1 /*
2 *
3 * Programmable Interrupt Controller functions for the Freescale MPC52xx.
4 *
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 * Copyright (C) 2006 bplan GmbH
7 * Copyright (C) 2004 Sylvain Munaut <tnt@246tNt.com>
8 * Copyright (C) 2003 Montavista Software, Inc
9 *
10 * Based on the code from the 2.4 kernel by
11 * Dale Farnsworth <dfarnsworth@mvista.com> and Kent Borg.
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 *
17 */
18
19 /*
20 * This is the device driver for the MPC5200 interrupt controller.
21 *
22 * hardware overview
23 * -----------------
24 * The MPC5200 interrupt controller groups the all interrupt sources into
25 * three groups called 'critical', 'main', and 'peripheral'. The critical
26 * group has 3 irqs, External IRQ0, slice timer 0 irq, and wake from deep
27 * sleep. Main group include the other 3 external IRQs, slice timer 1, RTC,
28 * gpios, and the general purpose timers. Peripheral group contains the
29 * remaining irq sources from all of the on-chip peripherals (PSCs, Ethernet,
30 * USB, DMA, etc).
31 *
32 * virqs
33 * -----
34 * The Linux IRQ subsystem requires that each irq source be assigned a
35 * system wide unique IRQ number starting at 1 (0 means no irq). Since
36 * systems can have multiple interrupt controllers, the virtual IRQ (virq)
37 * infrastructure lets each interrupt controller to define a local set
38 * of IRQ numbers and the virq infrastructure maps those numbers into
39 * a unique range of the global IRQ# space.
40 *
41 * To define a range of virq numbers for this controller, this driver first
42 * assigns a number to each of the irq groups (called the level 1 or L1
43 * value). Within each group individual irq sources are also assigned a
44 * number, as defined by the MPC5200 user guide, and refers to it as the
45 * level 2 or L2 value. The virq number is determined by shifting up the
46 * L1 value by MPC52xx_IRQ_L1_OFFSET and ORing it with the L2 value.
47 *
48 * For example, the TMR0 interrupt is irq 9 in the main group. The
49 * virq for TMR0 is calculated by ((1 << MPC52xx_IRQ_L1_OFFSET) | 9).
50 *
51 * The observant reader will also notice that this driver defines a 4th
52 * interrupt group called 'bestcomm'. The bestcomm group isn't physically
53 * part of the MPC5200 interrupt controller, but it is used here to assign
54 * a separate virq number for each bestcomm task (since any of the 16
55 * bestcomm tasks can cause the bestcomm interrupt to be raised). When a
56 * bestcomm interrupt occurs (peripheral group, irq 0) this driver determines
57 * which task needs servicing and returns the irq number for that task. This
58 * allows drivers which use bestcomm to define their own interrupt handlers.
59 *
60 * irq_chip structures
61 * -------------------
62 * For actually manipulating IRQs (masking, enabling, clearing, etc) this
63 * driver defines four separate 'irq_chip' structures, one for the main
64 * group, one for the peripherals group, one for the bestcomm group and one
65 * for external interrupts. The irq_chip structures provide the hooks needed
66 * to manipulate each IRQ source, and since each group is has a separate set
67 * of registers for controlling the irq, it makes sense to divide up the
68 * hooks along those lines.
69 *
70 * You'll notice that there is not an irq_chip for the critical group and
71 * you'll also notice that there is an irq_chip defined for external
72 * interrupts even though there is no external interrupt group. The reason
73 * for this is that the four external interrupts are all managed with the same
74 * register even though one of the external IRQs is in the critical group and
75 * the other three are in the main group. For this reason it makes sense for
76 * the 4 external irqs to be managed using a separate set of hooks. The
77 * reason there is no crit irq_chip is that of the 3 irqs in the critical
78 * group, only external interrupt is actually support at this time by this
79 * driver and since external interrupt is the only one used, it can just
80 * be directed to make use of the external irq irq_chip.
81 *
82 * device tree bindings
83 * --------------------
84 * The device tree bindings for this controller reflect the two level
85 * organization of irqs in the device. #interrupt-cells = <3> where the
86 * first cell is the group number [0..3], the second cell is the irq
87 * number in the group, and the third cell is the sense type (level/edge).
88 * For reference, the following is a list of the interrupt property values
89 * associated with external interrupt sources on the MPC5200 (just because
90 * it is non-obvious to determine what the interrupts property should be
91 * when reading the mpc5200 manual and it is a frequently asked question).
92 *
93 * External interrupts:
94 * <0 0 n> external irq0, n is sense (n=0: level high,
95 * <1 1 n> external irq1, n is sense n=1: edge rising,
96 * <1 2 n> external irq2, n is sense n=2: edge falling,
97 * <1 3 n> external irq3, n is sense n=3: level low)
98 */
99 #undef DEBUG
100
101 #include <linux/interrupt.h>
102 #include <linux/irq.h>
103 #include <linux/of.h>
104 #include <asm/io.h>
105 #include <asm/prom.h>
106 #include <asm/mpc52xx.h>
107
108 /* HW IRQ mapping */
109 #define MPC52xx_IRQ_L1_CRIT (0)
110 #define MPC52xx_IRQ_L1_MAIN (1)
111 #define MPC52xx_IRQ_L1_PERP (2)
112 #define MPC52xx_IRQ_L1_SDMA (3)
113
114 #define MPC52xx_IRQ_L1_OFFSET (6)
115 #define MPC52xx_IRQ_L1_MASK (0x00c0)
116 #define MPC52xx_IRQ_L2_MASK (0x003f)
117
118 #define MPC52xx_IRQ_HIGHTESTHWIRQ (0xd0)
119
120
121 /* MPC5200 device tree match tables */
122 static struct of_device_id mpc52xx_pic_ids[] __initdata = {
123 { .compatible = "fsl,mpc5200-pic", },
124 { .compatible = "mpc5200-pic", },
125 {}
126 };
127 static struct of_device_id mpc52xx_sdma_ids[] __initdata = {
128 { .compatible = "fsl,mpc5200-bestcomm", },
129 { .compatible = "mpc5200-bestcomm", },
130 {}
131 };
132
133 static struct mpc52xx_intr __iomem *intr;
134 static struct mpc52xx_sdma __iomem *sdma;
135 static struct irq_domain *mpc52xx_irqhost = NULL;
136
137 static unsigned char mpc52xx_map_senses[4] = {
138 IRQ_TYPE_LEVEL_HIGH,
139 IRQ_TYPE_EDGE_RISING,
140 IRQ_TYPE_EDGE_FALLING,
141 IRQ_TYPE_LEVEL_LOW,
142 };
143
144 /* Utility functions */
io_be_setbit(u32 __iomem * addr,int bitno)145 static inline void io_be_setbit(u32 __iomem *addr, int bitno)
146 {
147 out_be32(addr, in_be32(addr) | (1 << bitno));
148 }
149
io_be_clrbit(u32 __iomem * addr,int bitno)150 static inline void io_be_clrbit(u32 __iomem *addr, int bitno)
151 {
152 out_be32(addr, in_be32(addr) & ~(1 << bitno));
153 }
154
155 /*
156 * IRQ[0-3] interrupt irq_chip
157 */
mpc52xx_extirq_mask(struct irq_data * d)158 static void mpc52xx_extirq_mask(struct irq_data *d)
159 {
160 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
161 io_be_clrbit(&intr->ctrl, 11 - l2irq);
162 }
163
mpc52xx_extirq_unmask(struct irq_data * d)164 static void mpc52xx_extirq_unmask(struct irq_data *d)
165 {
166 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
167 io_be_setbit(&intr->ctrl, 11 - l2irq);
168 }
169
mpc52xx_extirq_ack(struct irq_data * d)170 static void mpc52xx_extirq_ack(struct irq_data *d)
171 {
172 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
173 io_be_setbit(&intr->ctrl, 27-l2irq);
174 }
175
mpc52xx_extirq_set_type(struct irq_data * d,unsigned int flow_type)176 static int mpc52xx_extirq_set_type(struct irq_data *d, unsigned int flow_type)
177 {
178 u32 ctrl_reg, type;
179 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
180 void *handler = handle_level_irq;
181
182 pr_debug("%s: irq=%x. l2=%d flow_type=%d\n", __func__,
183 (int) irqd_to_hwirq(d), l2irq, flow_type);
184
185 switch (flow_type) {
186 case IRQF_TRIGGER_HIGH: type = 0; break;
187 case IRQF_TRIGGER_RISING: type = 1; handler = handle_edge_irq; break;
188 case IRQF_TRIGGER_FALLING: type = 2; handler = handle_edge_irq; break;
189 case IRQF_TRIGGER_LOW: type = 3; break;
190 default:
191 type = 0;
192 }
193
194 ctrl_reg = in_be32(&intr->ctrl);
195 ctrl_reg &= ~(0x3 << (22 - (l2irq * 2)));
196 ctrl_reg |= (type << (22 - (l2irq * 2)));
197 out_be32(&intr->ctrl, ctrl_reg);
198
199 __irq_set_handler_locked(d->irq, handler);
200
201 return 0;
202 }
203
204 static struct irq_chip mpc52xx_extirq_irqchip = {
205 .name = "MPC52xx External",
206 .irq_mask = mpc52xx_extirq_mask,
207 .irq_unmask = mpc52xx_extirq_unmask,
208 .irq_ack = mpc52xx_extirq_ack,
209 .irq_set_type = mpc52xx_extirq_set_type,
210 };
211
212 /*
213 * Main interrupt irq_chip
214 */
mpc52xx_null_set_type(struct irq_data * d,unsigned int flow_type)215 static int mpc52xx_null_set_type(struct irq_data *d, unsigned int flow_type)
216 {
217 return 0; /* Do nothing so that the sense mask will get updated */
218 }
219
mpc52xx_main_mask(struct irq_data * d)220 static void mpc52xx_main_mask(struct irq_data *d)
221 {
222 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
223 io_be_setbit(&intr->main_mask, 16 - l2irq);
224 }
225
mpc52xx_main_unmask(struct irq_data * d)226 static void mpc52xx_main_unmask(struct irq_data *d)
227 {
228 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
229 io_be_clrbit(&intr->main_mask, 16 - l2irq);
230 }
231
232 static struct irq_chip mpc52xx_main_irqchip = {
233 .name = "MPC52xx Main",
234 .irq_mask = mpc52xx_main_mask,
235 .irq_mask_ack = mpc52xx_main_mask,
236 .irq_unmask = mpc52xx_main_unmask,
237 .irq_set_type = mpc52xx_null_set_type,
238 };
239
240 /*
241 * Peripherals interrupt irq_chip
242 */
mpc52xx_periph_mask(struct irq_data * d)243 static void mpc52xx_periph_mask(struct irq_data *d)
244 {
245 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
246 io_be_setbit(&intr->per_mask, 31 - l2irq);
247 }
248
mpc52xx_periph_unmask(struct irq_data * d)249 static void mpc52xx_periph_unmask(struct irq_data *d)
250 {
251 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
252 io_be_clrbit(&intr->per_mask, 31 - l2irq);
253 }
254
255 static struct irq_chip mpc52xx_periph_irqchip = {
256 .name = "MPC52xx Peripherals",
257 .irq_mask = mpc52xx_periph_mask,
258 .irq_mask_ack = mpc52xx_periph_mask,
259 .irq_unmask = mpc52xx_periph_unmask,
260 .irq_set_type = mpc52xx_null_set_type,
261 };
262
263 /*
264 * SDMA interrupt irq_chip
265 */
mpc52xx_sdma_mask(struct irq_data * d)266 static void mpc52xx_sdma_mask(struct irq_data *d)
267 {
268 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
269 io_be_setbit(&sdma->IntMask, l2irq);
270 }
271
mpc52xx_sdma_unmask(struct irq_data * d)272 static void mpc52xx_sdma_unmask(struct irq_data *d)
273 {
274 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
275 io_be_clrbit(&sdma->IntMask, l2irq);
276 }
277
mpc52xx_sdma_ack(struct irq_data * d)278 static void mpc52xx_sdma_ack(struct irq_data *d)
279 {
280 int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
281 out_be32(&sdma->IntPend, 1 << l2irq);
282 }
283
284 static struct irq_chip mpc52xx_sdma_irqchip = {
285 .name = "MPC52xx SDMA",
286 .irq_mask = mpc52xx_sdma_mask,
287 .irq_unmask = mpc52xx_sdma_unmask,
288 .irq_ack = mpc52xx_sdma_ack,
289 .irq_set_type = mpc52xx_null_set_type,
290 };
291
292 /**
293 * mpc52xx_is_extirq - Returns true if hwirq number is for an external IRQ
294 */
mpc52xx_is_extirq(int l1,int l2)295 static int mpc52xx_is_extirq(int l1, int l2)
296 {
297 return ((l1 == 0) && (l2 == 0)) ||
298 ((l1 == 1) && (l2 >= 1) && (l2 <= 3));
299 }
300
301 /**
302 * mpc52xx_irqhost_xlate - translate virq# from device tree interrupts property
303 */
mpc52xx_irqhost_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)304 static int mpc52xx_irqhost_xlate(struct irq_domain *h, struct device_node *ct,
305 const u32 *intspec, unsigned int intsize,
306 irq_hw_number_t *out_hwirq,
307 unsigned int *out_flags)
308 {
309 int intrvect_l1;
310 int intrvect_l2;
311 int intrvect_type;
312 int intrvect_linux;
313
314 if (intsize != 3)
315 return -1;
316
317 intrvect_l1 = (int)intspec[0];
318 intrvect_l2 = (int)intspec[1];
319 intrvect_type = (int)intspec[2] & 0x3;
320
321 intrvect_linux = (intrvect_l1 << MPC52xx_IRQ_L1_OFFSET) &
322 MPC52xx_IRQ_L1_MASK;
323 intrvect_linux |= intrvect_l2 & MPC52xx_IRQ_L2_MASK;
324
325 *out_hwirq = intrvect_linux;
326 *out_flags = IRQ_TYPE_LEVEL_LOW;
327 if (mpc52xx_is_extirq(intrvect_l1, intrvect_l2))
328 *out_flags = mpc52xx_map_senses[intrvect_type];
329
330 pr_debug("return %x, l1=%d, l2=%d\n", intrvect_linux, intrvect_l1,
331 intrvect_l2);
332 return 0;
333 }
334
335 /**
336 * mpc52xx_irqhost_map - Hook to map from virq to an irq_chip structure
337 */
mpc52xx_irqhost_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t irq)338 static int mpc52xx_irqhost_map(struct irq_domain *h, unsigned int virq,
339 irq_hw_number_t irq)
340 {
341 int l1irq;
342 int l2irq;
343 struct irq_chip *irqchip;
344 void *hndlr;
345 int type;
346 u32 reg;
347
348 l1irq = (irq & MPC52xx_IRQ_L1_MASK) >> MPC52xx_IRQ_L1_OFFSET;
349 l2irq = irq & MPC52xx_IRQ_L2_MASK;
350
351 /*
352 * External IRQs are handled differently by the hardware so they are
353 * handled by a dedicated irq_chip structure.
354 */
355 if (mpc52xx_is_extirq(l1irq, l2irq)) {
356 reg = in_be32(&intr->ctrl);
357 type = mpc52xx_map_senses[(reg >> (22 - l2irq * 2)) & 0x3];
358 if ((type == IRQ_TYPE_EDGE_FALLING) ||
359 (type == IRQ_TYPE_EDGE_RISING))
360 hndlr = handle_edge_irq;
361 else
362 hndlr = handle_level_irq;
363
364 irq_set_chip_and_handler(virq, &mpc52xx_extirq_irqchip, hndlr);
365 pr_debug("%s: External IRQ%i virq=%x, hw=%x. type=%x\n",
366 __func__, l2irq, virq, (int)irq, type);
367 return 0;
368 }
369
370 /* It is an internal SOC irq. Choose the correct irq_chip */
371 switch (l1irq) {
372 case MPC52xx_IRQ_L1_MAIN: irqchip = &mpc52xx_main_irqchip; break;
373 case MPC52xx_IRQ_L1_PERP: irqchip = &mpc52xx_periph_irqchip; break;
374 case MPC52xx_IRQ_L1_SDMA: irqchip = &mpc52xx_sdma_irqchip; break;
375 default:
376 pr_err("%s: invalid irq: virq=%i, l1=%i, l2=%i\n",
377 __func__, virq, l1irq, l2irq);
378 return -EINVAL;
379 }
380
381 irq_set_chip_and_handler(virq, irqchip, handle_level_irq);
382 pr_debug("%s: virq=%x, l1=%i, l2=%i\n", __func__, virq, l1irq, l2irq);
383
384 return 0;
385 }
386
387 static const struct irq_domain_ops mpc52xx_irqhost_ops = {
388 .xlate = mpc52xx_irqhost_xlate,
389 .map = mpc52xx_irqhost_map,
390 };
391
392 /**
393 * mpc52xx_init_irq - Initialize and register with the virq subsystem
394 *
395 * Hook for setting up IRQs on an mpc5200 system. A pointer to this function
396 * is to be put into the machine definition structure.
397 *
398 * This function searches the device tree for an MPC5200 interrupt controller,
399 * initializes it, and registers it with the virq subsystem.
400 */
mpc52xx_init_irq(void)401 void __init mpc52xx_init_irq(void)
402 {
403 u32 intr_ctrl;
404 struct device_node *picnode;
405 struct device_node *np;
406
407 /* Remap the necessary zones */
408 picnode = of_find_matching_node(NULL, mpc52xx_pic_ids);
409 intr = of_iomap(picnode, 0);
410 if (!intr)
411 panic(__FILE__ ": find_and_map failed on 'mpc5200-pic'. "
412 "Check node !");
413
414 np = of_find_matching_node(NULL, mpc52xx_sdma_ids);
415 sdma = of_iomap(np, 0);
416 of_node_put(np);
417 if (!sdma)
418 panic(__FILE__ ": find_and_map failed on 'mpc5200-bestcomm'. "
419 "Check node !");
420
421 pr_debug("MPC5200 IRQ controller mapped to 0x%p\n", intr);
422
423 /* Disable all interrupt sources. */
424 out_be32(&sdma->IntPend, 0xffffffff); /* 1 means clear pending */
425 out_be32(&sdma->IntMask, 0xffffffff); /* 1 means disabled */
426 out_be32(&intr->per_mask, 0x7ffffc00); /* 1 means disabled */
427 out_be32(&intr->main_mask, 0x00010fff); /* 1 means disabled */
428 intr_ctrl = in_be32(&intr->ctrl);
429 intr_ctrl &= 0x00ff0000; /* Keeps IRQ[0-3] config */
430 intr_ctrl |= 0x0f000000 | /* clear IRQ 0-3 */
431 0x00001000 | /* MEE master external enable */
432 0x00000000 | /* 0 means disable IRQ 0-3 */
433 0x00000001; /* CEb route critical normally */
434 out_be32(&intr->ctrl, intr_ctrl);
435
436 /* Zero a bunch of the priority settings. */
437 out_be32(&intr->per_pri1, 0);
438 out_be32(&intr->per_pri2, 0);
439 out_be32(&intr->per_pri3, 0);
440 out_be32(&intr->main_pri1, 0);
441 out_be32(&intr->main_pri2, 0);
442
443 /*
444 * As last step, add an irq host to translate the real
445 * hw irq information provided by the ofw to linux virq
446 */
447 mpc52xx_irqhost = irq_domain_add_linear(picnode,
448 MPC52xx_IRQ_HIGHTESTHWIRQ,
449 &mpc52xx_irqhost_ops, NULL);
450
451 if (!mpc52xx_irqhost)
452 panic(__FILE__ ": Cannot allocate the IRQ host\n");
453
454 irq_set_default_host(mpc52xx_irqhost);
455
456 pr_info("MPC52xx PIC is up and running!\n");
457 }
458
459 /**
460 * mpc52xx_get_irq - Get pending interrupt number hook function
461 *
462 * Called by the interrupt handler to determine what IRQ handler needs to be
463 * executed.
464 *
465 * Status of pending interrupts is determined by reading the encoded status
466 * register. The encoded status register has three fields; one for each of the
467 * types of interrupts defined by the controller - 'critical', 'main' and
468 * 'peripheral'. This function reads the status register and returns the IRQ
469 * number associated with the highest priority pending interrupt. 'Critical'
470 * interrupts have the highest priority, followed by 'main' interrupts, and
471 * then 'peripheral'.
472 *
473 * The mpc5200 interrupt controller can be configured to boost the priority
474 * of individual 'peripheral' interrupts. If this is the case then a special
475 * value will appear in either the crit or main fields indicating a high
476 * or medium priority peripheral irq has occurred.
477 *
478 * This function checks each of the 3 irq request fields and returns the
479 * first pending interrupt that it finds.
480 *
481 * This function also identifies a 4th type of interrupt; 'bestcomm'. Each
482 * bestcomm DMA task can raise the bestcomm peripheral interrupt. When this
483 * occurs at task-specific IRQ# is decoded so that each task can have its
484 * own IRQ handler.
485 */
mpc52xx_get_irq(void)486 unsigned int mpc52xx_get_irq(void)
487 {
488 u32 status;
489 int irq;
490
491 status = in_be32(&intr->enc_status);
492 if (status & 0x00000400) { /* critical */
493 irq = (status >> 8) & 0x3;
494 if (irq == 2) /* high priority peripheral */
495 goto peripheral;
496 irq |= (MPC52xx_IRQ_L1_CRIT << MPC52xx_IRQ_L1_OFFSET);
497 } else if (status & 0x00200000) { /* main */
498 irq = (status >> 16) & 0x1f;
499 if (irq == 4) /* low priority peripheral */
500 goto peripheral;
501 irq |= (MPC52xx_IRQ_L1_MAIN << MPC52xx_IRQ_L1_OFFSET);
502 } else if (status & 0x20000000) { /* peripheral */
503 peripheral:
504 irq = (status >> 24) & 0x1f;
505 if (irq == 0) { /* bestcomm */
506 status = in_be32(&sdma->IntPend);
507 irq = ffs(status) - 1;
508 irq |= (MPC52xx_IRQ_L1_SDMA << MPC52xx_IRQ_L1_OFFSET);
509 } else {
510 irq |= (MPC52xx_IRQ_L1_PERP << MPC52xx_IRQ_L1_OFFSET);
511 }
512 } else {
513 return NO_IRQ;
514 }
515
516 return irq_linear_revmap(mpc52xx_irqhost, irq);
517 }
518