• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 
22 struct mempolicy;
23 struct anon_vma;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27 
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31 
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36 
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42 
43 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
44 extern const int mmap_rnd_bits_min;
45 extern const int mmap_rnd_bits_max;
46 extern int mmap_rnd_bits __read_mostly;
47 #endif
48 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
49 extern const int mmap_rnd_compat_bits_min;
50 extern const int mmap_rnd_compat_bits_max;
51 extern int mmap_rnd_compat_bits __read_mostly;
52 #endif
53 
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 
58 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
59 
60 /* to align the pointer to the (next) page boundary */
61 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
62 
63 /*
64  * Linux kernel virtual memory manager primitives.
65  * The idea being to have a "virtual" mm in the same way
66  * we have a virtual fs - giving a cleaner interface to the
67  * mm details, and allowing different kinds of memory mappings
68  * (from shared memory to executable loading to arbitrary
69  * mmap() functions).
70  */
71 
72 extern struct kmem_cache *vm_area_cachep;
73 
74 #ifndef CONFIG_MMU
75 extern struct rb_root nommu_region_tree;
76 extern struct rw_semaphore nommu_region_sem;
77 
78 extern unsigned int kobjsize(const void *objp);
79 #endif
80 
81 /*
82  * vm_flags in vm_area_struct, see mm_types.h.
83  */
84 #define VM_READ		0x00000001	/* currently active flags */
85 #define VM_WRITE	0x00000002
86 #define VM_EXEC		0x00000004
87 #define VM_SHARED	0x00000008
88 
89 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
90 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
91 #define VM_MAYWRITE	0x00000020
92 #define VM_MAYEXEC	0x00000040
93 #define VM_MAYSHARE	0x00000080
94 
95 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
96 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
97 #define VM_GROWSUP	0x00000200
98 #else
99 #define VM_GROWSUP	0x00000000
100 #define VM_NOHUGEPAGE	0x00000200	/* MADV_NOHUGEPAGE marked this vma */
101 #endif
102 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
103 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
104 
105 #define VM_EXECUTABLE	0x00001000
106 #define VM_LOCKED	0x00002000
107 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
108 
109 					/* Used by sys_madvise() */
110 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
111 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
112 
113 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
114 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
115 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
116 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
117 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
118 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
119 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
120 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
121 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
122 #else
123 #define VM_HUGEPAGE	0x01000000	/* MADV_HUGEPAGE marked this vma */
124 #endif
125 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
126 #define VM_NODUMP	0x04000000	/* Do not include in the core dump */
127 
128 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
129 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
130 #define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
131 #define VM_PFN_AT_MMAP	0x40000000	/* PFNMAP vma that is fully mapped at mmap time */
132 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
133 
134 /* Bits set in the VMA until the stack is in its final location */
135 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
136 
137 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
138 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
139 #endif
140 
141 #ifdef CONFIG_STACK_GROWSUP
142 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
143 #else
144 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
145 #endif
146 
147 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
148 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
149 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
150 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
151 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
152 
153 /*
154  * Special vmas that are non-mergable, non-mlock()able.
155  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
156  */
157 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
158 
159 /*
160  * mapping from the currently active vm_flags protection bits (the
161  * low four bits) to a page protection mask..
162  */
163 extern pgprot_t protection_map[16];
164 
165 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
166 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
167 #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */
168 #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */
169 #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */
170 #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */
171 
172 /*
173  * This interface is used by x86 PAT code to identify a pfn mapping that is
174  * linear over entire vma. This is to optimize PAT code that deals with
175  * marking the physical region with a particular prot. This is not for generic
176  * mm use. Note also that this check will not work if the pfn mapping is
177  * linear for a vma starting at physical address 0. In which case PAT code
178  * falls back to slow path of reserving physical range page by page.
179  */
is_linear_pfn_mapping(struct vm_area_struct * vma)180 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
181 {
182 	return !!(vma->vm_flags & VM_PFN_AT_MMAP);
183 }
184 
is_pfn_mapping(struct vm_area_struct * vma)185 static inline int is_pfn_mapping(struct vm_area_struct *vma)
186 {
187 	return !!(vma->vm_flags & VM_PFNMAP);
188 }
189 
190 /*
191  * vm_fault is filled by the the pagefault handler and passed to the vma's
192  * ->fault function. The vma's ->fault is responsible for returning a bitmask
193  * of VM_FAULT_xxx flags that give details about how the fault was handled.
194  *
195  * pgoff should be used in favour of virtual_address, if possible. If pgoff
196  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
197  * mapping support.
198  */
199 struct vm_fault {
200 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
201 	pgoff_t pgoff;			/* Logical page offset based on vma */
202 	void __user *virtual_address;	/* Faulting virtual address */
203 
204 	struct page *page;		/* ->fault handlers should return a
205 					 * page here, unless VM_FAULT_NOPAGE
206 					 * is set (which is also implied by
207 					 * VM_FAULT_ERROR).
208 					 */
209 };
210 
211 /*
212  * These are the virtual MM functions - opening of an area, closing and
213  * unmapping it (needed to keep files on disk up-to-date etc), pointer
214  * to the functions called when a no-page or a wp-page exception occurs.
215  */
216 struct vm_operations_struct {
217 	void (*open)(struct vm_area_struct * area);
218 	void (*close)(struct vm_area_struct * area);
219 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
220 
221 	/* notification that a previously read-only page is about to become
222 	 * writable, if an error is returned it will cause a SIGBUS */
223 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
224 
225 	/* called by access_process_vm when get_user_pages() fails, typically
226 	 * for use by special VMAs that can switch between memory and hardware
227 	 */
228 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
229 		      void *buf, int len, int write);
230 #ifdef CONFIG_NUMA
231 	/*
232 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
233 	 * to hold the policy upon return.  Caller should pass NULL @new to
234 	 * remove a policy and fall back to surrounding context--i.e. do not
235 	 * install a MPOL_DEFAULT policy, nor the task or system default
236 	 * mempolicy.
237 	 */
238 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
239 
240 	/*
241 	 * get_policy() op must add reference [mpol_get()] to any policy at
242 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
243 	 * in mm/mempolicy.c will do this automatically.
244 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
245 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
246 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
247 	 * must return NULL--i.e., do not "fallback" to task or system default
248 	 * policy.
249 	 */
250 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
251 					unsigned long addr);
252 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
253 		const nodemask_t *to, unsigned long flags);
254 #endif
255 };
256 
257 struct mmu_gather;
258 struct inode;
259 
260 #define page_private(page)		((page)->private)
261 #define set_page_private(page, v)	((page)->private = (v))
262 
263 /*
264  * FIXME: take this include out, include page-flags.h in
265  * files which need it (119 of them)
266  */
267 #include <linux/page-flags.h>
268 #include <linux/huge_mm.h>
269 
270 /*
271  * Methods to modify the page usage count.
272  *
273  * What counts for a page usage:
274  * - cache mapping   (page->mapping)
275  * - private data    (page->private)
276  * - page mapped in a task's page tables, each mapping
277  *   is counted separately
278  *
279  * Also, many kernel routines increase the page count before a critical
280  * routine so they can be sure the page doesn't go away from under them.
281  */
282 
283 /*
284  * Drop a ref, return true if the refcount fell to zero (the page has no users)
285  */
put_page_testzero(struct page * page)286 static inline int put_page_testzero(struct page *page)
287 {
288 	VM_BUG_ON(atomic_read(&page->_count) == 0);
289 	return atomic_dec_and_test(&page->_count);
290 }
291 
292 /*
293  * Try to grab a ref unless the page has a refcount of zero, return false if
294  * that is the case.
295  */
get_page_unless_zero(struct page * page)296 static inline int get_page_unless_zero(struct page *page)
297 {
298 	return atomic_inc_not_zero(&page->_count);
299 }
300 
301 extern int page_is_ram(unsigned long pfn);
302 
303 /* Support for virtually mapped pages */
304 struct page *vmalloc_to_page(const void *addr);
305 unsigned long vmalloc_to_pfn(const void *addr);
306 
307 /*
308  * Determine if an address is within the vmalloc range
309  *
310  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
311  * is no special casing required.
312  */
is_vmalloc_addr(const void * x)313 static inline int is_vmalloc_addr(const void *x)
314 {
315 #ifdef CONFIG_MMU
316 	unsigned long addr = (unsigned long)x;
317 
318 	return addr >= VMALLOC_START && addr < VMALLOC_END;
319 #else
320 	return 0;
321 #endif
322 }
323 #ifdef CONFIG_MMU
324 extern int is_vmalloc_or_module_addr(const void *x);
325 #else
is_vmalloc_or_module_addr(const void * x)326 static inline int is_vmalloc_or_module_addr(const void *x)
327 {
328 	return 0;
329 }
330 #endif
331 
compound_lock(struct page * page)332 static inline void compound_lock(struct page *page)
333 {
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 	bit_spin_lock(PG_compound_lock, &page->flags);
336 #endif
337 }
338 
compound_unlock(struct page * page)339 static inline void compound_unlock(struct page *page)
340 {
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 	bit_spin_unlock(PG_compound_lock, &page->flags);
343 #endif
344 }
345 
compound_lock_irqsave(struct page * page)346 static inline unsigned long compound_lock_irqsave(struct page *page)
347 {
348 	unsigned long uninitialized_var(flags);
349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 	local_irq_save(flags);
351 	compound_lock(page);
352 #endif
353 	return flags;
354 }
355 
compound_unlock_irqrestore(struct page * page,unsigned long flags)356 static inline void compound_unlock_irqrestore(struct page *page,
357 					      unsigned long flags)
358 {
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 	compound_unlock(page);
361 	local_irq_restore(flags);
362 #endif
363 }
364 
compound_head(struct page * page)365 static inline struct page *compound_head(struct page *page)
366 {
367 	if (unlikely(PageTail(page)))
368 		return page->first_page;
369 	return page;
370 }
371 
372 /*
373  * The atomic page->_mapcount, starts from -1: so that transitions
374  * both from it and to it can be tracked, using atomic_inc_and_test
375  * and atomic_add_negative(-1).
376  */
reset_page_mapcount(struct page * page)377 static inline void reset_page_mapcount(struct page *page)
378 {
379 	atomic_set(&(page)->_mapcount, -1);
380 }
381 
page_mapcount(struct page * page)382 static inline int page_mapcount(struct page *page)
383 {
384 	return atomic_read(&(page)->_mapcount) + 1;
385 }
386 
page_count(struct page * page)387 static inline int page_count(struct page *page)
388 {
389 	return atomic_read(&compound_head(page)->_count);
390 }
391 
get_huge_page_tail(struct page * page)392 static inline void get_huge_page_tail(struct page *page)
393 {
394 	/*
395 	 * __split_huge_page_refcount() cannot run
396 	 * from under us.
397 	 */
398 	VM_BUG_ON(page_mapcount(page) < 0);
399 	VM_BUG_ON(atomic_read(&page->_count) != 0);
400 	atomic_inc(&page->_mapcount);
401 }
402 
403 extern bool __get_page_tail(struct page *page);
404 
get_page(struct page * page)405 static inline void get_page(struct page *page)
406 {
407 	if (unlikely(PageTail(page)))
408 		if (likely(__get_page_tail(page)))
409 			return;
410 	/*
411 	 * Getting a normal page or the head of a compound page
412 	 * requires to already have an elevated page->_count.
413 	 */
414 	VM_BUG_ON(atomic_read(&page->_count) <= 0);
415 	atomic_inc(&page->_count);
416 }
417 
virt_to_head_page(const void * x)418 static inline struct page *virt_to_head_page(const void *x)
419 {
420 	struct page *page = virt_to_page(x);
421 	return compound_head(page);
422 }
423 
424 /*
425  * Setup the page count before being freed into the page allocator for
426  * the first time (boot or memory hotplug)
427  */
init_page_count(struct page * page)428 static inline void init_page_count(struct page *page)
429 {
430 	atomic_set(&page->_count, 1);
431 }
432 
433 /*
434  * PageBuddy() indicate that the page is free and in the buddy system
435  * (see mm/page_alloc.c).
436  *
437  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
438  * -2 so that an underflow of the page_mapcount() won't be mistaken
439  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
440  * efficiently by most CPU architectures.
441  */
442 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
443 
PageBuddy(struct page * page)444 static inline int PageBuddy(struct page *page)
445 {
446 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
447 }
448 
__SetPageBuddy(struct page * page)449 static inline void __SetPageBuddy(struct page *page)
450 {
451 	VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
452 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
453 }
454 
__ClearPageBuddy(struct page * page)455 static inline void __ClearPageBuddy(struct page *page)
456 {
457 	VM_BUG_ON(!PageBuddy(page));
458 	atomic_set(&page->_mapcount, -1);
459 }
460 
461 void put_page(struct page *page);
462 void put_pages_list(struct list_head *pages);
463 
464 void split_page(struct page *page, unsigned int order);
465 int split_free_page(struct page *page);
466 
467 /*
468  * Compound pages have a destructor function.  Provide a
469  * prototype for that function and accessor functions.
470  * These are _only_ valid on the head of a PG_compound page.
471  */
472 typedef void compound_page_dtor(struct page *);
473 
set_compound_page_dtor(struct page * page,compound_page_dtor * dtor)474 static inline void set_compound_page_dtor(struct page *page,
475 						compound_page_dtor *dtor)
476 {
477 	page[1].lru.next = (void *)dtor;
478 }
479 
get_compound_page_dtor(struct page * page)480 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
481 {
482 	return (compound_page_dtor *)page[1].lru.next;
483 }
484 
compound_order(struct page * page)485 static inline int compound_order(struct page *page)
486 {
487 	if (!PageHead(page))
488 		return 0;
489 	return (unsigned long)page[1].lru.prev;
490 }
491 
compound_trans_order(struct page * page)492 static inline int compound_trans_order(struct page *page)
493 {
494 	int order;
495 	unsigned long flags;
496 
497 	if (!PageHead(page))
498 		return 0;
499 
500 	flags = compound_lock_irqsave(page);
501 	order = compound_order(page);
502 	compound_unlock_irqrestore(page, flags);
503 	return order;
504 }
505 
set_compound_order(struct page * page,unsigned long order)506 static inline void set_compound_order(struct page *page, unsigned long order)
507 {
508 	page[1].lru.prev = (void *)order;
509 }
510 
511 #ifdef CONFIG_MMU
512 /*
513  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
514  * servicing faults for write access.  In the normal case, do always want
515  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
516  * that do not have writing enabled, when used by access_process_vm.
517  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)518 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
519 {
520 	if (likely(vma->vm_flags & VM_WRITE))
521 		pte = pte_mkwrite(pte);
522 	return pte;
523 }
524 #endif
525 
526 /*
527  * Multiple processes may "see" the same page. E.g. for untouched
528  * mappings of /dev/null, all processes see the same page full of
529  * zeroes, and text pages of executables and shared libraries have
530  * only one copy in memory, at most, normally.
531  *
532  * For the non-reserved pages, page_count(page) denotes a reference count.
533  *   page_count() == 0 means the page is free. page->lru is then used for
534  *   freelist management in the buddy allocator.
535  *   page_count() > 0  means the page has been allocated.
536  *
537  * Pages are allocated by the slab allocator in order to provide memory
538  * to kmalloc and kmem_cache_alloc. In this case, the management of the
539  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
540  * unless a particular usage is carefully commented. (the responsibility of
541  * freeing the kmalloc memory is the caller's, of course).
542  *
543  * A page may be used by anyone else who does a __get_free_page().
544  * In this case, page_count still tracks the references, and should only
545  * be used through the normal accessor functions. The top bits of page->flags
546  * and page->virtual store page management information, but all other fields
547  * are unused and could be used privately, carefully. The management of this
548  * page is the responsibility of the one who allocated it, and those who have
549  * subsequently been given references to it.
550  *
551  * The other pages (we may call them "pagecache pages") are completely
552  * managed by the Linux memory manager: I/O, buffers, swapping etc.
553  * The following discussion applies only to them.
554  *
555  * A pagecache page contains an opaque `private' member, which belongs to the
556  * page's address_space. Usually, this is the address of a circular list of
557  * the page's disk buffers. PG_private must be set to tell the VM to call
558  * into the filesystem to release these pages.
559  *
560  * A page may belong to an inode's memory mapping. In this case, page->mapping
561  * is the pointer to the inode, and page->index is the file offset of the page,
562  * in units of PAGE_CACHE_SIZE.
563  *
564  * If pagecache pages are not associated with an inode, they are said to be
565  * anonymous pages. These may become associated with the swapcache, and in that
566  * case PG_swapcache is set, and page->private is an offset into the swapcache.
567  *
568  * In either case (swapcache or inode backed), the pagecache itself holds one
569  * reference to the page. Setting PG_private should also increment the
570  * refcount. The each user mapping also has a reference to the page.
571  *
572  * The pagecache pages are stored in a per-mapping radix tree, which is
573  * rooted at mapping->page_tree, and indexed by offset.
574  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
575  * lists, we instead now tag pages as dirty/writeback in the radix tree.
576  *
577  * All pagecache pages may be subject to I/O:
578  * - inode pages may need to be read from disk,
579  * - inode pages which have been modified and are MAP_SHARED may need
580  *   to be written back to the inode on disk,
581  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
582  *   modified may need to be swapped out to swap space and (later) to be read
583  *   back into memory.
584  */
585 
586 /*
587  * The zone field is never updated after free_area_init_core()
588  * sets it, so none of the operations on it need to be atomic.
589  */
590 
591 
592 /*
593  * page->flags layout:
594  *
595  * There are three possibilities for how page->flags get
596  * laid out.  The first is for the normal case, without
597  * sparsemem.  The second is for sparsemem when there is
598  * plenty of space for node and section.  The last is when
599  * we have run out of space and have to fall back to an
600  * alternate (slower) way of determining the node.
601  *
602  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
603  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
604  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
605  */
606 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
607 #define SECTIONS_WIDTH		SECTIONS_SHIFT
608 #else
609 #define SECTIONS_WIDTH		0
610 #endif
611 
612 #define ZONES_WIDTH		ZONES_SHIFT
613 
614 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
615 #define NODES_WIDTH		NODES_SHIFT
616 #else
617 #ifdef CONFIG_SPARSEMEM_VMEMMAP
618 #error "Vmemmap: No space for nodes field in page flags"
619 #endif
620 #define NODES_WIDTH		0
621 #endif
622 
623 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
624 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
625 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
626 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
627 
628 /*
629  * We are going to use the flags for the page to node mapping if its in
630  * there.  This includes the case where there is no node, so it is implicit.
631  */
632 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
633 #define NODE_NOT_IN_PAGE_FLAGS
634 #endif
635 
636 /*
637  * Define the bit shifts to access each section.  For non-existent
638  * sections we define the shift as 0; that plus a 0 mask ensures
639  * the compiler will optimise away reference to them.
640  */
641 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
642 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
643 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
644 
645 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
646 #ifdef NODE_NOT_IN_PAGE_FLAGS
647 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
648 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
649 						SECTIONS_PGOFF : ZONES_PGOFF)
650 #else
651 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
652 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
653 						NODES_PGOFF : ZONES_PGOFF)
654 #endif
655 
656 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
657 
658 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
659 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
660 #endif
661 
662 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
663 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
664 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
665 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
666 
page_zonenum(const struct page * page)667 static inline enum zone_type page_zonenum(const struct page *page)
668 {
669 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
670 }
671 
672 /*
673  * The identification function is only used by the buddy allocator for
674  * determining if two pages could be buddies. We are not really
675  * identifying a zone since we could be using a the section number
676  * id if we have not node id available in page flags.
677  * We guarantee only that it will return the same value for two
678  * combinable pages in a zone.
679  */
page_zone_id(struct page * page)680 static inline int page_zone_id(struct page *page)
681 {
682 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
683 }
684 
zone_to_nid(struct zone * zone)685 static inline int zone_to_nid(struct zone *zone)
686 {
687 #ifdef CONFIG_NUMA
688 	return zone->node;
689 #else
690 	return 0;
691 #endif
692 }
693 
694 #ifdef NODE_NOT_IN_PAGE_FLAGS
695 extern int page_to_nid(const struct page *page);
696 #else
page_to_nid(const struct page * page)697 static inline int page_to_nid(const struct page *page)
698 {
699 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
700 }
701 #endif
702 
page_zone(const struct page * page)703 static inline struct zone *page_zone(const struct page *page)
704 {
705 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
706 }
707 
708 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
set_page_section(struct page * page,unsigned long section)709 static inline void set_page_section(struct page *page, unsigned long section)
710 {
711 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
712 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
713 }
714 
page_to_section(const struct page * page)715 static inline unsigned long page_to_section(const struct page *page)
716 {
717 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
718 }
719 #endif
720 
set_page_zone(struct page * page,enum zone_type zone)721 static inline void set_page_zone(struct page *page, enum zone_type zone)
722 {
723 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
724 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
725 }
726 
set_page_node(struct page * page,unsigned long node)727 static inline void set_page_node(struct page *page, unsigned long node)
728 {
729 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
730 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
731 }
732 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)733 static inline void set_page_links(struct page *page, enum zone_type zone,
734 	unsigned long node, unsigned long pfn)
735 {
736 	set_page_zone(page, zone);
737 	set_page_node(page, node);
738 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
739 	set_page_section(page, pfn_to_section_nr(pfn));
740 #endif
741 }
742 
743 /*
744  * Some inline functions in vmstat.h depend on page_zone()
745  */
746 #include <linux/vmstat.h>
747 
lowmem_page_address(const struct page * page)748 static __always_inline void *lowmem_page_address(const struct page *page)
749 {
750 	return __va(PFN_PHYS(page_to_pfn(page)));
751 }
752 
753 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
754 #define HASHED_PAGE_VIRTUAL
755 #endif
756 
757 #if defined(WANT_PAGE_VIRTUAL)
758 #define page_address(page) ((page)->virtual)
759 #define set_page_address(page, address)			\
760 	do {						\
761 		(page)->virtual = (address);		\
762 	} while(0)
763 #define page_address_init()  do { } while(0)
764 #endif
765 
766 #if defined(HASHED_PAGE_VIRTUAL)
767 void *page_address(const struct page *page);
768 void set_page_address(struct page *page, void *virtual);
769 void page_address_init(void);
770 #endif
771 
772 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
773 #define page_address(page) lowmem_page_address(page)
774 #define set_page_address(page, address)  do { } while(0)
775 #define page_address_init()  do { } while(0)
776 #endif
777 
778 /*
779  * On an anonymous page mapped into a user virtual memory area,
780  * page->mapping points to its anon_vma, not to a struct address_space;
781  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
782  *
783  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
784  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
785  * and then page->mapping points, not to an anon_vma, but to a private
786  * structure which KSM associates with that merged page.  See ksm.h.
787  *
788  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
789  *
790  * Please note that, confusingly, "page_mapping" refers to the inode
791  * address_space which maps the page from disk; whereas "page_mapped"
792  * refers to user virtual address space into which the page is mapped.
793  */
794 #define PAGE_MAPPING_ANON	1
795 #define PAGE_MAPPING_KSM	2
796 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
797 
798 extern struct address_space swapper_space;
page_mapping(struct page * page)799 static inline struct address_space *page_mapping(struct page *page)
800 {
801 	struct address_space *mapping = page->mapping;
802 
803 	VM_BUG_ON(PageSlab(page));
804 	if (unlikely(PageSwapCache(page)))
805 		mapping = &swapper_space;
806 	else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
807 		mapping = NULL;
808 	return mapping;
809 }
810 
811 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)812 static inline void *page_rmapping(struct page *page)
813 {
814 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
815 }
816 
PageAnon(struct page * page)817 static inline int PageAnon(struct page *page)
818 {
819 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
820 }
821 
822 /*
823  * Return the pagecache index of the passed page.  Regular pagecache pages
824  * use ->index whereas swapcache pages use ->private
825  */
page_index(struct page * page)826 static inline pgoff_t page_index(struct page *page)
827 {
828 	if (unlikely(PageSwapCache(page)))
829 		return page_private(page);
830 	return page->index;
831 }
832 
833 /*
834  * Return true if this page is mapped into pagetables.
835  */
page_mapped(struct page * page)836 static inline int page_mapped(struct page *page)
837 {
838 	return atomic_read(&(page)->_mapcount) >= 0;
839 }
840 
841 /*
842  * Different kinds of faults, as returned by handle_mm_fault().
843  * Used to decide whether a process gets delivered SIGBUS or
844  * just gets major/minor fault counters bumped up.
845  */
846 
847 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
848 
849 #define VM_FAULT_OOM	0x0001
850 #define VM_FAULT_SIGBUS	0x0002
851 #define VM_FAULT_MAJOR	0x0004
852 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
853 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
854 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
855 
856 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
857 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
858 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
859 
860 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
861 
862 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
863 			 VM_FAULT_HWPOISON_LARGE)
864 
865 /* Encode hstate index for a hwpoisoned large page */
866 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
867 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
868 
869 /*
870  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
871  */
872 extern void pagefault_out_of_memory(void);
873 
874 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
875 
876 /*
877  * Flags passed to show_mem() and show_free_areas() to suppress output in
878  * various contexts.
879  */
880 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
881 #define SHOW_MEM_FILTER_PAGE_COUNT	(0x0002u)	/* page type count */
882 
883 extern void show_free_areas(unsigned int flags);
884 extern bool skip_free_areas_node(unsigned int flags, int nid);
885 
886 int shmem_lock(struct file *file, int lock, struct user_struct *user);
887 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
888 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
889 int shmem_zero_setup(struct vm_area_struct *);
890 
891 extern int can_do_mlock(void);
892 extern int user_shm_lock(size_t, struct user_struct *);
893 extern void user_shm_unlock(size_t, struct user_struct *);
894 
895 /*
896  * Parameter block passed down to zap_pte_range in exceptional cases.
897  */
898 struct zap_details {
899 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
900 	struct address_space *check_mapping;	/* Check page->mapping if set */
901 	pgoff_t	first_index;			/* Lowest page->index to unmap */
902 	pgoff_t last_index;			/* Highest page->index to unmap */
903 };
904 
905 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
906 		pte_t pte);
907 
908 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
909 		unsigned long size);
910 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
911 		unsigned long size, struct zap_details *);
912 void unmap_vmas(struct mmu_gather *tlb,
913 		struct vm_area_struct *start_vma, unsigned long start_addr,
914 		unsigned long end_addr, unsigned long *nr_accounted,
915 		struct zap_details *);
916 
917 /**
918  * mm_walk - callbacks for walk_page_range
919  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
920  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
921  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
922  *	       this handler is required to be able to handle
923  *	       pmd_trans_huge() pmds.  They may simply choose to
924  *	       split_huge_page() instead of handling it explicitly.
925  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
926  * @pte_hole: if set, called for each hole at all levels
927  * @hugetlb_entry: if set, called for each hugetlb entry
928  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
929  * 			      is used.
930  *
931  * (see walk_page_range for more details)
932  */
933 struct mm_walk {
934 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
935 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
936 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
937 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
938 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
939 	int (*hugetlb_entry)(pte_t *, unsigned long,
940 			     unsigned long, unsigned long, struct mm_walk *);
941 	struct mm_struct *mm;
942 	void *private;
943 };
944 
945 int walk_page_range(unsigned long addr, unsigned long end,
946 		struct mm_walk *walk);
947 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
948 		unsigned long end, unsigned long floor, unsigned long ceiling);
949 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
950 			struct vm_area_struct *vma);
951 void unmap_mapping_range(struct address_space *mapping,
952 		loff_t const holebegin, loff_t const holelen, int even_cows);
953 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
954 	unsigned long *pfn);
955 int follow_phys(struct vm_area_struct *vma, unsigned long address,
956 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
957 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
958 			void *buf, int len, int write);
959 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)960 static inline void unmap_shared_mapping_range(struct address_space *mapping,
961 		loff_t const holebegin, loff_t const holelen)
962 {
963 	unmap_mapping_range(mapping, holebegin, holelen, 0);
964 }
965 
966 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
967 extern void truncate_setsize(struct inode *inode, loff_t newsize);
968 extern int vmtruncate(struct inode *inode, loff_t offset);
969 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
970 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
971 int truncate_inode_page(struct address_space *mapping, struct page *page);
972 int generic_error_remove_page(struct address_space *mapping, struct page *page);
973 
974 int invalidate_inode_page(struct page *page);
975 
976 #ifdef CONFIG_MMU
977 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
978 			unsigned long address, unsigned int flags);
979 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
980 			    unsigned long address, unsigned int fault_flags);
981 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)982 static inline int handle_mm_fault(struct mm_struct *mm,
983 			struct vm_area_struct *vma, unsigned long address,
984 			unsigned int flags)
985 {
986 	/* should never happen if there's no MMU */
987 	BUG();
988 	return VM_FAULT_SIGBUS;
989 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)990 static inline int fixup_user_fault(struct task_struct *tsk,
991 		struct mm_struct *mm, unsigned long address,
992 		unsigned int fault_flags)
993 {
994 	/* should never happen if there's no MMU */
995 	BUG();
996 	return -EFAULT;
997 }
998 #endif
999 
1000 extern int make_pages_present(unsigned long addr, unsigned long end);
1001 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1002 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1003 		void *buf, int len, int write);
1004 
1005 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1006 		     unsigned long start, int len, unsigned int foll_flags,
1007 		     struct page **pages, struct vm_area_struct **vmas,
1008 		     int *nonblocking);
1009 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1010 			unsigned long start, int nr_pages, int write, int force,
1011 			struct page **pages, struct vm_area_struct **vmas);
1012 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1013 			struct page **pages);
1014 struct page *get_dump_page(unsigned long addr);
1015 
1016 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1017 extern void do_invalidatepage(struct page *page, unsigned long offset);
1018 
1019 int __set_page_dirty_nobuffers(struct page *page);
1020 int __set_page_dirty_no_writeback(struct page *page);
1021 int redirty_page_for_writepage(struct writeback_control *wbc,
1022 				struct page *page);
1023 void account_page_dirtied(struct page *page, struct address_space *mapping);
1024 void account_page_writeback(struct page *page);
1025 int set_page_dirty(struct page *page);
1026 int set_page_dirty_lock(struct page *page);
1027 int clear_page_dirty_for_io(struct page *page);
1028 
1029 /* Is the vma a continuation of the stack vma above it? */
vma_growsdown(struct vm_area_struct * vma,unsigned long addr)1030 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1031 {
1032 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1033 }
1034 
stack_guard_page_start(struct vm_area_struct * vma,unsigned long addr)1035 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1036 					     unsigned long addr)
1037 {
1038 	return (vma->vm_flags & VM_GROWSDOWN) &&
1039 		(vma->vm_start == addr) &&
1040 		!vma_growsdown(vma->vm_prev, addr);
1041 }
1042 
1043 /* Is the vma a continuation of the stack vma below it? */
vma_growsup(struct vm_area_struct * vma,unsigned long addr)1044 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1045 {
1046 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1047 }
1048 
stack_guard_page_end(struct vm_area_struct * vma,unsigned long addr)1049 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1050 					   unsigned long addr)
1051 {
1052 	return (vma->vm_flags & VM_GROWSUP) &&
1053 		(vma->vm_end == addr) &&
1054 		!vma_growsup(vma->vm_next, addr);
1055 }
1056 
1057 extern pid_t
1058 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1059 
1060 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1061 		unsigned long old_addr, struct vm_area_struct *new_vma,
1062 		unsigned long new_addr, unsigned long len);
1063 extern unsigned long do_mremap(unsigned long addr,
1064 			       unsigned long old_len, unsigned long new_len,
1065 			       unsigned long flags, unsigned long new_addr);
1066 extern int mprotect_fixup(struct vm_area_struct *vma,
1067 			  struct vm_area_struct **pprev, unsigned long start,
1068 			  unsigned long end, unsigned long newflags);
1069 
1070 /*
1071  * doesn't attempt to fault and will return short.
1072  */
1073 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1074 			  struct page **pages);
1075 /*
1076  * per-process(per-mm_struct) statistics.
1077  */
get_mm_counter(struct mm_struct * mm,int member)1078 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1079 {
1080 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1081 
1082 #ifdef SPLIT_RSS_COUNTING
1083 	/*
1084 	 * counter is updated in asynchronous manner and may go to minus.
1085 	 * But it's never be expected number for users.
1086 	 */
1087 	if (val < 0)
1088 		val = 0;
1089 #endif
1090 	return (unsigned long)val;
1091 }
1092 
add_mm_counter(struct mm_struct * mm,int member,long value)1093 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1094 {
1095 	atomic_long_add(value, &mm->rss_stat.count[member]);
1096 }
1097 
inc_mm_counter(struct mm_struct * mm,int member)1098 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1099 {
1100 	atomic_long_inc(&mm->rss_stat.count[member]);
1101 }
1102 
dec_mm_counter(struct mm_struct * mm,int member)1103 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1104 {
1105 	atomic_long_dec(&mm->rss_stat.count[member]);
1106 }
1107 
get_mm_rss(struct mm_struct * mm)1108 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1109 {
1110 	return get_mm_counter(mm, MM_FILEPAGES) +
1111 		get_mm_counter(mm, MM_ANONPAGES);
1112 }
1113 
get_mm_hiwater_rss(struct mm_struct * mm)1114 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1115 {
1116 	return max(mm->hiwater_rss, get_mm_rss(mm));
1117 }
1118 
get_mm_hiwater_vm(struct mm_struct * mm)1119 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1120 {
1121 	return max(mm->hiwater_vm, mm->total_vm);
1122 }
1123 
update_hiwater_rss(struct mm_struct * mm)1124 static inline void update_hiwater_rss(struct mm_struct *mm)
1125 {
1126 	unsigned long _rss = get_mm_rss(mm);
1127 
1128 	if ((mm)->hiwater_rss < _rss)
1129 		(mm)->hiwater_rss = _rss;
1130 }
1131 
update_hiwater_vm(struct mm_struct * mm)1132 static inline void update_hiwater_vm(struct mm_struct *mm)
1133 {
1134 	if (mm->hiwater_vm < mm->total_vm)
1135 		mm->hiwater_vm = mm->total_vm;
1136 }
1137 
reset_mm_hiwater_rss(struct mm_struct * mm)1138 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1139 {
1140 	mm->hiwater_rss = get_mm_rss(mm);
1141 }
1142 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1143 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1144 					 struct mm_struct *mm)
1145 {
1146 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1147 
1148 	if (*maxrss < hiwater_rss)
1149 		*maxrss = hiwater_rss;
1150 }
1151 
1152 #if defined(SPLIT_RSS_COUNTING)
1153 void sync_mm_rss(struct mm_struct *mm);
1154 #else
sync_mm_rss(struct mm_struct * mm)1155 static inline void sync_mm_rss(struct mm_struct *mm)
1156 {
1157 }
1158 #endif
1159 
1160 int vma_wants_writenotify(struct vm_area_struct *vma);
1161 
1162 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1163 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1164 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1165 				    spinlock_t **ptl)
1166 {
1167 	pte_t *ptep;
1168 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1169 	return ptep;
1170 }
1171 
1172 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1173 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1174 						unsigned long address)
1175 {
1176 	return 0;
1177 }
1178 #else
1179 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1180 #endif
1181 
1182 #ifdef __PAGETABLE_PMD_FOLDED
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1183 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1184 						unsigned long address)
1185 {
1186 	return 0;
1187 }
1188 #else
1189 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1190 #endif
1191 
1192 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1193 		pmd_t *pmd, unsigned long address);
1194 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1195 
1196 /*
1197  * The following ifdef needed to get the 4level-fixup.h header to work.
1198  * Remove it when 4level-fixup.h has been removed.
1199  */
1200 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1201 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1202 {
1203 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1204 		NULL: pud_offset(pgd, address);
1205 }
1206 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1207 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1208 {
1209 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1210 		NULL: pmd_offset(pud, address);
1211 }
1212 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1213 
1214 #if USE_SPLIT_PTLOCKS
1215 /*
1216  * We tuck a spinlock to guard each pagetable page into its struct page,
1217  * at page->private, with BUILD_BUG_ON to make sure that this will not
1218  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1219  * When freeing, reset page->mapping so free_pages_check won't complain.
1220  */
1221 #define __pte_lockptr(page)	&((page)->ptl)
1222 #define pte_lock_init(_page)	do {					\
1223 	spin_lock_init(__pte_lockptr(_page));				\
1224 } while (0)
1225 #define pte_lock_deinit(page)	((page)->mapping = NULL)
1226 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1227 #else	/* !USE_SPLIT_PTLOCKS */
1228 /*
1229  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1230  */
1231 #define pte_lock_init(page)	do {} while (0)
1232 #define pte_lock_deinit(page)	do {} while (0)
1233 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
1234 #endif /* USE_SPLIT_PTLOCKS */
1235 
pgtable_page_ctor(struct page * page)1236 static inline void pgtable_page_ctor(struct page *page)
1237 {
1238 	pte_lock_init(page);
1239 	inc_zone_page_state(page, NR_PAGETABLE);
1240 }
1241 
pgtable_page_dtor(struct page * page)1242 static inline void pgtable_page_dtor(struct page *page)
1243 {
1244 	pte_lock_deinit(page);
1245 	dec_zone_page_state(page, NR_PAGETABLE);
1246 }
1247 
1248 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1249 ({							\
1250 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1251 	pte_t *__pte = pte_offset_map(pmd, address);	\
1252 	*(ptlp) = __ptl;				\
1253 	spin_lock(__ptl);				\
1254 	__pte;						\
1255 })
1256 
1257 #define pte_unmap_unlock(pte, ptl)	do {		\
1258 	spin_unlock(ptl);				\
1259 	pte_unmap(pte);					\
1260 } while (0)
1261 
1262 #define pte_alloc_map(mm, vma, pmd, address)				\
1263 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1264 							pmd, address))?	\
1265 	 NULL: pte_offset_map(pmd, address))
1266 
1267 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1268 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1269 							pmd, address))?	\
1270 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1271 
1272 #define pte_alloc_kernel(pmd, address)			\
1273 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1274 		NULL: pte_offset_kernel(pmd, address))
1275 
1276 extern void free_area_init(unsigned long * zones_size);
1277 extern void free_area_init_node(int nid, unsigned long * zones_size,
1278 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1279 extern void free_initmem(void);
1280 
1281 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1282 /*
1283  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1284  * zones, allocate the backing mem_map and account for memory holes in a more
1285  * architecture independent manner. This is a substitute for creating the
1286  * zone_sizes[] and zholes_size[] arrays and passing them to
1287  * free_area_init_node()
1288  *
1289  * An architecture is expected to register range of page frames backed by
1290  * physical memory with memblock_add[_node]() before calling
1291  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1292  * usage, an architecture is expected to do something like
1293  *
1294  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1295  * 							 max_highmem_pfn};
1296  * for_each_valid_physical_page_range()
1297  * 	memblock_add_node(base, size, nid)
1298  * free_area_init_nodes(max_zone_pfns);
1299  *
1300  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1301  * registered physical page range.  Similarly
1302  * sparse_memory_present_with_active_regions() calls memory_present() for
1303  * each range when SPARSEMEM is enabled.
1304  *
1305  * See mm/page_alloc.c for more information on each function exposed by
1306  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1307  */
1308 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1309 unsigned long node_map_pfn_alignment(void);
1310 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1311 						unsigned long end_pfn);
1312 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1313 						unsigned long end_pfn);
1314 extern void get_pfn_range_for_nid(unsigned int nid,
1315 			unsigned long *start_pfn, unsigned long *end_pfn);
1316 extern unsigned long find_min_pfn_with_active_regions(void);
1317 extern void free_bootmem_with_active_regions(int nid,
1318 						unsigned long max_low_pfn);
1319 extern void sparse_memory_present_with_active_regions(int nid);
1320 
1321 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1322 
1323 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1324     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn)1325 static inline int __early_pfn_to_nid(unsigned long pfn)
1326 {
1327 	return 0;
1328 }
1329 #else
1330 /* please see mm/page_alloc.c */
1331 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1332 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1333 /* there is a per-arch backend function. */
1334 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1335 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1336 #endif
1337 
1338 extern void set_dma_reserve(unsigned long new_dma_reserve);
1339 extern void memmap_init_zone(unsigned long, int, unsigned long,
1340 				unsigned long, enum memmap_context);
1341 extern void setup_per_zone_wmarks(void);
1342 extern int __meminit init_per_zone_wmark_min(void);
1343 extern void mem_init(void);
1344 extern void __init mmap_init(void);
1345 extern void show_mem(unsigned int flags);
1346 extern void si_meminfo(struct sysinfo * val);
1347 extern void si_meminfo_node(struct sysinfo *val, int nid);
1348 extern int after_bootmem;
1349 
1350 extern __printf(3, 4)
1351 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1352 
1353 extern void setup_per_cpu_pageset(void);
1354 
1355 extern void zone_pcp_update(struct zone *zone);
1356 
1357 /* nommu.c */
1358 extern atomic_long_t mmap_pages_allocated;
1359 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1360 
1361 /* prio_tree.c */
1362 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1363 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1364 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1365 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1366 	struct prio_tree_iter *iter);
1367 
1368 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1369 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1370 		(vma = vma_prio_tree_next(vma, iter)); )
1371 
vma_nonlinear_insert(struct vm_area_struct * vma,struct list_head * list)1372 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1373 					struct list_head *list)
1374 {
1375 	vma->shared.vm_set.parent = NULL;
1376 	list_add_tail(&vma->shared.vm_set.list, list);
1377 }
1378 
1379 /* mmap.c */
1380 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1381 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1382 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1383 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1384 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1385 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1386 	struct mempolicy *, const char __user *);
1387 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1388 extern int split_vma(struct mm_struct *,
1389 	struct vm_area_struct *, unsigned long addr, int new_below);
1390 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1391 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1392 	struct rb_node **, struct rb_node *);
1393 extern void unlink_file_vma(struct vm_area_struct *);
1394 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1395 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1396 extern void exit_mmap(struct mm_struct *);
1397 
1398 extern int mm_take_all_locks(struct mm_struct *mm);
1399 extern void mm_drop_all_locks(struct mm_struct *mm);
1400 
1401 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1402 extern void added_exe_file_vma(struct mm_struct *mm);
1403 extern void removed_exe_file_vma(struct mm_struct *mm);
1404 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1405 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1406 
1407 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1408 extern int install_special_mapping(struct mm_struct *mm,
1409 				   unsigned long addr, unsigned long len,
1410 				   unsigned long flags, struct page **pages);
1411 
1412 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1413 
1414 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1415 	unsigned long len, unsigned long flags,
1416 	vm_flags_t vm_flags, unsigned long pgoff);
1417 extern unsigned long do_mmap(struct file *, unsigned long,
1418         unsigned long, unsigned long,
1419         unsigned long, unsigned long);
1420 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1421 
1422 /* These take the mm semaphore themselves */
1423 extern unsigned long vm_brk(unsigned long, unsigned long);
1424 extern int vm_munmap(unsigned long, size_t);
1425 extern unsigned long vm_mmap(struct file *, unsigned long,
1426         unsigned long, unsigned long,
1427         unsigned long, unsigned long);
1428 
1429 /* truncate.c */
1430 extern void truncate_inode_pages(struct address_space *, loff_t);
1431 extern void truncate_inode_pages_range(struct address_space *,
1432 				       loff_t lstart, loff_t lend);
1433 
1434 /* generic vm_area_ops exported for stackable file systems */
1435 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1436 
1437 /* mm/page-writeback.c */
1438 int write_one_page(struct page *page, int wait);
1439 void task_dirty_inc(struct task_struct *tsk);
1440 
1441 /* readahead.c */
1442 #define VM_MAX_READAHEAD	128	/* kbytes */
1443 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1444 
1445 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1446 			pgoff_t offset, unsigned long nr_to_read);
1447 
1448 void page_cache_sync_readahead(struct address_space *mapping,
1449 			       struct file_ra_state *ra,
1450 			       struct file *filp,
1451 			       pgoff_t offset,
1452 			       unsigned long size);
1453 
1454 void page_cache_async_readahead(struct address_space *mapping,
1455 				struct file_ra_state *ra,
1456 				struct file *filp,
1457 				struct page *pg,
1458 				pgoff_t offset,
1459 				unsigned long size);
1460 
1461 unsigned long max_sane_readahead(unsigned long nr);
1462 unsigned long ra_submit(struct file_ra_state *ra,
1463 			struct address_space *mapping,
1464 			struct file *filp);
1465 
1466 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1467 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1468 
1469 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1470 extern int expand_downwards(struct vm_area_struct *vma,
1471 		unsigned long address);
1472 #if VM_GROWSUP
1473 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1474 #else
1475   #define expand_upwards(vma, address) do { } while (0)
1476 #endif
1477 
1478 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1479 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1480 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1481 					     struct vm_area_struct **pprev);
1482 
1483 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1484    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1485 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1486 {
1487 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1488 
1489 	if (vma && end_addr <= vma->vm_start)
1490 		vma = NULL;
1491 	return vma;
1492 }
1493 
vma_pages(struct vm_area_struct * vma)1494 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1495 {
1496 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1497 }
1498 
1499 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)1500 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1501 				unsigned long vm_start, unsigned long vm_end)
1502 {
1503 	struct vm_area_struct *vma = find_vma(mm, vm_start);
1504 
1505 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1506 		vma = NULL;
1507 
1508 	return vma;
1509 }
1510 
1511 #ifdef CONFIG_MMU
1512 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1513 #else
vm_get_page_prot(unsigned long vm_flags)1514 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1515 {
1516 	return __pgprot(0);
1517 }
1518 #endif
1519 
1520 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1521 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1522 			unsigned long pfn, unsigned long size, pgprot_t);
1523 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1524 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1525 			unsigned long pfn);
1526 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1527 			unsigned long pfn);
1528 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1529 
1530 
1531 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1532 			unsigned int foll_flags);
1533 #define FOLL_WRITE	0x01	/* check pte is writable */
1534 #define FOLL_TOUCH	0x02	/* mark page accessed */
1535 #define FOLL_GET	0x04	/* do get_page on page */
1536 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
1537 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
1538 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
1539 				 * and return without waiting upon it */
1540 #define FOLL_MLOCK	0x40	/* mark page as mlocked */
1541 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
1542 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
1543 
1544 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1545 			void *data);
1546 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1547 			       unsigned long size, pte_fn_t fn, void *data);
1548 
1549 #ifdef CONFIG_PROC_FS
1550 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1551 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1552 static inline void vm_stat_account(struct mm_struct *mm,
1553 			unsigned long flags, struct file *file, long pages)
1554 {
1555 }
1556 #endif /* CONFIG_PROC_FS */
1557 
1558 #ifdef CONFIG_DEBUG_PAGEALLOC
1559 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1560 #ifdef CONFIG_HIBERNATION
1561 extern bool kernel_page_present(struct page *page);
1562 #endif /* CONFIG_HIBERNATION */
1563 #else
1564 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)1565 kernel_map_pages(struct page *page, int numpages, int enable) {}
1566 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)1567 static inline bool kernel_page_present(struct page *page) { return true; }
1568 #endif /* CONFIG_HIBERNATION */
1569 #endif
1570 
1571 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1572 #ifdef	__HAVE_ARCH_GATE_AREA
1573 int in_gate_area_no_mm(unsigned long addr);
1574 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1575 #else
1576 int in_gate_area_no_mm(unsigned long addr);
1577 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1578 #endif	/* __HAVE_ARCH_GATE_AREA */
1579 
1580 int drop_caches_sysctl_handler(struct ctl_table *, int,
1581 					void __user *, size_t *, loff_t *);
1582 unsigned long shrink_slab(struct shrink_control *shrink,
1583 			  unsigned long nr_pages_scanned,
1584 			  unsigned long lru_pages);
1585 
1586 #ifndef CONFIG_MMU
1587 #define randomize_va_space 0
1588 #else
1589 extern int randomize_va_space;
1590 #endif
1591 
1592 const char * arch_vma_name(struct vm_area_struct *vma);
1593 void print_vma_addr(char *prefix, unsigned long rip);
1594 
1595 void sparse_mem_maps_populate_node(struct page **map_map,
1596 				   unsigned long pnum_begin,
1597 				   unsigned long pnum_end,
1598 				   unsigned long map_count,
1599 				   int nodeid);
1600 
1601 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1602 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1603 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1604 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1605 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1606 void *vmemmap_alloc_block(unsigned long size, int node);
1607 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1608 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1609 int vmemmap_populate_basepages(struct page *start_page,
1610 						unsigned long pages, int node);
1611 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1612 void vmemmap_populate_print_last(void);
1613 
1614 
1615 enum mf_flags {
1616 	MF_COUNT_INCREASED = 1 << 0,
1617 	MF_ACTION_REQUIRED = 1 << 1,
1618 	MF_MUST_KILL = 1 << 2,
1619 };
1620 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1621 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1622 extern int unpoison_memory(unsigned long pfn);
1623 extern int sysctl_memory_failure_early_kill;
1624 extern int sysctl_memory_failure_recovery;
1625 extern void shake_page(struct page *p, int access);
1626 extern atomic_long_t mce_bad_pages;
1627 extern int soft_offline_page(struct page *page, int flags);
1628 
1629 extern void dump_page(struct page *page);
1630 
1631 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1632 extern void clear_huge_page(struct page *page,
1633 			    unsigned long addr,
1634 			    unsigned int pages_per_huge_page);
1635 extern void copy_user_huge_page(struct page *dst, struct page *src,
1636 				unsigned long addr, struct vm_area_struct *vma,
1637 				unsigned int pages_per_huge_page);
1638 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1639 
1640 #ifdef CONFIG_DEBUG_PAGEALLOC
1641 extern unsigned int _debug_guardpage_minorder;
1642 
debug_guardpage_minorder(void)1643 static inline unsigned int debug_guardpage_minorder(void)
1644 {
1645 	return _debug_guardpage_minorder;
1646 }
1647 
page_is_guard(struct page * page)1648 static inline bool page_is_guard(struct page *page)
1649 {
1650 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1651 }
1652 #else
debug_guardpage_minorder(void)1653 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
page_is_guard(struct page * page)1654 static inline bool page_is_guard(struct page *page) { return false; }
1655 #endif /* CONFIG_DEBUG_PAGEALLOC */
1656 
1657 #endif /* __KERNEL__ */
1658 #endif /* _LINUX_MM_H */
1659