1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48
49 MODULE_AUTHOR("Sean Hefty");
50 MODULE_DESCRIPTION("IB Address Translation");
51 MODULE_LICENSE("Dual BSD/GPL");
52
53 struct addr_req {
54 struct list_head list;
55 struct sockaddr_storage src_addr;
56 struct sockaddr_storage dst_addr;
57 struct rdma_dev_addr *addr;
58 struct rdma_addr_client *client;
59 void *context;
60 void (*callback)(int status, struct sockaddr *src_addr,
61 struct rdma_dev_addr *addr, void *context);
62 unsigned long timeout;
63 int status;
64 };
65
66 static void process_req(struct work_struct *work);
67
68 static DEFINE_MUTEX(lock);
69 static LIST_HEAD(req_list);
70 static DECLARE_DELAYED_WORK(work, process_req);
71 static struct workqueue_struct *addr_wq;
72
rdma_addr_register_client(struct rdma_addr_client * client)73 void rdma_addr_register_client(struct rdma_addr_client *client)
74 {
75 atomic_set(&client->refcount, 1);
76 init_completion(&client->comp);
77 }
78 EXPORT_SYMBOL(rdma_addr_register_client);
79
put_client(struct rdma_addr_client * client)80 static inline void put_client(struct rdma_addr_client *client)
81 {
82 if (atomic_dec_and_test(&client->refcount))
83 complete(&client->comp);
84 }
85
rdma_addr_unregister_client(struct rdma_addr_client * client)86 void rdma_addr_unregister_client(struct rdma_addr_client *client)
87 {
88 put_client(client);
89 wait_for_completion(&client->comp);
90 }
91 EXPORT_SYMBOL(rdma_addr_unregister_client);
92
rdma_copy_addr(struct rdma_dev_addr * dev_addr,struct net_device * dev,const unsigned char * dst_dev_addr)93 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
94 const unsigned char *dst_dev_addr)
95 {
96 dev_addr->dev_type = dev->type;
97 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
98 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
99 if (dst_dev_addr)
100 memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
101 dev_addr->bound_dev_if = dev->ifindex;
102 return 0;
103 }
104 EXPORT_SYMBOL(rdma_copy_addr);
105
rdma_translate_ip(struct sockaddr * addr,struct rdma_dev_addr * dev_addr)106 int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
107 {
108 struct net_device *dev;
109 int ret = -EADDRNOTAVAIL;
110
111 if (dev_addr->bound_dev_if) {
112 dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
113 if (!dev)
114 return -ENODEV;
115 ret = rdma_copy_addr(dev_addr, dev, NULL);
116 dev_put(dev);
117 return ret;
118 }
119
120 switch (addr->sa_family) {
121 case AF_INET:
122 dev = ip_dev_find(&init_net,
123 ((struct sockaddr_in *) addr)->sin_addr.s_addr);
124
125 if (!dev)
126 return ret;
127
128 ret = rdma_copy_addr(dev_addr, dev, NULL);
129 dev_put(dev);
130 break;
131
132 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
133 case AF_INET6:
134 rcu_read_lock();
135 for_each_netdev_rcu(&init_net, dev) {
136 if (ipv6_chk_addr(&init_net,
137 &((struct sockaddr_in6 *) addr)->sin6_addr,
138 dev, 1)) {
139 ret = rdma_copy_addr(dev_addr, dev, NULL);
140 break;
141 }
142 }
143 rcu_read_unlock();
144 break;
145 #endif
146 }
147 return ret;
148 }
149 EXPORT_SYMBOL(rdma_translate_ip);
150
set_timeout(unsigned long time)151 static void set_timeout(unsigned long time)
152 {
153 unsigned long delay;
154
155 cancel_delayed_work(&work);
156
157 delay = time - jiffies;
158 if ((long)delay <= 0)
159 delay = 1;
160
161 queue_delayed_work(addr_wq, &work, delay);
162 }
163
queue_req(struct addr_req * req)164 static void queue_req(struct addr_req *req)
165 {
166 struct addr_req *temp_req;
167
168 mutex_lock(&lock);
169 list_for_each_entry_reverse(temp_req, &req_list, list) {
170 if (time_after_eq(req->timeout, temp_req->timeout))
171 break;
172 }
173
174 list_add(&req->list, &temp_req->list);
175
176 if (req_list.next == &req->list)
177 set_timeout(req->timeout);
178 mutex_unlock(&lock);
179 }
180
dst_fetch_ha(struct dst_entry * dst,struct rdma_dev_addr * dev_addr,void * daddr)181 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, void *daddr)
182 {
183 struct neighbour *n;
184 int ret;
185
186 n = dst_neigh_lookup(dst, daddr);
187
188 rcu_read_lock();
189 if (!n || !(n->nud_state & NUD_VALID)) {
190 if (n)
191 neigh_event_send(n, NULL);
192 ret = -ENODATA;
193 } else {
194 ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
195 }
196 rcu_read_unlock();
197
198 if (n)
199 neigh_release(n);
200
201 return ret;
202 }
203
addr4_resolve(struct sockaddr_in * src_in,struct sockaddr_in * dst_in,struct rdma_dev_addr * addr)204 static int addr4_resolve(struct sockaddr_in *src_in,
205 struct sockaddr_in *dst_in,
206 struct rdma_dev_addr *addr)
207 {
208 __be32 src_ip = src_in->sin_addr.s_addr;
209 __be32 dst_ip = dst_in->sin_addr.s_addr;
210 struct rtable *rt;
211 struct flowi4 fl4;
212 int ret;
213
214 memset(&fl4, 0, sizeof(fl4));
215 fl4.daddr = dst_ip;
216 fl4.saddr = src_ip;
217 fl4.flowi4_oif = addr->bound_dev_if;
218 rt = ip_route_output_key(&init_net, &fl4);
219 if (IS_ERR(rt)) {
220 ret = PTR_ERR(rt);
221 goto out;
222 }
223 src_in->sin_family = AF_INET;
224 src_in->sin_addr.s_addr = fl4.saddr;
225
226 if (rt->dst.dev->flags & IFF_LOOPBACK) {
227 ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
228 if (!ret)
229 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
230 goto put;
231 }
232
233 /* If the device does ARP internally, return 'done' */
234 if (rt->dst.dev->flags & IFF_NOARP) {
235 ret = rdma_copy_addr(addr, rt->dst.dev, NULL);
236 goto put;
237 }
238
239 ret = dst_fetch_ha(&rt->dst, addr, &fl4.daddr);
240 put:
241 ip_rt_put(rt);
242 out:
243 return ret;
244 }
245
246 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
addr6_resolve(struct sockaddr_in6 * src_in,struct sockaddr_in6 * dst_in,struct rdma_dev_addr * addr)247 static int addr6_resolve(struct sockaddr_in6 *src_in,
248 struct sockaddr_in6 *dst_in,
249 struct rdma_dev_addr *addr)
250 {
251 struct flowi6 fl6;
252 struct dst_entry *dst;
253 int ret;
254
255 memset(&fl6, 0, sizeof fl6);
256 fl6.daddr = dst_in->sin6_addr;
257 fl6.saddr = src_in->sin6_addr;
258 fl6.flowi6_oif = addr->bound_dev_if;
259
260 dst = ip6_route_output(&init_net, NULL, &fl6);
261 if ((ret = dst->error))
262 goto put;
263
264 if (ipv6_addr_any(&fl6.saddr)) {
265 ret = ipv6_dev_get_saddr(&init_net, ip6_dst_idev(dst)->dev,
266 &fl6.daddr, 0, &fl6.saddr);
267 if (ret)
268 goto put;
269
270 src_in->sin6_family = AF_INET6;
271 src_in->sin6_addr = fl6.saddr;
272 }
273
274 if (dst->dev->flags & IFF_LOOPBACK) {
275 ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
276 if (!ret)
277 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
278 goto put;
279 }
280
281 /* If the device does ARP internally, return 'done' */
282 if (dst->dev->flags & IFF_NOARP) {
283 ret = rdma_copy_addr(addr, dst->dev, NULL);
284 goto put;
285 }
286
287 ret = dst_fetch_ha(dst, addr, &fl6.daddr);
288 put:
289 dst_release(dst);
290 return ret;
291 }
292 #else
addr6_resolve(struct sockaddr_in6 * src_in,struct sockaddr_in6 * dst_in,struct rdma_dev_addr * addr)293 static int addr6_resolve(struct sockaddr_in6 *src_in,
294 struct sockaddr_in6 *dst_in,
295 struct rdma_dev_addr *addr)
296 {
297 return -EADDRNOTAVAIL;
298 }
299 #endif
300
addr_resolve(struct sockaddr * src_in,struct sockaddr * dst_in,struct rdma_dev_addr * addr)301 static int addr_resolve(struct sockaddr *src_in,
302 struct sockaddr *dst_in,
303 struct rdma_dev_addr *addr)
304 {
305 if (src_in->sa_family == AF_INET) {
306 return addr4_resolve((struct sockaddr_in *) src_in,
307 (struct sockaddr_in *) dst_in, addr);
308 } else
309 return addr6_resolve((struct sockaddr_in6 *) src_in,
310 (struct sockaddr_in6 *) dst_in, addr);
311 }
312
process_req(struct work_struct * work)313 static void process_req(struct work_struct *work)
314 {
315 struct addr_req *req, *temp_req;
316 struct sockaddr *src_in, *dst_in;
317 struct list_head done_list;
318
319 INIT_LIST_HEAD(&done_list);
320
321 mutex_lock(&lock);
322 list_for_each_entry_safe(req, temp_req, &req_list, list) {
323 if (req->status == -ENODATA) {
324 src_in = (struct sockaddr *) &req->src_addr;
325 dst_in = (struct sockaddr *) &req->dst_addr;
326 req->status = addr_resolve(src_in, dst_in, req->addr);
327 if (req->status && time_after_eq(jiffies, req->timeout))
328 req->status = -ETIMEDOUT;
329 else if (req->status == -ENODATA)
330 continue;
331 }
332 list_move_tail(&req->list, &done_list);
333 }
334
335 if (!list_empty(&req_list)) {
336 req = list_entry(req_list.next, struct addr_req, list);
337 set_timeout(req->timeout);
338 }
339 mutex_unlock(&lock);
340
341 list_for_each_entry_safe(req, temp_req, &done_list, list) {
342 list_del(&req->list);
343 req->callback(req->status, (struct sockaddr *) &req->src_addr,
344 req->addr, req->context);
345 put_client(req->client);
346 kfree(req);
347 }
348 }
349
rdma_resolve_ip(struct rdma_addr_client * client,struct sockaddr * src_addr,struct sockaddr * dst_addr,struct rdma_dev_addr * addr,int timeout_ms,void (* callback)(int status,struct sockaddr * src_addr,struct rdma_dev_addr * addr,void * context),void * context)350 int rdma_resolve_ip(struct rdma_addr_client *client,
351 struct sockaddr *src_addr, struct sockaddr *dst_addr,
352 struct rdma_dev_addr *addr, int timeout_ms,
353 void (*callback)(int status, struct sockaddr *src_addr,
354 struct rdma_dev_addr *addr, void *context),
355 void *context)
356 {
357 struct sockaddr *src_in, *dst_in;
358 struct addr_req *req;
359 int ret = 0;
360
361 req = kzalloc(sizeof *req, GFP_KERNEL);
362 if (!req)
363 return -ENOMEM;
364
365 src_in = (struct sockaddr *) &req->src_addr;
366 dst_in = (struct sockaddr *) &req->dst_addr;
367
368 if (src_addr) {
369 if (src_addr->sa_family != dst_addr->sa_family) {
370 ret = -EINVAL;
371 goto err;
372 }
373
374 memcpy(src_in, src_addr, ip_addr_size(src_addr));
375 } else {
376 src_in->sa_family = dst_addr->sa_family;
377 }
378
379 memcpy(dst_in, dst_addr, ip_addr_size(dst_addr));
380 req->addr = addr;
381 req->callback = callback;
382 req->context = context;
383 req->client = client;
384 atomic_inc(&client->refcount);
385
386 req->status = addr_resolve(src_in, dst_in, addr);
387 switch (req->status) {
388 case 0:
389 req->timeout = jiffies;
390 queue_req(req);
391 break;
392 case -ENODATA:
393 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
394 queue_req(req);
395 break;
396 default:
397 ret = req->status;
398 atomic_dec(&client->refcount);
399 goto err;
400 }
401 return ret;
402 err:
403 kfree(req);
404 return ret;
405 }
406 EXPORT_SYMBOL(rdma_resolve_ip);
407
rdma_addr_cancel(struct rdma_dev_addr * addr)408 void rdma_addr_cancel(struct rdma_dev_addr *addr)
409 {
410 struct addr_req *req, *temp_req;
411
412 mutex_lock(&lock);
413 list_for_each_entry_safe(req, temp_req, &req_list, list) {
414 if (req->addr == addr) {
415 req->status = -ECANCELED;
416 req->timeout = jiffies;
417 list_move(&req->list, &req_list);
418 set_timeout(req->timeout);
419 break;
420 }
421 }
422 mutex_unlock(&lock);
423 }
424 EXPORT_SYMBOL(rdma_addr_cancel);
425
netevent_callback(struct notifier_block * self,unsigned long event,void * ctx)426 static int netevent_callback(struct notifier_block *self, unsigned long event,
427 void *ctx)
428 {
429 if (event == NETEVENT_NEIGH_UPDATE) {
430 struct neighbour *neigh = ctx;
431
432 if (neigh->nud_state & NUD_VALID) {
433 set_timeout(jiffies);
434 }
435 }
436 return 0;
437 }
438
439 static struct notifier_block nb = {
440 .notifier_call = netevent_callback
441 };
442
addr_init(void)443 static int __init addr_init(void)
444 {
445 addr_wq = create_singlethread_workqueue("ib_addr");
446 if (!addr_wq)
447 return -ENOMEM;
448
449 register_netevent_notifier(&nb);
450 return 0;
451 }
452
addr_cleanup(void)453 static void __exit addr_cleanup(void)
454 {
455 unregister_netevent_notifier(&nb);
456 destroy_workqueue(addr_wq);
457 }
458
459 module_init(addr_init);
460 module_exit(addr_cleanup);
461