• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/initrd.h>
27 #include <linux/io.h>
28 #include <linux/highmem.h>
29 #include <linux/smp.h>
30 #include <linux/timex.h>
31 #include <asm/setup.h>
32 #include <asm/sections.h>
33 #include <asm/cacheflush.h>
34 #include <asm/pgalloc.h>
35 #include <asm/mmu_context.h>
36 #include <hv/hypervisor.h>
37 #include <arch/interrupts.h>
38 
39 /* <linux/smp.h> doesn't provide this definition. */
40 #ifndef CONFIG_SMP
41 #define setup_max_cpus 1
42 #endif
43 
ABS(int x)44 static inline int ABS(int x) { return x >= 0 ? x : -x; }
45 
46 /* Chip information */
47 char chip_model[64] __write_once;
48 
49 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50 EXPORT_SYMBOL(node_data);
51 
52 /* We only create bootmem data on node 0. */
53 static bootmem_data_t __initdata node0_bdata;
54 
55 /* Information on the NUMA nodes that we compute early */
56 unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57 unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
61 
62 static unsigned long __initdata node_percpu[MAX_NUMNODES];
63 
64 #ifdef CONFIG_HIGHMEM
65 /* Page frame index of end of lowmem on each controller. */
66 unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
67 
68 /* Number of pages that can be mapped into lowmem. */
69 static unsigned long __initdata mappable_physpages;
70 #endif
71 
72 /* Data on which physical memory controller corresponds to which NUMA node */
73 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
74 
75 #ifdef CONFIG_HIGHMEM
76 /* Map information from VAs to PAs */
77 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
78   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
79 EXPORT_SYMBOL(pbase_map);
80 
81 /* Map information from PAs to VAs */
82 void *vbase_map[NR_PA_HIGHBIT_VALUES]
83   __write_once __attribute__((aligned(L2_CACHE_BYTES)));
84 EXPORT_SYMBOL(vbase_map);
85 #endif
86 
87 /* Node number as a function of the high PA bits */
88 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
89 EXPORT_SYMBOL(highbits_to_node);
90 
91 static unsigned int __initdata maxmem_pfn = -1U;
92 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
93 	[0 ... MAX_NUMNODES-1] = -1U
94 };
95 static nodemask_t __initdata isolnodes;
96 
97 #ifdef CONFIG_PCI
98 enum { DEFAULT_PCI_RESERVE_MB = 64 };
99 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
100 unsigned long __initdata pci_reserve_start_pfn = -1U;
101 unsigned long __initdata pci_reserve_end_pfn = -1U;
102 #endif
103 
setup_maxmem(char * str)104 static int __init setup_maxmem(char *str)
105 {
106 	unsigned long long maxmem;
107 	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
108 		return -EINVAL;
109 
110 	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
111 	pr_info("Forcing RAM used to no more than %dMB\n",
112 	       maxmem_pfn >> (20 - PAGE_SHIFT));
113 	return 0;
114 }
115 early_param("maxmem", setup_maxmem);
116 
setup_maxnodemem(char * str)117 static int __init setup_maxnodemem(char *str)
118 {
119 	char *endp;
120 	unsigned long long maxnodemem;
121 	long node;
122 
123 	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
124 	if (node >= MAX_NUMNODES || *endp != ':')
125 		return -EINVAL;
126 
127 	maxnodemem = memparse(endp+1, NULL);
128 	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
129 		(HPAGE_SHIFT - PAGE_SHIFT);
130 	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
131 	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
132 	return 0;
133 }
134 early_param("maxnodemem", setup_maxnodemem);
135 
setup_isolnodes(char * str)136 static int __init setup_isolnodes(char *str)
137 {
138 	char buf[MAX_NUMNODES * 5];
139 	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
140 		return -EINVAL;
141 
142 	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
143 	pr_info("Set isolnodes value to '%s'\n", buf);
144 	return 0;
145 }
146 early_param("isolnodes", setup_isolnodes);
147 
148 #ifdef CONFIG_PCI
setup_pci_reserve(char * str)149 static int __init setup_pci_reserve(char* str)
150 {
151 	unsigned long mb;
152 
153 	if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
154 	    mb > 3 * 1024)
155 		return -EINVAL;
156 
157 	pci_reserve_mb = mb;
158 	pr_info("Reserving %dMB for PCIE root complex mappings\n",
159 	       pci_reserve_mb);
160 	return 0;
161 }
162 early_param("pci_reserve", setup_pci_reserve);
163 #endif
164 
165 #ifndef __tilegx__
166 /*
167  * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
168  * This can be used to increase (or decrease) the vmalloc area.
169  */
parse_vmalloc(char * arg)170 static int __init parse_vmalloc(char *arg)
171 {
172 	if (!arg)
173 		return -EINVAL;
174 
175 	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
176 
177 	/* See validate_va() for more on this test. */
178 	if ((long)_VMALLOC_START >= 0)
179 		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
180 			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
181 
182 	return 0;
183 }
184 early_param("vmalloc", parse_vmalloc);
185 #endif
186 
187 #ifdef CONFIG_HIGHMEM
188 /*
189  * Determine for each controller where its lowmem is mapped and how much of
190  * it is mapped there.  On controller zero, the first few megabytes are
191  * already mapped in as code at MEM_SV_INTRPT, so in principle we could
192  * start our data mappings higher up, but for now we don't bother, to avoid
193  * additional confusion.
194  *
195  * One question is whether, on systems with more than 768 Mb and
196  * controllers of different sizes, to map in a proportionate amount of
197  * each one, or to try to map the same amount from each controller.
198  * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
199  * respectively, do we map 256MB from each, or do we map 128 MB, 512
200  * MB, and 128 MB respectively?)  For now we use a proportionate
201  * solution like the latter.
202  *
203  * The VA/PA mapping demands that we align our decisions at 16 MB
204  * boundaries so that we can rapidly convert VA to PA.
205  */
setup_pa_va_mapping(void)206 static void *__init setup_pa_va_mapping(void)
207 {
208 	unsigned long curr_pages = 0;
209 	unsigned long vaddr = PAGE_OFFSET;
210 	nodemask_t highonlynodes = isolnodes;
211 	int i, j;
212 
213 	memset(pbase_map, -1, sizeof(pbase_map));
214 	memset(vbase_map, -1, sizeof(vbase_map));
215 
216 	/* Node zero cannot be isolated for LOWMEM purposes. */
217 	node_clear(0, highonlynodes);
218 
219 	/* Count up the number of pages on non-highonlynodes controllers. */
220 	mappable_physpages = 0;
221 	for_each_online_node(i) {
222 		if (!node_isset(i, highonlynodes))
223 			mappable_physpages +=
224 				node_end_pfn[i] - node_start_pfn[i];
225 	}
226 
227 	for_each_online_node(i) {
228 		unsigned long start = node_start_pfn[i];
229 		unsigned long end = node_end_pfn[i];
230 		unsigned long size = end - start;
231 		unsigned long vaddr_end;
232 
233 		if (node_isset(i, highonlynodes)) {
234 			/* Mark this controller as having no lowmem. */
235 			node_lowmem_end_pfn[i] = start;
236 			continue;
237 		}
238 
239 		curr_pages += size;
240 		if (mappable_physpages > MAXMEM_PFN) {
241 			vaddr_end = PAGE_OFFSET +
242 				(((u64)curr_pages * MAXMEM_PFN /
243 				  mappable_physpages)
244 				 << PAGE_SHIFT);
245 		} else {
246 			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
247 		}
248 		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
249 			unsigned long this_pfn =
250 				start + (j << HUGETLB_PAGE_ORDER);
251 			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
252 			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
253 			    (void *)-1)
254 				vbase_map[__pfn_to_highbits(this_pfn)] =
255 					(void *)(vaddr & HPAGE_MASK);
256 		}
257 		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
258 		BUG_ON(node_lowmem_end_pfn[i] > end);
259 	}
260 
261 	/* Return highest address of any mapped memory. */
262 	return (void *)vaddr;
263 }
264 #endif /* CONFIG_HIGHMEM */
265 
266 /*
267  * Register our most important memory mappings with the debug stub.
268  *
269  * This is up to 4 mappings for lowmem, one mapping per memory
270  * controller, plus one for our text segment.
271  */
store_permanent_mappings(void)272 static void __cpuinit store_permanent_mappings(void)
273 {
274 	int i;
275 
276 	for_each_online_node(i) {
277 		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
278 #ifdef CONFIG_HIGHMEM
279 		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
280 #else
281 		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
282 #endif
283 
284 		unsigned long pages = high_mapped_pa - node_start_pfn[i];
285 		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
286 		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
287 	}
288 
289 	hv_store_mapping((HV_VirtAddr)_stext,
290 			 (uint32_t)(_einittext - _stext), 0);
291 }
292 
293 /*
294  * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
295  * and node_online_map, doing suitable sanity-checking.
296  * Also set min_low_pfn, max_low_pfn, and max_pfn.
297  */
setup_memory(void)298 static void __init setup_memory(void)
299 {
300 	int i, j;
301 	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
302 #ifdef CONFIG_HIGHMEM
303 	long highmem_pages;
304 #endif
305 #ifndef __tilegx__
306 	int cap;
307 #endif
308 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
309 	long lowmem_pages;
310 #endif
311 
312 	/* We are using a char to hold the cpu_2_node[] mapping */
313 	BUILD_BUG_ON(MAX_NUMNODES > 127);
314 
315 	/* Discover the ranges of memory available to us */
316 	for (i = 0; ; ++i) {
317 		unsigned long start, size, end, highbits;
318 		HV_PhysAddrRange range = hv_inquire_physical(i);
319 		if (range.size == 0)
320 			break;
321 #ifdef CONFIG_FLATMEM
322 		if (i > 0) {
323 			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
324 			       range.size, range.start + range.size);
325 			continue;
326 		}
327 #endif
328 #ifndef __tilegx__
329 		if ((unsigned long)range.start) {
330 			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
331 			       range.start, range.start + range.size);
332 			continue;
333 		}
334 #endif
335 		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
336 		    (range.size & (HPAGE_SIZE-1)) != 0) {
337 			unsigned long long start_pa = range.start;
338 			unsigned long long orig_size = range.size;
339 			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
340 			range.size -= (range.start - start_pa);
341 			range.size &= HPAGE_MASK;
342 			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
343 			       " now %#llx-%#llx\n",
344 			       start_pa, start_pa + orig_size,
345 			       range.start, range.start + range.size);
346 		}
347 		highbits = __pa_to_highbits(range.start);
348 		if (highbits >= NR_PA_HIGHBIT_VALUES) {
349 			pr_err("PA high bits too high: %#llx..%#llx\n",
350 			       range.start, range.start + range.size);
351 			continue;
352 		}
353 		if (highbits_seen[highbits]) {
354 			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
355 			       range.start, range.start + range.size);
356 			continue;
357 		}
358 		highbits_seen[highbits] = 1;
359 		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
360 			int max_size = maxnodemem_pfn[i];
361 			if (max_size > 0) {
362 				pr_err("Maxnodemem reduced node %d to"
363 				       " %d pages\n", i, max_size);
364 				range.size = PFN_PHYS(max_size);
365 			} else {
366 				pr_err("Maxnodemem disabled node %d\n", i);
367 				continue;
368 			}
369 		}
370 		if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
371 			int max_size = maxmem_pfn - num_physpages;
372 			if (max_size > 0) {
373 				pr_err("Maxmem reduced node %d to %d pages\n",
374 				       i, max_size);
375 				range.size = PFN_PHYS(max_size);
376 			} else {
377 				pr_err("Maxmem disabled node %d\n", i);
378 				continue;
379 			}
380 		}
381 		if (i >= MAX_NUMNODES) {
382 			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
383 			       i, range.size, range.size + range.start);
384 			continue;
385 		}
386 
387 		start = range.start >> PAGE_SHIFT;
388 		size = range.size >> PAGE_SHIFT;
389 		end = start + size;
390 
391 #ifndef __tilegx__
392 		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
393 		    (range.start + range.size)) {
394 			pr_err("PAs too high to represent: %#llx..%#llx\n",
395 			       range.start, range.start + range.size);
396 			continue;
397 		}
398 #endif
399 #ifdef CONFIG_PCI
400 		/*
401 		 * Blocks that overlap the pci reserved region must
402 		 * have enough space to hold the maximum percpu data
403 		 * region at the top of the range.  If there isn't
404 		 * enough space above the reserved region, just
405 		 * truncate the node.
406 		 */
407 		if (start <= pci_reserve_start_pfn &&
408 		    end > pci_reserve_start_pfn) {
409 			unsigned int per_cpu_size =
410 				__per_cpu_end - __per_cpu_start;
411 			unsigned int percpu_pages =
412 				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
413 			if (end < pci_reserve_end_pfn + percpu_pages) {
414 				end = pci_reserve_start_pfn;
415 				pr_err("PCI mapping region reduced node %d to"
416 				       " %ld pages\n", i, end - start);
417 			}
418 		}
419 #endif
420 
421 		for (j = __pfn_to_highbits(start);
422 		     j <= __pfn_to_highbits(end - 1); j++)
423 			highbits_to_node[j] = i;
424 
425 		node_start_pfn[i] = start;
426 		node_end_pfn[i] = end;
427 		node_controller[i] = range.controller;
428 		num_physpages += size;
429 		max_pfn = end;
430 
431 		/* Mark node as online */
432 		node_set(i, node_online_map);
433 		node_set(i, node_possible_map);
434 	}
435 
436 #ifndef __tilegx__
437 	/*
438 	 * For 4KB pages, mem_map "struct page" data is 1% of the size
439 	 * of the physical memory, so can be quite big (640 MB for
440 	 * four 16G zones).  These structures must be mapped in
441 	 * lowmem, and since we currently cap out at about 768 MB,
442 	 * it's impractical to try to use this much address space.
443 	 * For now, arbitrarily cap the amount of physical memory
444 	 * we're willing to use at 8 million pages (32GB of 4KB pages).
445 	 */
446 	cap = 8 * 1024 * 1024;  /* 8 million pages */
447 	if (num_physpages > cap) {
448 		int num_nodes = num_online_nodes();
449 		int cap_each = cap / num_nodes;
450 		unsigned long dropped_pages = 0;
451 		for (i = 0; i < num_nodes; ++i) {
452 			int size = node_end_pfn[i] - node_start_pfn[i];
453 			if (size > cap_each) {
454 				dropped_pages += (size - cap_each);
455 				node_end_pfn[i] = node_start_pfn[i] + cap_each;
456 			}
457 		}
458 		num_physpages -= dropped_pages;
459 		pr_warning("Only using %ldMB memory;"
460 		       " ignoring %ldMB.\n",
461 		       num_physpages >> (20 - PAGE_SHIFT),
462 		       dropped_pages >> (20 - PAGE_SHIFT));
463 		pr_warning("Consider using a larger page size.\n");
464 	}
465 #endif
466 
467 	/* Heap starts just above the last loaded address. */
468 	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
469 
470 #ifdef CONFIG_HIGHMEM
471 	/* Find where we map lowmem from each controller. */
472 	high_memory = setup_pa_va_mapping();
473 
474 	/* Set max_low_pfn based on what node 0 can directly address. */
475 	max_low_pfn = node_lowmem_end_pfn[0];
476 
477 	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
478 		MAXMEM_PFN : mappable_physpages;
479 	highmem_pages = (long) (num_physpages - lowmem_pages);
480 
481 	pr_notice("%ldMB HIGHMEM available.\n",
482 	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
483 	pr_notice("%ldMB LOWMEM available.\n",
484 			pages_to_mb(lowmem_pages));
485 #else
486 	/* Set max_low_pfn based on what node 0 can directly address. */
487 	max_low_pfn = node_end_pfn[0];
488 
489 #ifndef __tilegx__
490 	if (node_end_pfn[0] > MAXMEM_PFN) {
491 		pr_warning("Only using %ldMB LOWMEM.\n",
492 		       MAXMEM>>20);
493 		pr_warning("Use a HIGHMEM enabled kernel.\n");
494 		max_low_pfn = MAXMEM_PFN;
495 		max_pfn = MAXMEM_PFN;
496 		num_physpages = MAXMEM_PFN;
497 		node_end_pfn[0] = MAXMEM_PFN;
498 	} else {
499 		pr_notice("%ldMB memory available.\n",
500 		       pages_to_mb(node_end_pfn[0]));
501 	}
502 	for (i = 1; i < MAX_NUMNODES; ++i) {
503 		node_start_pfn[i] = 0;
504 		node_end_pfn[i] = 0;
505 	}
506 	high_memory = __va(node_end_pfn[0]);
507 #else
508 	lowmem_pages = 0;
509 	for (i = 0; i < MAX_NUMNODES; ++i) {
510 		int pages = node_end_pfn[i] - node_start_pfn[i];
511 		lowmem_pages += pages;
512 		if (pages)
513 			high_memory = pfn_to_kaddr(node_end_pfn[i]);
514 	}
515 	pr_notice("%ldMB memory available.\n",
516 	       pages_to_mb(lowmem_pages));
517 #endif
518 #endif
519 }
520 
setup_bootmem_allocator(void)521 static void __init setup_bootmem_allocator(void)
522 {
523 	unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
524 
525 	/* Provide a node 0 bdata. */
526 	NODE_DATA(0)->bdata = &node0_bdata;
527 
528 #ifdef CONFIG_PCI
529 	/* Don't let boot memory alias the PCI region. */
530 	last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
531 #else
532 	last_alloc_pfn = max_low_pfn;
533 #endif
534 
535 	/*
536 	 * Initialize the boot-time allocator (with low memory only):
537 	 * The first argument says where to put the bitmap, and the
538 	 * second says where the end of allocatable memory is.
539 	 */
540 	bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
541 
542 	/*
543 	 * Let the bootmem allocator use all the space we've given it
544 	 * except for its own bitmap.
545 	 */
546 	first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
547 	if (first_alloc_pfn >= last_alloc_pfn)
548 		early_panic("Not enough memory on controller 0 for bootmem\n");
549 
550 	free_bootmem(PFN_PHYS(first_alloc_pfn),
551 		     PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
552 
553 #ifdef CONFIG_KEXEC
554 	if (crashk_res.start != crashk_res.end)
555 		reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
556 #endif
557 }
558 
alloc_remap(int nid,unsigned long size)559 void *__init alloc_remap(int nid, unsigned long size)
560 {
561 	int pages = node_end_pfn[nid] - node_start_pfn[nid];
562 	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
563 	BUG_ON(size != pages * sizeof(struct page));
564 	memset(map, 0, size);
565 	return map;
566 }
567 
percpu_size(void)568 static int __init percpu_size(void)
569 {
570 	int size = __per_cpu_end - __per_cpu_start;
571 	size += PERCPU_MODULE_RESERVE;
572 	size += PERCPU_DYNAMIC_EARLY_SIZE;
573 	if (size < PCPU_MIN_UNIT_SIZE)
574 		size = PCPU_MIN_UNIT_SIZE;
575 	size = roundup(size, PAGE_SIZE);
576 
577 	/* In several places we assume the per-cpu data fits on a huge page. */
578 	BUG_ON(kdata_huge && size > HPAGE_SIZE);
579 	return size;
580 }
581 
alloc_bootmem_pfn(int size,unsigned long goal)582 static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
583 {
584 	void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
585 	unsigned long pfn = kaddr_to_pfn(kva);
586 	BUG_ON(goal && PFN_PHYS(pfn) != goal);
587 	return pfn;
588 }
589 
zone_sizes_init(void)590 static void __init zone_sizes_init(void)
591 {
592 	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
593 	int size = percpu_size();
594 	int num_cpus = smp_height * smp_width;
595 	int i;
596 
597 	for (i = 0; i < num_cpus; ++i)
598 		node_percpu[cpu_to_node(i)] += size;
599 
600 	for_each_online_node(i) {
601 		unsigned long start = node_start_pfn[i];
602 		unsigned long end = node_end_pfn[i];
603 #ifdef CONFIG_HIGHMEM
604 		unsigned long lowmem_end = node_lowmem_end_pfn[i];
605 #else
606 		unsigned long lowmem_end = end;
607 #endif
608 		int memmap_size = (end - start) * sizeof(struct page);
609 		node_free_pfn[i] = start;
610 
611 		/*
612 		 * Set aside pages for per-cpu data and the mem_map array.
613 		 *
614 		 * Since the per-cpu data requires special homecaching,
615 		 * if we are in kdata_huge mode, we put it at the end of
616 		 * the lowmem region.  If we're not in kdata_huge mode,
617 		 * we take the per-cpu pages from the bottom of the
618 		 * controller, since that avoids fragmenting a huge page
619 		 * that users might want.  We always take the memmap
620 		 * from the bottom of the controller, since with
621 		 * kdata_huge that lets it be under a huge TLB entry.
622 		 *
623 		 * If the user has requested isolnodes for a controller,
624 		 * though, there'll be no lowmem, so we just alloc_bootmem
625 		 * the memmap.  There will be no percpu memory either.
626 		 */
627 		if (__pfn_to_highbits(start) == 0) {
628 			/* In low PAs, allocate via bootmem. */
629 			unsigned long goal = 0;
630 			node_memmap_pfn[i] =
631 				alloc_bootmem_pfn(memmap_size, goal);
632 			if (kdata_huge)
633 				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
634 			if (node_percpu[i])
635 				node_percpu_pfn[i] =
636 				    alloc_bootmem_pfn(node_percpu[i], goal);
637 		} else if (cpu_isset(i, isolnodes)) {
638 			node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
639 			BUG_ON(node_percpu[i] != 0);
640 		} else {
641 			/* In high PAs, just reserve some pages. */
642 			node_memmap_pfn[i] = node_free_pfn[i];
643 			node_free_pfn[i] += PFN_UP(memmap_size);
644 			if (!kdata_huge) {
645 				node_percpu_pfn[i] = node_free_pfn[i];
646 				node_free_pfn[i] += PFN_UP(node_percpu[i]);
647 			} else {
648 				node_percpu_pfn[i] =
649 					lowmem_end - PFN_UP(node_percpu[i]);
650 			}
651 		}
652 
653 #ifdef CONFIG_HIGHMEM
654 		if (start > lowmem_end) {
655 			zones_size[ZONE_NORMAL] = 0;
656 			zones_size[ZONE_HIGHMEM] = end - start;
657 		} else {
658 			zones_size[ZONE_NORMAL] = lowmem_end - start;
659 			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
660 		}
661 #else
662 		zones_size[ZONE_NORMAL] = end - start;
663 #endif
664 
665 		/*
666 		 * Everyone shares node 0's bootmem allocator, but
667 		 * we use alloc_remap(), above, to put the actual
668 		 * struct page array on the individual controllers,
669 		 * which is most of the data that we actually care about.
670 		 * We can't place bootmem allocators on the other
671 		 * controllers since the bootmem allocator can only
672 		 * operate on 32-bit physical addresses.
673 		 */
674 		NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
675 
676 		free_area_init_node(i, zones_size, start, NULL);
677 		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
678 		       PFN_UP(node_percpu[i]));
679 
680 		/* Track the type of memory on each node */
681 		if (zones_size[ZONE_NORMAL])
682 			node_set_state(i, N_NORMAL_MEMORY);
683 #ifdef CONFIG_HIGHMEM
684 		if (end != start)
685 			node_set_state(i, N_HIGH_MEMORY);
686 #endif
687 
688 		node_set_online(i);
689 	}
690 }
691 
692 #ifdef CONFIG_NUMA
693 
694 /* which logical CPUs are on which nodes */
695 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
696 EXPORT_SYMBOL(node_2_cpu_mask);
697 
698 /* which node each logical CPU is on */
699 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
700 EXPORT_SYMBOL(cpu_2_node);
701 
702 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
cpu_to_bound_node(int cpu,struct cpumask * unbound_cpus)703 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
704 {
705 	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
706 		return -1;
707 	else
708 		return cpu_to_node(cpu);
709 }
710 
711 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
node_neighbors(int node,int cpu,struct cpumask * unbound_cpus)712 static int __init node_neighbors(int node, int cpu,
713 				 struct cpumask *unbound_cpus)
714 {
715 	int neighbors = 0;
716 	int w = smp_width;
717 	int h = smp_height;
718 	int x = cpu % w;
719 	int y = cpu / w;
720 	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
721 		++neighbors;
722 	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
723 		++neighbors;
724 	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
725 		++neighbors;
726 	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
727 		++neighbors;
728 	return neighbors;
729 }
730 
setup_numa_mapping(void)731 static void __init setup_numa_mapping(void)
732 {
733 	int distance[MAX_NUMNODES][NR_CPUS];
734 	HV_Coord coord;
735 	int cpu, node, cpus, i, x, y;
736 	int num_nodes = num_online_nodes();
737 	struct cpumask unbound_cpus;
738 	nodemask_t default_nodes;
739 
740 	cpumask_clear(&unbound_cpus);
741 
742 	/* Get set of nodes we will use for defaults */
743 	nodes_andnot(default_nodes, node_online_map, isolnodes);
744 	if (nodes_empty(default_nodes)) {
745 		BUG_ON(!node_isset(0, node_online_map));
746 		pr_err("Forcing NUMA node zero available as a default node\n");
747 		node_set(0, default_nodes);
748 	}
749 
750 	/* Populate the distance[] array */
751 	memset(distance, -1, sizeof(distance));
752 	cpu = 0;
753 	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
754 		for (coord.x = 0; coord.x < smp_width;
755 		     ++coord.x, ++cpu) {
756 			BUG_ON(cpu >= nr_cpu_ids);
757 			if (!cpu_possible(cpu)) {
758 				cpu_2_node[cpu] = -1;
759 				continue;
760 			}
761 			for_each_node_mask(node, default_nodes) {
762 				HV_MemoryControllerInfo info =
763 					hv_inquire_memory_controller(
764 						coord, node_controller[node]);
765 				distance[node][cpu] =
766 					ABS(info.coord.x) + ABS(info.coord.y);
767 			}
768 			cpumask_set_cpu(cpu, &unbound_cpus);
769 		}
770 	}
771 	cpus = cpu;
772 
773 	/*
774 	 * Round-robin through the NUMA nodes until all the cpus are
775 	 * assigned.  We could be more clever here (e.g. create four
776 	 * sorted linked lists on the same set of cpu nodes, and pull
777 	 * off them in round-robin sequence, removing from all four
778 	 * lists each time) but given the relatively small numbers
779 	 * involved, O(n^2) seem OK for a one-time cost.
780 	 */
781 	node = first_node(default_nodes);
782 	while (!cpumask_empty(&unbound_cpus)) {
783 		int best_cpu = -1;
784 		int best_distance = INT_MAX;
785 		for (cpu = 0; cpu < cpus; ++cpu) {
786 			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
787 				/*
788 				 * Compute metric, which is how much
789 				 * closer the cpu is to this memory
790 				 * controller than the others, shifted
791 				 * up, and then the number of
792 				 * neighbors already in the node as an
793 				 * epsilon adjustment to try to keep
794 				 * the nodes compact.
795 				 */
796 				int d = distance[node][cpu] * num_nodes;
797 				for_each_node_mask(i, default_nodes) {
798 					if (i != node)
799 						d -= distance[i][cpu];
800 				}
801 				d *= 8;  /* allow space for epsilon */
802 				d -= node_neighbors(node, cpu, &unbound_cpus);
803 				if (d < best_distance) {
804 					best_cpu = cpu;
805 					best_distance = d;
806 				}
807 			}
808 		}
809 		BUG_ON(best_cpu < 0);
810 		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
811 		cpu_2_node[best_cpu] = node;
812 		cpumask_clear_cpu(best_cpu, &unbound_cpus);
813 		node = next_node(node, default_nodes);
814 		if (node == MAX_NUMNODES)
815 			node = first_node(default_nodes);
816 	}
817 
818 	/* Print out node assignments and set defaults for disabled cpus */
819 	cpu = 0;
820 	for (y = 0; y < smp_height; ++y) {
821 		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
822 		for (x = 0; x < smp_width; ++x, ++cpu) {
823 			if (cpu_to_node(cpu) < 0) {
824 				pr_cont(" -");
825 				cpu_2_node[cpu] = first_node(default_nodes);
826 			} else {
827 				pr_cont(" %d", cpu_to_node(cpu));
828 			}
829 		}
830 		pr_cont("\n");
831 	}
832 }
833 
834 static struct cpu cpu_devices[NR_CPUS];
835 
topology_init(void)836 static int __init topology_init(void)
837 {
838 	int i;
839 
840 	for_each_online_node(i)
841 		register_one_node(i);
842 
843 	for (i = 0; i < smp_height * smp_width; ++i)
844 		register_cpu(&cpu_devices[i], i);
845 
846 	return 0;
847 }
848 
849 subsys_initcall(topology_init);
850 
851 #else /* !CONFIG_NUMA */
852 
853 #define setup_numa_mapping() do { } while (0)
854 
855 #endif /* CONFIG_NUMA */
856 
857 /**
858  * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
859  * @boot: Is this the boot cpu?
860  *
861  * Called from setup_arch() on the boot cpu, or online_secondary().
862  */
setup_cpu(int boot)863 void __cpuinit setup_cpu(int boot)
864 {
865 	/* The boot cpu sets up its permanent mappings much earlier. */
866 	if (!boot)
867 		store_permanent_mappings();
868 
869 	/* Allow asynchronous TLB interrupts. */
870 #if CHIP_HAS_TILE_DMA()
871 	arch_local_irq_unmask(INT_DMATLB_MISS);
872 	arch_local_irq_unmask(INT_DMATLB_ACCESS);
873 #endif
874 #if CHIP_HAS_SN_PROC()
875 	arch_local_irq_unmask(INT_SNITLB_MISS);
876 #endif
877 #ifdef __tilegx__
878 	arch_local_irq_unmask(INT_SINGLE_STEP_K);
879 #endif
880 
881 	/*
882 	 * Allow user access to many generic SPRs, like the cycle
883 	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
884 	 */
885 	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
886 
887 #if CHIP_HAS_SN()
888 	/* Static network is not restricted. */
889 	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
890 #endif
891 #if CHIP_HAS_SN_PROC()
892 	__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
893 	__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
894 #endif
895 
896 	/*
897 	 * Set the MPL for interrupt control 0 & 1 to the corresponding
898 	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
899 	 * SPRs, as well as the interrupt mask.
900 	 */
901 	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
902 	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
903 
904 	/* Initialize IRQ support for this cpu. */
905 	setup_irq_regs();
906 
907 #ifdef CONFIG_HARDWALL
908 	/* Reset the network state on this cpu. */
909 	reset_network_state();
910 #endif
911 }
912 
913 #ifdef CONFIG_BLK_DEV_INITRD
914 
915 static int __initdata set_initramfs_file;
916 static char __initdata initramfs_file[128] = "initramfs";
917 
setup_initramfs_file(char * str)918 static int __init setup_initramfs_file(char *str)
919 {
920 	if (str == NULL)
921 		return -EINVAL;
922 	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
923 	set_initramfs_file = 1;
924 
925 	return 0;
926 }
927 early_param("initramfs_file", setup_initramfs_file);
928 
929 /*
930  * We look for a file called "initramfs" in the hvfs.  If there is one, we
931  * allocate some memory for it and it will be unpacked to the initramfs.
932  * If it's compressed, the initd code will uncompress it first.
933  */
load_hv_initrd(void)934 static void __init load_hv_initrd(void)
935 {
936 	HV_FS_StatInfo stat;
937 	int fd, rc;
938 	void *initrd;
939 
940 	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
941 	if (fd == HV_ENOENT) {
942 		if (set_initramfs_file) {
943 			pr_warning("No such hvfs initramfs file '%s'\n",
944 				   initramfs_file);
945 			return;
946 		} else {
947 			/* Try old backwards-compatible name. */
948 			fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
949 			if (fd == HV_ENOENT)
950 				return;
951 		}
952 	}
953 	BUG_ON(fd < 0);
954 	stat = hv_fs_fstat(fd);
955 	BUG_ON(stat.size < 0);
956 	if (stat.flags & HV_FS_ISDIR) {
957 		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
958 			   initramfs_file);
959 		return;
960 	}
961 	initrd = alloc_bootmem_pages(stat.size);
962 	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
963 	if (rc != stat.size) {
964 		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
965 		       stat.size, initramfs_file, rc);
966 		free_initrd_mem((unsigned long) initrd, stat.size);
967 		return;
968 	}
969 	initrd_start = (unsigned long) initrd;
970 	initrd_end = initrd_start + stat.size;
971 }
972 
free_initrd_mem(unsigned long begin,unsigned long end)973 void __init free_initrd_mem(unsigned long begin, unsigned long end)
974 {
975 	free_bootmem(__pa(begin), end - begin);
976 }
977 
978 #else
load_hv_initrd(void)979 static inline void load_hv_initrd(void) {}
980 #endif /* CONFIG_BLK_DEV_INITRD */
981 
validate_hv(void)982 static void __init validate_hv(void)
983 {
984 	/*
985 	 * It may already be too late, but let's check our built-in
986 	 * configuration against what the hypervisor is providing.
987 	 */
988 	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
989 	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
990 	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
991 	HV_ASIDRange asid_range;
992 
993 #ifndef CONFIG_SMP
994 	HV_Topology topology = hv_inquire_topology();
995 	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
996 	if (topology.width != 1 || topology.height != 1) {
997 		pr_warning("Warning: booting UP kernel on %dx%d grid;"
998 			   " will ignore all but first tile.\n",
999 			   topology.width, topology.height);
1000 	}
1001 #endif
1002 
1003 	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1004 		early_panic("Hypervisor glue size %ld is too big!\n",
1005 			    glue_size);
1006 	if (hv_page_size != PAGE_SIZE)
1007 		early_panic("Hypervisor page size %#x != our %#lx\n",
1008 			    hv_page_size, PAGE_SIZE);
1009 	if (hv_hpage_size != HPAGE_SIZE)
1010 		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1011 			    hv_hpage_size, HPAGE_SIZE);
1012 
1013 #ifdef CONFIG_SMP
1014 	/*
1015 	 * Some hypervisor APIs take a pointer to a bitmap array
1016 	 * whose size is at least the number of cpus on the chip.
1017 	 * We use a struct cpumask for this, so it must be big enough.
1018 	 */
1019 	if ((smp_height * smp_width) > nr_cpu_ids)
1020 		early_panic("Hypervisor %d x %d grid too big for Linux"
1021 			    " NR_CPUS %d\n", smp_height, smp_width,
1022 			    nr_cpu_ids);
1023 #endif
1024 
1025 	/*
1026 	 * Check that we're using allowed ASIDs, and initialize the
1027 	 * various asid variables to their appropriate initial states.
1028 	 */
1029 	asid_range = hv_inquire_asid(0);
1030 	__get_cpu_var(current_asid) = min_asid = asid_range.start;
1031 	max_asid = asid_range.start + asid_range.size - 1;
1032 
1033 	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1034 		       sizeof(chip_model)) < 0) {
1035 		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1036 		strlcpy(chip_model, "unknown", sizeof(chip_model));
1037 	}
1038 }
1039 
validate_va(void)1040 static void __init validate_va(void)
1041 {
1042 #ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1043 	/*
1044 	 * Similarly, make sure we're only using allowed VAs.
1045 	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1046 	 * and 0 .. KERNEL_HIGH_VADDR.
1047 	 * In addition, make sure we CAN'T use the end of memory, since
1048 	 * we use the last chunk of each pgd for the pgd_list.
1049 	 */
1050 	int i, user_kernel_ok = 0;
1051 	unsigned long max_va = 0;
1052 	unsigned long list_va =
1053 		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1054 
1055 	for (i = 0; ; ++i) {
1056 		HV_VirtAddrRange range = hv_inquire_virtual(i);
1057 		if (range.size == 0)
1058 			break;
1059 		if (range.start <= MEM_USER_INTRPT &&
1060 		    range.start + range.size >= MEM_HV_INTRPT)
1061 			user_kernel_ok = 1;
1062 		if (range.start == 0)
1063 			max_va = range.size;
1064 		BUG_ON(range.start + range.size > list_va);
1065 	}
1066 	if (!user_kernel_ok)
1067 		early_panic("Hypervisor not configured for user/kernel VAs\n");
1068 	if (max_va == 0)
1069 		early_panic("Hypervisor not configured for low VAs\n");
1070 	if (max_va < KERNEL_HIGH_VADDR)
1071 		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1072 			    max_va, KERNEL_HIGH_VADDR);
1073 
1074 	/* Kernel PCs must have their high bit set; see intvec.S. */
1075 	if ((long)VMALLOC_START >= 0)
1076 		early_panic(
1077 			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
1078 			"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1079 			"or smaller VMALLOC_RESERVE.\n",
1080 			VMALLOC_START);
1081 #endif
1082 }
1083 
1084 /*
1085  * cpu_lotar_map lists all the cpus that are valid for the supervisor
1086  * to cache data on at a page level, i.e. what cpus can be placed in
1087  * the LOTAR field of a PTE.  It is equivalent to the set of possible
1088  * cpus plus any other cpus that are willing to share their cache.
1089  * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1090  */
1091 struct cpumask __write_once cpu_lotar_map;
1092 EXPORT_SYMBOL(cpu_lotar_map);
1093 
1094 #if CHIP_HAS_CBOX_HOME_MAP()
1095 /*
1096  * hash_for_home_map lists all the tiles that hash-for-home data
1097  * will be cached on.  Note that this may includes tiles that are not
1098  * valid for this supervisor to use otherwise (e.g. if a hypervisor
1099  * device is being shared between multiple supervisors).
1100  * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1101  */
1102 struct cpumask hash_for_home_map;
1103 EXPORT_SYMBOL(hash_for_home_map);
1104 #endif
1105 
1106 /*
1107  * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1108  * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1109  * hash_for_home_map, and it is what should be passed to
1110  * hv_flush_remote() to flush all caches.  Note that if there are
1111  * dedicated hypervisor driver tiles that have authorized use of their
1112  * cache, those tiles will only appear in cpu_lotar_map, NOT in
1113  * cpu_cacheable_map, as they are a special case.
1114  */
1115 struct cpumask __write_once cpu_cacheable_map;
1116 EXPORT_SYMBOL(cpu_cacheable_map);
1117 
1118 static __initdata struct cpumask disabled_map;
1119 
disabled_cpus(char * str)1120 static int __init disabled_cpus(char *str)
1121 {
1122 	int boot_cpu = smp_processor_id();
1123 
1124 	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1125 		return -EINVAL;
1126 	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1127 		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1128 		cpumask_clear_cpu(boot_cpu, &disabled_map);
1129 	}
1130 	return 0;
1131 }
1132 
1133 early_param("disabled_cpus", disabled_cpus);
1134 
print_disabled_cpus(void)1135 void __init print_disabled_cpus(void)
1136 {
1137 	if (!cpumask_empty(&disabled_map)) {
1138 		char buf[100];
1139 		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1140 		pr_info("CPUs not available for Linux: %s\n", buf);
1141 	}
1142 }
1143 
setup_cpu_maps(void)1144 static void __init setup_cpu_maps(void)
1145 {
1146 	struct cpumask hv_disabled_map, cpu_possible_init;
1147 	int boot_cpu = smp_processor_id();
1148 	int cpus, i, rc;
1149 
1150 	/* Learn which cpus are allowed by the hypervisor. */
1151 	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1152 			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1153 			      sizeof(cpu_cacheable_map));
1154 	if (rc < 0)
1155 		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1156 	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1157 		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1158 
1159 	/* Compute the cpus disabled by the hvconfig file. */
1160 	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1161 
1162 	/* Include them with the cpus disabled by "disabled_cpus". */
1163 	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1164 
1165 	/*
1166 	 * Disable every cpu after "setup_max_cpus".  But don't mark
1167 	 * as disabled the cpus that are outside of our initial rectangle,
1168 	 * since that turns out to be confusing.
1169 	 */
1170 	cpus = 1;                          /* this cpu */
1171 	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1172 	for (i = 0; cpus < setup_max_cpus; ++i)
1173 		if (!cpumask_test_cpu(i, &disabled_map))
1174 			++cpus;
1175 	for (; i < smp_height * smp_width; ++i)
1176 		cpumask_set_cpu(i, &disabled_map);
1177 	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1178 	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1179 		cpumask_clear_cpu(i, &disabled_map);
1180 
1181 	/*
1182 	 * Setup cpu_possible map as every cpu allocated to us, minus
1183 	 * the results of any "disabled_cpus" settings.
1184 	 */
1185 	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1186 	init_cpu_possible(&cpu_possible_init);
1187 
1188 	/* Learn which cpus are valid for LOTAR caching. */
1189 	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1190 			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1191 			      sizeof(cpu_lotar_map));
1192 	if (rc < 0) {
1193 		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1194 		cpu_lotar_map = *cpu_possible_mask;
1195 	}
1196 
1197 #if CHIP_HAS_CBOX_HOME_MAP()
1198 	/* Retrieve set of CPUs used for hash-for-home caching */
1199 	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1200 			      (HV_VirtAddr) hash_for_home_map.bits,
1201 			      sizeof(hash_for_home_map));
1202 	if (rc < 0)
1203 		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1204 	cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1205 #else
1206 	cpu_cacheable_map = *cpu_possible_mask;
1207 #endif
1208 }
1209 
1210 
dataplane(char * str)1211 static int __init dataplane(char *str)
1212 {
1213 	pr_warning("WARNING: dataplane support disabled in this kernel\n");
1214 	return 0;
1215 }
1216 
1217 early_param("dataplane", dataplane);
1218 
1219 #ifdef CONFIG_CMDLINE_BOOL
1220 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1221 #endif
1222 
setup_arch(char ** cmdline_p)1223 void __init setup_arch(char **cmdline_p)
1224 {
1225 	int len;
1226 
1227 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1228 	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1229 				  COMMAND_LINE_SIZE);
1230 	if (boot_command_line[0])
1231 		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1232 			   boot_command_line);
1233 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1234 #else
1235 	char *hv_cmdline;
1236 #if defined(CONFIG_CMDLINE_BOOL)
1237 	if (builtin_cmdline[0]) {
1238 		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1239 					  COMMAND_LINE_SIZE);
1240 		if (builtin_len < COMMAND_LINE_SIZE-1)
1241 			boot_command_line[builtin_len++] = ' ';
1242 		hv_cmdline = &boot_command_line[builtin_len];
1243 		len = COMMAND_LINE_SIZE - builtin_len;
1244 	} else
1245 #endif
1246 	{
1247 		hv_cmdline = boot_command_line;
1248 		len = COMMAND_LINE_SIZE;
1249 	}
1250 	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1251 	if (len < 0 || len > COMMAND_LINE_SIZE)
1252 		early_panic("hv_get_command_line failed: %d\n", len);
1253 #endif
1254 
1255 	*cmdline_p = boot_command_line;
1256 
1257 	/* Set disabled_map and setup_max_cpus very early */
1258 	parse_early_param();
1259 
1260 	/* Make sure the kernel is compatible with the hypervisor. */
1261 	validate_hv();
1262 	validate_va();
1263 
1264 	setup_cpu_maps();
1265 
1266 
1267 #ifdef CONFIG_PCI
1268 	/*
1269 	 * Initialize the PCI structures.  This is done before memory
1270 	 * setup so that we know whether or not a pci_reserve region
1271 	 * is necessary.
1272 	 */
1273 	if (tile_pci_init() == 0)
1274 		pci_reserve_mb = 0;
1275 
1276 	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1277 	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1278 	pci_reserve_start_pfn = pci_reserve_end_pfn -
1279 		(pci_reserve_mb << (20 - PAGE_SHIFT));
1280 #endif
1281 
1282 	init_mm.start_code = (unsigned long) _text;
1283 	init_mm.end_code = (unsigned long) _etext;
1284 	init_mm.end_data = (unsigned long) _edata;
1285 	init_mm.brk = (unsigned long) _end;
1286 
1287 	setup_memory();
1288 	store_permanent_mappings();
1289 	setup_bootmem_allocator();
1290 
1291 	/*
1292 	 * NOTE: before this point _nobody_ is allowed to allocate
1293 	 * any memory using the bootmem allocator.
1294 	 */
1295 
1296 	paging_init();
1297 	setup_numa_mapping();
1298 	zone_sizes_init();
1299 	set_page_homes();
1300 	setup_cpu(1);
1301 	setup_clock();
1302 	load_hv_initrd();
1303 }
1304 
1305 
1306 /*
1307  * Set up per-cpu memory.
1308  */
1309 
1310 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1311 EXPORT_SYMBOL(__per_cpu_offset);
1312 
1313 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1314 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1315 
1316 /*
1317  * As the percpu code allocates pages, we return the pages from the
1318  * end of the node for the specified cpu.
1319  */
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)1320 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1321 {
1322 	int nid = cpu_to_node(cpu);
1323 	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1324 
1325 	BUG_ON(size % PAGE_SIZE != 0);
1326 	pfn_offset[nid] += size / PAGE_SIZE;
1327 	BUG_ON(node_percpu[nid] < size);
1328 	node_percpu[nid] -= size;
1329 	if (percpu_pfn[cpu] == 0)
1330 		percpu_pfn[cpu] = pfn;
1331 	return pfn_to_kaddr(pfn);
1332 }
1333 
1334 /*
1335  * Pages reserved for percpu memory are not freeable, and in any case we are
1336  * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1337  */
pcpu_fc_free(void * ptr,size_t size)1338 static void __init pcpu_fc_free(void *ptr, size_t size)
1339 {
1340 }
1341 
1342 /*
1343  * Set up vmalloc page tables using bootmem for the percpu code.
1344  */
pcpu_fc_populate_pte(unsigned long addr)1345 static void __init pcpu_fc_populate_pte(unsigned long addr)
1346 {
1347 	pgd_t *pgd;
1348 	pud_t *pud;
1349 	pmd_t *pmd;
1350 	pte_t *pte;
1351 
1352 	BUG_ON(pgd_addr_invalid(addr));
1353 	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1354 		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1355 		      " try increasing CONFIG_VMALLOC_RESERVE\n",
1356 		      addr, VMALLOC_START, VMALLOC_END);
1357 
1358 	pgd = swapper_pg_dir + pgd_index(addr);
1359 	pud = pud_offset(pgd, addr);
1360 	BUG_ON(!pud_present(*pud));
1361 	pmd = pmd_offset(pud, addr);
1362 	if (pmd_present(*pmd)) {
1363 		BUG_ON(pmd_huge_page(*pmd));
1364 	} else {
1365 		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1366 				      HV_PAGE_TABLE_ALIGN, 0);
1367 		pmd_populate_kernel(&init_mm, pmd, pte);
1368 	}
1369 }
1370 
setup_per_cpu_areas(void)1371 void __init setup_per_cpu_areas(void)
1372 {
1373 	struct page *pg;
1374 	unsigned long delta, pfn, lowmem_va;
1375 	unsigned long size = percpu_size();
1376 	char *ptr;
1377 	int rc, cpu, i;
1378 
1379 	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1380 				   pcpu_fc_free, pcpu_fc_populate_pte);
1381 	if (rc < 0)
1382 		panic("Cannot initialize percpu area (err=%d)", rc);
1383 
1384 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1385 	for_each_possible_cpu(cpu) {
1386 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1387 
1388 		/* finv the copy out of cache so we can change homecache */
1389 		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1390 		__finv_buffer(ptr, size);
1391 		pfn = percpu_pfn[cpu];
1392 
1393 		/* Rewrite the page tables to cache on that cpu */
1394 		pg = pfn_to_page(pfn);
1395 		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1396 
1397 			/* Update the vmalloc mapping and page home. */
1398 			pte_t *ptep =
1399 				virt_to_pte(NULL, (unsigned long)ptr + i);
1400 			pte_t pte = *ptep;
1401 			BUG_ON(pfn != pte_pfn(pte));
1402 			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1403 			pte = set_remote_cache_cpu(pte, cpu);
1404 			set_pte(ptep, pte);
1405 
1406 			/* Update the lowmem mapping for consistency. */
1407 			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1408 			ptep = virt_to_pte(NULL, lowmem_va);
1409 			if (pte_huge(*ptep)) {
1410 				printk(KERN_DEBUG "early shatter of huge page"
1411 				       " at %#lx\n", lowmem_va);
1412 				shatter_pmd((pmd_t *)ptep);
1413 				ptep = virt_to_pte(NULL, lowmem_va);
1414 				BUG_ON(pte_huge(*ptep));
1415 			}
1416 			BUG_ON(pfn != pte_pfn(*ptep));
1417 			set_pte(ptep, pte);
1418 		}
1419 	}
1420 
1421 	/* Set our thread pointer appropriately. */
1422 	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1423 
1424 	/* Make sure the finv's have completed. */
1425 	mb_incoherent();
1426 
1427 	/* Flush the TLB so we reference it properly from here on out. */
1428 	local_flush_tlb_all();
1429 }
1430 
1431 static struct resource data_resource = {
1432 	.name	= "Kernel data",
1433 	.start	= 0,
1434 	.end	= 0,
1435 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1436 };
1437 
1438 static struct resource code_resource = {
1439 	.name	= "Kernel code",
1440 	.start	= 0,
1441 	.end	= 0,
1442 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1443 };
1444 
1445 /*
1446  * We reserve all resources above 4GB so that PCI won't try to put
1447  * mappings above 4GB; the standard allows that for some devices but
1448  * the probing code trunates values to 32 bits.
1449  */
1450 #ifdef CONFIG_PCI
1451 static struct resource* __init
insert_non_bus_resource(void)1452 insert_non_bus_resource(void)
1453 {
1454 	struct resource *res =
1455 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1456 	res->name = "Non-Bus Physical Address Space";
1457 	res->start = (1ULL << 32);
1458 	res->end = -1LL;
1459 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1460 	if (insert_resource(&iomem_resource, res)) {
1461 		kfree(res);
1462 		return NULL;
1463 	}
1464 	return res;
1465 }
1466 #endif
1467 
1468 static struct resource* __init
insert_ram_resource(u64 start_pfn,u64 end_pfn)1469 insert_ram_resource(u64 start_pfn, u64 end_pfn)
1470 {
1471 	struct resource *res =
1472 		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1473 	res->name = "System RAM";
1474 	res->start = start_pfn << PAGE_SHIFT;
1475 	res->end = (end_pfn << PAGE_SHIFT) - 1;
1476 	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1477 	if (insert_resource(&iomem_resource, res)) {
1478 		kfree(res);
1479 		return NULL;
1480 	}
1481 	return res;
1482 }
1483 
1484 /*
1485  * Request address space for all standard resources
1486  *
1487  * If the system includes PCI root complex drivers, we need to create
1488  * a window just below 4GB where PCI BARs can be mapped.
1489  */
request_standard_resources(void)1490 static int __init request_standard_resources(void)
1491 {
1492 	int i;
1493 	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1494 
1495 	iomem_resource.end = -1LL;
1496 #ifdef CONFIG_PCI
1497 	insert_non_bus_resource();
1498 #endif
1499 
1500 	for_each_online_node(i) {
1501 		u64 start_pfn = node_start_pfn[i];
1502 		u64 end_pfn = node_end_pfn[i];
1503 
1504 #ifdef CONFIG_PCI
1505 		if (start_pfn <= pci_reserve_start_pfn &&
1506 		    end_pfn > pci_reserve_start_pfn) {
1507 			if (end_pfn > pci_reserve_end_pfn)
1508 				insert_ram_resource(pci_reserve_end_pfn,
1509 						     end_pfn);
1510 			end_pfn = pci_reserve_start_pfn;
1511 		}
1512 #endif
1513 		insert_ram_resource(start_pfn, end_pfn);
1514 	}
1515 
1516 	code_resource.start = __pa(_text - CODE_DELTA);
1517 	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1518 	data_resource.start = __pa(_sdata);
1519 	data_resource.end = __pa(_end)-1;
1520 
1521 	insert_resource(&iomem_resource, &code_resource);
1522 	insert_resource(&iomem_resource, &data_resource);
1523 
1524 #ifdef CONFIG_KEXEC
1525 	insert_resource(&iomem_resource, &crashk_res);
1526 #endif
1527 
1528 	return 0;
1529 }
1530 
1531 subsys_initcall(request_standard_resources);
1532