• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * cpu-sa1100.c: clock scaling for the SA1100
3  *
4  * Copyright (C) 2000 2001, The Delft University of Technology
5  *
6  * Authors:
7  * - Johan Pouwelse (J.A.Pouwelse@its.tudelft.nl): initial version
8  * - Erik Mouw (J.A.K.Mouw@its.tudelft.nl):
9  *   - major rewrite for linux-2.3.99
10  *   - rewritten for the more generic power management scheme in
11  *     linux-2.4.5-rmk1
12  *
13  * This software has been developed while working on the LART
14  * computing board (http://www.lartmaker.nl/), which is
15  * sponsored by the Mobile Multi-media Communications
16  * (http://www.mobimedia.org/) and Ubiquitous Communications
17  * (http://www.ubicom.tudelft.nl/) projects.
18  *
19  * The authors can be reached at:
20  *
21  *  Erik Mouw
22  *  Information and Communication Theory Group
23  *  Faculty of Information Technology and Systems
24  *  Delft University of Technology
25  *  P.O. Box 5031
26  *  2600 GA Delft
27  *  The Netherlands
28  *
29  *
30  * This program is free software; you can redistribute it and/or modify
31  * it under the terms of the GNU General Public License as published by
32  * the Free Software Foundation; either version 2 of the License, or
33  * (at your option) any later version.
34  *
35  * This program is distributed in the hope that it will be useful,
36  * but WITHOUT ANY WARRANTY; without even the implied warranty of
37  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
38  * GNU General Public License for more details.
39  *
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
43  *
44  *
45  * Theory of operations
46  * ====================
47  *
48  * Clock scaling can be used to lower the power consumption of the CPU
49  * core. This will give you a somewhat longer running time.
50  *
51  * The SA-1100 has a single register to change the core clock speed:
52  *
53  *   PPCR      0x90020014    PLL config
54  *
55  * However, the DRAM timings are closely related to the core clock
56  * speed, so we need to change these, too. The used registers are:
57  *
58  *   MDCNFG    0xA0000000    DRAM config
59  *   MDCAS0    0xA0000004    Access waveform
60  *   MDCAS1    0xA0000008    Access waveform
61  *   MDCAS2    0xA000000C    Access waveform
62  *
63  * Care must be taken to change the DRAM parameters the correct way,
64  * because otherwise the DRAM becomes unusable and the kernel will
65  * crash.
66  *
67  * The simple solution to avoid a kernel crash is to put the actual
68  * clock change in ROM and jump to that code from the kernel. The main
69  * disadvantage is that the ROM has to be modified, which is not
70  * possible on all SA-1100 platforms. Another disadvantage is that
71  * jumping to ROM makes clock switching unnecessary complicated.
72  *
73  * The idea behind this driver is that the memory configuration can be
74  * changed while running from DRAM (even with interrupts turned on!)
75  * as long as all re-configuration steps yield a valid DRAM
76  * configuration. The advantages are clear: it will run on all SA-1100
77  * platforms, and the code is very simple.
78  *
79  * If you really want to understand what is going on in
80  * sa1100_update_dram_timings(), you'll have to read sections 8.2,
81  * 9.5.7.3, and 10.2 from the "Intel StrongARM SA-1100 Microprocessor
82  * Developers Manual" (available for free from Intel).
83  *
84  */
85 
86 #include <linux/kernel.h>
87 #include <linux/types.h>
88 #include <linux/init.h>
89 #include <linux/cpufreq.h>
90 
91 #include <asm/cputype.h>
92 
93 #include <mach/hardware.h>
94 
95 #include "generic.h"
96 
97 struct sa1100_dram_regs {
98 	int speed;
99 	u32 mdcnfg;
100 	u32 mdcas0;
101 	u32 mdcas1;
102 	u32 mdcas2;
103 };
104 
105 
106 static struct cpufreq_driver sa1100_driver;
107 
108 static struct sa1100_dram_regs sa1100_dram_settings[] = {
109 	/*speed,     mdcnfg,     mdcas0,     mdcas1,     mdcas2,   clock freq */
110 	{ 59000, 0x00dc88a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/*  59.0 MHz */
111 	{ 73700, 0x011490a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/*  73.7 MHz */
112 	{ 88500, 0x014e90a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/*  88.5 MHz */
113 	{103200, 0x01889923, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 103.2 MHz */
114 	{118000, 0x01c29923, 0x9999998f, 0xfffffff9, 0xffffffff},/* 118.0 MHz */
115 	{132700, 0x01fb2123, 0x9999998f, 0xfffffff9, 0xffffffff},/* 132.7 MHz */
116 	{147500, 0x02352123, 0x3333330f, 0xfffffff3, 0xffffffff},/* 147.5 MHz */
117 	{162200, 0x026b29a3, 0x38e38e1f, 0xfff8e38e, 0xffffffff},/* 162.2 MHz */
118 	{176900, 0x02a329a3, 0x71c71c1f, 0xfff1c71c, 0xffffffff},/* 176.9 MHz */
119 	{191700, 0x02dd31a3, 0xe38e383f, 0xffe38e38, 0xffffffff},/* 191.7 MHz */
120 	{206400, 0x03153223, 0xc71c703f, 0xffc71c71, 0xffffffff},/* 206.4 MHz */
121 	{221200, 0x034fba23, 0xc71c703f, 0xffc71c71, 0xffffffff},/* 221.2 MHz */
122 	{235900, 0x03853a23, 0xe1e1e07f, 0xe1e1e1e1, 0xffffffe1},/* 235.9 MHz */
123 	{250700, 0x03bf3aa3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3},/* 250.7 MHz */
124 	{265400, 0x03f7c2a3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3},/* 265.4 MHz */
125 	{280200, 0x0431c2a3, 0x878780ff, 0x87878787, 0xffffff87},/* 280.2 MHz */
126 	{ 0, 0, 0, 0, 0 } /* last entry */
127 };
128 
sa1100_update_dram_timings(int current_speed,int new_speed)129 static void sa1100_update_dram_timings(int current_speed, int new_speed)
130 {
131 	struct sa1100_dram_regs *settings = sa1100_dram_settings;
132 
133 	/* find speed */
134 	while (settings->speed != 0) {
135 		if (new_speed == settings->speed)
136 			break;
137 
138 		settings++;
139 	}
140 
141 	if (settings->speed == 0) {
142 		panic("%s: couldn't find dram setting for speed %d\n",
143 		      __func__, new_speed);
144 	}
145 
146 	/* No risk, no fun: run with interrupts on! */
147 	if (new_speed > current_speed) {
148 		/* We're going FASTER, so first relax the memory
149 		 * timings before changing the core frequency
150 		 */
151 
152 		/* Half the memory access clock */
153 		MDCNFG |= MDCNFG_CDB2;
154 
155 		/* The order of these statements IS important, keep 8
156 		 * pulses!!
157 		 */
158 		MDCAS2 = settings->mdcas2;
159 		MDCAS1 = settings->mdcas1;
160 		MDCAS0 = settings->mdcas0;
161 		MDCNFG = settings->mdcnfg;
162 	} else {
163 		/* We're going SLOWER: first decrease the core
164 		 * frequency and then tighten the memory settings.
165 		 */
166 
167 		/* Half the memory access clock */
168 		MDCNFG |= MDCNFG_CDB2;
169 
170 		/* The order of these statements IS important, keep 8
171 		 * pulses!!
172 		 */
173 		MDCAS0 = settings->mdcas0;
174 		MDCAS1 = settings->mdcas1;
175 		MDCAS2 = settings->mdcas2;
176 		MDCNFG = settings->mdcnfg;
177 	}
178 }
179 
sa1100_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)180 static int sa1100_target(struct cpufreq_policy *policy,
181 			 unsigned int target_freq,
182 			 unsigned int relation)
183 {
184 	unsigned int cur = sa11x0_getspeed(0);
185 	unsigned int new_ppcr;
186 	struct cpufreq_freqs freqs;
187 
188 	new_ppcr = sa11x0_freq_to_ppcr(target_freq);
189 	switch (relation) {
190 	case CPUFREQ_RELATION_L:
191 		if (sa11x0_ppcr_to_freq(new_ppcr) > policy->max)
192 			new_ppcr--;
193 		break;
194 	case CPUFREQ_RELATION_H:
195 		if ((sa11x0_ppcr_to_freq(new_ppcr) > target_freq) &&
196 		    (sa11x0_ppcr_to_freq(new_ppcr - 1) >= policy->min))
197 			new_ppcr--;
198 		break;
199 	}
200 
201 	freqs.old = cur;
202 	freqs.new = sa11x0_ppcr_to_freq(new_ppcr);
203 	freqs.cpu = 0;
204 
205 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
206 
207 	if (freqs.new > cur)
208 		sa1100_update_dram_timings(cur, freqs.new);
209 
210 	PPCR = new_ppcr;
211 
212 	if (freqs.new < cur)
213 		sa1100_update_dram_timings(cur, freqs.new);
214 
215 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
216 
217 	return 0;
218 }
219 
sa1100_cpu_init(struct cpufreq_policy * policy)220 static int __init sa1100_cpu_init(struct cpufreq_policy *policy)
221 {
222 	if (policy->cpu != 0)
223 		return -EINVAL;
224 	policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
225 	policy->cpuinfo.min_freq = 59000;
226 	policy->cpuinfo.max_freq = 287000;
227 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
228 	return 0;
229 }
230 
231 static struct cpufreq_driver sa1100_driver __refdata = {
232 	.flags		= CPUFREQ_STICKY,
233 	.verify		= sa11x0_verify_speed,
234 	.target		= sa1100_target,
235 	.get		= sa11x0_getspeed,
236 	.init		= sa1100_cpu_init,
237 	.name		= "sa1100",
238 };
239 
sa1100_dram_init(void)240 static int __init sa1100_dram_init(void)
241 {
242 	if (cpu_is_sa1100())
243 		return cpufreq_register_driver(&sa1100_driver);
244 	else
245 		return -ENODEV;
246 }
247 
248 arch_initcall(sa1100_dram_init);
249