• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8  */
9 
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
32 
33 #include "pat_internal.h"
34 
35 #ifdef CONFIG_X86_PAT
36 int __read_mostly pat_enabled = 1;
37 
pat_disable(const char * reason)38 static inline void pat_disable(const char *reason)
39 {
40 	pat_enabled = 0;
41 	printk(KERN_INFO "%s\n", reason);
42 }
43 
nopat(char * str)44 static int __init nopat(char *str)
45 {
46 	pat_disable("PAT support disabled.");
47 	return 0;
48 }
49 early_param("nopat", nopat);
50 #else
pat_disable(const char * reason)51 static inline void pat_disable(const char *reason)
52 {
53 	(void)reason;
54 }
55 #endif
56 
57 
58 int pat_debug_enable;
59 
pat_debug_setup(char * str)60 static int __init pat_debug_setup(char *str)
61 {
62 	pat_debug_enable = 1;
63 	return 0;
64 }
65 __setup("debugpat", pat_debug_setup);
66 
67 static u64 __read_mostly boot_pat_state;
68 
69 enum {
70 	PAT_UC = 0,		/* uncached */
71 	PAT_WC = 1,		/* Write combining */
72 	PAT_WT = 4,		/* Write Through */
73 	PAT_WP = 5,		/* Write Protected */
74 	PAT_WB = 6,		/* Write Back (default) */
75 	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
76 };
77 
78 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
79 
pat_init(void)80 void pat_init(void)
81 {
82 	u64 pat;
83 	bool boot_cpu = !boot_pat_state;
84 
85 	if (!pat_enabled)
86 		return;
87 
88 	if (!cpu_has_pat) {
89 		if (!boot_pat_state) {
90 			pat_disable("PAT not supported by CPU.");
91 			return;
92 		} else {
93 			/*
94 			 * If this happens we are on a secondary CPU, but
95 			 * switched to PAT on the boot CPU. We have no way to
96 			 * undo PAT.
97 			 */
98 			printk(KERN_ERR "PAT enabled, "
99 			       "but not supported by secondary CPU\n");
100 			BUG();
101 		}
102 	}
103 
104 	/* Set PWT to Write-Combining. All other bits stay the same */
105 	/*
106 	 * PTE encoding used in Linux:
107 	 *      PAT
108 	 *      |PCD
109 	 *      ||PWT
110 	 *      |||
111 	 *      000 WB		_PAGE_CACHE_WB
112 	 *      001 WC		_PAGE_CACHE_WC
113 	 *      010 UC-		_PAGE_CACHE_UC_MINUS
114 	 *      011 UC		_PAGE_CACHE_UC
115 	 * PAT bit unused
116 	 */
117 	pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
118 	      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119 
120 	/* Boot CPU check */
121 	if (!boot_pat_state)
122 		rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123 
124 	wrmsrl(MSR_IA32_CR_PAT, pat);
125 
126 	if (boot_cpu)
127 		printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
128 		       smp_processor_id(), boot_pat_state, pat);
129 }
130 
131 #undef PAT
132 
133 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
134 
135 /*
136  * Does intersection of PAT memory type and MTRR memory type and returns
137  * the resulting memory type as PAT understands it.
138  * (Type in pat and mtrr will not have same value)
139  * The intersection is based on "Effective Memory Type" tables in IA-32
140  * SDM vol 3a
141  */
pat_x_mtrr_type(u64 start,u64 end,unsigned long req_type)142 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
143 {
144 	/*
145 	 * Look for MTRR hint to get the effective type in case where PAT
146 	 * request is for WB.
147 	 */
148 	if (req_type == _PAGE_CACHE_WB) {
149 		u8 mtrr_type;
150 
151 		mtrr_type = mtrr_type_lookup(start, end);
152 		if (mtrr_type != MTRR_TYPE_WRBACK)
153 			return _PAGE_CACHE_UC_MINUS;
154 
155 		return _PAGE_CACHE_WB;
156 	}
157 
158 	return req_type;
159 }
160 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)161 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
162 {
163 	int ram_page = 0, not_rampage = 0;
164 	unsigned long page_nr;
165 
166 	for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
167 	     ++page_nr) {
168 		/*
169 		 * For legacy reasons, physical address range in the legacy ISA
170 		 * region is tracked as non-RAM. This will allow users of
171 		 * /dev/mem to map portions of legacy ISA region, even when
172 		 * some of those portions are listed(or not even listed) with
173 		 * different e820 types(RAM/reserved/..)
174 		 */
175 		if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
176 		    page_is_ram(page_nr))
177 			ram_page = 1;
178 		else
179 			not_rampage = 1;
180 
181 		if (ram_page == not_rampage)
182 			return -1;
183 	}
184 
185 	return ram_page;
186 }
187 
188 /*
189  * For RAM pages, we use page flags to mark the pages with appropriate type.
190  * Here we do two pass:
191  * - Find the memtype of all the pages in the range, look for any conflicts
192  * - In case of no conflicts, set the new memtype for pages in the range
193  */
reserve_ram_pages_type(u64 start,u64 end,unsigned long req_type,unsigned long * new_type)194 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
195 				  unsigned long *new_type)
196 {
197 	struct page *page;
198 	u64 pfn;
199 
200 	if (req_type == _PAGE_CACHE_UC) {
201 		/* We do not support strong UC */
202 		WARN_ON_ONCE(1);
203 		req_type = _PAGE_CACHE_UC_MINUS;
204 	}
205 
206 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
207 		unsigned long type;
208 
209 		page = pfn_to_page(pfn);
210 		type = get_page_memtype(page);
211 		if (type != -1) {
212 			printk(KERN_INFO "reserve_ram_pages_type failed "
213 				"0x%Lx-0x%Lx, track 0x%lx, req 0x%lx\n",
214 				start, end, type, req_type);
215 			if (new_type)
216 				*new_type = type;
217 
218 			return -EBUSY;
219 		}
220 	}
221 
222 	if (new_type)
223 		*new_type = req_type;
224 
225 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
226 		page = pfn_to_page(pfn);
227 		set_page_memtype(page, req_type);
228 	}
229 	return 0;
230 }
231 
free_ram_pages_type(u64 start,u64 end)232 static int free_ram_pages_type(u64 start, u64 end)
233 {
234 	struct page *page;
235 	u64 pfn;
236 
237 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
238 		page = pfn_to_page(pfn);
239 		set_page_memtype(page, -1);
240 	}
241 	return 0;
242 }
243 
244 /*
245  * req_type typically has one of the:
246  * - _PAGE_CACHE_WB
247  * - _PAGE_CACHE_WC
248  * - _PAGE_CACHE_UC_MINUS
249  * - _PAGE_CACHE_UC
250  *
251  * If new_type is NULL, function will return an error if it cannot reserve the
252  * region with req_type. If new_type is non-NULL, function will return
253  * available type in new_type in case of no error. In case of any error
254  * it will return a negative return value.
255  */
reserve_memtype(u64 start,u64 end,unsigned long req_type,unsigned long * new_type)256 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
257 		    unsigned long *new_type)
258 {
259 	struct memtype *new;
260 	unsigned long actual_type;
261 	int is_range_ram;
262 	int err = 0;
263 
264 	BUG_ON(start >= end); /* end is exclusive */
265 
266 	if (!pat_enabled) {
267 		/* This is identical to page table setting without PAT */
268 		if (new_type) {
269 			if (req_type == _PAGE_CACHE_WC)
270 				*new_type = _PAGE_CACHE_UC_MINUS;
271 			else
272 				*new_type = req_type & _PAGE_CACHE_MASK;
273 		}
274 		return 0;
275 	}
276 
277 	/* Low ISA region is always mapped WB in page table. No need to track */
278 	if (x86_platform.is_untracked_pat_range(start, end)) {
279 		if (new_type)
280 			*new_type = _PAGE_CACHE_WB;
281 		return 0;
282 	}
283 
284 	/*
285 	 * Call mtrr_lookup to get the type hint. This is an
286 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
287 	 * tools and ACPI tools). Use WB request for WB memory and use
288 	 * UC_MINUS otherwise.
289 	 */
290 	actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
291 
292 	if (new_type)
293 		*new_type = actual_type;
294 
295 	is_range_ram = pat_pagerange_is_ram(start, end);
296 	if (is_range_ram == 1) {
297 
298 		err = reserve_ram_pages_type(start, end, req_type, new_type);
299 
300 		return err;
301 	} else if (is_range_ram < 0) {
302 		return -EINVAL;
303 	}
304 
305 	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
306 	if (!new)
307 		return -ENOMEM;
308 
309 	new->start	= start;
310 	new->end	= end;
311 	new->type	= actual_type;
312 
313 	spin_lock(&memtype_lock);
314 
315 	err = rbt_memtype_check_insert(new, new_type);
316 	if (err) {
317 		printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
318 		       "track %s, req %s\n",
319 		       start, end, cattr_name(new->type), cattr_name(req_type));
320 		kfree(new);
321 		spin_unlock(&memtype_lock);
322 
323 		return err;
324 	}
325 
326 	spin_unlock(&memtype_lock);
327 
328 	dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
329 		start, end, cattr_name(new->type), cattr_name(req_type),
330 		new_type ? cattr_name(*new_type) : "-");
331 
332 	return err;
333 }
334 
free_memtype(u64 start,u64 end)335 int free_memtype(u64 start, u64 end)
336 {
337 	int err = -EINVAL;
338 	int is_range_ram;
339 	struct memtype *entry;
340 
341 	if (!pat_enabled)
342 		return 0;
343 
344 	/* Low ISA region is always mapped WB. No need to track */
345 	if (x86_platform.is_untracked_pat_range(start, end))
346 		return 0;
347 
348 	is_range_ram = pat_pagerange_is_ram(start, end);
349 	if (is_range_ram == 1) {
350 
351 		err = free_ram_pages_type(start, end);
352 
353 		return err;
354 	} else if (is_range_ram < 0) {
355 		return -EINVAL;
356 	}
357 
358 	spin_lock(&memtype_lock);
359 	entry = rbt_memtype_erase(start, end);
360 	spin_unlock(&memtype_lock);
361 
362 	if (!entry) {
363 		printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
364 			current->comm, current->pid, start, end);
365 		return -EINVAL;
366 	}
367 
368 	kfree(entry);
369 
370 	dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
371 
372 	return 0;
373 }
374 
375 
376 /**
377  * lookup_memtype - Looksup the memory type for a physical address
378  * @paddr: physical address of which memory type needs to be looked up
379  *
380  * Only to be called when PAT is enabled
381  *
382  * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
383  * _PAGE_CACHE_UC
384  */
lookup_memtype(u64 paddr)385 static unsigned long lookup_memtype(u64 paddr)
386 {
387 	int rettype = _PAGE_CACHE_WB;
388 	struct memtype *entry;
389 
390 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
391 		return rettype;
392 
393 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
394 		struct page *page;
395 		page = pfn_to_page(paddr >> PAGE_SHIFT);
396 		rettype = get_page_memtype(page);
397 		/*
398 		 * -1 from get_page_memtype() implies RAM page is in its
399 		 * default state and not reserved, and hence of type WB
400 		 */
401 		if (rettype == -1)
402 			rettype = _PAGE_CACHE_WB;
403 
404 		return rettype;
405 	}
406 
407 	spin_lock(&memtype_lock);
408 
409 	entry = rbt_memtype_lookup(paddr);
410 	if (entry != NULL)
411 		rettype = entry->type;
412 	else
413 		rettype = _PAGE_CACHE_UC_MINUS;
414 
415 	spin_unlock(&memtype_lock);
416 	return rettype;
417 }
418 
419 /**
420  * io_reserve_memtype - Request a memory type mapping for a region of memory
421  * @start: start (physical address) of the region
422  * @end: end (physical address) of the region
423  * @type: A pointer to memtype, with requested type. On success, requested
424  * or any other compatible type that was available for the region is returned
425  *
426  * On success, returns 0
427  * On failure, returns non-zero
428  */
io_reserve_memtype(resource_size_t start,resource_size_t end,unsigned long * type)429 int io_reserve_memtype(resource_size_t start, resource_size_t end,
430 			unsigned long *type)
431 {
432 	resource_size_t size = end - start;
433 	unsigned long req_type = *type;
434 	unsigned long new_type;
435 	int ret;
436 
437 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
438 
439 	ret = reserve_memtype(start, end, req_type, &new_type);
440 	if (ret)
441 		goto out_err;
442 
443 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
444 		goto out_free;
445 
446 	if (kernel_map_sync_memtype(start, size, new_type) < 0)
447 		goto out_free;
448 
449 	*type = new_type;
450 	return 0;
451 
452 out_free:
453 	free_memtype(start, end);
454 	ret = -EBUSY;
455 out_err:
456 	return ret;
457 }
458 
459 /**
460  * io_free_memtype - Release a memory type mapping for a region of memory
461  * @start: start (physical address) of the region
462  * @end: end (physical address) of the region
463  */
io_free_memtype(resource_size_t start,resource_size_t end)464 void io_free_memtype(resource_size_t start, resource_size_t end)
465 {
466 	free_memtype(start, end);
467 }
468 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)469 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
470 				unsigned long size, pgprot_t vma_prot)
471 {
472 	return vma_prot;
473 }
474 
475 #ifdef CONFIG_STRICT_DEVMEM
476 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
range_is_allowed(unsigned long pfn,unsigned long size)477 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
478 {
479 	return 1;
480 }
481 #else
482 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)483 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
484 {
485 	u64 from = ((u64)pfn) << PAGE_SHIFT;
486 	u64 to = from + size;
487 	u64 cursor = from;
488 
489 	if (!pat_enabled)
490 		return 1;
491 
492 	while (cursor < to) {
493 		if (!devmem_is_allowed(pfn)) {
494 			printk(KERN_INFO
495 		"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
496 				current->comm, from, to);
497 			return 0;
498 		}
499 		cursor += PAGE_SIZE;
500 		pfn++;
501 	}
502 	return 1;
503 }
504 #endif /* CONFIG_STRICT_DEVMEM */
505 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)506 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
507 				unsigned long size, pgprot_t *vma_prot)
508 {
509 	unsigned long flags = _PAGE_CACHE_WB;
510 
511 	if (!range_is_allowed(pfn, size))
512 		return 0;
513 
514 	if (file->f_flags & O_DSYNC)
515 		flags = _PAGE_CACHE_UC_MINUS;
516 
517 #ifdef CONFIG_X86_32
518 	/*
519 	 * On the PPro and successors, the MTRRs are used to set
520 	 * memory types for physical addresses outside main memory,
521 	 * so blindly setting UC or PWT on those pages is wrong.
522 	 * For Pentiums and earlier, the surround logic should disable
523 	 * caching for the high addresses through the KEN pin, but
524 	 * we maintain the tradition of paranoia in this code.
525 	 */
526 	if (!pat_enabled &&
527 	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
528 	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
529 	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
530 	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
531 	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
532 		flags = _PAGE_CACHE_UC;
533 	}
534 #endif
535 
536 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
537 			     flags);
538 	return 1;
539 }
540 
541 /*
542  * Change the memory type for the physial address range in kernel identity
543  * mapping space if that range is a part of identity map.
544  */
kernel_map_sync_memtype(u64 base,unsigned long size,unsigned long flags)545 int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
546 {
547 	unsigned long id_sz;
548 
549 	if (base >= __pa(high_memory))
550 		return 0;
551 
552 	id_sz = (__pa(high_memory) < base + size) ?
553 				__pa(high_memory) - base :
554 				size;
555 
556 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
557 		printk(KERN_INFO
558 			"%s:%d ioremap_change_attr failed %s "
559 			"for %Lx-%Lx\n",
560 			current->comm, current->pid,
561 			cattr_name(flags),
562 			base, (unsigned long long)(base + size));
563 		return -EINVAL;
564 	}
565 	return 0;
566 }
567 
568 /*
569  * Internal interface to reserve a range of physical memory with prot.
570  * Reserved non RAM regions only and after successful reserve_memtype,
571  * this func also keeps identity mapping (if any) in sync with this new prot.
572  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)573 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
574 				int strict_prot)
575 {
576 	int is_ram = 0;
577 	int ret;
578 	unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
579 	unsigned long flags = want_flags;
580 
581 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
582 
583 	/*
584 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
585 	 * track of number of mappings of RAM pages. We can assert that
586 	 * the type requested matches the type of first page in the range.
587 	 */
588 	if (is_ram) {
589 		if (!pat_enabled)
590 			return 0;
591 
592 		flags = lookup_memtype(paddr);
593 		if (want_flags != flags) {
594 			printk(KERN_WARNING
595 			"%s:%d map pfn RAM range req %s for %Lx-%Lx, got %s\n",
596 				current->comm, current->pid,
597 				cattr_name(want_flags),
598 				(unsigned long long)paddr,
599 				(unsigned long long)(paddr + size),
600 				cattr_name(flags));
601 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
602 					      (~_PAGE_CACHE_MASK)) |
603 					     flags);
604 		}
605 		return 0;
606 	}
607 
608 	ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
609 	if (ret)
610 		return ret;
611 
612 	if (flags != want_flags) {
613 		if (strict_prot ||
614 		    !is_new_memtype_allowed(paddr, size, want_flags, flags)) {
615 			free_memtype(paddr, paddr + size);
616 			printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
617 				" for %Lx-%Lx, got %s\n",
618 				current->comm, current->pid,
619 				cattr_name(want_flags),
620 				(unsigned long long)paddr,
621 				(unsigned long long)(paddr + size),
622 				cattr_name(flags));
623 			return -EINVAL;
624 		}
625 		/*
626 		 * We allow returning different type than the one requested in
627 		 * non strict case.
628 		 */
629 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
630 				      (~_PAGE_CACHE_MASK)) |
631 				     flags);
632 	}
633 
634 	if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
635 		free_memtype(paddr, paddr + size);
636 		return -EINVAL;
637 	}
638 	return 0;
639 }
640 
641 /*
642  * Internal interface to free a range of physical memory.
643  * Frees non RAM regions only.
644  */
free_pfn_range(u64 paddr,unsigned long size)645 static void free_pfn_range(u64 paddr, unsigned long size)
646 {
647 	int is_ram;
648 
649 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
650 	if (is_ram == 0)
651 		free_memtype(paddr, paddr + size);
652 }
653 
654 /*
655  * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
656  * copied through copy_page_range().
657  *
658  * If the vma has a linear pfn mapping for the entire range, we get the prot
659  * from pte and reserve the entire vma range with single reserve_pfn_range call.
660  */
track_pfn_vma_copy(struct vm_area_struct * vma)661 int track_pfn_vma_copy(struct vm_area_struct *vma)
662 {
663 	resource_size_t paddr;
664 	unsigned long prot;
665 	unsigned long vma_size = vma->vm_end - vma->vm_start;
666 	pgprot_t pgprot;
667 
668 	if (is_linear_pfn_mapping(vma)) {
669 		/*
670 		 * reserve the whole chunk covered by vma. We need the
671 		 * starting address and protection from pte.
672 		 */
673 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
674 			WARN_ON_ONCE(1);
675 			return -EINVAL;
676 		}
677 		pgprot = __pgprot(prot);
678 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
679 	}
680 
681 	return 0;
682 }
683 
684 /*
685  * track_pfn_vma_new is called when a _new_ pfn mapping is being established
686  * for physical range indicated by pfn and size.
687  *
688  * prot is passed in as a parameter for the new mapping. If the vma has a
689  * linear pfn mapping for the entire range reserve the entire vma range with
690  * single reserve_pfn_range call.
691  */
track_pfn_vma_new(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long size)692 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
693 			unsigned long pfn, unsigned long size)
694 {
695 	unsigned long flags;
696 	resource_size_t paddr;
697 	unsigned long vma_size = vma->vm_end - vma->vm_start;
698 
699 	if (is_linear_pfn_mapping(vma)) {
700 		/* reserve the whole chunk starting from vm_pgoff */
701 		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
702 		return reserve_pfn_range(paddr, vma_size, prot, 0);
703 	}
704 
705 	if (!pat_enabled)
706 		return 0;
707 
708 	/* for vm_insert_pfn and friends, we set prot based on lookup */
709 	flags = lookup_memtype(pfn << PAGE_SHIFT);
710 	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
711 			 flags);
712 
713 	return 0;
714 }
715 
716 /*
717  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
718  * untrack can be called for a specific region indicated by pfn and size or
719  * can be for the entire vma (in which case size can be zero).
720  */
untrack_pfn_vma(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)721 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
722 			unsigned long size)
723 {
724 	resource_size_t paddr;
725 	unsigned long vma_size = vma->vm_end - vma->vm_start;
726 
727 	if (is_linear_pfn_mapping(vma)) {
728 		/* free the whole chunk starting from vm_pgoff */
729 		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
730 		free_pfn_range(paddr, vma_size);
731 		return;
732 	}
733 }
734 
pgprot_writecombine(pgprot_t prot)735 pgprot_t pgprot_writecombine(pgprot_t prot)
736 {
737 	if (pat_enabled)
738 		return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
739 	else
740 		return pgprot_noncached(prot);
741 }
742 EXPORT_SYMBOL_GPL(pgprot_writecombine);
743 
744 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
745 
memtype_get_idx(loff_t pos)746 static struct memtype *memtype_get_idx(loff_t pos)
747 {
748 	struct memtype *print_entry;
749 	int ret;
750 
751 	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
752 	if (!print_entry)
753 		return NULL;
754 
755 	spin_lock(&memtype_lock);
756 	ret = rbt_memtype_copy_nth_element(print_entry, pos);
757 	spin_unlock(&memtype_lock);
758 
759 	if (!ret) {
760 		return print_entry;
761 	} else {
762 		kfree(print_entry);
763 		return NULL;
764 	}
765 }
766 
memtype_seq_start(struct seq_file * seq,loff_t * pos)767 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
768 {
769 	if (*pos == 0) {
770 		++*pos;
771 		seq_printf(seq, "PAT memtype list:\n");
772 	}
773 
774 	return memtype_get_idx(*pos);
775 }
776 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)777 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
778 {
779 	++*pos;
780 	return memtype_get_idx(*pos);
781 }
782 
memtype_seq_stop(struct seq_file * seq,void * v)783 static void memtype_seq_stop(struct seq_file *seq, void *v)
784 {
785 }
786 
memtype_seq_show(struct seq_file * seq,void * v)787 static int memtype_seq_show(struct seq_file *seq, void *v)
788 {
789 	struct memtype *print_entry = (struct memtype *)v;
790 
791 	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
792 			print_entry->start, print_entry->end);
793 	kfree(print_entry);
794 
795 	return 0;
796 }
797 
798 static const struct seq_operations memtype_seq_ops = {
799 	.start = memtype_seq_start,
800 	.next  = memtype_seq_next,
801 	.stop  = memtype_seq_stop,
802 	.show  = memtype_seq_show,
803 };
804 
memtype_seq_open(struct inode * inode,struct file * file)805 static int memtype_seq_open(struct inode *inode, struct file *file)
806 {
807 	return seq_open(file, &memtype_seq_ops);
808 }
809 
810 static const struct file_operations memtype_fops = {
811 	.open    = memtype_seq_open,
812 	.read    = seq_read,
813 	.llseek  = seq_lseek,
814 	.release = seq_release,
815 };
816 
pat_memtype_list_init(void)817 static int __init pat_memtype_list_init(void)
818 {
819 	if (pat_enabled) {
820 		debugfs_create_file("pat_memtype_list", S_IRUSR,
821 				    arch_debugfs_dir, NULL, &memtype_fops);
822 	}
823 	return 0;
824 }
825 
826 late_initcall(pat_memtype_list_init);
827 
828 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
829