• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
20 #include <asm/cpu.h>
21 #include <asm/apic.h>
22 #include <asm/syscalls.h>
23 #include <asm/idle.h>
24 #include <asm/uaccess.h>
25 #include <asm/i387.h>
26 #include <asm/fpu-internal.h>
27 #include <asm/debugreg.h>
28 #include <asm/nmi.h>
29 
30 #ifdef CONFIG_X86_64
31 static DEFINE_PER_CPU(unsigned char, is_idle);
32 #endif
33 
34 struct kmem_cache *task_xstate_cachep;
35 EXPORT_SYMBOL_GPL(task_xstate_cachep);
36 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)37 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
38 {
39 	int ret;
40 
41 	*dst = *src;
42 	if (fpu_allocated(&src->thread.fpu)) {
43 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
44 		ret = fpu_alloc(&dst->thread.fpu);
45 		if (ret)
46 			return ret;
47 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
48 	}
49 	return 0;
50 }
51 
free_thread_xstate(struct task_struct * tsk)52 void free_thread_xstate(struct task_struct *tsk)
53 {
54 	fpu_free(&tsk->thread.fpu);
55 }
56 
free_thread_info(struct thread_info * ti)57 void free_thread_info(struct thread_info *ti)
58 {
59 	free_thread_xstate(ti->task);
60 	free_pages((unsigned long)ti, THREAD_ORDER);
61 }
62 
arch_task_cache_init(void)63 void arch_task_cache_init(void)
64 {
65         task_xstate_cachep =
66         	kmem_cache_create("task_xstate", xstate_size,
67 				  __alignof__(union thread_xstate),
68 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
69 }
70 
71 /*
72  * Free current thread data structures etc..
73  */
exit_thread(void)74 void exit_thread(void)
75 {
76 	struct task_struct *me = current;
77 	struct thread_struct *t = &me->thread;
78 	unsigned long *bp = t->io_bitmap_ptr;
79 
80 	if (bp) {
81 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
82 
83 		t->io_bitmap_ptr = NULL;
84 		clear_thread_flag(TIF_IO_BITMAP);
85 		/*
86 		 * Careful, clear this in the TSS too:
87 		 */
88 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
89 		t->io_bitmap_max = 0;
90 		put_cpu();
91 		kfree(bp);
92 	}
93 }
94 
show_regs(struct pt_regs * regs)95 void show_regs(struct pt_regs *regs)
96 {
97 	show_registers(regs);
98 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
99 }
100 
show_regs_common(void)101 void show_regs_common(void)
102 {
103 	const char *vendor, *product, *board;
104 
105 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
106 	if (!vendor)
107 		vendor = "";
108 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
109 	if (!product)
110 		product = "";
111 
112 	/* Board Name is optional */
113 	board = dmi_get_system_info(DMI_BOARD_NAME);
114 
115 	printk(KERN_CONT "\n");
116 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
117 		current->pid, current->comm, print_tainted(),
118 		init_utsname()->release,
119 		(int)strcspn(init_utsname()->version, " "),
120 		init_utsname()->version);
121 	printk(KERN_CONT " %s %s", vendor, product);
122 	if (board)
123 		printk(KERN_CONT "/%s", board);
124 	printk(KERN_CONT "\n");
125 }
126 
flush_thread(void)127 void flush_thread(void)
128 {
129 	struct task_struct *tsk = current;
130 
131 	flush_ptrace_hw_breakpoint(tsk);
132 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
133 	/*
134 	 * Forget coprocessor state..
135 	 */
136 	tsk->fpu_counter = 0;
137 	clear_fpu(tsk);
138 	clear_used_math();
139 }
140 
hard_disable_TSC(void)141 static void hard_disable_TSC(void)
142 {
143 	write_cr4(read_cr4() | X86_CR4_TSD);
144 }
145 
disable_TSC(void)146 void disable_TSC(void)
147 {
148 	preempt_disable();
149 	if (!test_and_set_thread_flag(TIF_NOTSC))
150 		/*
151 		 * Must flip the CPU state synchronously with
152 		 * TIF_NOTSC in the current running context.
153 		 */
154 		hard_disable_TSC();
155 	preempt_enable();
156 }
157 
hard_enable_TSC(void)158 static void hard_enable_TSC(void)
159 {
160 	write_cr4(read_cr4() & ~X86_CR4_TSD);
161 }
162 
enable_TSC(void)163 static void enable_TSC(void)
164 {
165 	preempt_disable();
166 	if (test_and_clear_thread_flag(TIF_NOTSC))
167 		/*
168 		 * Must flip the CPU state synchronously with
169 		 * TIF_NOTSC in the current running context.
170 		 */
171 		hard_enable_TSC();
172 	preempt_enable();
173 }
174 
get_tsc_mode(unsigned long adr)175 int get_tsc_mode(unsigned long adr)
176 {
177 	unsigned int val;
178 
179 	if (test_thread_flag(TIF_NOTSC))
180 		val = PR_TSC_SIGSEGV;
181 	else
182 		val = PR_TSC_ENABLE;
183 
184 	return put_user(val, (unsigned int __user *)adr);
185 }
186 
set_tsc_mode(unsigned int val)187 int set_tsc_mode(unsigned int val)
188 {
189 	if (val == PR_TSC_SIGSEGV)
190 		disable_TSC();
191 	else if (val == PR_TSC_ENABLE)
192 		enable_TSC();
193 	else
194 		return -EINVAL;
195 
196 	return 0;
197 }
198 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)199 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
200 		      struct tss_struct *tss)
201 {
202 	struct thread_struct *prev, *next;
203 
204 	prev = &prev_p->thread;
205 	next = &next_p->thread;
206 
207 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
208 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
209 		unsigned long debugctl = get_debugctlmsr();
210 
211 		debugctl &= ~DEBUGCTLMSR_BTF;
212 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
213 			debugctl |= DEBUGCTLMSR_BTF;
214 
215 		update_debugctlmsr(debugctl);
216 	}
217 
218 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
219 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
220 		/* prev and next are different */
221 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
222 			hard_disable_TSC();
223 		else
224 			hard_enable_TSC();
225 	}
226 
227 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
228 		/*
229 		 * Copy the relevant range of the IO bitmap.
230 		 * Normally this is 128 bytes or less:
231 		 */
232 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
233 		       max(prev->io_bitmap_max, next->io_bitmap_max));
234 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
235 		/*
236 		 * Clear any possible leftover bits:
237 		 */
238 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
239 	}
240 	propagate_user_return_notify(prev_p, next_p);
241 }
242 
sys_fork(struct pt_regs * regs)243 int sys_fork(struct pt_regs *regs)
244 {
245 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
246 }
247 
248 /*
249  * This is trivial, and on the face of it looks like it
250  * could equally well be done in user mode.
251  *
252  * Not so, for quite unobvious reasons - register pressure.
253  * In user mode vfork() cannot have a stack frame, and if
254  * done by calling the "clone()" system call directly, you
255  * do not have enough call-clobbered registers to hold all
256  * the information you need.
257  */
sys_vfork(struct pt_regs * regs)258 int sys_vfork(struct pt_regs *regs)
259 {
260 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
261 		       NULL, NULL);
262 }
263 
264 long
sys_clone(unsigned long clone_flags,unsigned long newsp,void __user * parent_tid,void __user * child_tid,struct pt_regs * regs)265 sys_clone(unsigned long clone_flags, unsigned long newsp,
266 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
267 {
268 	if (!newsp)
269 		newsp = regs->sp;
270 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
271 }
272 
273 /*
274  * This gets run with %si containing the
275  * function to call, and %di containing
276  * the "args".
277  */
278 extern void kernel_thread_helper(void);
279 
280 /*
281  * Create a kernel thread
282  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)283 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
284 {
285 	struct pt_regs regs;
286 
287 	memset(&regs, 0, sizeof(regs));
288 
289 	regs.si = (unsigned long) fn;
290 	regs.di = (unsigned long) arg;
291 
292 #ifdef CONFIG_X86_32
293 	regs.ds = __USER_DS;
294 	regs.es = __USER_DS;
295 	regs.fs = __KERNEL_PERCPU;
296 	regs.gs = __KERNEL_STACK_CANARY;
297 #else
298 	regs.ss = __KERNEL_DS;
299 #endif
300 
301 	regs.orig_ax = -1;
302 	regs.ip = (unsigned long) kernel_thread_helper;
303 	regs.cs = __KERNEL_CS | get_kernel_rpl();
304 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
305 
306 	/* Ok, create the new process.. */
307 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
308 }
309 EXPORT_SYMBOL(kernel_thread);
310 
311 /*
312  * sys_execve() executes a new program.
313  */
sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)314 long sys_execve(const char __user *name,
315 		const char __user *const __user *argv,
316 		const char __user *const __user *envp, struct pt_regs *regs)
317 {
318 	long error;
319 	char *filename;
320 
321 	filename = getname(name);
322 	error = PTR_ERR(filename);
323 	if (IS_ERR(filename))
324 		return error;
325 	error = do_execve(filename, argv, envp, regs);
326 
327 #ifdef CONFIG_X86_32
328 	if (error == 0) {
329 		/* Make sure we don't return using sysenter.. */
330                 set_thread_flag(TIF_IRET);
331         }
332 #endif
333 
334 	putname(filename);
335 	return error;
336 }
337 
338 /*
339  * Idle related variables and functions
340  */
341 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
342 EXPORT_SYMBOL(boot_option_idle_override);
343 
344 /*
345  * Powermanagement idle function, if any..
346  */
347 void (*pm_idle)(void);
348 #ifdef CONFIG_APM_MODULE
349 EXPORT_SYMBOL(pm_idle);
350 #endif
351 
hlt_use_halt(void)352 static inline int hlt_use_halt(void)
353 {
354 	return 1;
355 }
356 
357 #ifndef CONFIG_SMP
play_dead(void)358 static inline void play_dead(void)
359 {
360 	BUG();
361 }
362 #endif
363 
364 #ifdef CONFIG_X86_64
enter_idle(void)365 void enter_idle(void)
366 {
367 	percpu_write(is_idle, 1);
368 	idle_notifier_call_chain(IDLE_START);
369 }
370 
__exit_idle(void)371 static void __exit_idle(void)
372 {
373 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
374 		return;
375 	idle_notifier_call_chain(IDLE_END);
376 }
377 
378 /* Called from interrupts to signify idle end */
exit_idle(void)379 void exit_idle(void)
380 {
381 	/* idle loop has pid 0 */
382 	if (current->pid)
383 		return;
384 	__exit_idle();
385 }
386 #endif
387 
388 /*
389  * The idle thread. There's no useful work to be
390  * done, so just try to conserve power and have a
391  * low exit latency (ie sit in a loop waiting for
392  * somebody to say that they'd like to reschedule)
393  */
cpu_idle(void)394 void cpu_idle(void)
395 {
396 	/*
397 	 * If we're the non-boot CPU, nothing set the stack canary up
398 	 * for us.  CPU0 already has it initialized but no harm in
399 	 * doing it again.  This is a good place for updating it, as
400 	 * we wont ever return from this function (so the invalid
401 	 * canaries already on the stack wont ever trigger).
402 	 */
403 	boot_init_stack_canary();
404 	current_thread_info()->status |= TS_POLLING;
405 
406 	while (1) {
407 		tick_nohz_idle_enter();
408 
409 		while (!need_resched()) {
410 			rmb();
411 
412 			if (cpu_is_offline(smp_processor_id()))
413 				play_dead();
414 
415 			/*
416 			 * Idle routines should keep interrupts disabled
417 			 * from here on, until they go to idle.
418 			 * Otherwise, idle callbacks can misfire.
419 			 */
420 			local_touch_nmi();
421 			local_irq_disable();
422 
423 			enter_idle();
424 
425 			/* Don't trace irqs off for idle */
426 			stop_critical_timings();
427 
428 			/* enter_idle() needs rcu for notifiers */
429 			rcu_idle_enter();
430 
431 			if (cpuidle_idle_call())
432 				pm_idle();
433 
434 			rcu_idle_exit();
435 			start_critical_timings();
436 
437 			/* In many cases the interrupt that ended idle
438 			   has already called exit_idle. But some idle
439 			   loops can be woken up without interrupt. */
440 			__exit_idle();
441 		}
442 
443 		tick_nohz_idle_exit();
444 		preempt_enable_no_resched();
445 		schedule();
446 		preempt_disable();
447 	}
448 }
449 
450 /*
451  * We use this if we don't have any better
452  * idle routine..
453  */
default_idle(void)454 void default_idle(void)
455 {
456 	if (hlt_use_halt()) {
457 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
458 		trace_cpu_idle_rcuidle(1, smp_processor_id());
459 		current_thread_info()->status &= ~TS_POLLING;
460 		/*
461 		 * TS_POLLING-cleared state must be visible before we
462 		 * test NEED_RESCHED:
463 		 */
464 		smp_mb();
465 
466 		if (!need_resched())
467 			safe_halt();	/* enables interrupts racelessly */
468 		else
469 			local_irq_enable();
470 		current_thread_info()->status |= TS_POLLING;
471 		trace_power_end_rcuidle(smp_processor_id());
472 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
473 	} else {
474 		local_irq_enable();
475 		/* loop is done by the caller */
476 		cpu_relax();
477 	}
478 }
479 #ifdef CONFIG_APM_MODULE
480 EXPORT_SYMBOL(default_idle);
481 #endif
482 
set_pm_idle_to_default(void)483 bool set_pm_idle_to_default(void)
484 {
485 	bool ret = !!pm_idle;
486 
487 	pm_idle = default_idle;
488 
489 	return ret;
490 }
stop_this_cpu(void * dummy)491 void stop_this_cpu(void *dummy)
492 {
493 	local_irq_disable();
494 	/*
495 	 * Remove this CPU:
496 	 */
497 	set_cpu_online(smp_processor_id(), false);
498 	disable_local_APIC();
499 
500 	for (;;) {
501 		if (hlt_works(smp_processor_id()))
502 			halt();
503 	}
504 }
505 
do_nothing(void * unused)506 static void do_nothing(void *unused)
507 {
508 }
509 
510 /*
511  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
512  * pm_idle and update to new pm_idle value. Required while changing pm_idle
513  * handler on SMP systems.
514  *
515  * Caller must have changed pm_idle to the new value before the call. Old
516  * pm_idle value will not be used by any CPU after the return of this function.
517  */
cpu_idle_wait(void)518 void cpu_idle_wait(void)
519 {
520 	smp_mb();
521 	/* kick all the CPUs so that they exit out of pm_idle */
522 	smp_call_function(do_nothing, NULL, 1);
523 }
524 EXPORT_SYMBOL_GPL(cpu_idle_wait);
525 
526 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
mwait_idle(void)527 static void mwait_idle(void)
528 {
529 	if (!need_resched()) {
530 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
531 		trace_cpu_idle_rcuidle(1, smp_processor_id());
532 		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
533 			clflush((void *)&current_thread_info()->flags);
534 
535 		__monitor((void *)&current_thread_info()->flags, 0, 0);
536 		smp_mb();
537 		if (!need_resched())
538 			__sti_mwait(0, 0);
539 		else
540 			local_irq_enable();
541 		trace_power_end_rcuidle(smp_processor_id());
542 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
543 	} else
544 		local_irq_enable();
545 }
546 
547 /*
548  * On SMP it's slightly faster (but much more power-consuming!)
549  * to poll the ->work.need_resched flag instead of waiting for the
550  * cross-CPU IPI to arrive. Use this option with caution.
551  */
poll_idle(void)552 static void poll_idle(void)
553 {
554 	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
555 	trace_cpu_idle_rcuidle(0, smp_processor_id());
556 	local_irq_enable();
557 	while (!need_resched())
558 		cpu_relax();
559 	trace_power_end_rcuidle(smp_processor_id());
560 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
561 }
562 
563 /*
564  * mwait selection logic:
565  *
566  * It depends on the CPU. For AMD CPUs that support MWAIT this is
567  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
568  * then depend on a clock divisor and current Pstate of the core. If
569  * all cores of a processor are in halt state (C1) the processor can
570  * enter the C1E (C1 enhanced) state. If mwait is used this will never
571  * happen.
572  *
573  * idle=mwait overrides this decision and forces the usage of mwait.
574  */
575 
576 #define MWAIT_INFO			0x05
577 #define MWAIT_ECX_EXTENDED_INFO		0x01
578 #define MWAIT_EDX_C1			0xf0
579 
mwait_usable(const struct cpuinfo_x86 * c)580 int mwait_usable(const struct cpuinfo_x86 *c)
581 {
582 	u32 eax, ebx, ecx, edx;
583 
584 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
585 		return 1;
586 
587 	if (c->cpuid_level < MWAIT_INFO)
588 		return 0;
589 
590 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
591 	/* Check, whether EDX has extended info about MWAIT */
592 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
593 		return 1;
594 
595 	/*
596 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
597 	 * C1  supports MWAIT
598 	 */
599 	return (edx & MWAIT_EDX_C1);
600 }
601 
602 bool amd_e400_c1e_detected;
603 EXPORT_SYMBOL(amd_e400_c1e_detected);
604 
605 static cpumask_var_t amd_e400_c1e_mask;
606 
amd_e400_remove_cpu(int cpu)607 void amd_e400_remove_cpu(int cpu)
608 {
609 	if (amd_e400_c1e_mask != NULL)
610 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
611 }
612 
613 /*
614  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
615  * pending message MSR. If we detect C1E, then we handle it the same
616  * way as C3 power states (local apic timer and TSC stop)
617  */
amd_e400_idle(void)618 static void amd_e400_idle(void)
619 {
620 	if (need_resched())
621 		return;
622 
623 	if (!amd_e400_c1e_detected) {
624 		u32 lo, hi;
625 
626 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
627 
628 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
629 			amd_e400_c1e_detected = true;
630 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
631 				mark_tsc_unstable("TSC halt in AMD C1E");
632 			printk(KERN_INFO "System has AMD C1E enabled\n");
633 		}
634 	}
635 
636 	if (amd_e400_c1e_detected) {
637 		int cpu = smp_processor_id();
638 
639 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
640 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
641 			/*
642 			 * Force broadcast so ACPI can not interfere.
643 			 */
644 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
645 					   &cpu);
646 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
647 			       cpu);
648 		}
649 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
650 
651 		default_idle();
652 
653 		/*
654 		 * The switch back from broadcast mode needs to be
655 		 * called with interrupts disabled.
656 		 */
657 		 local_irq_disable();
658 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
659 		 local_irq_enable();
660 	} else
661 		default_idle();
662 }
663 
select_idle_routine(const struct cpuinfo_x86 * c)664 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
665 {
666 #ifdef CONFIG_SMP
667 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
668 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
669 			" performance may degrade.\n");
670 	}
671 #endif
672 	if (pm_idle)
673 		return;
674 
675 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
676 		/*
677 		 * One CPU supports mwait => All CPUs supports mwait
678 		 */
679 		printk(KERN_INFO "using mwait in idle threads.\n");
680 		pm_idle = mwait_idle;
681 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
682 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
683 		printk(KERN_INFO "using AMD E400 aware idle routine\n");
684 		pm_idle = amd_e400_idle;
685 	} else
686 		pm_idle = default_idle;
687 }
688 
init_amd_e400_c1e_mask(void)689 void __init init_amd_e400_c1e_mask(void)
690 {
691 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
692 	if (pm_idle == amd_e400_idle)
693 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
694 }
695 
idle_setup(char * str)696 static int __init idle_setup(char *str)
697 {
698 	if (!str)
699 		return -EINVAL;
700 
701 	if (!strcmp(str, "poll")) {
702 		printk("using polling idle threads.\n");
703 		pm_idle = poll_idle;
704 		boot_option_idle_override = IDLE_POLL;
705 	} else if (!strcmp(str, "mwait")) {
706 		boot_option_idle_override = IDLE_FORCE_MWAIT;
707 		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
708 	} else if (!strcmp(str, "halt")) {
709 		/*
710 		 * When the boot option of idle=halt is added, halt is
711 		 * forced to be used for CPU idle. In such case CPU C2/C3
712 		 * won't be used again.
713 		 * To continue to load the CPU idle driver, don't touch
714 		 * the boot_option_idle_override.
715 		 */
716 		pm_idle = default_idle;
717 		boot_option_idle_override = IDLE_HALT;
718 	} else if (!strcmp(str, "nomwait")) {
719 		/*
720 		 * If the boot option of "idle=nomwait" is added,
721 		 * it means that mwait will be disabled for CPU C2/C3
722 		 * states. In such case it won't touch the variable
723 		 * of boot_option_idle_override.
724 		 */
725 		boot_option_idle_override = IDLE_NOMWAIT;
726 	} else
727 		return -1;
728 
729 	return 0;
730 }
731 early_param("idle", idle_setup);
732 
arch_align_stack(unsigned long sp)733 unsigned long arch_align_stack(unsigned long sp)
734 {
735 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
736 		sp -= get_random_int() % 8192;
737 	return sp & ~0xf;
738 }
739 
arch_randomize_brk(struct mm_struct * mm)740 unsigned long arch_randomize_brk(struct mm_struct *mm)
741 {
742 	unsigned long range_end = mm->brk + 0x02000000;
743 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
744 }
745 
746