• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Declarations for bus-generic internal APIs
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
37  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
38  *  - Initial implementation
39  *
40  *
41  * GENERAL DRIVER ARCHITECTURE
42  *
43  * The i2400m driver is split in the following two major parts:
44  *
45  *  - bus specific driver
46  *  - bus generic driver (this part)
47  *
48  * The bus specific driver sets up stuff specific to the bus the
49  * device is connected to (USB, SDIO, PCI, tam-tam...non-authoritative
50  * nor binding list) which is basically the device-model management
51  * (probe/disconnect, etc), moving data from device to kernel and
52  * back, doing the power saving details and reseting the device.
53  *
54  * For details on each bus-specific driver, see it's include file,
55  * i2400m-BUSNAME.h
56  *
57  * The bus-generic functionality break up is:
58  *
59  *  - Firmware upload: fw.c - takes care of uploading firmware to the
60  *        device. bus-specific driver just needs to provides a way to
61  *        execute boot-mode commands and to reset the device.
62  *
63  *  - RX handling: rx.c - receives data from the bus-specific code and
64  *        feeds it to the network or WiMAX stack or uses it to modify
65  *        the driver state. bus-specific driver only has to receive
66  *        frames and pass them to this module.
67  *
68  *  - TX handling: tx.c - manages the TX FIFO queue and provides means
69  *        for the bus-specific TX code to pull data from the FIFO
70  *        queue. bus-specific code just pulls frames from this module
71  *        to sends them to the device.
72  *
73  *  - netdev glue: netdev.c - interface with Linux networking
74  *        stack. Pass around data frames, and configure when the
75  *        device is up and running or shutdown (through ifconfig up /
76  *        down). Bus-generic only.
77  *
78  *  - control ops: control.c - implements various commands for
79  *        controlling the device. bus-generic only.
80  *
81  *  - device model glue: driver.c - implements helpers for the
82  *        device-model glue done by the bus-specific layer
83  *        (setup/release the driver resources), turning the device on
84  *        and off, handling the device reboots/resets and a few simple
85  *        WiMAX stack ops.
86  *
87  * Code is also broken up in linux-glue / device-glue.
88  *
89  * Linux glue contains functions that deal mostly with gluing with the
90  * rest of the Linux kernel.
91  *
92  * Device-glue are functions that deal mostly with the way the device
93  * does things and talk the device's language.
94  *
95  * device-glue code is licensed BSD so other open source OSes can take
96  * it to implement their drivers.
97  *
98  *
99  * APIs AND HEADER FILES
100  *
101  * This bus generic code exports three APIs:
102  *
103  *  - HDI (host-device interface) definitions common to all busses
104  *    (include/linux/wimax/i2400m.h); these can be also used by user
105  *    space code.
106  *  - internal API for the bus-generic code
107  *  - external API for the bus-specific drivers
108  *
109  *
110  * LIFE CYCLE:
111  *
112  * When the bus-specific driver probes, it allocates a network device
113  * with enough space for it's data structue, that must contain a
114  * &struct i2400m at the top.
115  *
116  * On probe, it needs to fill the i2400m members marked as [fill], as
117  * well as i2400m->wimax_dev.net_dev and call i2400m_setup(). The
118  * i2400m driver will only register with the WiMAX and network stacks;
119  * the only access done to the device is to read the MAC address so we
120  * can register a network device.
121  *
122  * The high-level call flow is:
123  *
124  * bus_probe()
125  *   i2400m_setup()
126  *     i2400m->bus_setup()
127  *     boot rom initialization / read mac addr
128  *     network / WiMAX stacks registration
129  *     i2400m_dev_start()
130  *       i2400m->bus_dev_start()
131  *       i2400m_dev_initialize()
132  *
133  * The reverse applies for a disconnect() call:
134  *
135  * bus_disconnect()
136  *   i2400m_release()
137  *     i2400m_dev_stop()
138  *       i2400m_dev_shutdown()
139  *       i2400m->bus_dev_stop()
140  *     network / WiMAX stack unregistration
141  *     i2400m->bus_release()
142  *
143  * At this point, control and data communications are possible.
144  *
145  * While the device is up, it might reset. The bus-specific driver has
146  * to catch that situation and call i2400m_dev_reset_handle() to deal
147  * with it (reset the internal driver structures and go back to square
148  * one).
149  */
150 
151 #ifndef __I2400M_H__
152 #define __I2400M_H__
153 
154 #include <linux/usb.h>
155 #include <linux/netdevice.h>
156 #include <linux/completion.h>
157 #include <linux/rwsem.h>
158 #include <linux/atomic.h>
159 #include <net/wimax.h>
160 #include <linux/wimax/i2400m.h>
161 #include <asm/byteorder.h>
162 
163 enum {
164 /* netdev interface */
165 	/*
166 	 * Out of NWG spec (R1_v1.2.2), 3.3.3 ASN Bearer Plane MTU Size
167 	 *
168 	 * The MTU is 1400 or less
169 	 */
170 	I2400M_MAX_MTU = 1400,
171 };
172 
173 /* Misc constants */
174 enum {
175 	/* Size of the Boot Mode Command buffer */
176 	I2400M_BM_CMD_BUF_SIZE = 16 * 1024,
177 	I2400M_BM_ACK_BUF_SIZE = 256,
178 };
179 
180 enum {
181 	/* Maximum number of bus reset can be retried */
182 	I2400M_BUS_RESET_RETRIES = 3,
183 };
184 
185 /**
186  * struct i2400m_poke_table - Hardware poke table for the Intel 2400m
187  *
188  * This structure will be used to create a device specific poke table
189  * to put the device in a consistent state at boot time.
190  *
191  * @address: The device address to poke
192  *
193  * @data: The data value to poke to the device address
194  *
195  */
196 struct i2400m_poke_table{
197 	__le32 address;
198 	__le32 data;
199 };
200 
201 #define I2400M_FW_POKE(a, d) {		\
202 	.address = cpu_to_le32(a),	\
203 	.data = cpu_to_le32(d)		\
204 }
205 
206 
207 /**
208  * i2400m_reset_type - methods to reset a device
209  *
210  * @I2400M_RT_WARM: Reset without device disconnection, device handles
211  *     are kept valid but state is back to power on, with firmware
212  *     re-uploaded.
213  * @I2400M_RT_COLD: Tell the device to disconnect itself from the bus
214  *     and reconnect. Renders all device handles invalid.
215  * @I2400M_RT_BUS: Tells the bus to reset the device; last measure
216  *     used when both types above don't work.
217  */
218 enum i2400m_reset_type {
219 	I2400M_RT_WARM,	/* first measure */
220 	I2400M_RT_COLD,	/* second measure */
221 	I2400M_RT_BUS,	/* call in artillery */
222 };
223 
224 struct i2400m_reset_ctx;
225 struct i2400m_roq;
226 struct i2400m_barker_db;
227 
228 /**
229  * struct i2400m - descriptor for an Intel 2400m
230  *
231  * Members marked with [fill] must be filled out/initialized before
232  * calling i2400m_setup().
233  *
234  * Note the @bus_setup/@bus_release, @bus_dev_start/@bus_dev_release
235  * call pairs are very much doing almost the same, and depending on
236  * the underlying bus, some stuff has to be put in one or the
237  * other. The idea of setup/release is that they setup the minimal
238  * amount needed for loading firmware, where us dev_start/stop setup
239  * the rest needed to do full data/control traffic.
240  *
241  * @bus_tx_block_size: [fill] SDIO imposes a 256 block size, USB 16,
242  *     so we have a tx_blk_size variable that the bus layer sets to
243  *     tell the engine how much of that we need.
244  *
245  * @bus_tx_room_min: [fill] Minimum room required while allocating
246  *     TX queue's buffer space for message header. SDIO requires
247  *     224 bytes and USB 16 bytes. Refer bus specific driver code
248  *     for details.
249  *
250  * @bus_pl_size_max: [fill] Maximum payload size.
251  *
252  * @bus_setup: [optional fill] Function called by the bus-generic code
253  *     [i2400m_setup()] to setup the basic bus-specific communications
254  *     to the the device needed to load firmware. See LIFE CYCLE above.
255  *
256  *     NOTE: Doesn't need to upload the firmware, as that is taken
257  *     care of by the bus-generic code.
258  *
259  * @bus_release: [optional fill] Function called by the bus-generic
260  *     code [i2400m_release()] to shutdown the basic bus-specific
261  *     communications to the the device needed to load firmware. See
262  *     LIFE CYCLE above.
263  *
264  *     This function does not need to reset the device, just tear down
265  *     all the host resources created to  handle communication with
266  *     the device.
267  *
268  * @bus_dev_start: [optional fill] Function called by the bus-generic
269  *     code [i2400m_dev_start()] to do things needed to start the
270  *     device. See LIFE CYCLE above.
271  *
272  *     NOTE: Doesn't need to upload the firmware, as that is taken
273  *     care of by the bus-generic code.
274  *
275  * @bus_dev_stop: [optional fill] Function called by the bus-generic
276  *     code [i2400m_dev_stop()] to do things needed for stopping the
277  *     device. See LIFE CYCLE above.
278  *
279  *     This function does not need to reset the device, just tear down
280  *     all the host resources created to handle communication with
281  *     the device.
282  *
283  * @bus_tx_kick: [fill] Function called by the bus-generic code to let
284  *     the bus-specific code know that there is data available in the
285  *     TX FIFO for transmission to the device.
286  *
287  *     This function cannot sleep.
288  *
289  * @bus_reset: [fill] Function called by the bus-generic code to reset
290  *     the device in in various ways. Doesn't need to wait for the
291  *     reset to finish.
292  *
293  *     If warm or cold reset fail, this function is expected to do a
294  *     bus-specific reset (eg: USB reset) to get the device to a
295  *     working state (even if it implies device disconecction).
296  *
297  *     Note the warm reset is used by the firmware uploader to
298  *     reinitialize the device.
299  *
300  *     IMPORTANT: this is called very early in the device setup
301  *     process, so it cannot rely on common infrastructure being laid
302  *     out.
303  *
304  *     IMPORTANT: don't call reset on RT_BUS with i2400m->init_mutex
305  *     held, as the .pre/.post reset handlers will deadlock.
306  *
307  * @bus_bm_retries: [fill] How many times shall a firmware upload /
308  *     device initialization be retried? Different models of the same
309  *     device might need different values, hence it is set by the
310  *     bus-specific driver. Note this value is used in two places,
311  *     i2400m_fw_dnload() and __i2400m_dev_start(); they won't become
312  *     multiplicative (__i2400m_dev_start() calling N times
313  *     i2400m_fw_dnload() and this trying N times to download the
314  *     firmware), as if __i2400m_dev_start() only retries if the
315  *     firmware crashed while initializing the device (not in a
316  *     general case).
317  *
318  * @bus_bm_cmd_send: [fill] Function called to send a boot-mode
319  *     command. Flags are defined in 'enum i2400m_bm_cmd_flags'. This
320  *     is synchronous and has to return 0 if ok or < 0 errno code in
321  *     any error condition.
322  *
323  * @bus_bm_wait_for_ack: [fill] Function called to wait for a
324  *     boot-mode notification (that can be a response to a previously
325  *     issued command or an asynchronous one). Will read until all the
326  *     indicated size is read or timeout. Reading more or less data
327  *     than asked for is an error condition. Return 0 if ok, < 0 errno
328  *     code on error.
329  *
330  *     The caller to this function will check if the response is a
331  *     barker that indicates the device going into reset mode.
332  *
333  * @bus_fw_names: [fill] a NULL-terminated array with the names of the
334  *     firmware images to try loading. This is made a list so we can
335  *     support backward compatibility of firmware releases (eg: if we
336  *     can't find the default v1.4, we try v1.3). In general, the name
337  *     should be i2400m-fw-X-VERSION.sbcf, where X is the bus name.
338  *     The list is tried in order and the first one that loads is
339  *     used. The fw loader will set i2400m->fw_name to point to the
340  *     active firmware image.
341  *
342  * @bus_bm_mac_addr_impaired: [fill] Set to true if the device's MAC
343  *     address provided in boot mode is kind of broken and needs to
344  *     be re-read later on.
345  *
346  * @bus_bm_pokes_table: [fill/optional] A table of device addresses
347  *     and values that will be poked at device init time to move the
348  *     device to the correct state for the type of boot/firmware being
349  *     used.  This table MUST be terminated with (0x000000,
350  *     0x00000000) or bad things will happen.
351  *
352  *
353  * @wimax_dev: WiMAX generic device for linkage into the kernel WiMAX
354  *     stack. Due to the way a net_device is allocated, we need to
355  *     force this to be the first field so that we can get from
356  *     netdev_priv() the right pointer.
357  *
358  * @updown: the device is up and ready for transmitting control and
359  *     data packets. This implies @ready (communication infrastructure
360  *     with the device is ready) and the device's firmware has been
361  *     loaded and the device initialized.
362  *
363  *     Write to it only inside a i2400m->init_mutex protected area
364  *     followed with a wmb(); rmb() before accesing (unless locked
365  *     inside i2400m->init_mutex). Read access can be loose like that
366  *     [just using rmb()] because the paths that use this also do
367  *     other error checks later on.
368  *
369  * @ready: Communication infrastructure with the device is ready, data
370  *     frames can start to be passed around (this is lighter than
371  *     using the WiMAX state for certain hot paths).
372  *
373  *     Write to it only inside a i2400m->init_mutex protected area
374  *     followed with a wmb(); rmb() before accesing (unless locked
375  *     inside i2400m->init_mutex). Read access can be loose like that
376  *     [just using rmb()] because the paths that use this also do
377  *     other error checks later on.
378  *
379  * @rx_reorder: 1 if RX reordering is enabled; this can only be
380  *     set at probe time.
381  *
382  * @state: device's state (as reported by it)
383  *
384  * @state_wq: waitqueue that is woken up whenever the state changes
385  *
386  * @tx_lock: spinlock to protect TX members
387  *
388  * @tx_buf: FIFO buffer for TX; we queue data here
389  *
390  * @tx_in: FIFO index for incoming data. Note this doesn't wrap around
391  *     and it is always greater than @tx_out.
392  *
393  * @tx_out: FIFO index for outgoing data
394  *
395  * @tx_msg: current TX message that is active in the FIFO for
396  *     appending payloads.
397  *
398  * @tx_sequence: current sequence number for TX messages from the
399  *     device to the host.
400  *
401  * @tx_msg_size: size of the current message being transmitted by the
402  *     bus-specific code.
403  *
404  * @tx_pl_num: total number of payloads sent
405  *
406  * @tx_pl_max: maximum number of payloads sent in a TX message
407  *
408  * @tx_pl_min: minimum number of payloads sent in a TX message
409  *
410  * @tx_num: number of TX messages sent
411  *
412  * @tx_size_acc: number of bytes in all TX messages sent
413  *     (this is different to net_dev's statistics as it also counts
414  *     control messages).
415  *
416  * @tx_size_min: smallest TX message sent.
417  *
418  * @tx_size_max: biggest TX message sent.
419  *
420  * @rx_lock: spinlock to protect RX members and rx_roq_refcount.
421  *
422  * @rx_pl_num: total number of payloads received
423  *
424  * @rx_pl_max: maximum number of payloads received in a RX message
425  *
426  * @rx_pl_min: minimum number of payloads received in a RX message
427  *
428  * @rx_num: number of RX messages received
429  *
430  * @rx_size_acc: number of bytes in all RX messages received
431  *     (this is different to net_dev's statistics as it also counts
432  *     control messages).
433  *
434  * @rx_size_min: smallest RX message received.
435  *
436  * @rx_size_max: buggest RX message received.
437  *
438  * @rx_roq: RX ReOrder queues. (fw >= v1.4) When packets are received
439  *     out of order, the device will ask the driver to hold certain
440  *     packets until the ones that are received out of order can be
441  *     delivered. Then the driver can release them to the host. See
442  *     drivers/net/i2400m/rx.c for details.
443  *
444  * @rx_roq_refcount: refcount rx_roq. This refcounts any access to
445  *     rx_roq thus preventing rx_roq being destroyed when rx_roq
446  *     is being accessed. rx_roq_refcount is protected by rx_lock.
447  *
448  * @rx_reports: reports received from the device that couldn't be
449  *     processed because the driver wasn't still ready; when ready,
450  *     they are pulled from here and chewed.
451  *
452  * @rx_reports_ws: Work struct used to kick a scan of the RX reports
453  *     list and to process each.
454  *
455  * @src_mac_addr: MAC address used to make ethernet packets be coming
456  *     from. This is generated at i2400m_setup() time and used during
457  *     the life cycle of the instance. See i2400m_fake_eth_header().
458  *
459  * @init_mutex: Mutex used for serializing the device bringup
460  *     sequence; this way if the device reboots in the middle, we
461  *     don't try to do a bringup again while we are tearing down the
462  *     one that failed.
463  *
464  *     Can't reuse @msg_mutex because from within the bringup sequence
465  *     we need to send messages to the device and thus use @msg_mutex.
466  *
467  * @msg_mutex: mutex used to send control commands to the device (we
468  *     only allow one at a time, per host-device interface design).
469  *
470  * @msg_completion: used to wait for an ack to a control command sent
471  *     to the device.
472  *
473  * @ack_skb: used to store the actual ack to a control command if the
474  *     reception of the command was successful. Otherwise, a ERR_PTR()
475  *     errno code that indicates what failed with the ack reception.
476  *
477  *     Only valid after @msg_completion is woken up. Only updateable
478  *     if @msg_completion is armed. Only touched by
479  *     i2400m_msg_to_dev().
480  *
481  *     Protected by @rx_lock. In theory the command execution flow is
482  *     sequential, but in case the device sends an out-of-phase or
483  *     very delayed response, we need to avoid it trampling current
484  *     execution.
485  *
486  * @bm_cmd_buf: boot mode command buffer for composing firmware upload
487  *     commands.
488  *
489  *     USB can't r/w to stack, vmalloc, etc...as well, we end up
490  *     having to alloc/free a lot to compose commands, so we use these
491  *     for stagging and not having to realloc all the time.
492  *
493  *     This assumes the code always runs serialized. Only one thread
494  *     can call i2400m_bm_cmd() at the same time.
495  *
496  * @bm_ack_buf: boot mode acknoledge buffer for staging reception of
497  *     responses to commands.
498  *
499  *     See @bm_cmd_buf.
500  *
501  * @work_queue: work queue for processing device reports. This
502  *     workqueue cannot be used for processing TX or RX to the device,
503  *     as from it we'll process device reports, which might require
504  *     further communication with the device.
505  *
506  * @debugfs_dentry: hookup for debugfs files.
507  *     These have to be in a separate directory, a child of
508  *     (wimax_dev->debugfs_dentry) so they can be removed when the
509  *     module unloads, as we don't keep each dentry.
510  *
511  * @fw_name: name of the firmware image that is currently being used.
512  *
513  * @fw_version: version of the firmware interface, Major.minor,
514  *     encoded in the high word and low word (major << 16 | minor).
515  *
516  * @fw_hdrs: NULL terminated array of pointers to the firmware
517  *     headers. This is only available during firmware load time.
518  *
519  * @fw_cached: Used to cache firmware when the system goes to
520  *     suspend/standby/hibernation (as on resume we can't read it). If
521  *     NULL, no firmware was cached, read it. If ~0, you can't read
522  *     any firmware files (the system still didn't come out of suspend
523  *     and failed to cache one), so abort; otherwise, a valid cached
524  *     firmware to be used. Access to this variable is protected by
525  *     the spinlock i2400m->rx_lock.
526  *
527  * @barker: barker type that the device uses; this is initialized by
528  *     i2400m_is_boot_barker() the first time it is called. Then it
529  *     won't change during the life cycle of the device and every time
530  *     a boot barker is received, it is just verified for it being the
531  *     same.
532  *
533  * @pm_notifier: used to register for PM events
534  *
535  * @bus_reset_retries: counter for the number of bus resets attempted for
536  *	this boot. It's not for tracking the number of bus resets during
537  *	the whole driver life cycle (from insmod to rmmod) but for the
538  *	number of dev_start() executed until dev_start() returns a success
539  *	(ie: a good boot means a dev_stop() followed by a successful
540  *	dev_start()). dev_reset_handler() increments this counter whenever
541  *	it is triggering a bus reset. It checks this counter to decide if a
542  *	subsequent bus reset should be retried. dev_reset_handler() retries
543  *	the bus reset until dev_start() succeeds or the counter reaches
544  *	I2400M_BUS_RESET_RETRIES. The counter is cleared to 0 in
545  *	dev_reset_handle() when dev_start() returns a success,
546  *	ie: a successul boot is completed.
547  *
548  * @alive: flag to denote if the device *should* be alive. This flag is
549  *	everything like @updown (see doc for @updown) except reflecting
550  *	the device state *we expect* rather than the actual state as denoted
551  *	by @updown. It is set 1 whenever @updown is set 1 in dev_start().
552  *	Then the device is expected to be alive all the time
553  *	(i2400m->alive remains 1) until the driver is removed. Therefore
554  *	all the device reboot events detected can be still handled properly
555  *	by either dev_reset_handle() or .pre_reset/.post_reset as long as
556  *	the driver presents. It is set 0 along with @updown in dev_stop().
557  *
558  * @error_recovery: flag to denote if we are ready to take an error recovery.
559  *	0 for ready to take an error recovery; 1 for not ready. It is
560  *	initialized to 1 while probe() since we don't tend to take any error
561  *	recovery during probe(). It is decremented by 1 whenever dev_start()
562  *	succeeds to indicate we are ready to take error recovery from now on.
563  *	It is checked every time we wanna schedule an error recovery. If an
564  *	error recovery is already in place (error_recovery was set 1), we
565  *	should not schedule another one until the last one is done.
566  */
567 struct i2400m {
568 	struct wimax_dev wimax_dev;	/* FIRST! See doc */
569 
570 	unsigned updown:1;		/* Network device is up or down */
571 	unsigned boot_mode:1;		/* is the device in boot mode? */
572 	unsigned sboot:1;		/* signed or unsigned fw boot */
573 	unsigned ready:1;		/* Device comm infrastructure ready */
574 	unsigned rx_reorder:1;		/* RX reorder is enabled */
575 	u8 trace_msg_from_user;		/* echo rx msgs to 'trace' pipe */
576 					/* typed u8 so /sys/kernel/debug/u8 can tweak */
577 	enum i2400m_system_state state;
578 	wait_queue_head_t state_wq;	/* Woken up when on state updates */
579 
580 	size_t bus_tx_block_size;
581 	size_t bus_tx_room_min;
582 	size_t bus_pl_size_max;
583 	unsigned bus_bm_retries;
584 
585 	int (*bus_setup)(struct i2400m *);
586 	int (*bus_dev_start)(struct i2400m *);
587 	void (*bus_dev_stop)(struct i2400m *);
588 	void (*bus_release)(struct i2400m *);
589 	void (*bus_tx_kick)(struct i2400m *);
590 	int (*bus_reset)(struct i2400m *, enum i2400m_reset_type);
591 	ssize_t (*bus_bm_cmd_send)(struct i2400m *,
592 				   const struct i2400m_bootrom_header *,
593 				   size_t, int flags);
594 	ssize_t (*bus_bm_wait_for_ack)(struct i2400m *,
595 				       struct i2400m_bootrom_header *, size_t);
596 	const char **bus_fw_names;
597 	unsigned bus_bm_mac_addr_impaired:1;
598 	const struct i2400m_poke_table *bus_bm_pokes_table;
599 
600 	spinlock_t tx_lock;		/* protect TX state */
601 	void *tx_buf;
602 	size_t tx_in, tx_out;
603 	struct i2400m_msg_hdr *tx_msg;
604 	size_t tx_sequence, tx_msg_size;
605 	/* TX stats */
606 	unsigned tx_pl_num, tx_pl_max, tx_pl_min,
607 		tx_num, tx_size_acc, tx_size_min, tx_size_max;
608 
609 	/* RX stuff */
610 	/* protect RX state and rx_roq_refcount */
611 	spinlock_t rx_lock;
612 	unsigned rx_pl_num, rx_pl_max, rx_pl_min,
613 		rx_num, rx_size_acc, rx_size_min, rx_size_max;
614 	struct i2400m_roq *rx_roq;	/* access is refcounted */
615 	struct kref rx_roq_refcount;	/* refcount access to rx_roq */
616 	u8 src_mac_addr[ETH_HLEN];
617 	struct list_head rx_reports;	/* under rx_lock! */
618 	struct work_struct rx_report_ws;
619 
620 	struct mutex msg_mutex;		/* serialize command execution */
621 	struct completion msg_completion;
622 	struct sk_buff *ack_skb;	/* protected by rx_lock */
623 
624 	void *bm_ack_buf;		/* for receiving acks over USB */
625 	void *bm_cmd_buf;		/* for issuing commands over USB */
626 
627 	struct workqueue_struct *work_queue;
628 
629 	struct mutex init_mutex;	/* protect bringup seq */
630 	struct i2400m_reset_ctx *reset_ctx;	/* protected by init_mutex */
631 
632 	struct work_struct wake_tx_ws;
633 	struct sk_buff *wake_tx_skb;
634 
635 	struct work_struct reset_ws;
636 	const char *reset_reason;
637 
638 	struct work_struct recovery_ws;
639 
640 	struct dentry *debugfs_dentry;
641 	const char *fw_name;		/* name of the current firmware image */
642 	unsigned long fw_version;	/* version of the firmware interface */
643 	const struct i2400m_bcf_hdr **fw_hdrs;
644 	struct i2400m_fw *fw_cached;	/* protected by rx_lock */
645 	struct i2400m_barker_db *barker;
646 
647 	struct notifier_block pm_notifier;
648 
649 	/* counting bus reset retries in this boot */
650 	atomic_t bus_reset_retries;
651 
652 	/* if the device is expected to be alive */
653 	unsigned alive;
654 
655 	/* 0 if we are ready for error recovery; 1 if not ready  */
656 	atomic_t error_recovery;
657 
658 };
659 
660 
661 /*
662  * Bus-generic internal APIs
663  * -------------------------
664  */
665 
666 static inline
wimax_dev_to_i2400m(struct wimax_dev * wimax_dev)667 struct i2400m *wimax_dev_to_i2400m(struct wimax_dev *wimax_dev)
668 {
669 	return container_of(wimax_dev, struct i2400m, wimax_dev);
670 }
671 
672 static inline
net_dev_to_i2400m(struct net_device * net_dev)673 struct i2400m *net_dev_to_i2400m(struct net_device *net_dev)
674 {
675 	return wimax_dev_to_i2400m(netdev_priv(net_dev));
676 }
677 
678 /*
679  * Boot mode support
680  */
681 
682 /**
683  * i2400m_bm_cmd_flags - flags to i2400m_bm_cmd()
684  *
685  * @I2400M_BM_CMD_RAW: send the command block as-is, without doing any
686  *     extra processing for adding CRC.
687  */
688 enum i2400m_bm_cmd_flags {
689 	I2400M_BM_CMD_RAW	= 1 << 2,
690 };
691 
692 /**
693  * i2400m_bri - Boot-ROM indicators
694  *
695  * Flags for i2400m_bootrom_init() and i2400m_dev_bootstrap() [which
696  * are passed from things like i2400m_setup()]. Can be combined with
697  * |.
698  *
699  * @I2400M_BRI_SOFT: The device rebooted already and a reboot
700  *     barker received, proceed directly to ack the boot sequence.
701  * @I2400M_BRI_NO_REBOOT: Do not reboot the device and proceed
702  *     directly to wait for a reboot barker from the device.
703  * @I2400M_BRI_MAC_REINIT: We need to reinitialize the boot
704  *     rom after reading the MAC address. This is quite a dirty hack,
705  *     if you ask me -- the device requires the bootrom to be
706  *     initialized after reading the MAC address.
707  */
708 enum i2400m_bri {
709 	I2400M_BRI_SOFT       = 1 << 1,
710 	I2400M_BRI_NO_REBOOT  = 1 << 2,
711 	I2400M_BRI_MAC_REINIT = 1 << 3,
712 };
713 
714 extern void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *);
715 extern int i2400m_dev_bootstrap(struct i2400m *, enum i2400m_bri);
716 extern int i2400m_read_mac_addr(struct i2400m *);
717 extern int i2400m_bootrom_init(struct i2400m *, enum i2400m_bri);
718 extern int i2400m_is_boot_barker(struct i2400m *, const void *, size_t);
719 static inline
i2400m_is_d2h_barker(const void * buf)720 int i2400m_is_d2h_barker(const void *buf)
721 {
722 	const __le32 *barker = buf;
723 	return le32_to_cpu(*barker) == I2400M_D2H_MSG_BARKER;
724 }
725 extern void i2400m_unknown_barker(struct i2400m *, const void *, size_t);
726 
727 /* Make/grok boot-rom header commands */
728 
729 static inline
i2400m_brh_command(enum i2400m_brh_opcode opcode,unsigned use_checksum,unsigned direct_access)730 __le32 i2400m_brh_command(enum i2400m_brh_opcode opcode, unsigned use_checksum,
731 			  unsigned direct_access)
732 {
733 	return cpu_to_le32(
734 		I2400M_BRH_SIGNATURE
735 		| (direct_access ? I2400M_BRH_DIRECT_ACCESS : 0)
736 		| I2400M_BRH_RESPONSE_REQUIRED /* response always required */
737 		| (use_checksum ? I2400M_BRH_USE_CHECKSUM : 0)
738 		| (opcode & I2400M_BRH_OPCODE_MASK));
739 }
740 
741 static inline
i2400m_brh_set_opcode(struct i2400m_bootrom_header * hdr,enum i2400m_brh_opcode opcode)742 void i2400m_brh_set_opcode(struct i2400m_bootrom_header *hdr,
743 			   enum i2400m_brh_opcode opcode)
744 {
745 	hdr->command = cpu_to_le32(
746 		(le32_to_cpu(hdr->command) & ~I2400M_BRH_OPCODE_MASK)
747 		| (opcode & I2400M_BRH_OPCODE_MASK));
748 }
749 
750 static inline
i2400m_brh_get_opcode(const struct i2400m_bootrom_header * hdr)751 unsigned i2400m_brh_get_opcode(const struct i2400m_bootrom_header *hdr)
752 {
753 	return le32_to_cpu(hdr->command) & I2400M_BRH_OPCODE_MASK;
754 }
755 
756 static inline
i2400m_brh_get_response(const struct i2400m_bootrom_header * hdr)757 unsigned i2400m_brh_get_response(const struct i2400m_bootrom_header *hdr)
758 {
759 	return (le32_to_cpu(hdr->command) & I2400M_BRH_RESPONSE_MASK)
760 		>> I2400M_BRH_RESPONSE_SHIFT;
761 }
762 
763 static inline
i2400m_brh_get_use_checksum(const struct i2400m_bootrom_header * hdr)764 unsigned i2400m_brh_get_use_checksum(const struct i2400m_bootrom_header *hdr)
765 {
766 	return le32_to_cpu(hdr->command) & I2400M_BRH_USE_CHECKSUM;
767 }
768 
769 static inline
i2400m_brh_get_response_required(const struct i2400m_bootrom_header * hdr)770 unsigned i2400m_brh_get_response_required(
771 	const struct i2400m_bootrom_header *hdr)
772 {
773 	return le32_to_cpu(hdr->command) & I2400M_BRH_RESPONSE_REQUIRED;
774 }
775 
776 static inline
i2400m_brh_get_direct_access(const struct i2400m_bootrom_header * hdr)777 unsigned i2400m_brh_get_direct_access(const struct i2400m_bootrom_header *hdr)
778 {
779 	return le32_to_cpu(hdr->command) & I2400M_BRH_DIRECT_ACCESS;
780 }
781 
782 static inline
i2400m_brh_get_signature(const struct i2400m_bootrom_header * hdr)783 unsigned i2400m_brh_get_signature(const struct i2400m_bootrom_header *hdr)
784 {
785 	return (le32_to_cpu(hdr->command) & I2400M_BRH_SIGNATURE_MASK)
786 		>> I2400M_BRH_SIGNATURE_SHIFT;
787 }
788 
789 
790 /*
791  * Driver / device setup and internal functions
792  */
793 extern void i2400m_init(struct i2400m *);
794 extern int i2400m_reset(struct i2400m *, enum i2400m_reset_type);
795 extern void i2400m_netdev_setup(struct net_device *net_dev);
796 extern int i2400m_sysfs_setup(struct device_driver *);
797 extern void i2400m_sysfs_release(struct device_driver *);
798 extern int i2400m_tx_setup(struct i2400m *);
799 extern void i2400m_wake_tx_work(struct work_struct *);
800 extern void i2400m_tx_release(struct i2400m *);
801 
802 extern int i2400m_rx_setup(struct i2400m *);
803 extern void i2400m_rx_release(struct i2400m *);
804 
805 extern void i2400m_fw_cache(struct i2400m *);
806 extern void i2400m_fw_uncache(struct i2400m *);
807 
808 extern void i2400m_net_rx(struct i2400m *, struct sk_buff *, unsigned,
809 			  const void *, int);
810 extern void i2400m_net_erx(struct i2400m *, struct sk_buff *,
811 			   enum i2400m_cs);
812 extern void i2400m_net_wake_stop(struct i2400m *);
813 enum i2400m_pt;
814 extern int i2400m_tx(struct i2400m *, const void *, size_t, enum i2400m_pt);
815 
816 #ifdef CONFIG_DEBUG_FS
817 extern int i2400m_debugfs_add(struct i2400m *);
818 extern void i2400m_debugfs_rm(struct i2400m *);
819 #else
i2400m_debugfs_add(struct i2400m * i2400m)820 static inline int i2400m_debugfs_add(struct i2400m *i2400m)
821 {
822 	return 0;
823 }
i2400m_debugfs_rm(struct i2400m * i2400m)824 static inline void i2400m_debugfs_rm(struct i2400m *i2400m) {}
825 #endif
826 
827 /* Initialize/shutdown the device */
828 extern int i2400m_dev_initialize(struct i2400m *);
829 extern void i2400m_dev_shutdown(struct i2400m *);
830 
831 extern struct attribute_group i2400m_dev_attr_group;
832 
833 
834 /* HDI message's payload description handling */
835 
836 static inline
i2400m_pld_size(const struct i2400m_pld * pld)837 size_t i2400m_pld_size(const struct i2400m_pld *pld)
838 {
839 	return I2400M_PLD_SIZE_MASK & le32_to_cpu(pld->val);
840 }
841 
842 static inline
i2400m_pld_type(const struct i2400m_pld * pld)843 enum i2400m_pt i2400m_pld_type(const struct i2400m_pld *pld)
844 {
845 	return (I2400M_PLD_TYPE_MASK & le32_to_cpu(pld->val))
846 		>> I2400M_PLD_TYPE_SHIFT;
847 }
848 
849 static inline
i2400m_pld_set(struct i2400m_pld * pld,size_t size,enum i2400m_pt type)850 void i2400m_pld_set(struct i2400m_pld *pld, size_t size,
851 		    enum i2400m_pt type)
852 {
853 	pld->val = cpu_to_le32(
854 		((type << I2400M_PLD_TYPE_SHIFT) & I2400M_PLD_TYPE_MASK)
855 		|  (size & I2400M_PLD_SIZE_MASK));
856 }
857 
858 
859 /*
860  * API for the bus-specific drivers
861  * --------------------------------
862  */
863 
864 static inline
i2400m_get(struct i2400m * i2400m)865 struct i2400m *i2400m_get(struct i2400m *i2400m)
866 {
867 	dev_hold(i2400m->wimax_dev.net_dev);
868 	return i2400m;
869 }
870 
871 static inline
i2400m_put(struct i2400m * i2400m)872 void i2400m_put(struct i2400m *i2400m)
873 {
874 	dev_put(i2400m->wimax_dev.net_dev);
875 }
876 
877 extern int i2400m_dev_reset_handle(struct i2400m *, const char *);
878 extern int i2400m_pre_reset(struct i2400m *);
879 extern int i2400m_post_reset(struct i2400m *);
880 extern void i2400m_error_recovery(struct i2400m *);
881 
882 /*
883  * _setup()/_release() are called by the probe/disconnect functions of
884  * the bus-specific drivers.
885  */
886 extern int i2400m_setup(struct i2400m *, enum i2400m_bri bm_flags);
887 extern void i2400m_release(struct i2400m *);
888 
889 extern int i2400m_rx(struct i2400m *, struct sk_buff *);
890 extern struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *, size_t *);
891 extern void i2400m_tx_msg_sent(struct i2400m *);
892 
893 
894 /*
895  * Utility functions
896  */
897 
898 static inline
i2400m_dev(struct i2400m * i2400m)899 struct device *i2400m_dev(struct i2400m *i2400m)
900 {
901 	return i2400m->wimax_dev.net_dev->dev.parent;
902 }
903 
904 extern int i2400m_msg_check_status(const struct i2400m_l3l4_hdr *,
905 				   char *, size_t);
906 extern int i2400m_msg_size_check(struct i2400m *,
907 				 const struct i2400m_l3l4_hdr *, size_t);
908 extern struct sk_buff *i2400m_msg_to_dev(struct i2400m *, const void *, size_t);
909 extern void i2400m_msg_to_dev_cancel_wait(struct i2400m *, int);
910 extern void i2400m_report_hook(struct i2400m *,
911 			       const struct i2400m_l3l4_hdr *, size_t);
912 extern void i2400m_report_hook_work(struct work_struct *);
913 extern int i2400m_cmd_enter_powersave(struct i2400m *);
914 extern int i2400m_cmd_exit_idle(struct i2400m *);
915 extern struct sk_buff *i2400m_get_device_info(struct i2400m *);
916 extern int i2400m_firmware_check(struct i2400m *);
917 extern int i2400m_set_idle_timeout(struct i2400m *, unsigned);
918 
919 static inline
usb_get_epd(struct usb_interface * iface,int ep)920 struct usb_endpoint_descriptor *usb_get_epd(struct usb_interface *iface, int ep)
921 {
922 	return &iface->cur_altsetting->endpoint[ep].desc;
923 }
924 
925 extern int i2400m_op_rfkill_sw_toggle(struct wimax_dev *,
926 				      enum wimax_rf_state);
927 extern void i2400m_report_tlv_rf_switches_status(
928 	struct i2400m *, const struct i2400m_tlv_rf_switches_status *);
929 
930 /*
931  * Helpers for firmware backwards compatibility
932  *
933  * As we aim to support at least the firmware version that was
934  * released with the previous kernel/driver release, some code will be
935  * conditionally executed depending on the firmware version. On each
936  * release, the code to support fw releases past the last two ones
937  * will be purged.
938  *
939  * By making it depend on this macros, it is easier to keep it a tab
940  * on what has to go and what not.
941  */
942 static inline
i2400m_le_v1_3(struct i2400m * i2400m)943 unsigned i2400m_le_v1_3(struct i2400m *i2400m)
944 {
945 	/* running fw is lower or v1.3 */
946 	return i2400m->fw_version <= 0x00090001;
947 }
948 
949 static inline
i2400m_ge_v1_4(struct i2400m * i2400m)950 unsigned i2400m_ge_v1_4(struct i2400m *i2400m)
951 {
952 	/* running fw is higher or v1.4 */
953 	return i2400m->fw_version >= 0x00090002;
954 }
955 
956 
957 /*
958  * Do a millisecond-sleep for allowing wireshark to dump all the data
959  * packets. Used only for debugging.
960  */
961 static inline
__i2400m_msleep(unsigned ms)962 void __i2400m_msleep(unsigned ms)
963 {
964 #if 1
965 #else
966 	msleep(ms);
967 #endif
968 }
969 
970 
971 /* module initialization helpers */
972 extern int i2400m_barker_db_init(const char *);
973 extern void i2400m_barker_db_exit(void);
974 
975 
976 
977 #endif /* #ifndef __I2400M_H__ */
978