• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*P:800
2  * Interrupts (traps) are complicated enough to earn their own file.
3  * There are three classes of interrupts:
4  *
5  * 1) Real hardware interrupts which occur while we're running the Guest,
6  * 2) Interrupts for virtual devices attached to the Guest, and
7  * 3) Traps and faults from the Guest.
8  *
9  * Real hardware interrupts must be delivered to the Host, not the Guest.
10  * Virtual interrupts must be delivered to the Guest, but we make them look
11  * just like real hardware would deliver them.  Traps from the Guest can be set
12  * up to go directly back into the Guest, but sometimes the Host wants to see
13  * them first, so we also have a way of "reflecting" them into the Guest as if
14  * they had been delivered to it directly.
15 :*/
16 #include <linux/uaccess.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include "lg.h"
21 
22 /* Allow Guests to use a non-128 (ie. non-Linux) syscall trap. */
23 static unsigned int syscall_vector = SYSCALL_VECTOR;
24 module_param(syscall_vector, uint, 0444);
25 
26 /* The address of the interrupt handler is split into two bits: */
idt_address(u32 lo,u32 hi)27 static unsigned long idt_address(u32 lo, u32 hi)
28 {
29 	return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
30 }
31 
32 /*
33  * The "type" of the interrupt handler is a 4 bit field: we only support a
34  * couple of types.
35  */
idt_type(u32 lo,u32 hi)36 static int idt_type(u32 lo, u32 hi)
37 {
38 	return (hi >> 8) & 0xF;
39 }
40 
41 /* An IDT entry can't be used unless the "present" bit is set. */
idt_present(u32 lo,u32 hi)42 static bool idt_present(u32 lo, u32 hi)
43 {
44 	return (hi & 0x8000);
45 }
46 
47 /*
48  * We need a helper to "push" a value onto the Guest's stack, since that's a
49  * big part of what delivering an interrupt does.
50  */
push_guest_stack(struct lg_cpu * cpu,unsigned long * gstack,u32 val)51 static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
52 {
53 	/* Stack grows upwards: move stack then write value. */
54 	*gstack -= 4;
55 	lgwrite(cpu, *gstack, u32, val);
56 }
57 
58 /*H:210
59  * The set_guest_interrupt() routine actually delivers the interrupt or
60  * trap.  The mechanics of delivering traps and interrupts to the Guest are the
61  * same, except some traps have an "error code" which gets pushed onto the
62  * stack as well: the caller tells us if this is one.
63  *
64  * "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this
65  * interrupt or trap.  It's split into two parts for traditional reasons: gcc
66  * on i386 used to be frightened by 64 bit numbers.
67  *
68  * We set up the stack just like the CPU does for a real interrupt, so it's
69  * identical for the Guest (and the standard "iret" instruction will undo
70  * it).
71  */
set_guest_interrupt(struct lg_cpu * cpu,u32 lo,u32 hi,bool has_err)72 static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
73 				bool has_err)
74 {
75 	unsigned long gstack, origstack;
76 	u32 eflags, ss, irq_enable;
77 	unsigned long virtstack;
78 
79 	/*
80 	 * There are two cases for interrupts: one where the Guest is already
81 	 * in the kernel, and a more complex one where the Guest is in
82 	 * userspace.  We check the privilege level to find out.
83 	 */
84 	if ((cpu->regs->ss&0x3) != GUEST_PL) {
85 		/*
86 		 * The Guest told us their kernel stack with the SET_STACK
87 		 * hypercall: both the virtual address and the segment.
88 		 */
89 		virtstack = cpu->esp1;
90 		ss = cpu->ss1;
91 
92 		origstack = gstack = guest_pa(cpu, virtstack);
93 		/*
94 		 * We push the old stack segment and pointer onto the new
95 		 * stack: when the Guest does an "iret" back from the interrupt
96 		 * handler the CPU will notice they're dropping privilege
97 		 * levels and expect these here.
98 		 */
99 		push_guest_stack(cpu, &gstack, cpu->regs->ss);
100 		push_guest_stack(cpu, &gstack, cpu->regs->esp);
101 	} else {
102 		/* We're staying on the same Guest (kernel) stack. */
103 		virtstack = cpu->regs->esp;
104 		ss = cpu->regs->ss;
105 
106 		origstack = gstack = guest_pa(cpu, virtstack);
107 	}
108 
109 	/*
110 	 * Remember that we never let the Guest actually disable interrupts, so
111 	 * the "Interrupt Flag" bit is always set.  We copy that bit from the
112 	 * Guest's "irq_enabled" field into the eflags word: we saw the Guest
113 	 * copy it back in "lguest_iret".
114 	 */
115 	eflags = cpu->regs->eflags;
116 	if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
117 	    && !(irq_enable & X86_EFLAGS_IF))
118 		eflags &= ~X86_EFLAGS_IF;
119 
120 	/*
121 	 * An interrupt is expected to push three things on the stack: the old
122 	 * "eflags" word, the old code segment, and the old instruction
123 	 * pointer.
124 	 */
125 	push_guest_stack(cpu, &gstack, eflags);
126 	push_guest_stack(cpu, &gstack, cpu->regs->cs);
127 	push_guest_stack(cpu, &gstack, cpu->regs->eip);
128 
129 	/* For the six traps which supply an error code, we push that, too. */
130 	if (has_err)
131 		push_guest_stack(cpu, &gstack, cpu->regs->errcode);
132 
133 	/*
134 	 * Now we've pushed all the old state, we change the stack, the code
135 	 * segment and the address to execute.
136 	 */
137 	cpu->regs->ss = ss;
138 	cpu->regs->esp = virtstack + (gstack - origstack);
139 	cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
140 	cpu->regs->eip = idt_address(lo, hi);
141 
142 	/*
143 	 * There are two kinds of interrupt handlers: 0xE is an "interrupt
144 	 * gate" which expects interrupts to be disabled on entry.
145 	 */
146 	if (idt_type(lo, hi) == 0xE)
147 		if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
148 			kill_guest(cpu, "Disabling interrupts");
149 }
150 
151 /*H:205
152  * Virtual Interrupts.
153  *
154  * interrupt_pending() returns the first pending interrupt which isn't blocked
155  * by the Guest.  It is called before every entry to the Guest, and just before
156  * we go to sleep when the Guest has halted itself.
157  */
interrupt_pending(struct lg_cpu * cpu,bool * more)158 unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
159 {
160 	unsigned int irq;
161 	DECLARE_BITMAP(blk, LGUEST_IRQS);
162 
163 	/* If the Guest hasn't even initialized yet, we can do nothing. */
164 	if (!cpu->lg->lguest_data)
165 		return LGUEST_IRQS;
166 
167 	/*
168 	 * Take our "irqs_pending" array and remove any interrupts the Guest
169 	 * wants blocked: the result ends up in "blk".
170 	 */
171 	if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
172 			   sizeof(blk)))
173 		return LGUEST_IRQS;
174 	bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
175 
176 	/* Find the first interrupt. */
177 	irq = find_first_bit(blk, LGUEST_IRQS);
178 	*more = find_next_bit(blk, LGUEST_IRQS, irq+1);
179 
180 	return irq;
181 }
182 
183 /*
184  * This actually diverts the Guest to running an interrupt handler, once an
185  * interrupt has been identified by interrupt_pending().
186  */
try_deliver_interrupt(struct lg_cpu * cpu,unsigned int irq,bool more)187 void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
188 {
189 	struct desc_struct *idt;
190 
191 	BUG_ON(irq >= LGUEST_IRQS);
192 
193 	/*
194 	 * They may be in the middle of an iret, where they asked us never to
195 	 * deliver interrupts.
196 	 */
197 	if (cpu->regs->eip >= cpu->lg->noirq_start &&
198 	   (cpu->regs->eip < cpu->lg->noirq_end))
199 		return;
200 
201 	/* If they're halted, interrupts restart them. */
202 	if (cpu->halted) {
203 		/* Re-enable interrupts. */
204 		if (put_user(X86_EFLAGS_IF, &cpu->lg->lguest_data->irq_enabled))
205 			kill_guest(cpu, "Re-enabling interrupts");
206 		cpu->halted = 0;
207 	} else {
208 		/* Otherwise we check if they have interrupts disabled. */
209 		u32 irq_enabled;
210 		if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
211 			irq_enabled = 0;
212 		if (!irq_enabled) {
213 			/* Make sure they know an IRQ is pending. */
214 			put_user(X86_EFLAGS_IF,
215 				 &cpu->lg->lguest_data->irq_pending);
216 			return;
217 		}
218 	}
219 
220 	/*
221 	 * Look at the IDT entry the Guest gave us for this interrupt.  The
222 	 * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
223 	 * over them.
224 	 */
225 	idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
226 	/* If they don't have a handler (yet?), we just ignore it */
227 	if (idt_present(idt->a, idt->b)) {
228 		/* OK, mark it no longer pending and deliver it. */
229 		clear_bit(irq, cpu->irqs_pending);
230 		/*
231 		 * set_guest_interrupt() takes the interrupt descriptor and a
232 		 * flag to say whether this interrupt pushes an error code onto
233 		 * the stack as well: virtual interrupts never do.
234 		 */
235 		set_guest_interrupt(cpu, idt->a, idt->b, false);
236 	}
237 
238 	/*
239 	 * Every time we deliver an interrupt, we update the timestamp in the
240 	 * Guest's lguest_data struct.  It would be better for the Guest if we
241 	 * did this more often, but it can actually be quite slow: doing it
242 	 * here is a compromise which means at least it gets updated every
243 	 * timer interrupt.
244 	 */
245 	write_timestamp(cpu);
246 
247 	/*
248 	 * If there are no other interrupts we want to deliver, clear
249 	 * the pending flag.
250 	 */
251 	if (!more)
252 		put_user(0, &cpu->lg->lguest_data->irq_pending);
253 }
254 
255 /* And this is the routine when we want to set an interrupt for the Guest. */
set_interrupt(struct lg_cpu * cpu,unsigned int irq)256 void set_interrupt(struct lg_cpu *cpu, unsigned int irq)
257 {
258 	/*
259 	 * Next time the Guest runs, the core code will see if it can deliver
260 	 * this interrupt.
261 	 */
262 	set_bit(irq, cpu->irqs_pending);
263 
264 	/*
265 	 * Make sure it sees it; it might be asleep (eg. halted), or running
266 	 * the Guest right now, in which case kick_process() will knock it out.
267 	 */
268 	if (!wake_up_process(cpu->tsk))
269 		kick_process(cpu->tsk);
270 }
271 /*:*/
272 
273 /*
274  * Linux uses trap 128 for system calls.  Plan9 uses 64, and Ron Minnich sent
275  * me a patch, so we support that too.  It'd be a big step for lguest if half
276  * the Plan 9 user base were to start using it.
277  *
278  * Actually now I think of it, it's possible that Ron *is* half the Plan 9
279  * userbase.  Oh well.
280  */
could_be_syscall(unsigned int num)281 static bool could_be_syscall(unsigned int num)
282 {
283 	/* Normal Linux SYSCALL_VECTOR or reserved vector? */
284 	return num == SYSCALL_VECTOR || num == syscall_vector;
285 }
286 
287 /* The syscall vector it wants must be unused by Host. */
check_syscall_vector(struct lguest * lg)288 bool check_syscall_vector(struct lguest *lg)
289 {
290 	u32 vector;
291 
292 	if (get_user(vector, &lg->lguest_data->syscall_vec))
293 		return false;
294 
295 	return could_be_syscall(vector);
296 }
297 
init_interrupts(void)298 int init_interrupts(void)
299 {
300 	/* If they want some strange system call vector, reserve it now */
301 	if (syscall_vector != SYSCALL_VECTOR) {
302 		if (test_bit(syscall_vector, used_vectors) ||
303 		    vector_used_by_percpu_irq(syscall_vector)) {
304 			printk(KERN_ERR "lg: couldn't reserve syscall %u\n",
305 				 syscall_vector);
306 			return -EBUSY;
307 		}
308 		set_bit(syscall_vector, used_vectors);
309 	}
310 
311 	return 0;
312 }
313 
free_interrupts(void)314 void free_interrupts(void)
315 {
316 	if (syscall_vector != SYSCALL_VECTOR)
317 		clear_bit(syscall_vector, used_vectors);
318 }
319 
320 /*H:220
321  * Now we've got the routines to deliver interrupts, delivering traps like
322  * page fault is easy.  The only trick is that Intel decided that some traps
323  * should have error codes:
324  */
has_err(unsigned int trap)325 static bool has_err(unsigned int trap)
326 {
327 	return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
328 }
329 
330 /* deliver_trap() returns true if it could deliver the trap. */
deliver_trap(struct lg_cpu * cpu,unsigned int num)331 bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
332 {
333 	/*
334 	 * Trap numbers are always 8 bit, but we set an impossible trap number
335 	 * for traps inside the Switcher, so check that here.
336 	 */
337 	if (num >= ARRAY_SIZE(cpu->arch.idt))
338 		return false;
339 
340 	/*
341 	 * Early on the Guest hasn't set the IDT entries (or maybe it put a
342 	 * bogus one in): if we fail here, the Guest will be killed.
343 	 */
344 	if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
345 		return false;
346 	set_guest_interrupt(cpu, cpu->arch.idt[num].a,
347 			    cpu->arch.idt[num].b, has_err(num));
348 	return true;
349 }
350 
351 /*H:250
352  * Here's the hard part: returning to the Host every time a trap happens
353  * and then calling deliver_trap() and re-entering the Guest is slow.
354  * Particularly because Guest userspace system calls are traps (usually trap
355  * 128).
356  *
357  * So we'd like to set up the IDT to tell the CPU to deliver traps directly
358  * into the Guest.  This is possible, but the complexities cause the size of
359  * this file to double!  However, 150 lines of code is worth writing for taking
360  * system calls down from 1750ns to 270ns.  Plus, if lguest didn't do it, all
361  * the other hypervisors would beat it up at lunchtime.
362  *
363  * This routine indicates if a particular trap number could be delivered
364  * directly.
365  */
direct_trap(unsigned int num)366 static bool direct_trap(unsigned int num)
367 {
368 	/*
369 	 * Hardware interrupts don't go to the Guest at all (except system
370 	 * call).
371 	 */
372 	if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
373 		return false;
374 
375 	/*
376 	 * The Host needs to see page faults (for shadow paging and to save the
377 	 * fault address), general protection faults (in/out emulation) and
378 	 * device not available (TS handling) and of course, the hypercall trap.
379 	 */
380 	return num != 14 && num != 13 && num != 7 && num != LGUEST_TRAP_ENTRY;
381 }
382 /*:*/
383 
384 /*M:005
385  * The Guest has the ability to turn its interrupt gates into trap gates,
386  * if it is careful.  The Host will let trap gates can go directly to the
387  * Guest, but the Guest needs the interrupts atomically disabled for an
388  * interrupt gate.  It can do this by pointing the trap gate at instructions
389  * within noirq_start and noirq_end, where it can safely disable interrupts.
390  */
391 
392 /*M:006
393  * The Guests do not use the sysenter (fast system call) instruction,
394  * because it's hardcoded to enter privilege level 0 and so can't go direct.
395  * It's about twice as fast as the older "int 0x80" system call, so it might
396  * still be worthwhile to handle it in the Switcher and lcall down to the
397  * Guest.  The sysenter semantics are hairy tho: search for that keyword in
398  * entry.S
399 :*/
400 
401 /*H:260
402  * When we make traps go directly into the Guest, we need to make sure
403  * the kernel stack is valid (ie. mapped in the page tables).  Otherwise, the
404  * CPU trying to deliver the trap will fault while trying to push the interrupt
405  * words on the stack: this is called a double fault, and it forces us to kill
406  * the Guest.
407  *
408  * Which is deeply unfair, because (literally!) it wasn't the Guests' fault.
409  */
pin_stack_pages(struct lg_cpu * cpu)410 void pin_stack_pages(struct lg_cpu *cpu)
411 {
412 	unsigned int i;
413 
414 	/*
415 	 * Depending on the CONFIG_4KSTACKS option, the Guest can have one or
416 	 * two pages of stack space.
417 	 */
418 	for (i = 0; i < cpu->lg->stack_pages; i++)
419 		/*
420 		 * The stack grows *upwards*, so the address we're given is the
421 		 * start of the page after the kernel stack.  Subtract one to
422 		 * get back onto the first stack page, and keep subtracting to
423 		 * get to the rest of the stack pages.
424 		 */
425 		pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
426 }
427 
428 /*
429  * Direct traps also mean that we need to know whenever the Guest wants to use
430  * a different kernel stack, so we can change the guest TSS to use that
431  * stack.  The TSS entries expect a virtual address, so unlike most addresses
432  * the Guest gives us, the "esp" (stack pointer) value here is virtual, not
433  * physical.
434  *
435  * In Linux each process has its own kernel stack, so this happens a lot: we
436  * change stacks on each context switch.
437  */
guest_set_stack(struct lg_cpu * cpu,u32 seg,u32 esp,unsigned int pages)438 void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
439 {
440 	/*
441 	 * You're not allowed a stack segment with privilege level 0: bad Guest!
442 	 */
443 	if ((seg & 0x3) != GUEST_PL)
444 		kill_guest(cpu, "bad stack segment %i", seg);
445 	/* We only expect one or two stack pages. */
446 	if (pages > 2)
447 		kill_guest(cpu, "bad stack pages %u", pages);
448 	/* Save where the stack is, and how many pages */
449 	cpu->ss1 = seg;
450 	cpu->esp1 = esp;
451 	cpu->lg->stack_pages = pages;
452 	/* Make sure the new stack pages are mapped */
453 	pin_stack_pages(cpu);
454 }
455 
456 /*
457  * All this reference to mapping stacks leads us neatly into the other complex
458  * part of the Host: page table handling.
459  */
460 
461 /*H:235
462  * This is the routine which actually checks the Guest's IDT entry and
463  * transfers it into the entry in "struct lguest":
464  */
set_trap(struct lg_cpu * cpu,struct desc_struct * trap,unsigned int num,u32 lo,u32 hi)465 static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
466 		     unsigned int num, u32 lo, u32 hi)
467 {
468 	u8 type = idt_type(lo, hi);
469 
470 	/* We zero-out a not-present entry */
471 	if (!idt_present(lo, hi)) {
472 		trap->a = trap->b = 0;
473 		return;
474 	}
475 
476 	/* We only support interrupt and trap gates. */
477 	if (type != 0xE && type != 0xF)
478 		kill_guest(cpu, "bad IDT type %i", type);
479 
480 	/*
481 	 * We only copy the handler address, present bit, privilege level and
482 	 * type.  The privilege level controls where the trap can be triggered
483 	 * manually with an "int" instruction.  This is usually GUEST_PL,
484 	 * except for system calls which userspace can use.
485 	 */
486 	trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
487 	trap->b = (hi&0xFFFFEF00);
488 }
489 
490 /*H:230
491  * While we're here, dealing with delivering traps and interrupts to the
492  * Guest, we might as well complete the picture: how the Guest tells us where
493  * it wants them to go.  This would be simple, except making traps fast
494  * requires some tricks.
495  *
496  * We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
497  * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here.
498  */
load_guest_idt_entry(struct lg_cpu * cpu,unsigned int num,u32 lo,u32 hi)499 void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
500 {
501 	/*
502 	 * Guest never handles: NMI, doublefault, spurious interrupt or
503 	 * hypercall.  We ignore when it tries to set them.
504 	 */
505 	if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
506 		return;
507 
508 	/*
509 	 * Mark the IDT as changed: next time the Guest runs we'll know we have
510 	 * to copy this again.
511 	 */
512 	cpu->changed |= CHANGED_IDT;
513 
514 	/* Check that the Guest doesn't try to step outside the bounds. */
515 	if (num >= ARRAY_SIZE(cpu->arch.idt))
516 		kill_guest(cpu, "Setting idt entry %u", num);
517 	else
518 		set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
519 }
520 
521 /*
522  * The default entry for each interrupt points into the Switcher routines which
523  * simply return to the Host.  The run_guest() loop will then call
524  * deliver_trap() to bounce it back into the Guest.
525  */
default_idt_entry(struct desc_struct * idt,int trap,const unsigned long handler,const struct desc_struct * base)526 static void default_idt_entry(struct desc_struct *idt,
527 			      int trap,
528 			      const unsigned long handler,
529 			      const struct desc_struct *base)
530 {
531 	/* A present interrupt gate. */
532 	u32 flags = 0x8e00;
533 
534 	/*
535 	 * Set the privilege level on the entry for the hypercall: this allows
536 	 * the Guest to use the "int" instruction to trigger it.
537 	 */
538 	if (trap == LGUEST_TRAP_ENTRY)
539 		flags |= (GUEST_PL << 13);
540 	else if (base)
541 		/*
542 		 * Copy privilege level from what Guest asked for.  This allows
543 		 * debug (int 3) traps from Guest userspace, for example.
544 		 */
545 		flags |= (base->b & 0x6000);
546 
547 	/* Now pack it into the IDT entry in its weird format. */
548 	idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF);
549 	idt->b = (handler&0xFFFF0000) | flags;
550 }
551 
552 /* When the Guest first starts, we put default entries into the IDT. */
setup_default_idt_entries(struct lguest_ro_state * state,const unsigned long * def)553 void setup_default_idt_entries(struct lguest_ro_state *state,
554 			       const unsigned long *def)
555 {
556 	unsigned int i;
557 
558 	for (i = 0; i < ARRAY_SIZE(state->guest_idt); i++)
559 		default_idt_entry(&state->guest_idt[i], i, def[i], NULL);
560 }
561 
562 /*H:240
563  * We don't use the IDT entries in the "struct lguest" directly, instead
564  * we copy them into the IDT which we've set up for Guests on this CPU, just
565  * before we run the Guest.  This routine does that copy.
566  */
copy_traps(const struct lg_cpu * cpu,struct desc_struct * idt,const unsigned long * def)567 void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
568 		const unsigned long *def)
569 {
570 	unsigned int i;
571 
572 	/*
573 	 * We can simply copy the direct traps, otherwise we use the default
574 	 * ones in the Switcher: they will return to the Host.
575 	 */
576 	for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
577 		const struct desc_struct *gidt = &cpu->arch.idt[i];
578 
579 		/* If no Guest can ever override this trap, leave it alone. */
580 		if (!direct_trap(i))
581 			continue;
582 
583 		/*
584 		 * Only trap gates (type 15) can go direct to the Guest.
585 		 * Interrupt gates (type 14) disable interrupts as they are
586 		 * entered, which we never let the Guest do.  Not present
587 		 * entries (type 0x0) also can't go direct, of course.
588 		 *
589 		 * If it can't go direct, we still need to copy the priv. level:
590 		 * they might want to give userspace access to a software
591 		 * interrupt.
592 		 */
593 		if (idt_type(gidt->a, gidt->b) == 0xF)
594 			idt[i] = *gidt;
595 		else
596 			default_idt_entry(&idt[i], i, def[i], gidt);
597 	}
598 }
599 
600 /*H:200
601  * The Guest Clock.
602  *
603  * There are two sources of virtual interrupts.  We saw one in lguest_user.c:
604  * the Launcher sending interrupts for virtual devices.  The other is the Guest
605  * timer interrupt.
606  *
607  * The Guest uses the LHCALL_SET_CLOCKEVENT hypercall to tell us how long to
608  * the next timer interrupt (in nanoseconds).  We use the high-resolution timer
609  * infrastructure to set a callback at that time.
610  *
611  * 0 means "turn off the clock".
612  */
guest_set_clockevent(struct lg_cpu * cpu,unsigned long delta)613 void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
614 {
615 	ktime_t expires;
616 
617 	if (unlikely(delta == 0)) {
618 		/* Clock event device is shutting down. */
619 		hrtimer_cancel(&cpu->hrt);
620 		return;
621 	}
622 
623 	/*
624 	 * We use wallclock time here, so the Guest might not be running for
625 	 * all the time between now and the timer interrupt it asked for.  This
626 	 * is almost always the right thing to do.
627 	 */
628 	expires = ktime_add_ns(ktime_get_real(), delta);
629 	hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
630 }
631 
632 /* This is the function called when the Guest's timer expires. */
clockdev_fn(struct hrtimer * timer)633 static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
634 {
635 	struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
636 
637 	/* Remember the first interrupt is the timer interrupt. */
638 	set_interrupt(cpu, 0);
639 	return HRTIMER_NORESTART;
640 }
641 
642 /* This sets up the timer for this Guest. */
init_clockdev(struct lg_cpu * cpu)643 void init_clockdev(struct lg_cpu *cpu)
644 {
645 	hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
646 	cpu->hrt.function = clockdev_fn;
647 }
648