• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 by Sascha Hauer, Pengutronix
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
16  * MA 02110-1301, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/clkdev.h>
25 
26 #include <mach/clock.h>
27 #include <mach/hardware.h>
28 #include <mach/common.h>
29 
30 #include "crmregs-imx3.h"
31 
32 #ifdef HAVE_SET_RATE_SUPPORT
calc_dividers(u32 div,u32 * pre,u32 * post,u32 maxpost)33 static void calc_dividers(u32 div, u32 *pre, u32 *post, u32 maxpost)
34 {
35 	u32 min_pre, temp_pre, old_err, err;
36 
37 	min_pre = (div - 1) / maxpost + 1;
38 	old_err = 8;
39 
40 	for (temp_pre = 8; temp_pre >= min_pre; temp_pre--) {
41 		if (div > (temp_pre * maxpost))
42 			break;
43 
44 		if (div < (temp_pre * temp_pre))
45 			continue;
46 
47 		err = div % temp_pre;
48 
49 		if (err == 0) {
50 			*pre = temp_pre;
51 			break;
52 		}
53 
54 		err = temp_pre - err;
55 
56 		if (err < old_err) {
57 			old_err = err;
58 			*pre = temp_pre;
59 		}
60 	}
61 
62 	*post = (div + *pre - 1) / *pre;
63 }
64 
65 /* get the best values for a 3-bit divider combined with a 6-bit divider */
calc_dividers_3_6(u32 div,u32 * pre,u32 * post)66 static void calc_dividers_3_6(u32 div, u32 *pre, u32 *post)
67 {
68 	if (div >= 512) {
69 		*pre = 8;
70 		*post = 64;
71 	} else if (div >= 64) {
72 		calc_dividers(div, pre, post, 64);
73 	} else if (div <= 8) {
74 		*pre = div;
75 		*post = 1;
76 	} else {
77 		*pre = 1;
78 		*post = div;
79 	}
80 }
81 
82 /* get the best values for two cascaded 3-bit dividers */
calc_dividers_3_3(u32 div,u32 * pre,u32 * post)83 static void calc_dividers_3_3(u32 div, u32 *pre, u32 *post)
84 {
85 	if (div >= 64) {
86 		*pre = *post = 8;
87 	} else if (div > 8) {
88 		calc_dividers(div, pre, post, 8);
89 	} else {
90 		*pre = 1;
91 		*post = div;
92 	}
93 }
94 #endif
95 
get_rate_mpll(void)96 static unsigned long get_rate_mpll(void)
97 {
98 	ulong mpctl = __raw_readl(MX35_CCM_MPCTL);
99 
100 	return mxc_decode_pll(mpctl, 24000000);
101 }
102 
get_rate_ppll(void)103 static unsigned long get_rate_ppll(void)
104 {
105 	ulong ppctl = __raw_readl(MX35_CCM_PPCTL);
106 
107 	return mxc_decode_pll(ppctl, 24000000);
108 }
109 
110 struct arm_ahb_div {
111 	unsigned char arm, ahb, sel;
112 };
113 
114 static struct arm_ahb_div clk_consumer[] = {
115 	{ .arm = 1, .ahb = 4, .sel = 0},
116 	{ .arm = 1, .ahb = 3, .sel = 1},
117 	{ .arm = 2, .ahb = 2, .sel = 0},
118 	{ .arm = 0, .ahb = 0, .sel = 0},
119 	{ .arm = 0, .ahb = 0, .sel = 0},
120 	{ .arm = 0, .ahb = 0, .sel = 0},
121 	{ .arm = 4, .ahb = 1, .sel = 0},
122 	{ .arm = 1, .ahb = 5, .sel = 0},
123 	{ .arm = 1, .ahb = 8, .sel = 0},
124 	{ .arm = 1, .ahb = 6, .sel = 1},
125 	{ .arm = 2, .ahb = 4, .sel = 0},
126 	{ .arm = 0, .ahb = 0, .sel = 0},
127 	{ .arm = 0, .ahb = 0, .sel = 0},
128 	{ .arm = 0, .ahb = 0, .sel = 0},
129 	{ .arm = 4, .ahb = 2, .sel = 0},
130 	{ .arm = 0, .ahb = 0, .sel = 0},
131 };
132 
get_rate_arm(void)133 static unsigned long get_rate_arm(void)
134 {
135 	unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0);
136 	struct arm_ahb_div *aad;
137 	unsigned long fref = get_rate_mpll();
138 
139 	aad = &clk_consumer[(pdr0 >> 16) & 0xf];
140 	if (aad->sel)
141 		fref = fref * 3 / 4;
142 
143 	return fref / aad->arm;
144 }
145 
get_rate_ahb(struct clk * clk)146 static unsigned long get_rate_ahb(struct clk *clk)
147 {
148 	unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0);
149 	struct arm_ahb_div *aad;
150 	unsigned long fref = get_rate_arm();
151 
152 	aad = &clk_consumer[(pdr0 >> 16) & 0xf];
153 
154 	return fref / aad->ahb;
155 }
156 
get_rate_ipg(struct clk * clk)157 static unsigned long get_rate_ipg(struct clk *clk)
158 {
159 	return get_rate_ahb(NULL) >> 1;
160 }
161 
get_rate_uart(struct clk * clk)162 static unsigned long get_rate_uart(struct clk *clk)
163 {
164 	unsigned long pdr3 = __raw_readl(MX35_CCM_PDR3);
165 	unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4);
166 	unsigned long div = ((pdr4 >> 10) & 0x3f) + 1;
167 
168 	if (pdr3 & (1 << 14))
169 		return get_rate_arm() / div;
170 	else
171 		return get_rate_ppll() / div;
172 }
173 
get_rate_sdhc(struct clk * clk)174 static unsigned long get_rate_sdhc(struct clk *clk)
175 {
176 	unsigned long pdr3 = __raw_readl(MX35_CCM_PDR3);
177 	unsigned long div, rate;
178 
179 	if (pdr3 & (1 << 6))
180 		rate = get_rate_arm();
181 	else
182 		rate = get_rate_ppll();
183 
184 	switch (clk->id) {
185 	default:
186 	case 0:
187 		div = pdr3 & 0x3f;
188 		break;
189 	case 1:
190 		div = (pdr3 >> 8) & 0x3f;
191 		break;
192 	case 2:
193 		div = (pdr3 >> 16) & 0x3f;
194 		break;
195 	}
196 
197 	return rate / (div + 1);
198 }
199 
get_rate_mshc(struct clk * clk)200 static unsigned long get_rate_mshc(struct clk *clk)
201 {
202 	unsigned long pdr1 = __raw_readl(MXC_CCM_PDR1);
203 	unsigned long div1, div2, rate;
204 
205 	if (pdr1 & (1 << 7))
206 		rate = get_rate_arm();
207 	else
208 		rate = get_rate_ppll();
209 
210 	div1 = (pdr1 >> 29) & 0x7;
211 	div2 = (pdr1 >> 22) & 0x3f;
212 
213 	return rate / ((div1 + 1) * (div2 + 1));
214 }
215 
get_rate_ssi(struct clk * clk)216 static unsigned long get_rate_ssi(struct clk *clk)
217 {
218 	unsigned long pdr2 = __raw_readl(MX35_CCM_PDR2);
219 	unsigned long div1, div2, rate;
220 
221 	if (pdr2 & (1 << 6))
222 		rate = get_rate_arm();
223 	else
224 		rate = get_rate_ppll();
225 
226 	switch (clk->id) {
227 	default:
228 	case 0:
229 		div1 = pdr2 & 0x3f;
230 		div2 = (pdr2 >> 24) & 0x7;
231 		break;
232 	case 1:
233 		div1 = (pdr2 >> 8) & 0x3f;
234 		div2 = (pdr2 >> 27) & 0x7;
235 		break;
236 	}
237 
238 	return rate / ((div1 + 1) * (div2 + 1));
239 }
240 
get_rate_csi(struct clk * clk)241 static unsigned long get_rate_csi(struct clk *clk)
242 {
243 	unsigned long pdr2 = __raw_readl(MX35_CCM_PDR2);
244 	unsigned long rate;
245 
246 	if (pdr2 & (1 << 7))
247 		rate = get_rate_arm();
248 	else
249 		rate = get_rate_ppll();
250 
251 	return rate / (((pdr2 >> 16) & 0x3f) + 1);
252 }
253 
get_rate_otg(struct clk * clk)254 static unsigned long get_rate_otg(struct clk *clk)
255 {
256 	unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4);
257 	unsigned long rate;
258 
259 	if (pdr4 & (1 << 9))
260 		rate = get_rate_arm();
261 	else
262 		rate = get_rate_ppll();
263 
264 	return rate / (((pdr4 >> 22) & 0x3f) + 1);
265 }
266 
get_rate_ipg_per(struct clk * clk)267 static unsigned long get_rate_ipg_per(struct clk *clk)
268 {
269 	unsigned long pdr0 = __raw_readl(MXC_CCM_PDR0);
270 	unsigned long pdr4 = __raw_readl(MX35_CCM_PDR4);
271 	unsigned long div;
272 
273 	if (pdr0 & (1 << 26)) {
274 		div = (pdr4 >> 16) & 0x3f;
275 		return get_rate_arm() / (div + 1);
276 	} else {
277 		div = (pdr0 >> 12) & 0x7;
278 		return get_rate_ahb(NULL) / (div + 1);
279 	}
280 }
281 
get_rate_hsp(struct clk * clk)282 static unsigned long get_rate_hsp(struct clk *clk)
283 {
284 	unsigned long hsp_podf = (__raw_readl(MXC_CCM_PDR0) >> 20) & 0x03;
285 	unsigned long fref = get_rate_mpll();
286 
287 	if (fref > 400 * 1000 * 1000) {
288 		switch (hsp_podf) {
289 		case 0:
290 			return fref >> 2;
291 		case 1:
292 			return fref >> 3;
293 		case 2:
294 			return fref / 3;
295 		}
296 	} else {
297 		switch (hsp_podf) {
298 		case 0:
299 		case 2:
300 			return fref / 3;
301 		case 1:
302 			return fref / 6;
303 		}
304 	}
305 
306 	return 0;
307 }
308 
clk_cgr_enable(struct clk * clk)309 static int clk_cgr_enable(struct clk *clk)
310 {
311 	u32 reg;
312 
313 	reg = __raw_readl(clk->enable_reg);
314 	reg |= 3 << clk->enable_shift;
315 	__raw_writel(reg, clk->enable_reg);
316 
317 	return 0;
318 }
319 
clk_cgr_disable(struct clk * clk)320 static void clk_cgr_disable(struct clk *clk)
321 {
322 	u32 reg;
323 
324 	reg = __raw_readl(clk->enable_reg);
325 	reg &= ~(3 << clk->enable_shift);
326 	__raw_writel(reg, clk->enable_reg);
327 }
328 
329 #define DEFINE_CLOCK(name, i, er, es, gr, sr)		\
330 	static struct clk name = {			\
331 		.id		= i,			\
332 		.enable_reg	= er,			\
333 		.enable_shift	= es,			\
334 		.get_rate	= gr,			\
335 		.set_rate	= sr,			\
336 		.enable		= clk_cgr_enable,	\
337 		.disable	= clk_cgr_disable,	\
338 	}
339 
340 DEFINE_CLOCK(asrc_clk,   0, MX35_CCM_CGR0,  0, NULL, NULL);
341 DEFINE_CLOCK(pata_clk,    0, MX35_CCM_CGR0,  2, get_rate_ipg, NULL);
342 /* DEFINE_CLOCK(audmux_clk, 0, MX35_CCM_CGR0,  4, NULL, NULL); */
343 DEFINE_CLOCK(can1_clk,   0, MX35_CCM_CGR0,  6, get_rate_ipg, NULL);
344 DEFINE_CLOCK(can2_clk,   1, MX35_CCM_CGR0,  8, get_rate_ipg, NULL);
345 DEFINE_CLOCK(cspi1_clk,  0, MX35_CCM_CGR0, 10, get_rate_ipg, NULL);
346 DEFINE_CLOCK(cspi2_clk,  1, MX35_CCM_CGR0, 12, get_rate_ipg, NULL);
347 DEFINE_CLOCK(ect_clk,    0, MX35_CCM_CGR0, 14, get_rate_ipg, NULL);
348 DEFINE_CLOCK(edio_clk,   0, MX35_CCM_CGR0, 16, NULL, NULL);
349 DEFINE_CLOCK(emi_clk,    0, MX35_CCM_CGR0, 18, get_rate_ipg, NULL);
350 DEFINE_CLOCK(epit1_clk,  0, MX35_CCM_CGR0, 20, get_rate_ipg, NULL);
351 DEFINE_CLOCK(epit2_clk,  1, MX35_CCM_CGR0, 22, get_rate_ipg, NULL);
352 DEFINE_CLOCK(esai_clk,   0, MX35_CCM_CGR0, 24, NULL, NULL);
353 DEFINE_CLOCK(esdhc1_clk, 0, MX35_CCM_CGR0, 26, get_rate_sdhc, NULL);
354 DEFINE_CLOCK(esdhc2_clk, 1, MX35_CCM_CGR0, 28, get_rate_sdhc, NULL);
355 DEFINE_CLOCK(esdhc3_clk, 2, MX35_CCM_CGR0, 30, get_rate_sdhc, NULL);
356 
357 DEFINE_CLOCK(fec_clk,    0, MX35_CCM_CGR1,  0, get_rate_ipg, NULL);
358 DEFINE_CLOCK(gpio1_clk,  0, MX35_CCM_CGR1,  2, NULL, NULL);
359 DEFINE_CLOCK(gpio2_clk,  1, MX35_CCM_CGR1,  4, NULL, NULL);
360 DEFINE_CLOCK(gpio3_clk,  2, MX35_CCM_CGR1,  6, NULL, NULL);
361 DEFINE_CLOCK(gpt_clk,    0, MX35_CCM_CGR1,  8, get_rate_ipg, NULL);
362 DEFINE_CLOCK(i2c1_clk,   0, MX35_CCM_CGR1, 10, get_rate_ipg_per, NULL);
363 DEFINE_CLOCK(i2c2_clk,   1, MX35_CCM_CGR1, 12, get_rate_ipg_per, NULL);
364 DEFINE_CLOCK(i2c3_clk,   2, MX35_CCM_CGR1, 14, get_rate_ipg_per, NULL);
365 DEFINE_CLOCK(iomuxc_clk, 0, MX35_CCM_CGR1, 16, NULL, NULL);
366 DEFINE_CLOCK(ipu_clk,    0, MX35_CCM_CGR1, 18, get_rate_hsp, NULL);
367 DEFINE_CLOCK(kpp_clk,    0, MX35_CCM_CGR1, 20, get_rate_ipg, NULL);
368 DEFINE_CLOCK(mlb_clk,    0, MX35_CCM_CGR1, 22, get_rate_ahb, NULL);
369 DEFINE_CLOCK(mshc_clk,   0, MX35_CCM_CGR1, 24, get_rate_mshc, NULL);
370 DEFINE_CLOCK(owire_clk,  0, MX35_CCM_CGR1, 26, get_rate_ipg_per, NULL);
371 DEFINE_CLOCK(pwm_clk,    0, MX35_CCM_CGR1, 28, get_rate_ipg_per, NULL);
372 DEFINE_CLOCK(rngc_clk,   0, MX35_CCM_CGR1, 30, get_rate_ipg, NULL);
373 
374 DEFINE_CLOCK(rtc_clk,    0, MX35_CCM_CGR2,  0, get_rate_ipg, NULL);
375 DEFINE_CLOCK(rtic_clk,   0, MX35_CCM_CGR2,  2, get_rate_ahb, NULL);
376 DEFINE_CLOCK(scc_clk,    0, MX35_CCM_CGR2,  4, get_rate_ipg, NULL);
377 DEFINE_CLOCK(sdma_clk,   0, MX35_CCM_CGR2,  6, NULL, NULL);
378 DEFINE_CLOCK(spba_clk,   0, MX35_CCM_CGR2,  8, get_rate_ipg, NULL);
379 DEFINE_CLOCK(spdif_clk,  0, MX35_CCM_CGR2, 10, NULL, NULL);
380 DEFINE_CLOCK(ssi1_clk,   0, MX35_CCM_CGR2, 12, get_rate_ssi, NULL);
381 DEFINE_CLOCK(ssi2_clk,   1, MX35_CCM_CGR2, 14, get_rate_ssi, NULL);
382 DEFINE_CLOCK(uart1_clk,  0, MX35_CCM_CGR2, 16, get_rate_uart, NULL);
383 DEFINE_CLOCK(uart2_clk,  1, MX35_CCM_CGR2, 18, get_rate_uart, NULL);
384 DEFINE_CLOCK(uart3_clk,  2, MX35_CCM_CGR2, 20, get_rate_uart, NULL);
385 DEFINE_CLOCK(usbotg_clk, 0, MX35_CCM_CGR2, 22, get_rate_otg, NULL);
386 DEFINE_CLOCK(wdog_clk,   0, MX35_CCM_CGR2, 24, NULL, NULL);
387 DEFINE_CLOCK(max_clk,    0, MX35_CCM_CGR2, 26, NULL, NULL);
388 DEFINE_CLOCK(audmux_clk, 0, MX35_CCM_CGR2, 30, NULL, NULL);
389 
390 DEFINE_CLOCK(csi_clk,    0, MX35_CCM_CGR3,  0, get_rate_csi, NULL);
391 DEFINE_CLOCK(iim_clk,    0, MX35_CCM_CGR3,  2, NULL, NULL);
392 DEFINE_CLOCK(gpu2d_clk,  0, MX35_CCM_CGR3,  4, NULL, NULL);
393 
394 DEFINE_CLOCK(usbahb_clk, 0, 0,         0, get_rate_ahb, NULL);
395 
clk_dummy_enable(struct clk * clk)396 static int clk_dummy_enable(struct clk *clk)
397 {
398 	return 0;
399 }
400 
clk_dummy_disable(struct clk * clk)401 static void clk_dummy_disable(struct clk *clk)
402 {
403 }
404 
get_rate_nfc(struct clk * clk)405 static unsigned long get_rate_nfc(struct clk *clk)
406 {
407 	unsigned long div1;
408 
409 	div1 = (__raw_readl(MX35_CCM_PDR4) >> 28) + 1;
410 
411 	return get_rate_ahb(NULL) / div1;
412 }
413 
414 /* NAND Controller: It seems it can't be disabled */
415 static struct clk nfc_clk = {
416 	.id		= 0,
417 	.enable_reg	= 0,
418 	.enable_shift	= 0,
419 	.get_rate	= get_rate_nfc,
420 	.set_rate	= NULL, /* set_rate_nfc, */
421 	.enable		= clk_dummy_enable,
422 	.disable	= clk_dummy_disable
423 };
424 
425 #define _REGISTER_CLOCK(d, n, c)	\
426 	{				\
427 		.dev_id = d,		\
428 		.con_id = n,		\
429 		.clk = &c,		\
430 	},
431 
432 static struct clk_lookup lookups[] = {
433 	_REGISTER_CLOCK(NULL, "asrc", asrc_clk)
434 	_REGISTER_CLOCK("pata_imx", NULL, pata_clk)
435 	_REGISTER_CLOCK("flexcan.0", NULL, can1_clk)
436 	_REGISTER_CLOCK("flexcan.1", NULL, can2_clk)
437 	_REGISTER_CLOCK("imx35-cspi.0", NULL, cspi1_clk)
438 	_REGISTER_CLOCK("imx35-cspi.1", NULL, cspi2_clk)
439 	_REGISTER_CLOCK(NULL, "ect", ect_clk)
440 	_REGISTER_CLOCK(NULL, "edio", edio_clk)
441 	_REGISTER_CLOCK(NULL, "emi", emi_clk)
442 	_REGISTER_CLOCK("imx-epit.0", NULL, epit1_clk)
443 	_REGISTER_CLOCK("imx-epit.1", NULL, epit2_clk)
444 	_REGISTER_CLOCK(NULL, "esai", esai_clk)
445 	_REGISTER_CLOCK("sdhci-esdhc-imx35.0", NULL, esdhc1_clk)
446 	_REGISTER_CLOCK("sdhci-esdhc-imx35.1", NULL, esdhc2_clk)
447 	_REGISTER_CLOCK("sdhci-esdhc-imx35.2", NULL, esdhc3_clk)
448 	/* i.mx35 has the i.mx27 type fec */
449 	_REGISTER_CLOCK("imx27-fec.0", NULL, fec_clk)
450 	_REGISTER_CLOCK(NULL, "gpio", gpio1_clk)
451 	_REGISTER_CLOCK(NULL, "gpio", gpio2_clk)
452 	_REGISTER_CLOCK(NULL, "gpio", gpio3_clk)
453 	_REGISTER_CLOCK("gpt.0", NULL, gpt_clk)
454 	_REGISTER_CLOCK("imx-i2c.0", NULL, i2c1_clk)
455 	_REGISTER_CLOCK("imx-i2c.1", NULL, i2c2_clk)
456 	_REGISTER_CLOCK("imx-i2c.2", NULL, i2c3_clk)
457 	_REGISTER_CLOCK(NULL, "iomuxc", iomuxc_clk)
458 	_REGISTER_CLOCK("ipu-core", NULL, ipu_clk)
459 	_REGISTER_CLOCK("mx3_sdc_fb", NULL, ipu_clk)
460 	_REGISTER_CLOCK(NULL, "kpp", kpp_clk)
461 	_REGISTER_CLOCK(NULL, "mlb", mlb_clk)
462 	_REGISTER_CLOCK(NULL, "mshc", mshc_clk)
463 	_REGISTER_CLOCK("mxc_w1", NULL, owire_clk)
464 	_REGISTER_CLOCK(NULL, "pwm", pwm_clk)
465 	_REGISTER_CLOCK(NULL, "rngc", rngc_clk)
466 	_REGISTER_CLOCK(NULL, "rtc", rtc_clk)
467 	_REGISTER_CLOCK(NULL, "rtic", rtic_clk)
468 	_REGISTER_CLOCK(NULL, "scc", scc_clk)
469 	_REGISTER_CLOCK("imx35-sdma", NULL, sdma_clk)
470 	_REGISTER_CLOCK(NULL, "spba", spba_clk)
471 	_REGISTER_CLOCK(NULL, "spdif", spdif_clk)
472 	_REGISTER_CLOCK("imx-ssi.0", NULL, ssi1_clk)
473 	_REGISTER_CLOCK("imx-ssi.1", NULL, ssi2_clk)
474 	/* i.mx35 has the i.mx21 type uart */
475 	_REGISTER_CLOCK("imx21-uart.0", NULL, uart1_clk)
476 	_REGISTER_CLOCK("imx21-uart.1", NULL, uart2_clk)
477 	_REGISTER_CLOCK("imx21-uart.2", NULL, uart3_clk)
478 	_REGISTER_CLOCK("mxc-ehci.0", "usb", usbotg_clk)
479 	_REGISTER_CLOCK("mxc-ehci.1", "usb", usbotg_clk)
480 	_REGISTER_CLOCK("mxc-ehci.2", "usb", usbotg_clk)
481 	_REGISTER_CLOCK("fsl-usb2-udc", "usb", usbotg_clk)
482 	_REGISTER_CLOCK("fsl-usb2-udc", "usb_ahb", usbahb_clk)
483 	_REGISTER_CLOCK("imx2-wdt.0", NULL, wdog_clk)
484 	_REGISTER_CLOCK(NULL, "max", max_clk)
485 	_REGISTER_CLOCK(NULL, "audmux", audmux_clk)
486 	_REGISTER_CLOCK("mx3-camera.0", NULL, csi_clk)
487 	_REGISTER_CLOCK(NULL, "iim", iim_clk)
488 	_REGISTER_CLOCK(NULL, "gpu2d", gpu2d_clk)
489 	_REGISTER_CLOCK("mxc_nand.0", NULL, nfc_clk)
490 };
491 
mx35_clocks_init()492 int __init mx35_clocks_init()
493 {
494 	unsigned int cgr2 = 3 << 26;
495 
496 #if defined(CONFIG_DEBUG_LL) && !defined(CONFIG_DEBUG_ICEDCC)
497 	cgr2 |= 3 << 16;
498 #endif
499 
500 	clkdev_add_table(lookups, ARRAY_SIZE(lookups));
501 
502 	/* Turn off all clocks except the ones we need to survive, namely:
503 	 * EMI, GPIO1/2/3, GPT, IOMUX, MAX and eventually uart
504 	 */
505 	__raw_writel((3 << 18), MX35_CCM_CGR0);
506 	__raw_writel((3 << 2) | (3 << 4) | (3 << 6) | (3 << 8) | (3 << 16),
507 			MX35_CCM_CGR1);
508 	__raw_writel(cgr2, MX35_CCM_CGR2);
509 	__raw_writel(0, MX35_CCM_CGR3);
510 
511 	clk_enable(&iim_clk);
512 	imx_print_silicon_rev("i.MX35", mx35_revision());
513 	clk_disable(&iim_clk);
514 
515 	/*
516 	 * Check if we came up in internal boot mode. If yes, we need some
517 	 * extra clocks turned on, otherwise the MX35 boot ROM code will
518 	 * hang after a watchdog reset.
519 	 */
520 	if (!(__raw_readl(MX35_CCM_RCSR) & (3 << 10))) {
521 		/* Additionally turn on UART1, SCC, and IIM clocks */
522 		clk_enable(&iim_clk);
523 		clk_enable(&uart1_clk);
524 		clk_enable(&scc_clk);
525 	}
526 
527 #ifdef CONFIG_MXC_USE_EPIT
528 	epit_timer_init(&epit1_clk,
529 			MX35_IO_ADDRESS(MX35_EPIT1_BASE_ADDR), MX35_INT_EPIT1);
530 #else
531 	mxc_timer_init(&gpt_clk,
532 			MX35_IO_ADDRESS(MX35_GPT1_BASE_ADDR), MX35_INT_GPT);
533 #endif
534 
535 	return 0;
536 }
537