1 /*
2 * linux/arch/alpha/kernel/smp.c
3 *
4 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
5 * Renamed modified smp_call_function to smp_call_function_on_cpu()
6 * Created an function that conforms to the old calling convention
7 * of smp_call_function().
8 *
9 * This is helpful for DCPI.
10 *
11 */
12
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/spinlock.h>
26 #include <linux/irq.h>
27 #include <linux/cache.h>
28 #include <linux/profile.h>
29 #include <linux/bitops.h>
30 #include <linux/cpu.h>
31
32 #include <asm/hwrpb.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35
36 #include <asm/io.h>
37 #include <asm/irq.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlbflush.h>
42
43 #include "proto.h"
44 #include "irq_impl.h"
45
46
47 #define DEBUG_SMP 0
48 #if DEBUG_SMP
49 #define DBGS(args) printk args
50 #else
51 #define DBGS(args)
52 #endif
53
54 /* A collection of per-processor data. */
55 struct cpuinfo_alpha cpu_data[NR_CPUS];
56 EXPORT_SYMBOL(cpu_data);
57
58 /* A collection of single bit ipi messages. */
59 static struct {
60 unsigned long bits ____cacheline_aligned;
61 } ipi_data[NR_CPUS] __cacheline_aligned;
62
63 enum ipi_message_type {
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CALL_FUNC_SINGLE,
67 IPI_CPU_STOP,
68 };
69
70 /* Set to a secondary's cpuid when it comes online. */
71 static int smp_secondary_alive __devinitdata = 0;
72
73 int smp_num_probed; /* Internal processor count */
74 int smp_num_cpus = 1; /* Number that came online. */
75 EXPORT_SYMBOL(smp_num_cpus);
76
77 /*
78 * Called by both boot and secondaries to move global data into
79 * per-processor storage.
80 */
81 static inline void __init
smp_store_cpu_info(int cpuid)82 smp_store_cpu_info(int cpuid)
83 {
84 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
85 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
86 cpu_data[cpuid].need_new_asn = 0;
87 cpu_data[cpuid].asn_lock = 0;
88 }
89
90 /*
91 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
92 */
93 static inline void __init
smp_setup_percpu_timer(int cpuid)94 smp_setup_percpu_timer(int cpuid)
95 {
96 cpu_data[cpuid].prof_counter = 1;
97 cpu_data[cpuid].prof_multiplier = 1;
98 }
99
100 static void __init
wait_boot_cpu_to_stop(int cpuid)101 wait_boot_cpu_to_stop(int cpuid)
102 {
103 unsigned long stop = jiffies + 10*HZ;
104
105 while (time_before(jiffies, stop)) {
106 if (!smp_secondary_alive)
107 return;
108 barrier();
109 }
110
111 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
112 for (;;)
113 barrier();
114 }
115
116 /*
117 * Where secondaries begin a life of C.
118 */
119 void __cpuinit
smp_callin(void)120 smp_callin(void)
121 {
122 int cpuid = hard_smp_processor_id();
123
124 if (cpu_online(cpuid)) {
125 printk("??, cpu 0x%x already present??\n", cpuid);
126 BUG();
127 }
128 set_cpu_online(cpuid, true);
129
130 /* Turn on machine checks. */
131 wrmces(7);
132
133 /* Set trap vectors. */
134 trap_init();
135
136 /* Set interrupt vector. */
137 wrent(entInt, 0);
138
139 /* Get our local ticker going. */
140 smp_setup_percpu_timer(cpuid);
141
142 /* Call platform-specific callin, if specified */
143 if (alpha_mv.smp_callin) alpha_mv.smp_callin();
144
145 /* All kernel threads share the same mm context. */
146 atomic_inc(&init_mm.mm_count);
147 current->active_mm = &init_mm;
148
149 /* inform the notifiers about the new cpu */
150 notify_cpu_starting(cpuid);
151
152 /* Must have completely accurate bogos. */
153 local_irq_enable();
154
155 /* Wait boot CPU to stop with irq enabled before running
156 calibrate_delay. */
157 wait_boot_cpu_to_stop(cpuid);
158 mb();
159 calibrate_delay();
160
161 smp_store_cpu_info(cpuid);
162 /* Allow master to continue only after we written loops_per_jiffy. */
163 wmb();
164 smp_secondary_alive = 1;
165
166 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
167 cpuid, current, current->active_mm));
168
169 /* Do nothing. */
170 cpu_idle();
171 }
172
173 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */
174 static int __devinit
wait_for_txrdy(unsigned long cpumask)175 wait_for_txrdy (unsigned long cpumask)
176 {
177 unsigned long timeout;
178
179 if (!(hwrpb->txrdy & cpumask))
180 return 0;
181
182 timeout = jiffies + 10*HZ;
183 while (time_before(jiffies, timeout)) {
184 if (!(hwrpb->txrdy & cpumask))
185 return 0;
186 udelay(10);
187 barrier();
188 }
189
190 return -1;
191 }
192
193 /*
194 * Send a message to a secondary's console. "START" is one such
195 * interesting message. ;-)
196 */
197 static void __cpuinit
send_secondary_console_msg(char * str,int cpuid)198 send_secondary_console_msg(char *str, int cpuid)
199 {
200 struct percpu_struct *cpu;
201 register char *cp1, *cp2;
202 unsigned long cpumask;
203 size_t len;
204
205 cpu = (struct percpu_struct *)
206 ((char*)hwrpb
207 + hwrpb->processor_offset
208 + cpuid * hwrpb->processor_size);
209
210 cpumask = (1UL << cpuid);
211 if (wait_for_txrdy(cpumask))
212 goto timeout;
213
214 cp2 = str;
215 len = strlen(cp2);
216 *(unsigned int *)&cpu->ipc_buffer[0] = len;
217 cp1 = (char *) &cpu->ipc_buffer[1];
218 memcpy(cp1, cp2, len);
219
220 /* atomic test and set */
221 wmb();
222 set_bit(cpuid, &hwrpb->rxrdy);
223
224 if (wait_for_txrdy(cpumask))
225 goto timeout;
226 return;
227
228 timeout:
229 printk("Processor %x not ready\n", cpuid);
230 }
231
232 /*
233 * A secondary console wants to send a message. Receive it.
234 */
235 static void
recv_secondary_console_msg(void)236 recv_secondary_console_msg(void)
237 {
238 int mycpu, i, cnt;
239 unsigned long txrdy = hwrpb->txrdy;
240 char *cp1, *cp2, buf[80];
241 struct percpu_struct *cpu;
242
243 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
244
245 mycpu = hard_smp_processor_id();
246
247 for (i = 0; i < NR_CPUS; i++) {
248 if (!(txrdy & (1UL << i)))
249 continue;
250
251 DBGS(("recv_secondary_console_msg: "
252 "TXRDY contains CPU %d.\n", i));
253
254 cpu = (struct percpu_struct *)
255 ((char*)hwrpb
256 + hwrpb->processor_offset
257 + i * hwrpb->processor_size);
258
259 DBGS(("recv_secondary_console_msg: on %d from %d"
260 " HALT_REASON 0x%lx FLAGS 0x%lx\n",
261 mycpu, i, cpu->halt_reason, cpu->flags));
262
263 cnt = cpu->ipc_buffer[0] >> 32;
264 if (cnt <= 0 || cnt >= 80)
265 strcpy(buf, "<<< BOGUS MSG >>>");
266 else {
267 cp1 = (char *) &cpu->ipc_buffer[11];
268 cp2 = buf;
269 strcpy(cp2, cp1);
270
271 while ((cp2 = strchr(cp2, '\r')) != 0) {
272 *cp2 = ' ';
273 if (cp2[1] == '\n')
274 cp2[1] = ' ';
275 }
276 }
277
278 DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
279 "message is '%s'\n", mycpu, buf));
280 }
281
282 hwrpb->txrdy = 0;
283 }
284
285 /*
286 * Convince the console to have a secondary cpu begin execution.
287 */
288 static int __cpuinit
secondary_cpu_start(int cpuid,struct task_struct * idle)289 secondary_cpu_start(int cpuid, struct task_struct *idle)
290 {
291 struct percpu_struct *cpu;
292 struct pcb_struct *hwpcb, *ipcb;
293 unsigned long timeout;
294
295 cpu = (struct percpu_struct *)
296 ((char*)hwrpb
297 + hwrpb->processor_offset
298 + cpuid * hwrpb->processor_size);
299 hwpcb = (struct pcb_struct *) cpu->hwpcb;
300 ipcb = &task_thread_info(idle)->pcb;
301
302 /* Initialize the CPU's HWPCB to something just good enough for
303 us to get started. Immediately after starting, we'll swpctx
304 to the target idle task's pcb. Reuse the stack in the mean
305 time. Precalculate the target PCBB. */
306 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
307 hwpcb->usp = 0;
308 hwpcb->ptbr = ipcb->ptbr;
309 hwpcb->pcc = 0;
310 hwpcb->asn = 0;
311 hwpcb->unique = virt_to_phys(ipcb);
312 hwpcb->flags = ipcb->flags;
313 hwpcb->res1 = hwpcb->res2 = 0;
314
315 #if 0
316 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
317 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
318 #endif
319 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
320 cpuid, idle->state, ipcb->flags));
321
322 /* Setup HWRPB fields that SRM uses to activate secondary CPU */
323 hwrpb->CPU_restart = __smp_callin;
324 hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
325
326 /* Recalculate and update the HWRPB checksum */
327 hwrpb_update_checksum(hwrpb);
328
329 /*
330 * Send a "start" command to the specified processor.
331 */
332
333 /* SRM III 3.4.1.3 */
334 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */
335 cpu->flags &= ~1; /* turn off Bootstrap In Progress */
336 wmb();
337
338 send_secondary_console_msg("START\r\n", cpuid);
339
340 /* Wait 10 seconds for an ACK from the console. */
341 timeout = jiffies + 10*HZ;
342 while (time_before(jiffies, timeout)) {
343 if (cpu->flags & 1)
344 goto started;
345 udelay(10);
346 barrier();
347 }
348 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
349 return -1;
350
351 started:
352 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
353 return 0;
354 }
355
356 /*
357 * Bring one cpu online.
358 */
359 static int __cpuinit
smp_boot_one_cpu(int cpuid)360 smp_boot_one_cpu(int cpuid)
361 {
362 struct task_struct *idle;
363 unsigned long timeout;
364
365 /* Cook up an idler for this guy. Note that the address we
366 give to kernel_thread is irrelevant -- it's going to start
367 where HWRPB.CPU_restart says to start. But this gets all
368 the other task-y sort of data structures set up like we
369 wish. We can't use kernel_thread since we must avoid
370 rescheduling the child. */
371 idle = fork_idle(cpuid);
372 if (IS_ERR(idle))
373 panic("failed fork for CPU %d", cpuid);
374
375 DBGS(("smp_boot_one_cpu: CPU %d state 0x%lx flags 0x%lx\n",
376 cpuid, idle->state, idle->flags));
377
378 /* Signal the secondary to wait a moment. */
379 smp_secondary_alive = -1;
380
381 /* Whirrr, whirrr, whirrrrrrrrr... */
382 if (secondary_cpu_start(cpuid, idle))
383 return -1;
384
385 /* Notify the secondary CPU it can run calibrate_delay. */
386 mb();
387 smp_secondary_alive = 0;
388
389 /* We've been acked by the console; wait one second for
390 the task to start up for real. */
391 timeout = jiffies + 1*HZ;
392 while (time_before(jiffies, timeout)) {
393 if (smp_secondary_alive == 1)
394 goto alive;
395 udelay(10);
396 barrier();
397 }
398
399 /* We failed to boot the CPU. */
400
401 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
402 return -1;
403
404 alive:
405 /* Another "Red Snapper". */
406 return 0;
407 }
408
409 /*
410 * Called from setup_arch. Detect an SMP system and which processors
411 * are present.
412 */
413 void __init
setup_smp(void)414 setup_smp(void)
415 {
416 struct percpu_struct *cpubase, *cpu;
417 unsigned long i;
418
419 if (boot_cpuid != 0) {
420 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
421 boot_cpuid);
422 }
423
424 if (hwrpb->nr_processors > 1) {
425 int boot_cpu_palrev;
426
427 DBGS(("setup_smp: nr_processors %ld\n",
428 hwrpb->nr_processors));
429
430 cpubase = (struct percpu_struct *)
431 ((char*)hwrpb + hwrpb->processor_offset);
432 boot_cpu_palrev = cpubase->pal_revision;
433
434 for (i = 0; i < hwrpb->nr_processors; i++) {
435 cpu = (struct percpu_struct *)
436 ((char *)cpubase + i*hwrpb->processor_size);
437 if ((cpu->flags & 0x1cc) == 0x1cc) {
438 smp_num_probed++;
439 set_cpu_possible(i, true);
440 set_cpu_present(i, true);
441 cpu->pal_revision = boot_cpu_palrev;
442 }
443
444 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
445 i, cpu->flags, cpu->type));
446 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
447 i, cpu->pal_revision));
448 }
449 } else {
450 smp_num_probed = 1;
451 }
452
453 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n",
454 smp_num_probed, cpumask_bits(cpu_present_mask)[0]);
455 }
456
457 /*
458 * Called by smp_init prepare the secondaries
459 */
460 void __init
smp_prepare_cpus(unsigned int max_cpus)461 smp_prepare_cpus(unsigned int max_cpus)
462 {
463 /* Take care of some initial bookkeeping. */
464 memset(ipi_data, 0, sizeof(ipi_data));
465
466 current_thread_info()->cpu = boot_cpuid;
467
468 smp_store_cpu_info(boot_cpuid);
469 smp_setup_percpu_timer(boot_cpuid);
470
471 /* Nothing to do on a UP box, or when told not to. */
472 if (smp_num_probed == 1 || max_cpus == 0) {
473 init_cpu_possible(cpumask_of(boot_cpuid));
474 init_cpu_present(cpumask_of(boot_cpuid));
475 printk(KERN_INFO "SMP mode deactivated.\n");
476 return;
477 }
478
479 printk(KERN_INFO "SMP starting up secondaries.\n");
480
481 smp_num_cpus = smp_num_probed;
482 }
483
484 void __devinit
smp_prepare_boot_cpu(void)485 smp_prepare_boot_cpu(void)
486 {
487 }
488
489 int __cpuinit
__cpu_up(unsigned int cpu)490 __cpu_up(unsigned int cpu)
491 {
492 smp_boot_one_cpu(cpu);
493
494 return cpu_online(cpu) ? 0 : -ENOSYS;
495 }
496
497 void __init
smp_cpus_done(unsigned int max_cpus)498 smp_cpus_done(unsigned int max_cpus)
499 {
500 int cpu;
501 unsigned long bogosum = 0;
502
503 for(cpu = 0; cpu < NR_CPUS; cpu++)
504 if (cpu_online(cpu))
505 bogosum += cpu_data[cpu].loops_per_jiffy;
506
507 printk(KERN_INFO "SMP: Total of %d processors activated "
508 "(%lu.%02lu BogoMIPS).\n",
509 num_online_cpus(),
510 (bogosum + 2500) / (500000/HZ),
511 ((bogosum + 2500) / (5000/HZ)) % 100);
512 }
513
514
515 void
smp_percpu_timer_interrupt(struct pt_regs * regs)516 smp_percpu_timer_interrupt(struct pt_regs *regs)
517 {
518 struct pt_regs *old_regs;
519 int cpu = smp_processor_id();
520 unsigned long user = user_mode(regs);
521 struct cpuinfo_alpha *data = &cpu_data[cpu];
522
523 old_regs = set_irq_regs(regs);
524
525 /* Record kernel PC. */
526 profile_tick(CPU_PROFILING);
527
528 if (!--data->prof_counter) {
529 /* We need to make like a normal interrupt -- otherwise
530 timer interrupts ignore the global interrupt lock,
531 which would be a Bad Thing. */
532 irq_enter();
533
534 update_process_times(user);
535
536 data->prof_counter = data->prof_multiplier;
537
538 irq_exit();
539 }
540 set_irq_regs(old_regs);
541 }
542
543 int
setup_profiling_timer(unsigned int multiplier)544 setup_profiling_timer(unsigned int multiplier)
545 {
546 return -EINVAL;
547 }
548
549
550 static void
send_ipi_message(const struct cpumask * to_whom,enum ipi_message_type operation)551 send_ipi_message(const struct cpumask *to_whom, enum ipi_message_type operation)
552 {
553 int i;
554
555 mb();
556 for_each_cpu(i, to_whom)
557 set_bit(operation, &ipi_data[i].bits);
558
559 mb();
560 for_each_cpu(i, to_whom)
561 wripir(i);
562 }
563
564 void
handle_ipi(struct pt_regs * regs)565 handle_ipi(struct pt_regs *regs)
566 {
567 int this_cpu = smp_processor_id();
568 unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
569 unsigned long ops;
570
571 #if 0
572 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
573 this_cpu, *pending_ipis, regs->pc));
574 #endif
575
576 mb(); /* Order interrupt and bit testing. */
577 while ((ops = xchg(pending_ipis, 0)) != 0) {
578 mb(); /* Order bit clearing and data access. */
579 do {
580 unsigned long which;
581
582 which = ops & -ops;
583 ops &= ~which;
584 which = __ffs(which);
585
586 switch (which) {
587 case IPI_RESCHEDULE:
588 scheduler_ipi();
589 break;
590
591 case IPI_CALL_FUNC:
592 generic_smp_call_function_interrupt();
593 break;
594
595 case IPI_CALL_FUNC_SINGLE:
596 generic_smp_call_function_single_interrupt();
597 break;
598
599 case IPI_CPU_STOP:
600 halt();
601
602 default:
603 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
604 this_cpu, which);
605 break;
606 }
607 } while (ops);
608
609 mb(); /* Order data access and bit testing. */
610 }
611
612 cpu_data[this_cpu].ipi_count++;
613
614 if (hwrpb->txrdy)
615 recv_secondary_console_msg();
616 }
617
618 void
smp_send_reschedule(int cpu)619 smp_send_reschedule(int cpu)
620 {
621 #ifdef DEBUG_IPI_MSG
622 if (cpu == hard_smp_processor_id())
623 printk(KERN_WARNING
624 "smp_send_reschedule: Sending IPI to self.\n");
625 #endif
626 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
627 }
628
629 void
smp_send_stop(void)630 smp_send_stop(void)
631 {
632 cpumask_t to_whom;
633 cpumask_copy(&to_whom, cpu_possible_mask);
634 cpumask_clear_cpu(smp_processor_id(), &to_whom);
635 #ifdef DEBUG_IPI_MSG
636 if (hard_smp_processor_id() != boot_cpu_id)
637 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
638 #endif
639 send_ipi_message(&to_whom, IPI_CPU_STOP);
640 }
641
arch_send_call_function_ipi_mask(const struct cpumask * mask)642 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
643 {
644 send_ipi_message(mask, IPI_CALL_FUNC);
645 }
646
arch_send_call_function_single_ipi(int cpu)647 void arch_send_call_function_single_ipi(int cpu)
648 {
649 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
650 }
651
652 static void
ipi_imb(void * ignored)653 ipi_imb(void *ignored)
654 {
655 imb();
656 }
657
658 void
smp_imb(void)659 smp_imb(void)
660 {
661 /* Must wait other processors to flush their icache before continue. */
662 if (on_each_cpu(ipi_imb, NULL, 1))
663 printk(KERN_CRIT "smp_imb: timed out\n");
664 }
665 EXPORT_SYMBOL(smp_imb);
666
667 static void
ipi_flush_tlb_all(void * ignored)668 ipi_flush_tlb_all(void *ignored)
669 {
670 tbia();
671 }
672
673 void
flush_tlb_all(void)674 flush_tlb_all(void)
675 {
676 /* Although we don't have any data to pass, we do want to
677 synchronize with the other processors. */
678 if (on_each_cpu(ipi_flush_tlb_all, NULL, 1)) {
679 printk(KERN_CRIT "flush_tlb_all: timed out\n");
680 }
681 }
682
683 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
684
685 static void
ipi_flush_tlb_mm(void * x)686 ipi_flush_tlb_mm(void *x)
687 {
688 struct mm_struct *mm = (struct mm_struct *) x;
689 if (mm == current->active_mm && !asn_locked())
690 flush_tlb_current(mm);
691 else
692 flush_tlb_other(mm);
693 }
694
695 void
flush_tlb_mm(struct mm_struct * mm)696 flush_tlb_mm(struct mm_struct *mm)
697 {
698 preempt_disable();
699
700 if (mm == current->active_mm) {
701 flush_tlb_current(mm);
702 if (atomic_read(&mm->mm_users) <= 1) {
703 int cpu, this_cpu = smp_processor_id();
704 for (cpu = 0; cpu < NR_CPUS; cpu++) {
705 if (!cpu_online(cpu) || cpu == this_cpu)
706 continue;
707 if (mm->context[cpu])
708 mm->context[cpu] = 0;
709 }
710 preempt_enable();
711 return;
712 }
713 }
714
715 if (smp_call_function(ipi_flush_tlb_mm, mm, 1)) {
716 printk(KERN_CRIT "flush_tlb_mm: timed out\n");
717 }
718
719 preempt_enable();
720 }
721 EXPORT_SYMBOL(flush_tlb_mm);
722
723 struct flush_tlb_page_struct {
724 struct vm_area_struct *vma;
725 struct mm_struct *mm;
726 unsigned long addr;
727 };
728
729 static void
ipi_flush_tlb_page(void * x)730 ipi_flush_tlb_page(void *x)
731 {
732 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x;
733 struct mm_struct * mm = data->mm;
734
735 if (mm == current->active_mm && !asn_locked())
736 flush_tlb_current_page(mm, data->vma, data->addr);
737 else
738 flush_tlb_other(mm);
739 }
740
741 void
flush_tlb_page(struct vm_area_struct * vma,unsigned long addr)742 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
743 {
744 struct flush_tlb_page_struct data;
745 struct mm_struct *mm = vma->vm_mm;
746
747 preempt_disable();
748
749 if (mm == current->active_mm) {
750 flush_tlb_current_page(mm, vma, addr);
751 if (atomic_read(&mm->mm_users) <= 1) {
752 int cpu, this_cpu = smp_processor_id();
753 for (cpu = 0; cpu < NR_CPUS; cpu++) {
754 if (!cpu_online(cpu) || cpu == this_cpu)
755 continue;
756 if (mm->context[cpu])
757 mm->context[cpu] = 0;
758 }
759 preempt_enable();
760 return;
761 }
762 }
763
764 data.vma = vma;
765 data.mm = mm;
766 data.addr = addr;
767
768 if (smp_call_function(ipi_flush_tlb_page, &data, 1)) {
769 printk(KERN_CRIT "flush_tlb_page: timed out\n");
770 }
771
772 preempt_enable();
773 }
774 EXPORT_SYMBOL(flush_tlb_page);
775
776 void
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)777 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
778 {
779 /* On the Alpha we always flush the whole user tlb. */
780 flush_tlb_mm(vma->vm_mm);
781 }
782 EXPORT_SYMBOL(flush_tlb_range);
783
784 static void
ipi_flush_icache_page(void * x)785 ipi_flush_icache_page(void *x)
786 {
787 struct mm_struct *mm = (struct mm_struct *) x;
788 if (mm == current->active_mm && !asn_locked())
789 __load_new_mm_context(mm);
790 else
791 flush_tlb_other(mm);
792 }
793
794 void
flush_icache_user_range(struct vm_area_struct * vma,struct page * page,unsigned long addr,int len)795 flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
796 unsigned long addr, int len)
797 {
798 struct mm_struct *mm = vma->vm_mm;
799
800 if ((vma->vm_flags & VM_EXEC) == 0)
801 return;
802
803 preempt_disable();
804
805 if (mm == current->active_mm) {
806 __load_new_mm_context(mm);
807 if (atomic_read(&mm->mm_users) <= 1) {
808 int cpu, this_cpu = smp_processor_id();
809 for (cpu = 0; cpu < NR_CPUS; cpu++) {
810 if (!cpu_online(cpu) || cpu == this_cpu)
811 continue;
812 if (mm->context[cpu])
813 mm->context[cpu] = 0;
814 }
815 preempt_enable();
816 return;
817 }
818 }
819
820 if (smp_call_function(ipi_flush_icache_page, mm, 1)) {
821 printk(KERN_CRIT "flush_icache_page: timed out\n");
822 }
823
824 preempt_enable();
825 }
826