• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regulator/of_regulator.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31 #include <linux/module.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/regulator.h>
35 
36 #include "dummy.h"
37 
38 #define rdev_crit(rdev, fmt, ...)					\
39 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_err(rdev, fmt, ...)					\
41 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_warn(rdev, fmt, ...)					\
43 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_info(rdev, fmt, ...)					\
45 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_dbg(rdev, fmt, ...)					\
47 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_list);
51 static LIST_HEAD(regulator_map_list);
52 static bool has_full_constraints;
53 static bool board_wants_dummy_regulator;
54 
55 static struct dentry *debugfs_root;
56 
57 /*
58  * struct regulator_map
59  *
60  * Used to provide symbolic supply names to devices.
61  */
62 struct regulator_map {
63 	struct list_head list;
64 	const char *dev_name;   /* The dev_name() for the consumer */
65 	const char *supply;
66 	struct regulator_dev *regulator;
67 };
68 
69 /*
70  * struct regulator
71  *
72  * One for each consumer device.
73  */
74 struct regulator {
75 	struct device *dev;
76 	struct list_head list;
77 	int uA_load;
78 	int min_uV;
79 	int max_uV;
80 	char *supply_name;
81 	struct device_attribute dev_attr;
82 	struct regulator_dev *rdev;
83 	struct dentry *debugfs;
84 };
85 
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator_dev *rdev);
88 static int _regulator_get_voltage(struct regulator_dev *rdev);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static void _notifier_call_chain(struct regulator_dev *rdev,
92 				  unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 				     int min_uV, int max_uV);
95 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 					  struct device *dev,
97 					  const char *supply_name);
98 
rdev_get_name(struct regulator_dev * rdev)99 static const char *rdev_get_name(struct regulator_dev *rdev)
100 {
101 	if (rdev->constraints && rdev->constraints->name)
102 		return rdev->constraints->name;
103 	else if (rdev->desc->name)
104 		return rdev->desc->name;
105 	else
106 		return "";
107 }
108 
109 /* gets the regulator for a given consumer device */
get_device_regulator(struct device * dev)110 static struct regulator *get_device_regulator(struct device *dev)
111 {
112 	struct regulator *regulator = NULL;
113 	struct regulator_dev *rdev;
114 
115 	mutex_lock(&regulator_list_mutex);
116 	list_for_each_entry(rdev, &regulator_list, list) {
117 		mutex_lock(&rdev->mutex);
118 		list_for_each_entry(regulator, &rdev->consumer_list, list) {
119 			if (regulator->dev == dev) {
120 				mutex_unlock(&rdev->mutex);
121 				mutex_unlock(&regulator_list_mutex);
122 				return regulator;
123 			}
124 		}
125 		mutex_unlock(&rdev->mutex);
126 	}
127 	mutex_unlock(&regulator_list_mutex);
128 	return NULL;
129 }
130 
131 /**
132  * of_get_regulator - get a regulator device node based on supply name
133  * @dev: Device pointer for the consumer (of regulator) device
134  * @supply: regulator supply name
135  *
136  * Extract the regulator device node corresponding to the supply name.
137  * retruns the device node corresponding to the regulator if found, else
138  * returns NULL.
139  */
of_get_regulator(struct device * dev,const char * supply)140 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
141 {
142 	struct device_node *regnode = NULL;
143 	char prop_name[32]; /* 32 is max size of property name */
144 
145 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
146 
147 	snprintf(prop_name, 32, "%s-supply", supply);
148 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
149 
150 	if (!regnode) {
151 		dev_dbg(dev, "Looking up %s property in node %s failed",
152 				prop_name, dev->of_node->full_name);
153 		return NULL;
154 	}
155 	return regnode;
156 }
157 
158 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)159 static int regulator_check_voltage(struct regulator_dev *rdev,
160 				   int *min_uV, int *max_uV)
161 {
162 	BUG_ON(*min_uV > *max_uV);
163 
164 	if (!rdev->constraints) {
165 		rdev_err(rdev, "no constraints\n");
166 		return -ENODEV;
167 	}
168 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
169 		rdev_err(rdev, "operation not allowed\n");
170 		return -EPERM;
171 	}
172 
173 	if (*max_uV > rdev->constraints->max_uV)
174 		*max_uV = rdev->constraints->max_uV;
175 	if (*min_uV < rdev->constraints->min_uV)
176 		*min_uV = rdev->constraints->min_uV;
177 
178 	if (*min_uV > *max_uV) {
179 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
180 			 *min_uV, *max_uV);
181 		return -EINVAL;
182 	}
183 
184 	return 0;
185 }
186 
187 /* Make sure we select a voltage that suits the needs of all
188  * regulator consumers
189  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)190 static int regulator_check_consumers(struct regulator_dev *rdev,
191 				     int *min_uV, int *max_uV)
192 {
193 	struct regulator *regulator;
194 
195 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
196 		/*
197 		 * Assume consumers that didn't say anything are OK
198 		 * with anything in the constraint range.
199 		 */
200 		if (!regulator->min_uV && !regulator->max_uV)
201 			continue;
202 
203 		if (*max_uV > regulator->max_uV)
204 			*max_uV = regulator->max_uV;
205 		if (*min_uV < regulator->min_uV)
206 			*min_uV = regulator->min_uV;
207 	}
208 
209 	if (*min_uV > *max_uV)
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)216 static int regulator_check_current_limit(struct regulator_dev *rdev,
217 					int *min_uA, int *max_uA)
218 {
219 	BUG_ON(*min_uA > *max_uA);
220 
221 	if (!rdev->constraints) {
222 		rdev_err(rdev, "no constraints\n");
223 		return -ENODEV;
224 	}
225 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
226 		rdev_err(rdev, "operation not allowed\n");
227 		return -EPERM;
228 	}
229 
230 	if (*max_uA > rdev->constraints->max_uA)
231 		*max_uA = rdev->constraints->max_uA;
232 	if (*min_uA < rdev->constraints->min_uA)
233 		*min_uA = rdev->constraints->min_uA;
234 
235 	if (*min_uA > *max_uA) {
236 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
237 			 *min_uA, *max_uA);
238 		return -EINVAL;
239 	}
240 
241 	return 0;
242 }
243 
244 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)245 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
246 {
247 	switch (*mode) {
248 	case REGULATOR_MODE_FAST:
249 	case REGULATOR_MODE_NORMAL:
250 	case REGULATOR_MODE_IDLE:
251 	case REGULATOR_MODE_STANDBY:
252 		break;
253 	default:
254 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
255 		return -EINVAL;
256 	}
257 
258 	if (!rdev->constraints) {
259 		rdev_err(rdev, "no constraints\n");
260 		return -ENODEV;
261 	}
262 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
263 		rdev_err(rdev, "operation not allowed\n");
264 		return -EPERM;
265 	}
266 
267 	/* The modes are bitmasks, the most power hungry modes having
268 	 * the lowest values. If the requested mode isn't supported
269 	 * try higher modes. */
270 	while (*mode) {
271 		if (rdev->constraints->valid_modes_mask & *mode)
272 			return 0;
273 		*mode /= 2;
274 	}
275 
276 	return -EINVAL;
277 }
278 
279 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)280 static int regulator_check_drms(struct regulator_dev *rdev)
281 {
282 	if (!rdev->constraints) {
283 		rdev_err(rdev, "no constraints\n");
284 		return -ENODEV;
285 	}
286 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
287 		rdev_err(rdev, "operation not allowed\n");
288 		return -EPERM;
289 	}
290 	return 0;
291 }
292 
device_requested_uA_show(struct device * dev,struct device_attribute * attr,char * buf)293 static ssize_t device_requested_uA_show(struct device *dev,
294 			     struct device_attribute *attr, char *buf)
295 {
296 	struct regulator *regulator;
297 
298 	regulator = get_device_regulator(dev);
299 	if (regulator == NULL)
300 		return 0;
301 
302 	return sprintf(buf, "%d\n", regulator->uA_load);
303 }
304 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)305 static ssize_t regulator_uV_show(struct device *dev,
306 				struct device_attribute *attr, char *buf)
307 {
308 	struct regulator_dev *rdev = dev_get_drvdata(dev);
309 	ssize_t ret;
310 
311 	mutex_lock(&rdev->mutex);
312 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
313 	mutex_unlock(&rdev->mutex);
314 
315 	return ret;
316 }
317 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)319 static ssize_t regulator_uA_show(struct device *dev,
320 				struct device_attribute *attr, char *buf)
321 {
322 	struct regulator_dev *rdev = dev_get_drvdata(dev);
323 
324 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325 }
326 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327 
regulator_name_show(struct device * dev,struct device_attribute * attr,char * buf)328 static ssize_t regulator_name_show(struct device *dev,
329 			     struct device_attribute *attr, char *buf)
330 {
331 	struct regulator_dev *rdev = dev_get_drvdata(dev);
332 
333 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 }
335 
regulator_print_opmode(char * buf,int mode)336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 	switch (mode) {
339 	case REGULATOR_MODE_FAST:
340 		return sprintf(buf, "fast\n");
341 	case REGULATOR_MODE_NORMAL:
342 		return sprintf(buf, "normal\n");
343 	case REGULATOR_MODE_IDLE:
344 		return sprintf(buf, "idle\n");
345 	case REGULATOR_MODE_STANDBY:
346 		return sprintf(buf, "standby\n");
347 	}
348 	return sprintf(buf, "unknown\n");
349 }
350 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)351 static ssize_t regulator_opmode_show(struct device *dev,
352 				    struct device_attribute *attr, char *buf)
353 {
354 	struct regulator_dev *rdev = dev_get_drvdata(dev);
355 
356 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 
regulator_print_state(char * buf,int state)360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 	if (state > 0)
363 		return sprintf(buf, "enabled\n");
364 	else if (state == 0)
365 		return sprintf(buf, "disabled\n");
366 	else
367 		return sprintf(buf, "unknown\n");
368 }
369 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)370 static ssize_t regulator_state_show(struct device *dev,
371 				   struct device_attribute *attr, char *buf)
372 {
373 	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 	ssize_t ret;
375 
376 	mutex_lock(&rdev->mutex);
377 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 	mutex_unlock(&rdev->mutex);
379 
380 	return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)384 static ssize_t regulator_status_show(struct device *dev,
385 				   struct device_attribute *attr, char *buf)
386 {
387 	struct regulator_dev *rdev = dev_get_drvdata(dev);
388 	int status;
389 	char *label;
390 
391 	status = rdev->desc->ops->get_status(rdev);
392 	if (status < 0)
393 		return status;
394 
395 	switch (status) {
396 	case REGULATOR_STATUS_OFF:
397 		label = "off";
398 		break;
399 	case REGULATOR_STATUS_ON:
400 		label = "on";
401 		break;
402 	case REGULATOR_STATUS_ERROR:
403 		label = "error";
404 		break;
405 	case REGULATOR_STATUS_FAST:
406 		label = "fast";
407 		break;
408 	case REGULATOR_STATUS_NORMAL:
409 		label = "normal";
410 		break;
411 	case REGULATOR_STATUS_IDLE:
412 		label = "idle";
413 		break;
414 	case REGULATOR_STATUS_STANDBY:
415 		label = "standby";
416 		break;
417 	default:
418 		return -ERANGE;
419 	}
420 
421 	return sprintf(buf, "%s\n", label);
422 }
423 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)425 static ssize_t regulator_min_uA_show(struct device *dev,
426 				    struct device_attribute *attr, char *buf)
427 {
428 	struct regulator_dev *rdev = dev_get_drvdata(dev);
429 
430 	if (!rdev->constraints)
431 		return sprintf(buf, "constraint not defined\n");
432 
433 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434 }
435 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)437 static ssize_t regulator_max_uA_show(struct device *dev,
438 				    struct device_attribute *attr, char *buf)
439 {
440 	struct regulator_dev *rdev = dev_get_drvdata(dev);
441 
442 	if (!rdev->constraints)
443 		return sprintf(buf, "constraint not defined\n");
444 
445 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446 }
447 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)449 static ssize_t regulator_min_uV_show(struct device *dev,
450 				    struct device_attribute *attr, char *buf)
451 {
452 	struct regulator_dev *rdev = dev_get_drvdata(dev);
453 
454 	if (!rdev->constraints)
455 		return sprintf(buf, "constraint not defined\n");
456 
457 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458 }
459 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)461 static ssize_t regulator_max_uV_show(struct device *dev,
462 				    struct device_attribute *attr, char *buf)
463 {
464 	struct regulator_dev *rdev = dev_get_drvdata(dev);
465 
466 	if (!rdev->constraints)
467 		return sprintf(buf, "constraint not defined\n");
468 
469 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470 }
471 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)473 static ssize_t regulator_total_uA_show(struct device *dev,
474 				      struct device_attribute *attr, char *buf)
475 {
476 	struct regulator_dev *rdev = dev_get_drvdata(dev);
477 	struct regulator *regulator;
478 	int uA = 0;
479 
480 	mutex_lock(&rdev->mutex);
481 	list_for_each_entry(regulator, &rdev->consumer_list, list)
482 		uA += regulator->uA_load;
483 	mutex_unlock(&rdev->mutex);
484 	return sprintf(buf, "%d\n", uA);
485 }
486 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487 
regulator_num_users_show(struct device * dev,struct device_attribute * attr,char * buf)488 static ssize_t regulator_num_users_show(struct device *dev,
489 				      struct device_attribute *attr, char *buf)
490 {
491 	struct regulator_dev *rdev = dev_get_drvdata(dev);
492 	return sprintf(buf, "%d\n", rdev->use_count);
493 }
494 
regulator_type_show(struct device * dev,struct device_attribute * attr,char * buf)495 static ssize_t regulator_type_show(struct device *dev,
496 				  struct device_attribute *attr, char *buf)
497 {
498 	struct regulator_dev *rdev = dev_get_drvdata(dev);
499 
500 	switch (rdev->desc->type) {
501 	case REGULATOR_VOLTAGE:
502 		return sprintf(buf, "voltage\n");
503 	case REGULATOR_CURRENT:
504 		return sprintf(buf, "current\n");
505 	}
506 	return sprintf(buf, "unknown\n");
507 }
508 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)509 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
510 				struct device_attribute *attr, char *buf)
511 {
512 	struct regulator_dev *rdev = dev_get_drvdata(dev);
513 
514 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
515 }
516 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
517 		regulator_suspend_mem_uV_show, NULL);
518 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)519 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
520 				struct device_attribute *attr, char *buf)
521 {
522 	struct regulator_dev *rdev = dev_get_drvdata(dev);
523 
524 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
525 }
526 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
527 		regulator_suspend_disk_uV_show, NULL);
528 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)529 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
530 				struct device_attribute *attr, char *buf)
531 {
532 	struct regulator_dev *rdev = dev_get_drvdata(dev);
533 
534 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
535 }
536 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
537 		regulator_suspend_standby_uV_show, NULL);
538 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)539 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
540 				struct device_attribute *attr, char *buf)
541 {
542 	struct regulator_dev *rdev = dev_get_drvdata(dev);
543 
544 	return regulator_print_opmode(buf,
545 		rdev->constraints->state_mem.mode);
546 }
547 static DEVICE_ATTR(suspend_mem_mode, 0444,
548 		regulator_suspend_mem_mode_show, NULL);
549 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)550 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
551 				struct device_attribute *attr, char *buf)
552 {
553 	struct regulator_dev *rdev = dev_get_drvdata(dev);
554 
555 	return regulator_print_opmode(buf,
556 		rdev->constraints->state_disk.mode);
557 }
558 static DEVICE_ATTR(suspend_disk_mode, 0444,
559 		regulator_suspend_disk_mode_show, NULL);
560 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)561 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
562 				struct device_attribute *attr, char *buf)
563 {
564 	struct regulator_dev *rdev = dev_get_drvdata(dev);
565 
566 	return regulator_print_opmode(buf,
567 		rdev->constraints->state_standby.mode);
568 }
569 static DEVICE_ATTR(suspend_standby_mode, 0444,
570 		regulator_suspend_standby_mode_show, NULL);
571 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)572 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
573 				   struct device_attribute *attr, char *buf)
574 {
575 	struct regulator_dev *rdev = dev_get_drvdata(dev);
576 
577 	return regulator_print_state(buf,
578 			rdev->constraints->state_mem.enabled);
579 }
580 static DEVICE_ATTR(suspend_mem_state, 0444,
581 		regulator_suspend_mem_state_show, NULL);
582 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)583 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
584 				   struct device_attribute *attr, char *buf)
585 {
586 	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 
588 	return regulator_print_state(buf,
589 			rdev->constraints->state_disk.enabled);
590 }
591 static DEVICE_ATTR(suspend_disk_state, 0444,
592 		regulator_suspend_disk_state_show, NULL);
593 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)594 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
595 				   struct device_attribute *attr, char *buf)
596 {
597 	struct regulator_dev *rdev = dev_get_drvdata(dev);
598 
599 	return regulator_print_state(buf,
600 			rdev->constraints->state_standby.enabled);
601 }
602 static DEVICE_ATTR(suspend_standby_state, 0444,
603 		regulator_suspend_standby_state_show, NULL);
604 
605 
606 /*
607  * These are the only attributes are present for all regulators.
608  * Other attributes are a function of regulator functionality.
609  */
610 static struct device_attribute regulator_dev_attrs[] = {
611 	__ATTR(name, 0444, regulator_name_show, NULL),
612 	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
613 	__ATTR(type, 0444, regulator_type_show, NULL),
614 	__ATTR_NULL,
615 };
616 
regulator_dev_release(struct device * dev)617 static void regulator_dev_release(struct device *dev)
618 {
619 	struct regulator_dev *rdev = dev_get_drvdata(dev);
620 	kfree(rdev);
621 }
622 
623 static struct class regulator_class = {
624 	.name = "regulator",
625 	.dev_release = regulator_dev_release,
626 	.dev_attrs = regulator_dev_attrs,
627 };
628 
629 /* Calculate the new optimum regulator operating mode based on the new total
630  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)631 static void drms_uA_update(struct regulator_dev *rdev)
632 {
633 	struct regulator *sibling;
634 	int current_uA = 0, output_uV, input_uV, err;
635 	unsigned int mode;
636 
637 	err = regulator_check_drms(rdev);
638 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
639 	    (!rdev->desc->ops->get_voltage &&
640 	     !rdev->desc->ops->get_voltage_sel) ||
641 	    !rdev->desc->ops->set_mode)
642 		return;
643 
644 	/* get output voltage */
645 	output_uV = _regulator_get_voltage(rdev);
646 	if (output_uV <= 0)
647 		return;
648 
649 	/* get input voltage */
650 	input_uV = 0;
651 	if (rdev->supply)
652 		input_uV = _regulator_get_voltage(rdev);
653 	if (input_uV <= 0)
654 		input_uV = rdev->constraints->input_uV;
655 	if (input_uV <= 0)
656 		return;
657 
658 	/* calc total requested load */
659 	list_for_each_entry(sibling, &rdev->consumer_list, list)
660 		current_uA += sibling->uA_load;
661 
662 	/* now get the optimum mode for our new total regulator load */
663 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
664 						  output_uV, current_uA);
665 
666 	/* check the new mode is allowed */
667 	err = regulator_mode_constrain(rdev, &mode);
668 	if (err == 0)
669 		rdev->desc->ops->set_mode(rdev, mode);
670 }
671 
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)672 static int suspend_set_state(struct regulator_dev *rdev,
673 	struct regulator_state *rstate)
674 {
675 	int ret = 0;
676 	bool can_set_state;
677 
678 	can_set_state = rdev->desc->ops->set_suspend_enable &&
679 		rdev->desc->ops->set_suspend_disable;
680 
681 	/* If we have no suspend mode configration don't set anything;
682 	 * only warn if the driver actually makes the suspend mode
683 	 * configurable.
684 	 */
685 	if (!rstate->enabled && !rstate->disabled) {
686 		if (can_set_state)
687 			rdev_warn(rdev, "No configuration\n");
688 		return 0;
689 	}
690 
691 	if (rstate->enabled && rstate->disabled) {
692 		rdev_err(rdev, "invalid configuration\n");
693 		return -EINVAL;
694 	}
695 
696 	if (!can_set_state) {
697 		rdev_err(rdev, "no way to set suspend state\n");
698 		return -EINVAL;
699 	}
700 
701 	if (rstate->enabled)
702 		ret = rdev->desc->ops->set_suspend_enable(rdev);
703 	else
704 		ret = rdev->desc->ops->set_suspend_disable(rdev);
705 	if (ret < 0) {
706 		rdev_err(rdev, "failed to enabled/disable\n");
707 		return ret;
708 	}
709 
710 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
711 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
712 		if (ret < 0) {
713 			rdev_err(rdev, "failed to set voltage\n");
714 			return ret;
715 		}
716 	}
717 
718 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
719 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
720 		if (ret < 0) {
721 			rdev_err(rdev, "failed to set mode\n");
722 			return ret;
723 		}
724 	}
725 	return ret;
726 }
727 
728 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)729 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
730 {
731 	if (!rdev->constraints)
732 		return -EINVAL;
733 
734 	switch (state) {
735 	case PM_SUSPEND_STANDBY:
736 		return suspend_set_state(rdev,
737 			&rdev->constraints->state_standby);
738 	case PM_SUSPEND_MEM:
739 		return suspend_set_state(rdev,
740 			&rdev->constraints->state_mem);
741 	case PM_SUSPEND_MAX:
742 		return suspend_set_state(rdev,
743 			&rdev->constraints->state_disk);
744 	default:
745 		return -EINVAL;
746 	}
747 }
748 
print_constraints(struct regulator_dev * rdev)749 static void print_constraints(struct regulator_dev *rdev)
750 {
751 	struct regulation_constraints *constraints = rdev->constraints;
752 	char buf[80] = "";
753 	int count = 0;
754 	int ret;
755 
756 	if (constraints->min_uV && constraints->max_uV) {
757 		if (constraints->min_uV == constraints->max_uV)
758 			count += sprintf(buf + count, "%d mV ",
759 					 constraints->min_uV / 1000);
760 		else
761 			count += sprintf(buf + count, "%d <--> %d mV ",
762 					 constraints->min_uV / 1000,
763 					 constraints->max_uV / 1000);
764 	}
765 
766 	if (!constraints->min_uV ||
767 	    constraints->min_uV != constraints->max_uV) {
768 		ret = _regulator_get_voltage(rdev);
769 		if (ret > 0)
770 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
771 	}
772 
773 	if (constraints->uV_offset)
774 		count += sprintf(buf, "%dmV offset ",
775 				 constraints->uV_offset / 1000);
776 
777 	if (constraints->min_uA && constraints->max_uA) {
778 		if (constraints->min_uA == constraints->max_uA)
779 			count += sprintf(buf + count, "%d mA ",
780 					 constraints->min_uA / 1000);
781 		else
782 			count += sprintf(buf + count, "%d <--> %d mA ",
783 					 constraints->min_uA / 1000,
784 					 constraints->max_uA / 1000);
785 	}
786 
787 	if (!constraints->min_uA ||
788 	    constraints->min_uA != constraints->max_uA) {
789 		ret = _regulator_get_current_limit(rdev);
790 		if (ret > 0)
791 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
792 	}
793 
794 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
795 		count += sprintf(buf + count, "fast ");
796 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
797 		count += sprintf(buf + count, "normal ");
798 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
799 		count += sprintf(buf + count, "idle ");
800 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
801 		count += sprintf(buf + count, "standby");
802 
803 	rdev_info(rdev, "%s\n", buf);
804 
805 	if ((constraints->min_uV != constraints->max_uV) &&
806 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
807 		rdev_warn(rdev,
808 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
809 }
810 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)811 static int machine_constraints_voltage(struct regulator_dev *rdev,
812 	struct regulation_constraints *constraints)
813 {
814 	struct regulator_ops *ops = rdev->desc->ops;
815 	int ret;
816 
817 	/* do we need to apply the constraint voltage */
818 	if (rdev->constraints->apply_uV &&
819 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
820 		ret = _regulator_do_set_voltage(rdev,
821 						rdev->constraints->min_uV,
822 						rdev->constraints->max_uV);
823 		if (ret < 0) {
824 			rdev_err(rdev, "failed to apply %duV constraint\n",
825 				 rdev->constraints->min_uV);
826 			return ret;
827 		}
828 	}
829 
830 	/* constrain machine-level voltage specs to fit
831 	 * the actual range supported by this regulator.
832 	 */
833 	if (ops->list_voltage && rdev->desc->n_voltages) {
834 		int	count = rdev->desc->n_voltages;
835 		int	i;
836 		int	min_uV = INT_MAX;
837 		int	max_uV = INT_MIN;
838 		int	cmin = constraints->min_uV;
839 		int	cmax = constraints->max_uV;
840 
841 		/* it's safe to autoconfigure fixed-voltage supplies
842 		   and the constraints are used by list_voltage. */
843 		if (count == 1 && !cmin) {
844 			cmin = 1;
845 			cmax = INT_MAX;
846 			constraints->min_uV = cmin;
847 			constraints->max_uV = cmax;
848 		}
849 
850 		/* voltage constraints are optional */
851 		if ((cmin == 0) && (cmax == 0))
852 			return 0;
853 
854 		/* else require explicit machine-level constraints */
855 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
856 			rdev_err(rdev, "invalid voltage constraints\n");
857 			return -EINVAL;
858 		}
859 
860 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
861 		for (i = 0; i < count; i++) {
862 			int	value;
863 
864 			value = ops->list_voltage(rdev, i);
865 			if (value <= 0)
866 				continue;
867 
868 			/* maybe adjust [min_uV..max_uV] */
869 			if (value >= cmin && value < min_uV)
870 				min_uV = value;
871 			if (value <= cmax && value > max_uV)
872 				max_uV = value;
873 		}
874 
875 		/* final: [min_uV..max_uV] valid iff constraints valid */
876 		if (max_uV < min_uV) {
877 			rdev_err(rdev, "unsupportable voltage constraints\n");
878 			return -EINVAL;
879 		}
880 
881 		/* use regulator's subset of machine constraints */
882 		if (constraints->min_uV < min_uV) {
883 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
884 				 constraints->min_uV, min_uV);
885 			constraints->min_uV = min_uV;
886 		}
887 		if (constraints->max_uV > max_uV) {
888 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
889 				 constraints->max_uV, max_uV);
890 			constraints->max_uV = max_uV;
891 		}
892 	}
893 
894 	return 0;
895 }
896 
897 /**
898  * set_machine_constraints - sets regulator constraints
899  * @rdev: regulator source
900  * @constraints: constraints to apply
901  *
902  * Allows platform initialisation code to define and constrain
903  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
904  * Constraints *must* be set by platform code in order for some
905  * regulator operations to proceed i.e. set_voltage, set_current_limit,
906  * set_mode.
907  */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)908 static int set_machine_constraints(struct regulator_dev *rdev,
909 	const struct regulation_constraints *constraints)
910 {
911 	int ret = 0;
912 	struct regulator_ops *ops = rdev->desc->ops;
913 
914 	if (constraints)
915 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916 					    GFP_KERNEL);
917 	else
918 		rdev->constraints = kzalloc(sizeof(*constraints),
919 					    GFP_KERNEL);
920 	if (!rdev->constraints)
921 		return -ENOMEM;
922 
923 	ret = machine_constraints_voltage(rdev, rdev->constraints);
924 	if (ret != 0)
925 		goto out;
926 
927 	/* do we need to setup our suspend state */
928 	if (rdev->constraints->initial_state) {
929 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
930 		if (ret < 0) {
931 			rdev_err(rdev, "failed to set suspend state\n");
932 			goto out;
933 		}
934 	}
935 
936 	if (rdev->constraints->initial_mode) {
937 		if (!ops->set_mode) {
938 			rdev_err(rdev, "no set_mode operation\n");
939 			ret = -EINVAL;
940 			goto out;
941 		}
942 
943 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
944 		if (ret < 0) {
945 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
946 			goto out;
947 		}
948 	}
949 
950 	/* If the constraints say the regulator should be on at this point
951 	 * and we have control then make sure it is enabled.
952 	 */
953 	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
954 	    ops->enable) {
955 		ret = ops->enable(rdev);
956 		if (ret < 0) {
957 			rdev_err(rdev, "failed to enable\n");
958 			goto out;
959 		}
960 	}
961 
962 	print_constraints(rdev);
963 	return 0;
964 out:
965 	kfree(rdev->constraints);
966 	rdev->constraints = NULL;
967 	return ret;
968 }
969 
970 /**
971  * set_supply - set regulator supply regulator
972  * @rdev: regulator name
973  * @supply_rdev: supply regulator name
974  *
975  * Called by platform initialisation code to set the supply regulator for this
976  * regulator. This ensures that a regulators supply will also be enabled by the
977  * core if it's child is enabled.
978  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)979 static int set_supply(struct regulator_dev *rdev,
980 		      struct regulator_dev *supply_rdev)
981 {
982 	int err;
983 
984 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
985 
986 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
987 	if (rdev->supply == NULL) {
988 		err = -ENOMEM;
989 		return err;
990 	}
991 
992 	return 0;
993 }
994 
995 /**
996  * set_consumer_device_supply - Bind a regulator to a symbolic supply
997  * @rdev:         regulator source
998  * @consumer_dev_name: dev_name() string for device supply applies to
999  * @supply:       symbolic name for supply
1000  *
1001  * Allows platform initialisation code to map physical regulator
1002  * sources to symbolic names for supplies for use by devices.  Devices
1003  * should use these symbolic names to request regulators, avoiding the
1004  * need to provide board-specific regulator names as platform data.
1005  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1006 static int set_consumer_device_supply(struct regulator_dev *rdev,
1007 				      const char *consumer_dev_name,
1008 				      const char *supply)
1009 {
1010 	struct regulator_map *node;
1011 	int has_dev;
1012 
1013 	if (supply == NULL)
1014 		return -EINVAL;
1015 
1016 	if (consumer_dev_name != NULL)
1017 		has_dev = 1;
1018 	else
1019 		has_dev = 0;
1020 
1021 	list_for_each_entry(node, &regulator_map_list, list) {
1022 		if (node->dev_name && consumer_dev_name) {
1023 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1024 				continue;
1025 		} else if (node->dev_name || consumer_dev_name) {
1026 			continue;
1027 		}
1028 
1029 		if (strcmp(node->supply, supply) != 0)
1030 			continue;
1031 
1032 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1033 			 consumer_dev_name,
1034 			 dev_name(&node->regulator->dev),
1035 			 node->regulator->desc->name,
1036 			 supply,
1037 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1038 		return -EBUSY;
1039 	}
1040 
1041 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1042 	if (node == NULL)
1043 		return -ENOMEM;
1044 
1045 	node->regulator = rdev;
1046 	node->supply = supply;
1047 
1048 	if (has_dev) {
1049 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1050 		if (node->dev_name == NULL) {
1051 			kfree(node);
1052 			return -ENOMEM;
1053 		}
1054 	}
1055 
1056 	list_add(&node->list, &regulator_map_list);
1057 	return 0;
1058 }
1059 
unset_regulator_supplies(struct regulator_dev * rdev)1060 static void unset_regulator_supplies(struct regulator_dev *rdev)
1061 {
1062 	struct regulator_map *node, *n;
1063 
1064 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1065 		if (rdev == node->regulator) {
1066 			list_del(&node->list);
1067 			kfree(node->dev_name);
1068 			kfree(node);
1069 		}
1070 	}
1071 }
1072 
1073 #define REG_STR_SIZE	64
1074 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1075 static struct regulator *create_regulator(struct regulator_dev *rdev,
1076 					  struct device *dev,
1077 					  const char *supply_name)
1078 {
1079 	struct regulator *regulator;
1080 	char buf[REG_STR_SIZE];
1081 	int err, size;
1082 
1083 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1084 	if (regulator == NULL)
1085 		return NULL;
1086 
1087 	mutex_lock(&rdev->mutex);
1088 	regulator->rdev = rdev;
1089 	list_add(&regulator->list, &rdev->consumer_list);
1090 
1091 	if (dev) {
1092 		/* create a 'requested_microamps_name' sysfs entry */
1093 		size = scnprintf(buf, REG_STR_SIZE,
1094 				 "microamps_requested_%s-%s",
1095 				 dev_name(dev), supply_name);
1096 		if (size >= REG_STR_SIZE)
1097 			goto overflow_err;
1098 
1099 		regulator->dev = dev;
1100 		sysfs_attr_init(&regulator->dev_attr.attr);
1101 		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1102 		if (regulator->dev_attr.attr.name == NULL)
1103 			goto attr_name_err;
1104 
1105 		regulator->dev_attr.attr.mode = 0444;
1106 		regulator->dev_attr.show = device_requested_uA_show;
1107 		err = device_create_file(dev, &regulator->dev_attr);
1108 		if (err < 0) {
1109 			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1110 			goto attr_name_err;
1111 		}
1112 
1113 		/* also add a link to the device sysfs entry */
1114 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1115 				 dev->kobj.name, supply_name);
1116 		if (size >= REG_STR_SIZE)
1117 			goto attr_err;
1118 
1119 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1120 		if (regulator->supply_name == NULL)
1121 			goto attr_err;
1122 
1123 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1124 					buf);
1125 		if (err) {
1126 			rdev_warn(rdev, "could not add device link %s err %d\n",
1127 				  dev->kobj.name, err);
1128 			goto link_name_err;
1129 		}
1130 	} else {
1131 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1132 		if (regulator->supply_name == NULL)
1133 			goto attr_err;
1134 	}
1135 
1136 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1137 						rdev->debugfs);
1138 	if (!regulator->debugfs) {
1139 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1140 	} else {
1141 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1142 				   &regulator->uA_load);
1143 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1144 				   &regulator->min_uV);
1145 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1146 				   &regulator->max_uV);
1147 	}
1148 
1149 	mutex_unlock(&rdev->mutex);
1150 	return regulator;
1151 link_name_err:
1152 	kfree(regulator->supply_name);
1153 attr_err:
1154 	device_remove_file(regulator->dev, &regulator->dev_attr);
1155 attr_name_err:
1156 	kfree(regulator->dev_attr.attr.name);
1157 overflow_err:
1158 	list_del(&regulator->list);
1159 	kfree(regulator);
1160 	mutex_unlock(&rdev->mutex);
1161 	return NULL;
1162 }
1163 
_regulator_get_enable_time(struct regulator_dev * rdev)1164 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1165 {
1166 	if (!rdev->desc->ops->enable_time)
1167 		return 0;
1168 	return rdev->desc->ops->enable_time(rdev);
1169 }
1170 
regulator_dev_lookup(struct device * dev,const char * supply)1171 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1172 							 const char *supply)
1173 {
1174 	struct regulator_dev *r;
1175 	struct device_node *node;
1176 
1177 	/* first do a dt based lookup */
1178 	if (dev && dev->of_node) {
1179 		node = of_get_regulator(dev, supply);
1180 		if (node)
1181 			list_for_each_entry(r, &regulator_list, list)
1182 				if (r->dev.parent &&
1183 					node == r->dev.of_node)
1184 					return r;
1185 	}
1186 
1187 	/* if not found, try doing it non-dt way */
1188 	list_for_each_entry(r, &regulator_list, list)
1189 		if (strcmp(rdev_get_name(r), supply) == 0)
1190 			return r;
1191 
1192 	return NULL;
1193 }
1194 
1195 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,int exclusive)1196 static struct regulator *_regulator_get(struct device *dev, const char *id,
1197 					int exclusive)
1198 {
1199 	struct regulator_dev *rdev;
1200 	struct regulator_map *map;
1201 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1202 	const char *devname = NULL;
1203 	int ret;
1204 
1205 	if (id == NULL) {
1206 		pr_err("get() with no identifier\n");
1207 		return regulator;
1208 	}
1209 
1210 	if (dev)
1211 		devname = dev_name(dev);
1212 
1213 	mutex_lock(&regulator_list_mutex);
1214 
1215 	rdev = regulator_dev_lookup(dev, id);
1216 	if (rdev)
1217 		goto found;
1218 
1219 	list_for_each_entry(map, &regulator_map_list, list) {
1220 		/* If the mapping has a device set up it must match */
1221 		if (map->dev_name &&
1222 		    (!devname || strcmp(map->dev_name, devname)))
1223 			continue;
1224 
1225 		if (strcmp(map->supply, id) == 0) {
1226 			rdev = map->regulator;
1227 			goto found;
1228 		}
1229 	}
1230 
1231 	if (board_wants_dummy_regulator) {
1232 		rdev = dummy_regulator_rdev;
1233 		goto found;
1234 	}
1235 
1236 #ifdef CONFIG_REGULATOR_DUMMY
1237 	if (!devname)
1238 		devname = "deviceless";
1239 
1240 	/* If the board didn't flag that it was fully constrained then
1241 	 * substitute in a dummy regulator so consumers can continue.
1242 	 */
1243 	if (!has_full_constraints) {
1244 		pr_warn("%s supply %s not found, using dummy regulator\n",
1245 			devname, id);
1246 		rdev = dummy_regulator_rdev;
1247 		goto found;
1248 	}
1249 #endif
1250 
1251 	mutex_unlock(&regulator_list_mutex);
1252 	return regulator;
1253 
1254 found:
1255 	if (rdev->exclusive) {
1256 		regulator = ERR_PTR(-EPERM);
1257 		goto out;
1258 	}
1259 
1260 	if (exclusive && rdev->open_count) {
1261 		regulator = ERR_PTR(-EBUSY);
1262 		goto out;
1263 	}
1264 
1265 	if (!try_module_get(rdev->owner))
1266 		goto out;
1267 
1268 	regulator = create_regulator(rdev, dev, id);
1269 	if (regulator == NULL) {
1270 		regulator = ERR_PTR(-ENOMEM);
1271 		module_put(rdev->owner);
1272 		goto out;
1273 	}
1274 
1275 	rdev->open_count++;
1276 	if (exclusive) {
1277 		rdev->exclusive = 1;
1278 
1279 		ret = _regulator_is_enabled(rdev);
1280 		if (ret > 0)
1281 			rdev->use_count = 1;
1282 		else
1283 			rdev->use_count = 0;
1284 	}
1285 
1286 out:
1287 	mutex_unlock(&regulator_list_mutex);
1288 
1289 	return regulator;
1290 }
1291 
1292 /**
1293  * regulator_get - lookup and obtain a reference to a regulator.
1294  * @dev: device for regulator "consumer"
1295  * @id: Supply name or regulator ID.
1296  *
1297  * Returns a struct regulator corresponding to the regulator producer,
1298  * or IS_ERR() condition containing errno.
1299  *
1300  * Use of supply names configured via regulator_set_device_supply() is
1301  * strongly encouraged.  It is recommended that the supply name used
1302  * should match the name used for the supply and/or the relevant
1303  * device pins in the datasheet.
1304  */
regulator_get(struct device * dev,const char * id)1305 struct regulator *regulator_get(struct device *dev, const char *id)
1306 {
1307 	return _regulator_get(dev, id, 0);
1308 }
1309 EXPORT_SYMBOL_GPL(regulator_get);
1310 
devm_regulator_release(struct device * dev,void * res)1311 static void devm_regulator_release(struct device *dev, void *res)
1312 {
1313 	regulator_put(*(struct regulator **)res);
1314 }
1315 
1316 /**
1317  * devm_regulator_get - Resource managed regulator_get()
1318  * @dev: device for regulator "consumer"
1319  * @id: Supply name or regulator ID.
1320  *
1321  * Managed regulator_get(). Regulators returned from this function are
1322  * automatically regulator_put() on driver detach. See regulator_get() for more
1323  * information.
1324  */
devm_regulator_get(struct device * dev,const char * id)1325 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1326 {
1327 	struct regulator **ptr, *regulator;
1328 
1329 	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1330 	if (!ptr)
1331 		return ERR_PTR(-ENOMEM);
1332 
1333 	regulator = regulator_get(dev, id);
1334 	if (!IS_ERR(regulator)) {
1335 		*ptr = regulator;
1336 		devres_add(dev, ptr);
1337 	} else {
1338 		devres_free(ptr);
1339 	}
1340 
1341 	return regulator;
1342 }
1343 EXPORT_SYMBOL_GPL(devm_regulator_get);
1344 
1345 /**
1346  * regulator_get_exclusive - obtain exclusive access to a regulator.
1347  * @dev: device for regulator "consumer"
1348  * @id: Supply name or regulator ID.
1349  *
1350  * Returns a struct regulator corresponding to the regulator producer,
1351  * or IS_ERR() condition containing errno.  Other consumers will be
1352  * unable to obtain this reference is held and the use count for the
1353  * regulator will be initialised to reflect the current state of the
1354  * regulator.
1355  *
1356  * This is intended for use by consumers which cannot tolerate shared
1357  * use of the regulator such as those which need to force the
1358  * regulator off for correct operation of the hardware they are
1359  * controlling.
1360  *
1361  * Use of supply names configured via regulator_set_device_supply() is
1362  * strongly encouraged.  It is recommended that the supply name used
1363  * should match the name used for the supply and/or the relevant
1364  * device pins in the datasheet.
1365  */
regulator_get_exclusive(struct device * dev,const char * id)1366 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1367 {
1368 	return _regulator_get(dev, id, 1);
1369 }
1370 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1371 
1372 /**
1373  * regulator_put - "free" the regulator source
1374  * @regulator: regulator source
1375  *
1376  * Note: drivers must ensure that all regulator_enable calls made on this
1377  * regulator source are balanced by regulator_disable calls prior to calling
1378  * this function.
1379  */
regulator_put(struct regulator * regulator)1380 void regulator_put(struct regulator *regulator)
1381 {
1382 	struct regulator_dev *rdev;
1383 
1384 	if (regulator == NULL || IS_ERR(regulator))
1385 		return;
1386 
1387 	mutex_lock(&regulator_list_mutex);
1388 	rdev = regulator->rdev;
1389 
1390 	debugfs_remove_recursive(regulator->debugfs);
1391 
1392 	/* remove any sysfs entries */
1393 	if (regulator->dev) {
1394 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1395 		device_remove_file(regulator->dev, &regulator->dev_attr);
1396 		kfree(regulator->dev_attr.attr.name);
1397 	}
1398 	kfree(regulator->supply_name);
1399 	list_del(&regulator->list);
1400 	kfree(regulator);
1401 
1402 	rdev->open_count--;
1403 	rdev->exclusive = 0;
1404 
1405 	module_put(rdev->owner);
1406 	mutex_unlock(&regulator_list_mutex);
1407 }
1408 EXPORT_SYMBOL_GPL(regulator_put);
1409 
devm_regulator_match(struct device * dev,void * res,void * data)1410 static int devm_regulator_match(struct device *dev, void *res, void *data)
1411 {
1412 	struct regulator **r = res;
1413 	if (!r || !*r) {
1414 		WARN_ON(!r || !*r);
1415 		return 0;
1416 	}
1417 	return *r == data;
1418 }
1419 
1420 /**
1421  * devm_regulator_put - Resource managed regulator_put()
1422  * @regulator: regulator to free
1423  *
1424  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1425  * this function will not need to be called and the resource management
1426  * code will ensure that the resource is freed.
1427  */
devm_regulator_put(struct regulator * regulator)1428 void devm_regulator_put(struct regulator *regulator)
1429 {
1430 	int rc;
1431 
1432 	rc = devres_destroy(regulator->dev, devm_regulator_release,
1433 			    devm_regulator_match, regulator);
1434 	if (rc == 0)
1435 		regulator_put(regulator);
1436 	else
1437 		WARN_ON(rc);
1438 }
1439 EXPORT_SYMBOL_GPL(devm_regulator_put);
1440 
_regulator_can_change_status(struct regulator_dev * rdev)1441 static int _regulator_can_change_status(struct regulator_dev *rdev)
1442 {
1443 	if (!rdev->constraints)
1444 		return 0;
1445 
1446 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1447 		return 1;
1448 	else
1449 		return 0;
1450 }
1451 
1452 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)1453 static int _regulator_enable(struct regulator_dev *rdev)
1454 {
1455 	int ret, delay;
1456 
1457 	/* check voltage and requested load before enabling */
1458 	if (rdev->constraints &&
1459 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1460 		drms_uA_update(rdev);
1461 
1462 	if (rdev->use_count == 0) {
1463 		/* The regulator may on if it's not switchable or left on */
1464 		ret = _regulator_is_enabled(rdev);
1465 		if (ret == -EINVAL || ret == 0) {
1466 			if (!_regulator_can_change_status(rdev))
1467 				return -EPERM;
1468 
1469 			if (!rdev->desc->ops->enable)
1470 				return -EINVAL;
1471 
1472 			/* Query before enabling in case configuration
1473 			 * dependent.  */
1474 			ret = _regulator_get_enable_time(rdev);
1475 			if (ret >= 0) {
1476 				delay = ret;
1477 			} else {
1478 				rdev_warn(rdev, "enable_time() failed: %d\n",
1479 					   ret);
1480 				delay = 0;
1481 			}
1482 
1483 			trace_regulator_enable(rdev_get_name(rdev));
1484 
1485 			/* Allow the regulator to ramp; it would be useful
1486 			 * to extend this for bulk operations so that the
1487 			 * regulators can ramp together.  */
1488 			ret = rdev->desc->ops->enable(rdev);
1489 			if (ret < 0)
1490 				return ret;
1491 
1492 			trace_regulator_enable_delay(rdev_get_name(rdev));
1493 
1494 			if (delay >= 1000) {
1495 				mdelay(delay / 1000);
1496 				udelay(delay % 1000);
1497 			} else if (delay) {
1498 				udelay(delay);
1499 			}
1500 
1501 			trace_regulator_enable_complete(rdev_get_name(rdev));
1502 
1503 		} else if (ret < 0) {
1504 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1505 			return ret;
1506 		}
1507 		/* Fallthrough on positive return values - already enabled */
1508 	}
1509 
1510 	rdev->use_count++;
1511 
1512 	return 0;
1513 }
1514 
1515 /**
1516  * regulator_enable - enable regulator output
1517  * @regulator: regulator source
1518  *
1519  * Request that the regulator be enabled with the regulator output at
1520  * the predefined voltage or current value.  Calls to regulator_enable()
1521  * must be balanced with calls to regulator_disable().
1522  *
1523  * NOTE: the output value can be set by other drivers, boot loader or may be
1524  * hardwired in the regulator.
1525  */
regulator_enable(struct regulator * regulator)1526 int regulator_enable(struct regulator *regulator)
1527 {
1528 	struct regulator_dev *rdev = regulator->rdev;
1529 	int ret = 0;
1530 
1531 	if (rdev->supply) {
1532 		ret = regulator_enable(rdev->supply);
1533 		if (ret != 0)
1534 			return ret;
1535 	}
1536 
1537 	mutex_lock(&rdev->mutex);
1538 	ret = _regulator_enable(rdev);
1539 	mutex_unlock(&rdev->mutex);
1540 
1541 	if (ret != 0 && rdev->supply)
1542 		regulator_disable(rdev->supply);
1543 
1544 	return ret;
1545 }
1546 EXPORT_SYMBOL_GPL(regulator_enable);
1547 
1548 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)1549 static int _regulator_disable(struct regulator_dev *rdev)
1550 {
1551 	int ret = 0;
1552 
1553 	if (WARN(rdev->use_count <= 0,
1554 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1555 		return -EIO;
1556 
1557 	/* are we the last user and permitted to disable ? */
1558 	if (rdev->use_count == 1 &&
1559 	    (rdev->constraints && !rdev->constraints->always_on)) {
1560 
1561 		/* we are last user */
1562 		if (_regulator_can_change_status(rdev) &&
1563 		    rdev->desc->ops->disable) {
1564 			trace_regulator_disable(rdev_get_name(rdev));
1565 
1566 			ret = rdev->desc->ops->disable(rdev);
1567 			if (ret < 0) {
1568 				rdev_err(rdev, "failed to disable\n");
1569 				return ret;
1570 			}
1571 
1572 			trace_regulator_disable_complete(rdev_get_name(rdev));
1573 
1574 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1575 					     NULL);
1576 		}
1577 
1578 		rdev->use_count = 0;
1579 	} else if (rdev->use_count > 1) {
1580 
1581 		if (rdev->constraints &&
1582 			(rdev->constraints->valid_ops_mask &
1583 			REGULATOR_CHANGE_DRMS))
1584 			drms_uA_update(rdev);
1585 
1586 		rdev->use_count--;
1587 	}
1588 
1589 	return ret;
1590 }
1591 
1592 /**
1593  * regulator_disable - disable regulator output
1594  * @regulator: regulator source
1595  *
1596  * Disable the regulator output voltage or current.  Calls to
1597  * regulator_enable() must be balanced with calls to
1598  * regulator_disable().
1599  *
1600  * NOTE: this will only disable the regulator output if no other consumer
1601  * devices have it enabled, the regulator device supports disabling and
1602  * machine constraints permit this operation.
1603  */
regulator_disable(struct regulator * regulator)1604 int regulator_disable(struct regulator *regulator)
1605 {
1606 	struct regulator_dev *rdev = regulator->rdev;
1607 	int ret = 0;
1608 
1609 	mutex_lock(&rdev->mutex);
1610 	ret = _regulator_disable(rdev);
1611 	mutex_unlock(&rdev->mutex);
1612 
1613 	if (ret == 0 && rdev->supply)
1614 		regulator_disable(rdev->supply);
1615 
1616 	return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(regulator_disable);
1619 
1620 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)1621 static int _regulator_force_disable(struct regulator_dev *rdev)
1622 {
1623 	int ret = 0;
1624 
1625 	/* force disable */
1626 	if (rdev->desc->ops->disable) {
1627 		/* ah well, who wants to live forever... */
1628 		ret = rdev->desc->ops->disable(rdev);
1629 		if (ret < 0) {
1630 			rdev_err(rdev, "failed to force disable\n");
1631 			return ret;
1632 		}
1633 		/* notify other consumers that power has been forced off */
1634 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1635 			REGULATOR_EVENT_DISABLE, NULL);
1636 	}
1637 
1638 	return ret;
1639 }
1640 
1641 /**
1642  * regulator_force_disable - force disable regulator output
1643  * @regulator: regulator source
1644  *
1645  * Forcibly disable the regulator output voltage or current.
1646  * NOTE: this *will* disable the regulator output even if other consumer
1647  * devices have it enabled. This should be used for situations when device
1648  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1649  */
regulator_force_disable(struct regulator * regulator)1650 int regulator_force_disable(struct regulator *regulator)
1651 {
1652 	struct regulator_dev *rdev = regulator->rdev;
1653 	int ret;
1654 
1655 	mutex_lock(&rdev->mutex);
1656 	regulator->uA_load = 0;
1657 	ret = _regulator_force_disable(regulator->rdev);
1658 	mutex_unlock(&rdev->mutex);
1659 
1660 	if (rdev->supply)
1661 		while (rdev->open_count--)
1662 			regulator_disable(rdev->supply);
1663 
1664 	return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(regulator_force_disable);
1667 
regulator_disable_work(struct work_struct * work)1668 static void regulator_disable_work(struct work_struct *work)
1669 {
1670 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1671 						  disable_work.work);
1672 	int count, i, ret;
1673 
1674 	mutex_lock(&rdev->mutex);
1675 
1676 	BUG_ON(!rdev->deferred_disables);
1677 
1678 	count = rdev->deferred_disables;
1679 	rdev->deferred_disables = 0;
1680 
1681 	for (i = 0; i < count; i++) {
1682 		ret = _regulator_disable(rdev);
1683 		if (ret != 0)
1684 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1685 	}
1686 
1687 	mutex_unlock(&rdev->mutex);
1688 
1689 	if (rdev->supply) {
1690 		for (i = 0; i < count; i++) {
1691 			ret = regulator_disable(rdev->supply);
1692 			if (ret != 0) {
1693 				rdev_err(rdev,
1694 					 "Supply disable failed: %d\n", ret);
1695 			}
1696 		}
1697 	}
1698 }
1699 
1700 /**
1701  * regulator_disable_deferred - disable regulator output with delay
1702  * @regulator: regulator source
1703  * @ms: miliseconds until the regulator is disabled
1704  *
1705  * Execute regulator_disable() on the regulator after a delay.  This
1706  * is intended for use with devices that require some time to quiesce.
1707  *
1708  * NOTE: this will only disable the regulator output if no other consumer
1709  * devices have it enabled, the regulator device supports disabling and
1710  * machine constraints permit this operation.
1711  */
regulator_disable_deferred(struct regulator * regulator,int ms)1712 int regulator_disable_deferred(struct regulator *regulator, int ms)
1713 {
1714 	struct regulator_dev *rdev = regulator->rdev;
1715 	int ret;
1716 
1717 	mutex_lock(&rdev->mutex);
1718 	rdev->deferred_disables++;
1719 	mutex_unlock(&rdev->mutex);
1720 
1721 	ret = schedule_delayed_work(&rdev->disable_work,
1722 				    msecs_to_jiffies(ms));
1723 	if (ret < 0)
1724 		return ret;
1725 	else
1726 		return 0;
1727 }
1728 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1729 
_regulator_is_enabled(struct regulator_dev * rdev)1730 static int _regulator_is_enabled(struct regulator_dev *rdev)
1731 {
1732 	/* If we don't know then assume that the regulator is always on */
1733 	if (!rdev->desc->ops->is_enabled)
1734 		return 1;
1735 
1736 	return rdev->desc->ops->is_enabled(rdev);
1737 }
1738 
1739 /**
1740  * regulator_is_enabled - is the regulator output enabled
1741  * @regulator: regulator source
1742  *
1743  * Returns positive if the regulator driver backing the source/client
1744  * has requested that the device be enabled, zero if it hasn't, else a
1745  * negative errno code.
1746  *
1747  * Note that the device backing this regulator handle can have multiple
1748  * users, so it might be enabled even if regulator_enable() was never
1749  * called for this particular source.
1750  */
regulator_is_enabled(struct regulator * regulator)1751 int regulator_is_enabled(struct regulator *regulator)
1752 {
1753 	int ret;
1754 
1755 	mutex_lock(&regulator->rdev->mutex);
1756 	ret = _regulator_is_enabled(regulator->rdev);
1757 	mutex_unlock(&regulator->rdev->mutex);
1758 
1759 	return ret;
1760 }
1761 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1762 
1763 /**
1764  * regulator_count_voltages - count regulator_list_voltage() selectors
1765  * @regulator: regulator source
1766  *
1767  * Returns number of selectors, or negative errno.  Selectors are
1768  * numbered starting at zero, and typically correspond to bitfields
1769  * in hardware registers.
1770  */
regulator_count_voltages(struct regulator * regulator)1771 int regulator_count_voltages(struct regulator *regulator)
1772 {
1773 	struct regulator_dev	*rdev = regulator->rdev;
1774 
1775 	return rdev->desc->n_voltages ? : -EINVAL;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1778 
1779 /**
1780  * regulator_list_voltage - enumerate supported voltages
1781  * @regulator: regulator source
1782  * @selector: identify voltage to list
1783  * Context: can sleep
1784  *
1785  * Returns a voltage that can be passed to @regulator_set_voltage(),
1786  * zero if this selector code can't be used on this system, or a
1787  * negative errno.
1788  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)1789 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1790 {
1791 	struct regulator_dev	*rdev = regulator->rdev;
1792 	struct regulator_ops	*ops = rdev->desc->ops;
1793 	int			ret;
1794 
1795 	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1796 		return -EINVAL;
1797 
1798 	mutex_lock(&rdev->mutex);
1799 	ret = ops->list_voltage(rdev, selector);
1800 	mutex_unlock(&rdev->mutex);
1801 
1802 	if (ret > 0) {
1803 		if (ret < rdev->constraints->min_uV)
1804 			ret = 0;
1805 		else if (ret > rdev->constraints->max_uV)
1806 			ret = 0;
1807 	}
1808 
1809 	return ret;
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1812 
1813 /**
1814  * regulator_is_supported_voltage - check if a voltage range can be supported
1815  *
1816  * @regulator: Regulator to check.
1817  * @min_uV: Minimum required voltage in uV.
1818  * @max_uV: Maximum required voltage in uV.
1819  *
1820  * Returns a boolean or a negative error code.
1821  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)1822 int regulator_is_supported_voltage(struct regulator *regulator,
1823 				   int min_uV, int max_uV)
1824 {
1825 	int i, voltages, ret;
1826 
1827 	ret = regulator_count_voltages(regulator);
1828 	if (ret < 0)
1829 		return ret;
1830 	voltages = ret;
1831 
1832 	for (i = 0; i < voltages; i++) {
1833 		ret = regulator_list_voltage(regulator, i);
1834 
1835 		if (ret >= min_uV && ret <= max_uV)
1836 			return 1;
1837 	}
1838 
1839 	return 0;
1840 }
1841 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1842 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)1843 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1844 				     int min_uV, int max_uV)
1845 {
1846 	int ret;
1847 	int delay = 0;
1848 	unsigned int selector;
1849 
1850 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1851 
1852 	min_uV += rdev->constraints->uV_offset;
1853 	max_uV += rdev->constraints->uV_offset;
1854 
1855 	if (rdev->desc->ops->set_voltage) {
1856 		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1857 						   &selector);
1858 
1859 		if (rdev->desc->ops->list_voltage)
1860 			selector = rdev->desc->ops->list_voltage(rdev,
1861 								 selector);
1862 		else
1863 			selector = -1;
1864 	} else if (rdev->desc->ops->set_voltage_sel) {
1865 		int best_val = INT_MAX;
1866 		int i;
1867 
1868 		selector = 0;
1869 
1870 		/* Find the smallest voltage that falls within the specified
1871 		 * range.
1872 		 */
1873 		for (i = 0; i < rdev->desc->n_voltages; i++) {
1874 			ret = rdev->desc->ops->list_voltage(rdev, i);
1875 			if (ret < 0)
1876 				continue;
1877 
1878 			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1879 				best_val = ret;
1880 				selector = i;
1881 			}
1882 		}
1883 
1884 		/*
1885 		 * If we can't obtain the old selector there is not enough
1886 		 * info to call set_voltage_time_sel().
1887 		 */
1888 		if (rdev->desc->ops->set_voltage_time_sel &&
1889 		    rdev->desc->ops->get_voltage_sel) {
1890 			unsigned int old_selector = 0;
1891 
1892 			ret = rdev->desc->ops->get_voltage_sel(rdev);
1893 			if (ret < 0)
1894 				return ret;
1895 			old_selector = ret;
1896 			ret = rdev->desc->ops->set_voltage_time_sel(rdev,
1897 						old_selector, selector);
1898 			if (ret < 0)
1899 				rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n", ret);
1900 			else
1901 				delay = ret;
1902 		}
1903 
1904 		if (best_val != INT_MAX) {
1905 			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1906 			selector = best_val;
1907 		} else {
1908 			ret = -EINVAL;
1909 		}
1910 	} else {
1911 		ret = -EINVAL;
1912 	}
1913 
1914 	/* Insert any necessary delays */
1915 	if (delay >= 1000) {
1916 		mdelay(delay / 1000);
1917 		udelay(delay % 1000);
1918 	} else if (delay) {
1919 		udelay(delay);
1920 	}
1921 
1922 	if (ret == 0)
1923 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1924 				     NULL);
1925 
1926 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1927 
1928 	return ret;
1929 }
1930 
1931 /**
1932  * regulator_set_voltage - set regulator output voltage
1933  * @regulator: regulator source
1934  * @min_uV: Minimum required voltage in uV
1935  * @max_uV: Maximum acceptable voltage in uV
1936  *
1937  * Sets a voltage regulator to the desired output voltage. This can be set
1938  * during any regulator state. IOW, regulator can be disabled or enabled.
1939  *
1940  * If the regulator is enabled then the voltage will change to the new value
1941  * immediately otherwise if the regulator is disabled the regulator will
1942  * output at the new voltage when enabled.
1943  *
1944  * NOTE: If the regulator is shared between several devices then the lowest
1945  * request voltage that meets the system constraints will be used.
1946  * Regulator system constraints must be set for this regulator before
1947  * calling this function otherwise this call will fail.
1948  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)1949 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1950 {
1951 	struct regulator_dev *rdev = regulator->rdev;
1952 	int ret = 0;
1953 
1954 	mutex_lock(&rdev->mutex);
1955 
1956 	/* If we're setting the same range as last time the change
1957 	 * should be a noop (some cpufreq implementations use the same
1958 	 * voltage for multiple frequencies, for example).
1959 	 */
1960 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1961 		goto out;
1962 
1963 	/* sanity check */
1964 	if (!rdev->desc->ops->set_voltage &&
1965 	    !rdev->desc->ops->set_voltage_sel) {
1966 		ret = -EINVAL;
1967 		goto out;
1968 	}
1969 
1970 	/* constraints check */
1971 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1972 	if (ret < 0)
1973 		goto out;
1974 	regulator->min_uV = min_uV;
1975 	regulator->max_uV = max_uV;
1976 
1977 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1978 	if (ret < 0)
1979 		goto out;
1980 
1981 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1982 
1983 out:
1984 	mutex_unlock(&rdev->mutex);
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1988 
1989 /**
1990  * regulator_set_voltage_time - get raise/fall time
1991  * @regulator: regulator source
1992  * @old_uV: starting voltage in microvolts
1993  * @new_uV: target voltage in microvolts
1994  *
1995  * Provided with the starting and ending voltage, this function attempts to
1996  * calculate the time in microseconds required to rise or fall to this new
1997  * voltage.
1998  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)1999 int regulator_set_voltage_time(struct regulator *regulator,
2000 			       int old_uV, int new_uV)
2001 {
2002 	struct regulator_dev	*rdev = regulator->rdev;
2003 	struct regulator_ops	*ops = rdev->desc->ops;
2004 	int old_sel = -1;
2005 	int new_sel = -1;
2006 	int voltage;
2007 	int i;
2008 
2009 	/* Currently requires operations to do this */
2010 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2011 	    || !rdev->desc->n_voltages)
2012 		return -EINVAL;
2013 
2014 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2015 		/* We only look for exact voltage matches here */
2016 		voltage = regulator_list_voltage(regulator, i);
2017 		if (voltage < 0)
2018 			return -EINVAL;
2019 		if (voltage == 0)
2020 			continue;
2021 		if (voltage == old_uV)
2022 			old_sel = i;
2023 		if (voltage == new_uV)
2024 			new_sel = i;
2025 	}
2026 
2027 	if (old_sel < 0 || new_sel < 0)
2028 		return -EINVAL;
2029 
2030 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2033 
2034 /**
2035  * regulator_sync_voltage - re-apply last regulator output voltage
2036  * @regulator: regulator source
2037  *
2038  * Re-apply the last configured voltage.  This is intended to be used
2039  * where some external control source the consumer is cooperating with
2040  * has caused the configured voltage to change.
2041  */
regulator_sync_voltage(struct regulator * regulator)2042 int regulator_sync_voltage(struct regulator *regulator)
2043 {
2044 	struct regulator_dev *rdev = regulator->rdev;
2045 	int ret, min_uV, max_uV;
2046 
2047 	mutex_lock(&rdev->mutex);
2048 
2049 	if (!rdev->desc->ops->set_voltage &&
2050 	    !rdev->desc->ops->set_voltage_sel) {
2051 		ret = -EINVAL;
2052 		goto out;
2053 	}
2054 
2055 	/* This is only going to work if we've had a voltage configured. */
2056 	if (!regulator->min_uV && !regulator->max_uV) {
2057 		ret = -EINVAL;
2058 		goto out;
2059 	}
2060 
2061 	min_uV = regulator->min_uV;
2062 	max_uV = regulator->max_uV;
2063 
2064 	/* This should be a paranoia check... */
2065 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2066 	if (ret < 0)
2067 		goto out;
2068 
2069 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2070 	if (ret < 0)
2071 		goto out;
2072 
2073 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2074 
2075 out:
2076 	mutex_unlock(&rdev->mutex);
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2080 
_regulator_get_voltage(struct regulator_dev * rdev)2081 static int _regulator_get_voltage(struct regulator_dev *rdev)
2082 {
2083 	int sel, ret;
2084 
2085 	if (rdev->desc->ops->get_voltage_sel) {
2086 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2087 		if (sel < 0)
2088 			return sel;
2089 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2090 	} else if (rdev->desc->ops->get_voltage) {
2091 		ret = rdev->desc->ops->get_voltage(rdev);
2092 	} else {
2093 		return -EINVAL;
2094 	}
2095 
2096 	if (ret < 0)
2097 		return ret;
2098 	return ret - rdev->constraints->uV_offset;
2099 }
2100 
2101 /**
2102  * regulator_get_voltage - get regulator output voltage
2103  * @regulator: regulator source
2104  *
2105  * This returns the current regulator voltage in uV.
2106  *
2107  * NOTE: If the regulator is disabled it will return the voltage value. This
2108  * function should not be used to determine regulator state.
2109  */
regulator_get_voltage(struct regulator * regulator)2110 int regulator_get_voltage(struct regulator *regulator)
2111 {
2112 	int ret;
2113 
2114 	mutex_lock(&regulator->rdev->mutex);
2115 
2116 	ret = _regulator_get_voltage(regulator->rdev);
2117 
2118 	mutex_unlock(&regulator->rdev->mutex);
2119 
2120 	return ret;
2121 }
2122 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2123 
2124 /**
2125  * regulator_set_current_limit - set regulator output current limit
2126  * @regulator: regulator source
2127  * @min_uA: Minimuum supported current in uA
2128  * @max_uA: Maximum supported current in uA
2129  *
2130  * Sets current sink to the desired output current. This can be set during
2131  * any regulator state. IOW, regulator can be disabled or enabled.
2132  *
2133  * If the regulator is enabled then the current will change to the new value
2134  * immediately otherwise if the regulator is disabled the regulator will
2135  * output at the new current when enabled.
2136  *
2137  * NOTE: Regulator system constraints must be set for this regulator before
2138  * calling this function otherwise this call will fail.
2139  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)2140 int regulator_set_current_limit(struct regulator *regulator,
2141 			       int min_uA, int max_uA)
2142 {
2143 	struct regulator_dev *rdev = regulator->rdev;
2144 	int ret;
2145 
2146 	mutex_lock(&rdev->mutex);
2147 
2148 	/* sanity check */
2149 	if (!rdev->desc->ops->set_current_limit) {
2150 		ret = -EINVAL;
2151 		goto out;
2152 	}
2153 
2154 	/* constraints check */
2155 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2156 	if (ret < 0)
2157 		goto out;
2158 
2159 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2160 out:
2161 	mutex_unlock(&rdev->mutex);
2162 	return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2165 
_regulator_get_current_limit(struct regulator_dev * rdev)2166 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2167 {
2168 	int ret;
2169 
2170 	mutex_lock(&rdev->mutex);
2171 
2172 	/* sanity check */
2173 	if (!rdev->desc->ops->get_current_limit) {
2174 		ret = -EINVAL;
2175 		goto out;
2176 	}
2177 
2178 	ret = rdev->desc->ops->get_current_limit(rdev);
2179 out:
2180 	mutex_unlock(&rdev->mutex);
2181 	return ret;
2182 }
2183 
2184 /**
2185  * regulator_get_current_limit - get regulator output current
2186  * @regulator: regulator source
2187  *
2188  * This returns the current supplied by the specified current sink in uA.
2189  *
2190  * NOTE: If the regulator is disabled it will return the current value. This
2191  * function should not be used to determine regulator state.
2192  */
regulator_get_current_limit(struct regulator * regulator)2193 int regulator_get_current_limit(struct regulator *regulator)
2194 {
2195 	return _regulator_get_current_limit(regulator->rdev);
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2198 
2199 /**
2200  * regulator_set_mode - set regulator operating mode
2201  * @regulator: regulator source
2202  * @mode: operating mode - one of the REGULATOR_MODE constants
2203  *
2204  * Set regulator operating mode to increase regulator efficiency or improve
2205  * regulation performance.
2206  *
2207  * NOTE: Regulator system constraints must be set for this regulator before
2208  * calling this function otherwise this call will fail.
2209  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)2210 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2211 {
2212 	struct regulator_dev *rdev = regulator->rdev;
2213 	int ret;
2214 	int regulator_curr_mode;
2215 
2216 	mutex_lock(&rdev->mutex);
2217 
2218 	/* sanity check */
2219 	if (!rdev->desc->ops->set_mode) {
2220 		ret = -EINVAL;
2221 		goto out;
2222 	}
2223 
2224 	/* return if the same mode is requested */
2225 	if (rdev->desc->ops->get_mode) {
2226 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2227 		if (regulator_curr_mode == mode) {
2228 			ret = 0;
2229 			goto out;
2230 		}
2231 	}
2232 
2233 	/* constraints check */
2234 	ret = regulator_mode_constrain(rdev, &mode);
2235 	if (ret < 0)
2236 		goto out;
2237 
2238 	ret = rdev->desc->ops->set_mode(rdev, mode);
2239 out:
2240 	mutex_unlock(&rdev->mutex);
2241 	return ret;
2242 }
2243 EXPORT_SYMBOL_GPL(regulator_set_mode);
2244 
_regulator_get_mode(struct regulator_dev * rdev)2245 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2246 {
2247 	int ret;
2248 
2249 	mutex_lock(&rdev->mutex);
2250 
2251 	/* sanity check */
2252 	if (!rdev->desc->ops->get_mode) {
2253 		ret = -EINVAL;
2254 		goto out;
2255 	}
2256 
2257 	ret = rdev->desc->ops->get_mode(rdev);
2258 out:
2259 	mutex_unlock(&rdev->mutex);
2260 	return ret;
2261 }
2262 
2263 /**
2264  * regulator_get_mode - get regulator operating mode
2265  * @regulator: regulator source
2266  *
2267  * Get the current regulator operating mode.
2268  */
regulator_get_mode(struct regulator * regulator)2269 unsigned int regulator_get_mode(struct regulator *regulator)
2270 {
2271 	return _regulator_get_mode(regulator->rdev);
2272 }
2273 EXPORT_SYMBOL_GPL(regulator_get_mode);
2274 
2275 /**
2276  * regulator_set_optimum_mode - set regulator optimum operating mode
2277  * @regulator: regulator source
2278  * @uA_load: load current
2279  *
2280  * Notifies the regulator core of a new device load. This is then used by
2281  * DRMS (if enabled by constraints) to set the most efficient regulator
2282  * operating mode for the new regulator loading.
2283  *
2284  * Consumer devices notify their supply regulator of the maximum power
2285  * they will require (can be taken from device datasheet in the power
2286  * consumption tables) when they change operational status and hence power
2287  * state. Examples of operational state changes that can affect power
2288  * consumption are :-
2289  *
2290  *    o Device is opened / closed.
2291  *    o Device I/O is about to begin or has just finished.
2292  *    o Device is idling in between work.
2293  *
2294  * This information is also exported via sysfs to userspace.
2295  *
2296  * DRMS will sum the total requested load on the regulator and change
2297  * to the most efficient operating mode if platform constraints allow.
2298  *
2299  * Returns the new regulator mode or error.
2300  */
regulator_set_optimum_mode(struct regulator * regulator,int uA_load)2301 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2302 {
2303 	struct regulator_dev *rdev = regulator->rdev;
2304 	struct regulator *consumer;
2305 	int ret, output_uV, input_uV, total_uA_load = 0;
2306 	unsigned int mode;
2307 
2308 	mutex_lock(&rdev->mutex);
2309 
2310 	/*
2311 	 * first check to see if we can set modes at all, otherwise just
2312 	 * tell the consumer everything is OK.
2313 	 */
2314 	regulator->uA_load = uA_load;
2315 	ret = regulator_check_drms(rdev);
2316 	if (ret < 0) {
2317 		ret = 0;
2318 		goto out;
2319 	}
2320 
2321 	if (!rdev->desc->ops->get_optimum_mode)
2322 		goto out;
2323 
2324 	/*
2325 	 * we can actually do this so any errors are indicators of
2326 	 * potential real failure.
2327 	 */
2328 	ret = -EINVAL;
2329 
2330 	/* get output voltage */
2331 	output_uV = _regulator_get_voltage(rdev);
2332 	if (output_uV <= 0) {
2333 		rdev_err(rdev, "invalid output voltage found\n");
2334 		goto out;
2335 	}
2336 
2337 	/* get input voltage */
2338 	input_uV = 0;
2339 	if (rdev->supply)
2340 		input_uV = regulator_get_voltage(rdev->supply);
2341 	if (input_uV <= 0)
2342 		input_uV = rdev->constraints->input_uV;
2343 	if (input_uV <= 0) {
2344 		rdev_err(rdev, "invalid input voltage found\n");
2345 		goto out;
2346 	}
2347 
2348 	/* calc total requested load for this regulator */
2349 	list_for_each_entry(consumer, &rdev->consumer_list, list)
2350 		total_uA_load += consumer->uA_load;
2351 
2352 	mode = rdev->desc->ops->get_optimum_mode(rdev,
2353 						 input_uV, output_uV,
2354 						 total_uA_load);
2355 	ret = regulator_mode_constrain(rdev, &mode);
2356 	if (ret < 0) {
2357 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2358 			 total_uA_load, input_uV, output_uV);
2359 		goto out;
2360 	}
2361 
2362 	ret = rdev->desc->ops->set_mode(rdev, mode);
2363 	if (ret < 0) {
2364 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2365 		goto out;
2366 	}
2367 	ret = mode;
2368 out:
2369 	mutex_unlock(&rdev->mutex);
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2373 
2374 /**
2375  * regulator_register_notifier - register regulator event notifier
2376  * @regulator: regulator source
2377  * @nb: notifier block
2378  *
2379  * Register notifier block to receive regulator events.
2380  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)2381 int regulator_register_notifier(struct regulator *regulator,
2382 			      struct notifier_block *nb)
2383 {
2384 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2385 						nb);
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2388 
2389 /**
2390  * regulator_unregister_notifier - unregister regulator event notifier
2391  * @regulator: regulator source
2392  * @nb: notifier block
2393  *
2394  * Unregister regulator event notifier block.
2395  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)2396 int regulator_unregister_notifier(struct regulator *regulator,
2397 				struct notifier_block *nb)
2398 {
2399 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2400 						  nb);
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2403 
2404 /* notify regulator consumers and downstream regulator consumers.
2405  * Note mutex must be held by caller.
2406  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)2407 static void _notifier_call_chain(struct regulator_dev *rdev,
2408 				  unsigned long event, void *data)
2409 {
2410 	/* call rdev chain first */
2411 	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2412 }
2413 
2414 /**
2415  * regulator_bulk_get - get multiple regulator consumers
2416  *
2417  * @dev:           Device to supply
2418  * @num_consumers: Number of consumers to register
2419  * @consumers:     Configuration of consumers; clients are stored here.
2420  *
2421  * @return 0 on success, an errno on failure.
2422  *
2423  * This helper function allows drivers to get several regulator
2424  * consumers in one operation.  If any of the regulators cannot be
2425  * acquired then any regulators that were allocated will be freed
2426  * before returning to the caller.
2427  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)2428 int regulator_bulk_get(struct device *dev, int num_consumers,
2429 		       struct regulator_bulk_data *consumers)
2430 {
2431 	int i;
2432 	int ret;
2433 
2434 	for (i = 0; i < num_consumers; i++)
2435 		consumers[i].consumer = NULL;
2436 
2437 	for (i = 0; i < num_consumers; i++) {
2438 		consumers[i].consumer = regulator_get(dev,
2439 						      consumers[i].supply);
2440 		if (IS_ERR(consumers[i].consumer)) {
2441 			ret = PTR_ERR(consumers[i].consumer);
2442 			dev_err(dev, "Failed to get supply '%s': %d\n",
2443 				consumers[i].supply, ret);
2444 			consumers[i].consumer = NULL;
2445 			goto err;
2446 		}
2447 	}
2448 
2449 	return 0;
2450 
2451 err:
2452 	while (--i >= 0)
2453 		regulator_put(consumers[i].consumer);
2454 
2455 	return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2458 
2459 /**
2460  * devm_regulator_bulk_get - managed get multiple regulator consumers
2461  *
2462  * @dev:           Device to supply
2463  * @num_consumers: Number of consumers to register
2464  * @consumers:     Configuration of consumers; clients are stored here.
2465  *
2466  * @return 0 on success, an errno on failure.
2467  *
2468  * This helper function allows drivers to get several regulator
2469  * consumers in one operation with management, the regulators will
2470  * automatically be freed when the device is unbound.  If any of the
2471  * regulators cannot be acquired then any regulators that were
2472  * allocated will be freed before returning to the caller.
2473  */
devm_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)2474 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2475 			    struct regulator_bulk_data *consumers)
2476 {
2477 	int i;
2478 	int ret;
2479 
2480 	for (i = 0; i < num_consumers; i++)
2481 		consumers[i].consumer = NULL;
2482 
2483 	for (i = 0; i < num_consumers; i++) {
2484 		consumers[i].consumer = devm_regulator_get(dev,
2485 							   consumers[i].supply);
2486 		if (IS_ERR(consumers[i].consumer)) {
2487 			ret = PTR_ERR(consumers[i].consumer);
2488 			dev_err(dev, "Failed to get supply '%s': %d\n",
2489 				consumers[i].supply, ret);
2490 			consumers[i].consumer = NULL;
2491 			goto err;
2492 		}
2493 	}
2494 
2495 	return 0;
2496 
2497 err:
2498 	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2499 		devm_regulator_put(consumers[i].consumer);
2500 
2501 	return ret;
2502 }
2503 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2504 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)2505 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2506 {
2507 	struct regulator_bulk_data *bulk = data;
2508 
2509 	bulk->ret = regulator_enable(bulk->consumer);
2510 }
2511 
2512 /**
2513  * regulator_bulk_enable - enable multiple regulator consumers
2514  *
2515  * @num_consumers: Number of consumers
2516  * @consumers:     Consumer data; clients are stored here.
2517  * @return         0 on success, an errno on failure
2518  *
2519  * This convenience API allows consumers to enable multiple regulator
2520  * clients in a single API call.  If any consumers cannot be enabled
2521  * then any others that were enabled will be disabled again prior to
2522  * return.
2523  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)2524 int regulator_bulk_enable(int num_consumers,
2525 			  struct regulator_bulk_data *consumers)
2526 {
2527 	LIST_HEAD(async_domain);
2528 	int i;
2529 	int ret = 0;
2530 
2531 	for (i = 0; i < num_consumers; i++)
2532 		async_schedule_domain(regulator_bulk_enable_async,
2533 				      &consumers[i], &async_domain);
2534 
2535 	async_synchronize_full_domain(&async_domain);
2536 
2537 	/* If any consumer failed we need to unwind any that succeeded */
2538 	for (i = 0; i < num_consumers; i++) {
2539 		if (consumers[i].ret != 0) {
2540 			ret = consumers[i].ret;
2541 			goto err;
2542 		}
2543 	}
2544 
2545 	return 0;
2546 
2547 err:
2548 	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2549 	while (--i >= 0)
2550 		regulator_disable(consumers[i].consumer);
2551 
2552 	return ret;
2553 }
2554 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2555 
2556 /**
2557  * regulator_bulk_disable - disable multiple regulator consumers
2558  *
2559  * @num_consumers: Number of consumers
2560  * @consumers:     Consumer data; clients are stored here.
2561  * @return         0 on success, an errno on failure
2562  *
2563  * This convenience API allows consumers to disable multiple regulator
2564  * clients in a single API call.  If any consumers cannot be disabled
2565  * then any others that were disabled will be enabled again prior to
2566  * return.
2567  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)2568 int regulator_bulk_disable(int num_consumers,
2569 			   struct regulator_bulk_data *consumers)
2570 {
2571 	int i;
2572 	int ret;
2573 
2574 	for (i = num_consumers - 1; i >= 0; --i) {
2575 		ret = regulator_disable(consumers[i].consumer);
2576 		if (ret != 0)
2577 			goto err;
2578 	}
2579 
2580 	return 0;
2581 
2582 err:
2583 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2584 	for (++i; i < num_consumers; ++i)
2585 		regulator_enable(consumers[i].consumer);
2586 
2587 	return ret;
2588 }
2589 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2590 
2591 /**
2592  * regulator_bulk_force_disable - force disable multiple regulator consumers
2593  *
2594  * @num_consumers: Number of consumers
2595  * @consumers:     Consumer data; clients are stored here.
2596  * @return         0 on success, an errno on failure
2597  *
2598  * This convenience API allows consumers to forcibly disable multiple regulator
2599  * clients in a single API call.
2600  * NOTE: This should be used for situations when device damage will
2601  * likely occur if the regulators are not disabled (e.g. over temp).
2602  * Although regulator_force_disable function call for some consumers can
2603  * return error numbers, the function is called for all consumers.
2604  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)2605 int regulator_bulk_force_disable(int num_consumers,
2606 			   struct regulator_bulk_data *consumers)
2607 {
2608 	int i;
2609 	int ret;
2610 
2611 	for (i = 0; i < num_consumers; i++)
2612 		consumers[i].ret =
2613 			    regulator_force_disable(consumers[i].consumer);
2614 
2615 	for (i = 0; i < num_consumers; i++) {
2616 		if (consumers[i].ret != 0) {
2617 			ret = consumers[i].ret;
2618 			goto out;
2619 		}
2620 	}
2621 
2622 	return 0;
2623 out:
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2627 
2628 /**
2629  * regulator_bulk_free - free multiple regulator consumers
2630  *
2631  * @num_consumers: Number of consumers
2632  * @consumers:     Consumer data; clients are stored here.
2633  *
2634  * This convenience API allows consumers to free multiple regulator
2635  * clients in a single API call.
2636  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)2637 void regulator_bulk_free(int num_consumers,
2638 			 struct regulator_bulk_data *consumers)
2639 {
2640 	int i;
2641 
2642 	for (i = 0; i < num_consumers; i++) {
2643 		regulator_put(consumers[i].consumer);
2644 		consumers[i].consumer = NULL;
2645 	}
2646 }
2647 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2648 
2649 /**
2650  * regulator_notifier_call_chain - call regulator event notifier
2651  * @rdev: regulator source
2652  * @event: notifier block
2653  * @data: callback-specific data.
2654  *
2655  * Called by regulator drivers to notify clients a regulator event has
2656  * occurred. We also notify regulator clients downstream.
2657  * Note lock must be held by caller.
2658  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)2659 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2660 				  unsigned long event, void *data)
2661 {
2662 	_notifier_call_chain(rdev, event, data);
2663 	return NOTIFY_DONE;
2664 
2665 }
2666 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2667 
2668 /**
2669  * regulator_mode_to_status - convert a regulator mode into a status
2670  *
2671  * @mode: Mode to convert
2672  *
2673  * Convert a regulator mode into a status.
2674  */
regulator_mode_to_status(unsigned int mode)2675 int regulator_mode_to_status(unsigned int mode)
2676 {
2677 	switch (mode) {
2678 	case REGULATOR_MODE_FAST:
2679 		return REGULATOR_STATUS_FAST;
2680 	case REGULATOR_MODE_NORMAL:
2681 		return REGULATOR_STATUS_NORMAL;
2682 	case REGULATOR_MODE_IDLE:
2683 		return REGULATOR_STATUS_IDLE;
2684 	case REGULATOR_STATUS_STANDBY:
2685 		return REGULATOR_STATUS_STANDBY;
2686 	default:
2687 		return 0;
2688 	}
2689 }
2690 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2691 
2692 /*
2693  * To avoid cluttering sysfs (and memory) with useless state, only
2694  * create attributes that can be meaningfully displayed.
2695  */
add_regulator_attributes(struct regulator_dev * rdev)2696 static int add_regulator_attributes(struct regulator_dev *rdev)
2697 {
2698 	struct device		*dev = &rdev->dev;
2699 	struct regulator_ops	*ops = rdev->desc->ops;
2700 	int			status = 0;
2701 
2702 	/* some attributes need specific methods to be displayed */
2703 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2704 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2705 		status = device_create_file(dev, &dev_attr_microvolts);
2706 		if (status < 0)
2707 			return status;
2708 	}
2709 	if (ops->get_current_limit) {
2710 		status = device_create_file(dev, &dev_attr_microamps);
2711 		if (status < 0)
2712 			return status;
2713 	}
2714 	if (ops->get_mode) {
2715 		status = device_create_file(dev, &dev_attr_opmode);
2716 		if (status < 0)
2717 			return status;
2718 	}
2719 	if (ops->is_enabled) {
2720 		status = device_create_file(dev, &dev_attr_state);
2721 		if (status < 0)
2722 			return status;
2723 	}
2724 	if (ops->get_status) {
2725 		status = device_create_file(dev, &dev_attr_status);
2726 		if (status < 0)
2727 			return status;
2728 	}
2729 
2730 	/* some attributes are type-specific */
2731 	if (rdev->desc->type == REGULATOR_CURRENT) {
2732 		status = device_create_file(dev, &dev_attr_requested_microamps);
2733 		if (status < 0)
2734 			return status;
2735 	}
2736 
2737 	/* all the other attributes exist to support constraints;
2738 	 * don't show them if there are no constraints, or if the
2739 	 * relevant supporting methods are missing.
2740 	 */
2741 	if (!rdev->constraints)
2742 		return status;
2743 
2744 	/* constraints need specific supporting methods */
2745 	if (ops->set_voltage || ops->set_voltage_sel) {
2746 		status = device_create_file(dev, &dev_attr_min_microvolts);
2747 		if (status < 0)
2748 			return status;
2749 		status = device_create_file(dev, &dev_attr_max_microvolts);
2750 		if (status < 0)
2751 			return status;
2752 	}
2753 	if (ops->set_current_limit) {
2754 		status = device_create_file(dev, &dev_attr_min_microamps);
2755 		if (status < 0)
2756 			return status;
2757 		status = device_create_file(dev, &dev_attr_max_microamps);
2758 		if (status < 0)
2759 			return status;
2760 	}
2761 
2762 	/* suspend mode constraints need multiple supporting methods */
2763 	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2764 		return status;
2765 
2766 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2767 	if (status < 0)
2768 		return status;
2769 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2770 	if (status < 0)
2771 		return status;
2772 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2773 	if (status < 0)
2774 		return status;
2775 
2776 	if (ops->set_suspend_voltage) {
2777 		status = device_create_file(dev,
2778 				&dev_attr_suspend_standby_microvolts);
2779 		if (status < 0)
2780 			return status;
2781 		status = device_create_file(dev,
2782 				&dev_attr_suspend_mem_microvolts);
2783 		if (status < 0)
2784 			return status;
2785 		status = device_create_file(dev,
2786 				&dev_attr_suspend_disk_microvolts);
2787 		if (status < 0)
2788 			return status;
2789 	}
2790 
2791 	if (ops->set_suspend_mode) {
2792 		status = device_create_file(dev,
2793 				&dev_attr_suspend_standby_mode);
2794 		if (status < 0)
2795 			return status;
2796 		status = device_create_file(dev,
2797 				&dev_attr_suspend_mem_mode);
2798 		if (status < 0)
2799 			return status;
2800 		status = device_create_file(dev,
2801 				&dev_attr_suspend_disk_mode);
2802 		if (status < 0)
2803 			return status;
2804 	}
2805 
2806 	return status;
2807 }
2808 
rdev_init_debugfs(struct regulator_dev * rdev)2809 static void rdev_init_debugfs(struct regulator_dev *rdev)
2810 {
2811 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2812 	if (!rdev->debugfs) {
2813 		rdev_warn(rdev, "Failed to create debugfs directory\n");
2814 		return;
2815 	}
2816 
2817 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2818 			   &rdev->use_count);
2819 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2820 			   &rdev->open_count);
2821 }
2822 
2823 /**
2824  * regulator_register - register regulator
2825  * @regulator_desc: regulator to register
2826  * @dev: struct device for the regulator
2827  * @init_data: platform provided init data, passed through by driver
2828  * @driver_data: private regulator data
2829  * @of_node: OpenFirmware node to parse for device tree bindings (may be
2830  *           NULL).
2831  *
2832  * Called by regulator drivers to register a regulator.
2833  * Returns 0 on success.
2834  */
regulator_register(struct regulator_desc * regulator_desc,struct device * dev,const struct regulator_init_data * init_data,void * driver_data,struct device_node * of_node)2835 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2836 	struct device *dev, const struct regulator_init_data *init_data,
2837 	void *driver_data, struct device_node *of_node)
2838 {
2839 	const struct regulation_constraints *constraints = NULL;
2840 	static atomic_t regulator_no = ATOMIC_INIT(0);
2841 	struct regulator_dev *rdev;
2842 	int ret, i;
2843 	const char *supply = NULL;
2844 
2845 	if (regulator_desc == NULL)
2846 		return ERR_PTR(-EINVAL);
2847 
2848 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2849 		return ERR_PTR(-EINVAL);
2850 
2851 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2852 	    regulator_desc->type != REGULATOR_CURRENT)
2853 		return ERR_PTR(-EINVAL);
2854 
2855 	/* Only one of each should be implemented */
2856 	WARN_ON(regulator_desc->ops->get_voltage &&
2857 		regulator_desc->ops->get_voltage_sel);
2858 	WARN_ON(regulator_desc->ops->set_voltage &&
2859 		regulator_desc->ops->set_voltage_sel);
2860 
2861 	/* If we're using selectors we must implement list_voltage. */
2862 	if (regulator_desc->ops->get_voltage_sel &&
2863 	    !regulator_desc->ops->list_voltage) {
2864 		return ERR_PTR(-EINVAL);
2865 	}
2866 	if (regulator_desc->ops->set_voltage_sel &&
2867 	    !regulator_desc->ops->list_voltage) {
2868 		return ERR_PTR(-EINVAL);
2869 	}
2870 
2871 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2872 	if (rdev == NULL)
2873 		return ERR_PTR(-ENOMEM);
2874 
2875 	mutex_lock(&regulator_list_mutex);
2876 
2877 	mutex_init(&rdev->mutex);
2878 	rdev->reg_data = driver_data;
2879 	rdev->owner = regulator_desc->owner;
2880 	rdev->desc = regulator_desc;
2881 	INIT_LIST_HEAD(&rdev->consumer_list);
2882 	INIT_LIST_HEAD(&rdev->list);
2883 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2884 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2885 
2886 	/* preform any regulator specific init */
2887 	if (init_data && init_data->regulator_init) {
2888 		ret = init_data->regulator_init(rdev->reg_data);
2889 		if (ret < 0)
2890 			goto clean;
2891 	}
2892 
2893 	/* register with sysfs */
2894 	rdev->dev.class = &regulator_class;
2895 	rdev->dev.of_node = of_node;
2896 	rdev->dev.parent = dev;
2897 	dev_set_name(&rdev->dev, "regulator.%d",
2898 		     atomic_inc_return(&regulator_no) - 1);
2899 	ret = device_register(&rdev->dev);
2900 	if (ret != 0) {
2901 		put_device(&rdev->dev);
2902 		goto clean;
2903 	}
2904 
2905 	dev_set_drvdata(&rdev->dev, rdev);
2906 
2907 	/* set regulator constraints */
2908 	if (init_data)
2909 		constraints = &init_data->constraints;
2910 
2911 	ret = set_machine_constraints(rdev, constraints);
2912 	if (ret < 0)
2913 		goto scrub;
2914 
2915 	/* add attributes supported by this regulator */
2916 	ret = add_regulator_attributes(rdev);
2917 	if (ret < 0)
2918 		goto scrub;
2919 
2920 	if (init_data && init_data->supply_regulator)
2921 		supply = init_data->supply_regulator;
2922 	else if (regulator_desc->supply_name)
2923 		supply = regulator_desc->supply_name;
2924 
2925 	if (supply) {
2926 		struct regulator_dev *r;
2927 
2928 		r = regulator_dev_lookup(dev, supply);
2929 
2930 		if (!r) {
2931 			dev_err(dev, "Failed to find supply %s\n", supply);
2932 			ret = -EPROBE_DEFER;
2933 			goto scrub;
2934 		}
2935 
2936 		ret = set_supply(rdev, r);
2937 		if (ret < 0)
2938 			goto scrub;
2939 
2940 		/* Enable supply if rail is enabled */
2941 		if (rdev->desc->ops->is_enabled &&
2942 				rdev->desc->ops->is_enabled(rdev)) {
2943 			ret = regulator_enable(rdev->supply);
2944 			if (ret < 0)
2945 				goto scrub;
2946 		}
2947 	}
2948 
2949 	/* add consumers devices */
2950 	if (init_data) {
2951 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
2952 			ret = set_consumer_device_supply(rdev,
2953 				init_data->consumer_supplies[i].dev_name,
2954 				init_data->consumer_supplies[i].supply);
2955 			if (ret < 0) {
2956 				dev_err(dev, "Failed to set supply %s\n",
2957 					init_data->consumer_supplies[i].supply);
2958 				goto unset_supplies;
2959 			}
2960 		}
2961 	}
2962 
2963 	list_add(&rdev->list, &regulator_list);
2964 
2965 	rdev_init_debugfs(rdev);
2966 out:
2967 	mutex_unlock(&regulator_list_mutex);
2968 	return rdev;
2969 
2970 unset_supplies:
2971 	unset_regulator_supplies(rdev);
2972 
2973 scrub:
2974 	if (rdev->supply)
2975 		regulator_put(rdev->supply);
2976 	kfree(rdev->constraints);
2977 	device_unregister(&rdev->dev);
2978 	/* device core frees rdev */
2979 	rdev = ERR_PTR(ret);
2980 	goto out;
2981 
2982 clean:
2983 	kfree(rdev);
2984 	rdev = ERR_PTR(ret);
2985 	goto out;
2986 }
2987 EXPORT_SYMBOL_GPL(regulator_register);
2988 
2989 /**
2990  * regulator_unregister - unregister regulator
2991  * @rdev: regulator to unregister
2992  *
2993  * Called by regulator drivers to unregister a regulator.
2994  */
regulator_unregister(struct regulator_dev * rdev)2995 void regulator_unregister(struct regulator_dev *rdev)
2996 {
2997 	if (rdev == NULL)
2998 		return;
2999 
3000 	if (rdev->supply)
3001 		regulator_put(rdev->supply);
3002 	mutex_lock(&regulator_list_mutex);
3003 	debugfs_remove_recursive(rdev->debugfs);
3004 	flush_work_sync(&rdev->disable_work.work);
3005 	WARN_ON(rdev->open_count);
3006 	unset_regulator_supplies(rdev);
3007 	list_del(&rdev->list);
3008 	kfree(rdev->constraints);
3009 	device_unregister(&rdev->dev);
3010 	mutex_unlock(&regulator_list_mutex);
3011 }
3012 EXPORT_SYMBOL_GPL(regulator_unregister);
3013 
3014 /**
3015  * regulator_suspend_prepare - prepare regulators for system wide suspend
3016  * @state: system suspend state
3017  *
3018  * Configure each regulator with it's suspend operating parameters for state.
3019  * This will usually be called by machine suspend code prior to supending.
3020  */
regulator_suspend_prepare(suspend_state_t state)3021 int regulator_suspend_prepare(suspend_state_t state)
3022 {
3023 	struct regulator_dev *rdev;
3024 	int ret = 0;
3025 
3026 	/* ON is handled by regulator active state */
3027 	if (state == PM_SUSPEND_ON)
3028 		return -EINVAL;
3029 
3030 	mutex_lock(&regulator_list_mutex);
3031 	list_for_each_entry(rdev, &regulator_list, list) {
3032 
3033 		mutex_lock(&rdev->mutex);
3034 		ret = suspend_prepare(rdev, state);
3035 		mutex_unlock(&rdev->mutex);
3036 
3037 		if (ret < 0) {
3038 			rdev_err(rdev, "failed to prepare\n");
3039 			goto out;
3040 		}
3041 	}
3042 out:
3043 	mutex_unlock(&regulator_list_mutex);
3044 	return ret;
3045 }
3046 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3047 
3048 /**
3049  * regulator_suspend_finish - resume regulators from system wide suspend
3050  *
3051  * Turn on regulators that might be turned off by regulator_suspend_prepare
3052  * and that should be turned on according to the regulators properties.
3053  */
regulator_suspend_finish(void)3054 int regulator_suspend_finish(void)
3055 {
3056 	struct regulator_dev *rdev;
3057 	int ret = 0, error;
3058 
3059 	mutex_lock(&regulator_list_mutex);
3060 	list_for_each_entry(rdev, &regulator_list, list) {
3061 		struct regulator_ops *ops = rdev->desc->ops;
3062 
3063 		mutex_lock(&rdev->mutex);
3064 		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3065 				ops->enable) {
3066 			error = ops->enable(rdev);
3067 			if (error)
3068 				ret = error;
3069 		} else {
3070 			if (!has_full_constraints)
3071 				goto unlock;
3072 			if (!ops->disable)
3073 				goto unlock;
3074 			if (ops->is_enabled && !ops->is_enabled(rdev))
3075 				goto unlock;
3076 
3077 			error = ops->disable(rdev);
3078 			if (error)
3079 				ret = error;
3080 		}
3081 unlock:
3082 		mutex_unlock(&rdev->mutex);
3083 	}
3084 	mutex_unlock(&regulator_list_mutex);
3085 	return ret;
3086 }
3087 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3088 
3089 /**
3090  * regulator_has_full_constraints - the system has fully specified constraints
3091  *
3092  * Calling this function will cause the regulator API to disable all
3093  * regulators which have a zero use count and don't have an always_on
3094  * constraint in a late_initcall.
3095  *
3096  * The intention is that this will become the default behaviour in a
3097  * future kernel release so users are encouraged to use this facility
3098  * now.
3099  */
regulator_has_full_constraints(void)3100 void regulator_has_full_constraints(void)
3101 {
3102 	has_full_constraints = 1;
3103 }
3104 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3105 
3106 /**
3107  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3108  *
3109  * Calling this function will cause the regulator API to provide a
3110  * dummy regulator to consumers if no physical regulator is found,
3111  * allowing most consumers to proceed as though a regulator were
3112  * configured.  This allows systems such as those with software
3113  * controllable regulators for the CPU core only to be brought up more
3114  * readily.
3115  */
regulator_use_dummy_regulator(void)3116 void regulator_use_dummy_regulator(void)
3117 {
3118 	board_wants_dummy_regulator = true;
3119 }
3120 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3121 
3122 /**
3123  * rdev_get_drvdata - get rdev regulator driver data
3124  * @rdev: regulator
3125  *
3126  * Get rdev regulator driver private data. This call can be used in the
3127  * regulator driver context.
3128  */
rdev_get_drvdata(struct regulator_dev * rdev)3129 void *rdev_get_drvdata(struct regulator_dev *rdev)
3130 {
3131 	return rdev->reg_data;
3132 }
3133 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3134 
3135 /**
3136  * regulator_get_drvdata - get regulator driver data
3137  * @regulator: regulator
3138  *
3139  * Get regulator driver private data. This call can be used in the consumer
3140  * driver context when non API regulator specific functions need to be called.
3141  */
regulator_get_drvdata(struct regulator * regulator)3142 void *regulator_get_drvdata(struct regulator *regulator)
3143 {
3144 	return regulator->rdev->reg_data;
3145 }
3146 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3147 
3148 /**
3149  * regulator_set_drvdata - set regulator driver data
3150  * @regulator: regulator
3151  * @data: data
3152  */
regulator_set_drvdata(struct regulator * regulator,void * data)3153 void regulator_set_drvdata(struct regulator *regulator, void *data)
3154 {
3155 	regulator->rdev->reg_data = data;
3156 }
3157 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3158 
3159 /**
3160  * regulator_get_id - get regulator ID
3161  * @rdev: regulator
3162  */
rdev_get_id(struct regulator_dev * rdev)3163 int rdev_get_id(struct regulator_dev *rdev)
3164 {
3165 	return rdev->desc->id;
3166 }
3167 EXPORT_SYMBOL_GPL(rdev_get_id);
3168 
rdev_get_dev(struct regulator_dev * rdev)3169 struct device *rdev_get_dev(struct regulator_dev *rdev)
3170 {
3171 	return &rdev->dev;
3172 }
3173 EXPORT_SYMBOL_GPL(rdev_get_dev);
3174 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)3175 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3176 {
3177 	return reg_init_data->driver_data;
3178 }
3179 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3180 
3181 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)3182 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3183 				    size_t count, loff_t *ppos)
3184 {
3185 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3186 	ssize_t len, ret = 0;
3187 	struct regulator_map *map;
3188 
3189 	if (!buf)
3190 		return -ENOMEM;
3191 
3192 	list_for_each_entry(map, &regulator_map_list, list) {
3193 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3194 			       "%s -> %s.%s\n",
3195 			       rdev_get_name(map->regulator), map->dev_name,
3196 			       map->supply);
3197 		if (len >= 0)
3198 			ret += len;
3199 		if (ret > PAGE_SIZE) {
3200 			ret = PAGE_SIZE;
3201 			break;
3202 		}
3203 	}
3204 
3205 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3206 
3207 	kfree(buf);
3208 
3209 	return ret;
3210 }
3211 #endif
3212 
3213 static const struct file_operations supply_map_fops = {
3214 #ifdef CONFIG_DEBUG_FS
3215 	.read = supply_map_read_file,
3216 	.llseek = default_llseek,
3217 #endif
3218 };
3219 
regulator_init(void)3220 static int __init regulator_init(void)
3221 {
3222 	int ret;
3223 
3224 	ret = class_register(&regulator_class);
3225 
3226 	debugfs_root = debugfs_create_dir("regulator", NULL);
3227 	if (!debugfs_root)
3228 		pr_warn("regulator: Failed to create debugfs directory\n");
3229 
3230 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3231 			    &supply_map_fops);
3232 
3233 	regulator_dummy_init();
3234 
3235 	return ret;
3236 }
3237 
3238 /* init early to allow our consumers to complete system booting */
3239 core_initcall(regulator_init);
3240 
regulator_init_complete(void)3241 static int __init regulator_init_complete(void)
3242 {
3243 	struct regulator_dev *rdev;
3244 	struct regulator_ops *ops;
3245 	struct regulation_constraints *c;
3246 	int enabled, ret;
3247 
3248 	mutex_lock(&regulator_list_mutex);
3249 
3250 	/* If we have a full configuration then disable any regulators
3251 	 * which are not in use or always_on.  This will become the
3252 	 * default behaviour in the future.
3253 	 */
3254 	list_for_each_entry(rdev, &regulator_list, list) {
3255 		ops = rdev->desc->ops;
3256 		c = rdev->constraints;
3257 
3258 		if (!ops->disable || (c && c->always_on))
3259 			continue;
3260 
3261 		mutex_lock(&rdev->mutex);
3262 
3263 		if (rdev->use_count)
3264 			goto unlock;
3265 
3266 		/* If we can't read the status assume it's on. */
3267 		if (ops->is_enabled)
3268 			enabled = ops->is_enabled(rdev);
3269 		else
3270 			enabled = 1;
3271 
3272 		if (!enabled)
3273 			goto unlock;
3274 
3275 		if (has_full_constraints) {
3276 			/* We log since this may kill the system if it
3277 			 * goes wrong. */
3278 			rdev_info(rdev, "disabling\n");
3279 			ret = ops->disable(rdev);
3280 			if (ret != 0) {
3281 				rdev_err(rdev, "couldn't disable: %d\n", ret);
3282 			}
3283 		} else {
3284 			/* The intention is that in future we will
3285 			 * assume that full constraints are provided
3286 			 * so warn even if we aren't going to do
3287 			 * anything here.
3288 			 */
3289 			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3290 		}
3291 
3292 unlock:
3293 		mutex_unlock(&rdev->mutex);
3294 	}
3295 
3296 	mutex_unlock(&regulator_list_mutex);
3297 
3298 	return 0;
3299 }
3300 late_initcall(regulator_init_complete);
3301