952 	 * overwrite this in ->fill_super()
953 	 */
954 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
955 	return 0;
956 }
957 
test_bdev_super(struct super_block * s,void * data)958 static int test_bdev_super(struct super_block *s, void *data)
959 {
960 	return (void *)s->s_bdev == data;
961 }
962 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))963 struct dentry *mount_bdev(struct file_system_type *fs_type,
964 	int flags, const char *dev_name, void *data,
965 	int (*fill_super)(struct super_block *, void *, int))
966 {
967 	struct block_device *bdev;
968 	struct super_block *s;
969 	fmode_t mode = FMODE_READ | FMODE_EXCL;
970 	int error = 0;
971 
972 	if (!(flags & MS_RDONLY))
973 		mode |= FMODE_WRITE;
974 
975 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
976 	if (IS_ERR(bdev))
977 		return ERR_CAST(bdev);
978 
979 	/*
980 	 * once the super is inserted into the list by sget, s_umount
981 	 * will protect the lockfs code from trying to start a snapshot
982 	 * while we are mounting
983 	 */
984 	mutex_lock(&bdev->bd_fsfreeze_mutex);
985 	if (bdev->bd_fsfreeze_count > 0) {
986 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
987 		error = -EBUSY;
988 		goto error_bdev;
989 	}
990 	s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
991 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
992 	if (IS_ERR(s))
993 		goto error_s;
994 
995 	if (s->s_root) {
996 		if ((flags ^ s->s_flags) & MS_RDONLY) {
997 			deactivate_locked_super(s);
998 			error = -EBUSY;
999 			goto error_bdev;
1000 		}
1001 
1002 		/*
1003 		 * s_umount nests inside bd_mutex during
1004 		 * __invalidate_device().  blkdev_put() acquires
1005 		 * bd_mutex and can't be called under s_umount.  Drop
1006 		 * s_umount temporarily.  This is safe as we're
1007 		 * holding an active reference.
1008 		 */
1009 		up_write(&s->s_umount);
1010 		blkdev_put(bdev, mode);
1011 		down_write(&s->s_umount);
1012 	} else {
1013 		char b[BDEVNAME_SIZE];
1014 
1015 		s->s_flags = flags | MS_NOSEC;
1016 		s->s_mode = mode;
1017 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1018 		sb_set_blocksize(s, block_size(bdev));
1019 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020 		if (error) {
1021 			deactivate_locked_super(s);
1022 			goto error;
1023 		}
1024 
1025 		s->s_flags |= MS_ACTIVE;
1026 		bdev->bd_super = s;
1027 	}
1028 
1029 	return dget(s->s_root);
1030 
1031 error_s:
1032 	error = PTR_ERR(s);
1033 error_bdev:
1034 	blkdev_put(bdev, mode);
1035 error:
1036 	return ERR_PTR(error);
1037 }
1038 EXPORT_SYMBOL(mount_bdev);
1039 
kill_block_super(struct super_block * sb)1040 void kill_block_super(struct super_block *sb)
1041 {
1042 	struct block_device *bdev = sb->s_bdev;
1043 	fmode_t mode = sb->s_mode;
1044 
1045 	bdev->bd_super = NULL;
1046 	generic_shutdown_super(sb);
1047 	sync_blockdev(bdev);
1048 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049 	blkdev_put(bdev, mode | FMODE_EXCL);
1050 }
1051 
1052 EXPORT_SYMBOL(kill_block_super);
1053 #endif
1054 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1055 struct dentry *mount_nodev(struct file_system_type *fs_type,
1056 	int flags, void *data,
1057 	int (*fill_super)(struct super_block *, void *, int))
1058 {
1059 	int error;
1060 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1061 
1062 	if (IS_ERR(s))
1063 		return ERR_CAST(s);
1064 
1065 	s->s_flags = flags;
1066 
1067 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1068 	if (error) {
1069 		deactivate_locked_super(s);
1070 		return ERR_PTR(error);
1071 	}
1072 	s->s_flags |= MS_ACTIVE;
1073 	return dget(s->s_root);
1074 }
1075 EXPORT_SYMBOL(mount_nodev);
1076 
compare_single(struct super_block * s,void * p)1077 static int compare_single(struct super_block *s, void *p)
1078 {
1079 	return 1;
1080 }
1081 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1082 struct dentry *mount_single(struct file_system_type *fs_type,
1083 	int flags, void *data,
1084 	int (*fill_super)(struct super_block *, void *, int))
1085 {
1086 	struct super_block *s;
1087 	int error;
1088 
1089 	s = sget(fs_type, compare_single, set_anon_super, NULL);
1090 	if (IS_ERR(s))
1091 		return ERR_CAST(s);
1092 	if (!s->s_root) {
1093 		s->s_flags = flags;
1094 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1095 		if (error) {
1096 			deactivate_locked_super(s);
1097 			return ERR_PTR(error);
1098 		}
1099 		s->s_flags |= MS_ACTIVE;
1100 	} else {
1101 		do_remount_sb(s, flags, data, 0);
1102 	}
1103 	return dget(s->s_root);
1104 }
1105 EXPORT_SYMBOL(mount_single);
1106 
1107 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,void * data)1108 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1109 {
1110 	struct dentry *root;
1111 	struct super_block *sb;
1112 	char *secdata = NULL;
1113 	int error = -ENOMEM;
1114 
1115 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1116 		secdata = alloc_secdata();
1117 		if (!secdata)
1118 			goto out;
1119 
1120 		error = security_sb_copy_data(data, secdata);
1121 		if (error)
1122 			goto out_free_secdata;
1123 	}
1124 
1125 	root = type->mount(type, flags, name, data);
1126 	if (IS_ERR(root)) {
1127 		error = PTR_ERR(root);
1128 		goto out_free_secdata;
1129 	}
1130 	sb = root->d_sb;
1131 	BUG_ON(!sb);
1132 	WARN_ON(!sb->s_bdi);
1133 	WARN_ON(sb->s_bdi == &default_backing_dev_info);
1134 	sb->s_flags |= MS_BORN;
1135 
1136 	error = security_sb_kern_mount(sb, flags, secdata);
1137 	if (error)
1138 		goto out_sb;
1139 
1140 	/*
1141 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1142 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1143 	 * this warning for a little while to try and catch filesystems that
1144 	 * violate this rule.
1145 	 */
1146 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1147 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1148 
1149 	up_write(&sb->s_umount);
1150 	free_secdata(secdata);
1151 	return root;
1152 out_sb:
1153 	dput(root);
1154 	deactivate_locked_super(sb);
1155 out_free_secdata:
1156 	free_secdata(secdata);
1157 out:
1158 	return ERR_PTR(error);
1159 }
1160 
1161 /**
1162  * freeze_super - lock the filesystem and force it into a consistent state
1163  * @sb: the super to lock
1164  *
1165  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1166  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1167  * -EBUSY.
1168  */
freeze_super(struct super_block * sb)1169 int freeze_super(struct super_block *sb)
1170 {
1171 	int ret;
1172 
1173 	atomic_inc(&sb->s_active);
1174 	down_write(&sb->s_umount);
1175 	if (sb->s_frozen) {
1176 		deactivate_locked_super(sb);
1177 		return -EBUSY;
1178 	}
1179 
1180 	if (!(sb->s_flags & MS_BORN)) {
1181 		up_write(&sb->s_umount);
1182 		return 0;	/* sic - it's "nothing to do" */
1183 	}
1184 
1185 	if (sb->s_flags & MS_RDONLY) {
1186 		sb->s_frozen = SB_FREEZE_TRANS;
1187 		smp_wmb();
1188 		up_write(&sb->s_umount);
1189 		return 0;
1190 	}
1191 
1192 	sb->s_frozen = SB_FREEZE_WRITE;
1193 	smp_wmb();
1194 
1195 	sync_filesystem(sb);
1196 
1197 	sb->s_frozen = SB_FREEZE_TRANS;
1198 	smp_wmb();
1199 
1200 	sync_blockdev(sb->s_bdev);
1201 	if (sb->s_op->freeze_fs) {
1202 		ret = sb->s_op->freeze_fs(sb);
1203 		if (ret) {
1204 			printk(KERN_ERR
1205 				"VFS:Filesystem freeze failed\n");
1206 			sb->s_frozen = SB_UNFROZEN;
1207 			smp_wmb();
1208 			wake_up(&sb->s_wait_unfrozen);
1209 			deactivate_locked_super(sb);
1210 			return ret;
1211 		}
1212 	}
1213 	up_write(&sb->s_umount);
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL(freeze_super);
1217 
1218 /**
1219  * thaw_super -- unlock filesystem
1220  * @sb: the super to thaw
1221  *
1222  * Unlocks the filesystem and marks it writeable again after freeze_super().
1223  */
thaw_super(struct super_block * sb)1224 int thaw_super(struct super_block *sb)
1225 {
1226 	int error;
1227 
1228 	down_write(&sb->s_umount);
1229 	if (sb->s_frozen == SB_UNFROZEN) {
1230 		up_write(&sb->s_umount);
1231 		return -EINVAL;
1232 	}
1233 
1234 	if (sb->s_flags & MS_RDONLY)
1235 		goto out;
1236 
1237 	if (sb->s_op->unfreeze_fs) {
1238 		error = sb->s_op->unfreeze_fs(sb);
1239 		if (error) {
1240 			printk(KERN_ERR
1241 				"VFS:Filesystem thaw failed\n");
1242 			sb->s_frozen = SB_FREEZE_TRANS;
1243 			up_write(&sb->s_umount);
1244 			return error;
1245 		}
1246 	}
1247 
1248 out:
1249 	sb->s_frozen = SB_UNFROZEN;
1250 	smp_wmb();
1251 	wake_up(&sb->s_wait_unfrozen);
1252 	deactivate_locked_super(sb);
1253 
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL(thaw_super);
1257