1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38
39 unsigned int group_flag;
40 int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43
44 struct power_pmu *ppmu;
45
46 /*
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
52 */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54
55 /*
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
58 */
59 #ifdef CONFIG_PPC32
60
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
63
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
66
perf_ip_adjust(struct pt_regs * regs)67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 return 0;
70 }
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
perf_get_misc_flags(struct pt_regs * regs)72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 return 0;
75 }
perf_read_regs(struct pt_regs * regs)76 static inline void perf_read_regs(struct pt_regs *regs) { }
perf_intr_is_nmi(struct pt_regs * regs)77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
78 {
79 return 0;
80 }
81
82 #endif /* CONFIG_PPC32 */
83
84 /*
85 * Things that are specific to 64-bit implementations.
86 */
87 #ifdef CONFIG_PPC64
88
perf_ip_adjust(struct pt_regs * regs)89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
90 {
91 unsigned long mmcra = regs->dsisr;
92
93 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 if (slot > 1)
96 return 4 * (slot - 1);
97 }
98 return 0;
99 }
100
101 /*
102 * The user wants a data address recorded.
103 * If we're not doing instruction sampling, give them the SDAR
104 * (sampled data address). If we are doing instruction sampling, then
105 * only give them the SDAR if it corresponds to the instruction
106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107 * bit in MMCRA.
108 */
perf_get_data_addr(struct pt_regs * regs,u64 * addrp)109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
110 {
111 unsigned long mmcra = regs->dsisr;
112 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
114
115 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 *addrp = mfspr(SPRN_SDAR);
117 }
118
perf_flags_from_msr(struct pt_regs * regs)119 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
120 {
121 if (regs->msr & MSR_PR)
122 return PERF_RECORD_MISC_USER;
123 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
124 return PERF_RECORD_MISC_HYPERVISOR;
125 return PERF_RECORD_MISC_KERNEL;
126 }
127
perf_get_misc_flags(struct pt_regs * regs)128 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
129 {
130 unsigned long mmcra = regs->dsisr;
131 unsigned long sihv = MMCRA_SIHV;
132 unsigned long sipr = MMCRA_SIPR;
133
134 /* Not a PMU interrupt: Make up flags from regs->msr */
135 if (TRAP(regs) != 0xf00)
136 return perf_flags_from_msr(regs);
137
138 /*
139 * If we don't support continuous sampling and this
140 * is not a marked event, same deal
141 */
142 if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
143 !(mmcra & MMCRA_SAMPLE_ENABLE))
144 return perf_flags_from_msr(regs);
145
146 /*
147 * If we don't have flags in MMCRA, rather than using
148 * the MSR, we intuit the flags from the address in
149 * SIAR which should give slightly more reliable
150 * results
151 */
152 if (ppmu->flags & PPMU_NO_SIPR) {
153 unsigned long siar = mfspr(SPRN_SIAR);
154 if (siar >= PAGE_OFFSET)
155 return PERF_RECORD_MISC_KERNEL;
156 return PERF_RECORD_MISC_USER;
157 }
158
159 if (ppmu->flags & PPMU_ALT_SIPR) {
160 sihv = POWER6_MMCRA_SIHV;
161 sipr = POWER6_MMCRA_SIPR;
162 }
163
164 /* PR has priority over HV, so order below is important */
165 if (mmcra & sipr)
166 return PERF_RECORD_MISC_USER;
167 if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
168 return PERF_RECORD_MISC_HYPERVISOR;
169 return PERF_RECORD_MISC_KERNEL;
170 }
171
172 /*
173 * Overload regs->dsisr to store MMCRA so we only need to read it once
174 * on each interrupt.
175 */
perf_read_regs(struct pt_regs * regs)176 static inline void perf_read_regs(struct pt_regs *regs)
177 {
178 regs->dsisr = mfspr(SPRN_MMCRA);
179 }
180
181 /*
182 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
183 * it as an NMI.
184 */
perf_intr_is_nmi(struct pt_regs * regs)185 static inline int perf_intr_is_nmi(struct pt_regs *regs)
186 {
187 return !regs->softe;
188 }
189
190 #endif /* CONFIG_PPC64 */
191
192 static void perf_event_interrupt(struct pt_regs *regs);
193
perf_event_print_debug(void)194 void perf_event_print_debug(void)
195 {
196 }
197
198 /*
199 * Read one performance monitor counter (PMC).
200 */
read_pmc(int idx)201 static unsigned long read_pmc(int idx)
202 {
203 unsigned long val;
204
205 switch (idx) {
206 case 1:
207 val = mfspr(SPRN_PMC1);
208 break;
209 case 2:
210 val = mfspr(SPRN_PMC2);
211 break;
212 case 3:
213 val = mfspr(SPRN_PMC3);
214 break;
215 case 4:
216 val = mfspr(SPRN_PMC4);
217 break;
218 case 5:
219 val = mfspr(SPRN_PMC5);
220 break;
221 case 6:
222 val = mfspr(SPRN_PMC6);
223 break;
224 #ifdef CONFIG_PPC64
225 case 7:
226 val = mfspr(SPRN_PMC7);
227 break;
228 case 8:
229 val = mfspr(SPRN_PMC8);
230 break;
231 #endif /* CONFIG_PPC64 */
232 default:
233 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
234 val = 0;
235 }
236 return val;
237 }
238
239 /*
240 * Write one PMC.
241 */
write_pmc(int idx,unsigned long val)242 static void write_pmc(int idx, unsigned long val)
243 {
244 switch (idx) {
245 case 1:
246 mtspr(SPRN_PMC1, val);
247 break;
248 case 2:
249 mtspr(SPRN_PMC2, val);
250 break;
251 case 3:
252 mtspr(SPRN_PMC3, val);
253 break;
254 case 4:
255 mtspr(SPRN_PMC4, val);
256 break;
257 case 5:
258 mtspr(SPRN_PMC5, val);
259 break;
260 case 6:
261 mtspr(SPRN_PMC6, val);
262 break;
263 #ifdef CONFIG_PPC64
264 case 7:
265 mtspr(SPRN_PMC7, val);
266 break;
267 case 8:
268 mtspr(SPRN_PMC8, val);
269 break;
270 #endif /* CONFIG_PPC64 */
271 default:
272 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
273 }
274 }
275
276 /*
277 * Check if a set of events can all go on the PMU at once.
278 * If they can't, this will look at alternative codes for the events
279 * and see if any combination of alternative codes is feasible.
280 * The feasible set is returned in event_id[].
281 */
power_check_constraints(struct cpu_hw_events * cpuhw,u64 event_id[],unsigned int cflags[],int n_ev)282 static int power_check_constraints(struct cpu_hw_events *cpuhw,
283 u64 event_id[], unsigned int cflags[],
284 int n_ev)
285 {
286 unsigned long mask, value, nv;
287 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
288 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
289 int i, j;
290 unsigned long addf = ppmu->add_fields;
291 unsigned long tadd = ppmu->test_adder;
292
293 if (n_ev > ppmu->n_counter)
294 return -1;
295
296 /* First see if the events will go on as-is */
297 for (i = 0; i < n_ev; ++i) {
298 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
299 && !ppmu->limited_pmc_event(event_id[i])) {
300 ppmu->get_alternatives(event_id[i], cflags[i],
301 cpuhw->alternatives[i]);
302 event_id[i] = cpuhw->alternatives[i][0];
303 }
304 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
305 &cpuhw->avalues[i][0]))
306 return -1;
307 }
308 value = mask = 0;
309 for (i = 0; i < n_ev; ++i) {
310 nv = (value | cpuhw->avalues[i][0]) +
311 (value & cpuhw->avalues[i][0] & addf);
312 if ((((nv + tadd) ^ value) & mask) != 0 ||
313 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
314 cpuhw->amasks[i][0]) != 0)
315 break;
316 value = nv;
317 mask |= cpuhw->amasks[i][0];
318 }
319 if (i == n_ev)
320 return 0; /* all OK */
321
322 /* doesn't work, gather alternatives... */
323 if (!ppmu->get_alternatives)
324 return -1;
325 for (i = 0; i < n_ev; ++i) {
326 choice[i] = 0;
327 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
328 cpuhw->alternatives[i]);
329 for (j = 1; j < n_alt[i]; ++j)
330 ppmu->get_constraint(cpuhw->alternatives[i][j],
331 &cpuhw->amasks[i][j],
332 &cpuhw->avalues[i][j]);
333 }
334
335 /* enumerate all possibilities and see if any will work */
336 i = 0;
337 j = -1;
338 value = mask = nv = 0;
339 while (i < n_ev) {
340 if (j >= 0) {
341 /* we're backtracking, restore context */
342 value = svalues[i];
343 mask = smasks[i];
344 j = choice[i];
345 }
346 /*
347 * See if any alternative k for event_id i,
348 * where k > j, will satisfy the constraints.
349 */
350 while (++j < n_alt[i]) {
351 nv = (value | cpuhw->avalues[i][j]) +
352 (value & cpuhw->avalues[i][j] & addf);
353 if ((((nv + tadd) ^ value) & mask) == 0 &&
354 (((nv + tadd) ^ cpuhw->avalues[i][j])
355 & cpuhw->amasks[i][j]) == 0)
356 break;
357 }
358 if (j >= n_alt[i]) {
359 /*
360 * No feasible alternative, backtrack
361 * to event_id i-1 and continue enumerating its
362 * alternatives from where we got up to.
363 */
364 if (--i < 0)
365 return -1;
366 } else {
367 /*
368 * Found a feasible alternative for event_id i,
369 * remember where we got up to with this event_id,
370 * go on to the next event_id, and start with
371 * the first alternative for it.
372 */
373 choice[i] = j;
374 svalues[i] = value;
375 smasks[i] = mask;
376 value = nv;
377 mask |= cpuhw->amasks[i][j];
378 ++i;
379 j = -1;
380 }
381 }
382
383 /* OK, we have a feasible combination, tell the caller the solution */
384 for (i = 0; i < n_ev; ++i)
385 event_id[i] = cpuhw->alternatives[i][choice[i]];
386 return 0;
387 }
388
389 /*
390 * Check if newly-added events have consistent settings for
391 * exclude_{user,kernel,hv} with each other and any previously
392 * added events.
393 */
check_excludes(struct perf_event ** ctrs,unsigned int cflags[],int n_prev,int n_new)394 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
395 int n_prev, int n_new)
396 {
397 int eu = 0, ek = 0, eh = 0;
398 int i, n, first;
399 struct perf_event *event;
400
401 n = n_prev + n_new;
402 if (n <= 1)
403 return 0;
404
405 first = 1;
406 for (i = 0; i < n; ++i) {
407 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
408 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
409 continue;
410 }
411 event = ctrs[i];
412 if (first) {
413 eu = event->attr.exclude_user;
414 ek = event->attr.exclude_kernel;
415 eh = event->attr.exclude_hv;
416 first = 0;
417 } else if (event->attr.exclude_user != eu ||
418 event->attr.exclude_kernel != ek ||
419 event->attr.exclude_hv != eh) {
420 return -EAGAIN;
421 }
422 }
423
424 if (eu || ek || eh)
425 for (i = 0; i < n; ++i)
426 if (cflags[i] & PPMU_LIMITED_PMC_OK)
427 cflags[i] |= PPMU_LIMITED_PMC_REQD;
428
429 return 0;
430 }
431
check_and_compute_delta(u64 prev,u64 val)432 static u64 check_and_compute_delta(u64 prev, u64 val)
433 {
434 u64 delta = (val - prev) & 0xfffffffful;
435
436 /*
437 * POWER7 can roll back counter values, if the new value is smaller
438 * than the previous value it will cause the delta and the counter to
439 * have bogus values unless we rolled a counter over. If a coutner is
440 * rolled back, it will be smaller, but within 256, which is the maximum
441 * number of events to rollback at once. If we dectect a rollback
442 * return 0. This can lead to a small lack of precision in the
443 * counters.
444 */
445 if (prev > val && (prev - val) < 256)
446 delta = 0;
447
448 return delta;
449 }
450
power_pmu_read(struct perf_event * event)451 static void power_pmu_read(struct perf_event *event)
452 {
453 s64 val, delta, prev;
454
455 if (event->hw.state & PERF_HES_STOPPED)
456 return;
457
458 if (!event->hw.idx)
459 return;
460 /*
461 * Performance monitor interrupts come even when interrupts
462 * are soft-disabled, as long as interrupts are hard-enabled.
463 * Therefore we treat them like NMIs.
464 */
465 do {
466 prev = local64_read(&event->hw.prev_count);
467 barrier();
468 val = read_pmc(event->hw.idx);
469 delta = check_and_compute_delta(prev, val);
470 if (!delta)
471 return;
472 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
473
474 local64_add(delta, &event->count);
475 local64_sub(delta, &event->hw.period_left);
476 }
477
478 /*
479 * On some machines, PMC5 and PMC6 can't be written, don't respect
480 * the freeze conditions, and don't generate interrupts. This tells
481 * us if `event' is using such a PMC.
482 */
is_limited_pmc(int pmcnum)483 static int is_limited_pmc(int pmcnum)
484 {
485 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
486 && (pmcnum == 5 || pmcnum == 6);
487 }
488
freeze_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)489 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
490 unsigned long pmc5, unsigned long pmc6)
491 {
492 struct perf_event *event;
493 u64 val, prev, delta;
494 int i;
495
496 for (i = 0; i < cpuhw->n_limited; ++i) {
497 event = cpuhw->limited_counter[i];
498 if (!event->hw.idx)
499 continue;
500 val = (event->hw.idx == 5) ? pmc5 : pmc6;
501 prev = local64_read(&event->hw.prev_count);
502 event->hw.idx = 0;
503 delta = check_and_compute_delta(prev, val);
504 if (delta)
505 local64_add(delta, &event->count);
506 }
507 }
508
thaw_limited_counters(struct cpu_hw_events * cpuhw,unsigned long pmc5,unsigned long pmc6)509 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
510 unsigned long pmc5, unsigned long pmc6)
511 {
512 struct perf_event *event;
513 u64 val, prev;
514 int i;
515
516 for (i = 0; i < cpuhw->n_limited; ++i) {
517 event = cpuhw->limited_counter[i];
518 event->hw.idx = cpuhw->limited_hwidx[i];
519 val = (event->hw.idx == 5) ? pmc5 : pmc6;
520 prev = local64_read(&event->hw.prev_count);
521 if (check_and_compute_delta(prev, val))
522 local64_set(&event->hw.prev_count, val);
523 perf_event_update_userpage(event);
524 }
525 }
526
527 /*
528 * Since limited events don't respect the freeze conditions, we
529 * have to read them immediately after freezing or unfreezing the
530 * other events. We try to keep the values from the limited
531 * events as consistent as possible by keeping the delay (in
532 * cycles and instructions) between freezing/unfreezing and reading
533 * the limited events as small and consistent as possible.
534 * Therefore, if any limited events are in use, we read them
535 * both, and always in the same order, to minimize variability,
536 * and do it inside the same asm that writes MMCR0.
537 */
write_mmcr0(struct cpu_hw_events * cpuhw,unsigned long mmcr0)538 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
539 {
540 unsigned long pmc5, pmc6;
541
542 if (!cpuhw->n_limited) {
543 mtspr(SPRN_MMCR0, mmcr0);
544 return;
545 }
546
547 /*
548 * Write MMCR0, then read PMC5 and PMC6 immediately.
549 * To ensure we don't get a performance monitor interrupt
550 * between writing MMCR0 and freezing/thawing the limited
551 * events, we first write MMCR0 with the event overflow
552 * interrupt enable bits turned off.
553 */
554 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
555 : "=&r" (pmc5), "=&r" (pmc6)
556 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
557 "i" (SPRN_MMCR0),
558 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
559
560 if (mmcr0 & MMCR0_FC)
561 freeze_limited_counters(cpuhw, pmc5, pmc6);
562 else
563 thaw_limited_counters(cpuhw, pmc5, pmc6);
564
565 /*
566 * Write the full MMCR0 including the event overflow interrupt
567 * enable bits, if necessary.
568 */
569 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
570 mtspr(SPRN_MMCR0, mmcr0);
571 }
572
573 /*
574 * Disable all events to prevent PMU interrupts and to allow
575 * events to be added or removed.
576 */
power_pmu_disable(struct pmu * pmu)577 static void power_pmu_disable(struct pmu *pmu)
578 {
579 struct cpu_hw_events *cpuhw;
580 unsigned long flags;
581
582 if (!ppmu)
583 return;
584 local_irq_save(flags);
585 cpuhw = &__get_cpu_var(cpu_hw_events);
586
587 if (!cpuhw->disabled) {
588 cpuhw->disabled = 1;
589 cpuhw->n_added = 0;
590
591 /*
592 * Check if we ever enabled the PMU on this cpu.
593 */
594 if (!cpuhw->pmcs_enabled) {
595 ppc_enable_pmcs();
596 cpuhw->pmcs_enabled = 1;
597 }
598
599 /*
600 * Disable instruction sampling if it was enabled
601 */
602 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
603 mtspr(SPRN_MMCRA,
604 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
605 mb();
606 }
607
608 /*
609 * Set the 'freeze counters' bit.
610 * The barrier is to make sure the mtspr has been
611 * executed and the PMU has frozen the events
612 * before we return.
613 */
614 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
615 mb();
616 }
617 local_irq_restore(flags);
618 }
619
620 /*
621 * Re-enable all events if disable == 0.
622 * If we were previously disabled and events were added, then
623 * put the new config on the PMU.
624 */
power_pmu_enable(struct pmu * pmu)625 static void power_pmu_enable(struct pmu *pmu)
626 {
627 struct perf_event *event;
628 struct cpu_hw_events *cpuhw;
629 unsigned long flags;
630 long i;
631 unsigned long val;
632 s64 left;
633 unsigned int hwc_index[MAX_HWEVENTS];
634 int n_lim;
635 int idx;
636
637 if (!ppmu)
638 return;
639 local_irq_save(flags);
640 cpuhw = &__get_cpu_var(cpu_hw_events);
641 if (!cpuhw->disabled) {
642 local_irq_restore(flags);
643 return;
644 }
645 cpuhw->disabled = 0;
646
647 /*
648 * If we didn't change anything, or only removed events,
649 * no need to recalculate MMCR* settings and reset the PMCs.
650 * Just reenable the PMU with the current MMCR* settings
651 * (possibly updated for removal of events).
652 */
653 if (!cpuhw->n_added) {
654 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
655 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
656 if (cpuhw->n_events == 0)
657 ppc_set_pmu_inuse(0);
658 goto out_enable;
659 }
660
661 /*
662 * Compute MMCR* values for the new set of events
663 */
664 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
665 cpuhw->mmcr)) {
666 /* shouldn't ever get here */
667 printk(KERN_ERR "oops compute_mmcr failed\n");
668 goto out;
669 }
670
671 /*
672 * Add in MMCR0 freeze bits corresponding to the
673 * attr.exclude_* bits for the first event.
674 * We have already checked that all events have the
675 * same values for these bits as the first event.
676 */
677 event = cpuhw->event[0];
678 if (event->attr.exclude_user)
679 cpuhw->mmcr[0] |= MMCR0_FCP;
680 if (event->attr.exclude_kernel)
681 cpuhw->mmcr[0] |= freeze_events_kernel;
682 if (event->attr.exclude_hv)
683 cpuhw->mmcr[0] |= MMCR0_FCHV;
684
685 /*
686 * Write the new configuration to MMCR* with the freeze
687 * bit set and set the hardware events to their initial values.
688 * Then unfreeze the events.
689 */
690 ppc_set_pmu_inuse(1);
691 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
692 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
693 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
694 | MMCR0_FC);
695
696 /*
697 * Read off any pre-existing events that need to move
698 * to another PMC.
699 */
700 for (i = 0; i < cpuhw->n_events; ++i) {
701 event = cpuhw->event[i];
702 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
703 power_pmu_read(event);
704 write_pmc(event->hw.idx, 0);
705 event->hw.idx = 0;
706 }
707 }
708
709 /*
710 * Initialize the PMCs for all the new and moved events.
711 */
712 cpuhw->n_limited = n_lim = 0;
713 for (i = 0; i < cpuhw->n_events; ++i) {
714 event = cpuhw->event[i];
715 if (event->hw.idx)
716 continue;
717 idx = hwc_index[i] + 1;
718 if (is_limited_pmc(idx)) {
719 cpuhw->limited_counter[n_lim] = event;
720 cpuhw->limited_hwidx[n_lim] = idx;
721 ++n_lim;
722 continue;
723 }
724 val = 0;
725 if (event->hw.sample_period) {
726 left = local64_read(&event->hw.period_left);
727 if (left < 0x80000000L)
728 val = 0x80000000L - left;
729 }
730 local64_set(&event->hw.prev_count, val);
731 event->hw.idx = idx;
732 if (event->hw.state & PERF_HES_STOPPED)
733 val = 0;
734 write_pmc(idx, val);
735 perf_event_update_userpage(event);
736 }
737 cpuhw->n_limited = n_lim;
738 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
739
740 out_enable:
741 mb();
742 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
743
744 /*
745 * Enable instruction sampling if necessary
746 */
747 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
748 mb();
749 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
750 }
751
752 out:
753 local_irq_restore(flags);
754 }
755
collect_events(struct perf_event * group,int max_count,struct perf_event * ctrs[],u64 * events,unsigned int * flags)756 static int collect_events(struct perf_event *group, int max_count,
757 struct perf_event *ctrs[], u64 *events,
758 unsigned int *flags)
759 {
760 int n = 0;
761 struct perf_event *event;
762
763 if (!is_software_event(group)) {
764 if (n >= max_count)
765 return -1;
766 ctrs[n] = group;
767 flags[n] = group->hw.event_base;
768 events[n++] = group->hw.config;
769 }
770 list_for_each_entry(event, &group->sibling_list, group_entry) {
771 if (!is_software_event(event) &&
772 event->state != PERF_EVENT_STATE_OFF) {
773 if (n >= max_count)
774 return -1;
775 ctrs[n] = event;
776 flags[n] = event->hw.event_base;
777 events[n++] = event->hw.config;
778 }
779 }
780 return n;
781 }
782
783 /*
784 * Add a event to the PMU.
785 * If all events are not already frozen, then we disable and
786 * re-enable the PMU in order to get hw_perf_enable to do the
787 * actual work of reconfiguring the PMU.
788 */
power_pmu_add(struct perf_event * event,int ef_flags)789 static int power_pmu_add(struct perf_event *event, int ef_flags)
790 {
791 struct cpu_hw_events *cpuhw;
792 unsigned long flags;
793 int n0;
794 int ret = -EAGAIN;
795
796 local_irq_save(flags);
797 perf_pmu_disable(event->pmu);
798
799 /*
800 * Add the event to the list (if there is room)
801 * and check whether the total set is still feasible.
802 */
803 cpuhw = &__get_cpu_var(cpu_hw_events);
804 n0 = cpuhw->n_events;
805 if (n0 >= ppmu->n_counter)
806 goto out;
807 cpuhw->event[n0] = event;
808 cpuhw->events[n0] = event->hw.config;
809 cpuhw->flags[n0] = event->hw.event_base;
810
811 if (!(ef_flags & PERF_EF_START))
812 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
813
814 /*
815 * If group events scheduling transaction was started,
816 * skip the schedulability test here, it will be performed
817 * at commit time(->commit_txn) as a whole
818 */
819 if (cpuhw->group_flag & PERF_EVENT_TXN)
820 goto nocheck;
821
822 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
823 goto out;
824 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
825 goto out;
826 event->hw.config = cpuhw->events[n0];
827
828 nocheck:
829 ++cpuhw->n_events;
830 ++cpuhw->n_added;
831
832 ret = 0;
833 out:
834 perf_pmu_enable(event->pmu);
835 local_irq_restore(flags);
836 return ret;
837 }
838
839 /*
840 * Remove a event from the PMU.
841 */
power_pmu_del(struct perf_event * event,int ef_flags)842 static void power_pmu_del(struct perf_event *event, int ef_flags)
843 {
844 struct cpu_hw_events *cpuhw;
845 long i;
846 unsigned long flags;
847
848 local_irq_save(flags);
849 perf_pmu_disable(event->pmu);
850
851 power_pmu_read(event);
852
853 cpuhw = &__get_cpu_var(cpu_hw_events);
854 for (i = 0; i < cpuhw->n_events; ++i) {
855 if (event == cpuhw->event[i]) {
856 while (++i < cpuhw->n_events) {
857 cpuhw->event[i-1] = cpuhw->event[i];
858 cpuhw->events[i-1] = cpuhw->events[i];
859 cpuhw->flags[i-1] = cpuhw->flags[i];
860 }
861 --cpuhw->n_events;
862 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
863 if (event->hw.idx) {
864 write_pmc(event->hw.idx, 0);
865 event->hw.idx = 0;
866 }
867 perf_event_update_userpage(event);
868 break;
869 }
870 }
871 for (i = 0; i < cpuhw->n_limited; ++i)
872 if (event == cpuhw->limited_counter[i])
873 break;
874 if (i < cpuhw->n_limited) {
875 while (++i < cpuhw->n_limited) {
876 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
877 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
878 }
879 --cpuhw->n_limited;
880 }
881 if (cpuhw->n_events == 0) {
882 /* disable exceptions if no events are running */
883 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
884 }
885
886 perf_pmu_enable(event->pmu);
887 local_irq_restore(flags);
888 }
889
890 /*
891 * POWER-PMU does not support disabling individual counters, hence
892 * program their cycle counter to their max value and ignore the interrupts.
893 */
894
power_pmu_start(struct perf_event * event,int ef_flags)895 static void power_pmu_start(struct perf_event *event, int ef_flags)
896 {
897 unsigned long flags;
898 s64 left;
899 unsigned long val;
900
901 if (!event->hw.idx || !event->hw.sample_period)
902 return;
903
904 if (!(event->hw.state & PERF_HES_STOPPED))
905 return;
906
907 if (ef_flags & PERF_EF_RELOAD)
908 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
909
910 local_irq_save(flags);
911 perf_pmu_disable(event->pmu);
912
913 event->hw.state = 0;
914 left = local64_read(&event->hw.period_left);
915
916 val = 0;
917 if (left < 0x80000000L)
918 val = 0x80000000L - left;
919
920 write_pmc(event->hw.idx, val);
921
922 perf_event_update_userpage(event);
923 perf_pmu_enable(event->pmu);
924 local_irq_restore(flags);
925 }
926
power_pmu_stop(struct perf_event * event,int ef_flags)927 static void power_pmu_stop(struct perf_event *event, int ef_flags)
928 {
929 unsigned long flags;
930
931 if (!event->hw.idx || !event->hw.sample_period)
932 return;
933
934 if (event->hw.state & PERF_HES_STOPPED)
935 return;
936
937 local_irq_save(flags);
938 perf_pmu_disable(event->pmu);
939
940 power_pmu_read(event);
941 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
942 write_pmc(event->hw.idx, 0);
943
944 perf_event_update_userpage(event);
945 perf_pmu_enable(event->pmu);
946 local_irq_restore(flags);
947 }
948
949 /*
950 * Start group events scheduling transaction
951 * Set the flag to make pmu::enable() not perform the
952 * schedulability test, it will be performed at commit time
953 */
power_pmu_start_txn(struct pmu * pmu)954 void power_pmu_start_txn(struct pmu *pmu)
955 {
956 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
957
958 perf_pmu_disable(pmu);
959 cpuhw->group_flag |= PERF_EVENT_TXN;
960 cpuhw->n_txn_start = cpuhw->n_events;
961 }
962
963 /*
964 * Stop group events scheduling transaction
965 * Clear the flag and pmu::enable() will perform the
966 * schedulability test.
967 */
power_pmu_cancel_txn(struct pmu * pmu)968 void power_pmu_cancel_txn(struct pmu *pmu)
969 {
970 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
971
972 cpuhw->group_flag &= ~PERF_EVENT_TXN;
973 perf_pmu_enable(pmu);
974 }
975
976 /*
977 * Commit group events scheduling transaction
978 * Perform the group schedulability test as a whole
979 * Return 0 if success
980 */
power_pmu_commit_txn(struct pmu * pmu)981 int power_pmu_commit_txn(struct pmu *pmu)
982 {
983 struct cpu_hw_events *cpuhw;
984 long i, n;
985
986 if (!ppmu)
987 return -EAGAIN;
988 cpuhw = &__get_cpu_var(cpu_hw_events);
989 n = cpuhw->n_events;
990 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
991 return -EAGAIN;
992 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
993 if (i < 0)
994 return -EAGAIN;
995
996 for (i = cpuhw->n_txn_start; i < n; ++i)
997 cpuhw->event[i]->hw.config = cpuhw->events[i];
998
999 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1000 perf_pmu_enable(pmu);
1001 return 0;
1002 }
1003
1004 /*
1005 * Return 1 if we might be able to put event on a limited PMC,
1006 * or 0 if not.
1007 * A event can only go on a limited PMC if it counts something
1008 * that a limited PMC can count, doesn't require interrupts, and
1009 * doesn't exclude any processor mode.
1010 */
can_go_on_limited_pmc(struct perf_event * event,u64 ev,unsigned int flags)1011 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1012 unsigned int flags)
1013 {
1014 int n;
1015 u64 alt[MAX_EVENT_ALTERNATIVES];
1016
1017 if (event->attr.exclude_user
1018 || event->attr.exclude_kernel
1019 || event->attr.exclude_hv
1020 || event->attr.sample_period)
1021 return 0;
1022
1023 if (ppmu->limited_pmc_event(ev))
1024 return 1;
1025
1026 /*
1027 * The requested event_id isn't on a limited PMC already;
1028 * see if any alternative code goes on a limited PMC.
1029 */
1030 if (!ppmu->get_alternatives)
1031 return 0;
1032
1033 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1034 n = ppmu->get_alternatives(ev, flags, alt);
1035
1036 return n > 0;
1037 }
1038
1039 /*
1040 * Find an alternative event_id that goes on a normal PMC, if possible,
1041 * and return the event_id code, or 0 if there is no such alternative.
1042 * (Note: event_id code 0 is "don't count" on all machines.)
1043 */
normal_pmc_alternative(u64 ev,unsigned long flags)1044 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1045 {
1046 u64 alt[MAX_EVENT_ALTERNATIVES];
1047 int n;
1048
1049 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1050 n = ppmu->get_alternatives(ev, flags, alt);
1051 if (!n)
1052 return 0;
1053 return alt[0];
1054 }
1055
1056 /* Number of perf_events counting hardware events */
1057 static atomic_t num_events;
1058 /* Used to avoid races in calling reserve/release_pmc_hardware */
1059 static DEFINE_MUTEX(pmc_reserve_mutex);
1060
1061 /*
1062 * Release the PMU if this is the last perf_event.
1063 */
hw_perf_event_destroy(struct perf_event * event)1064 static void hw_perf_event_destroy(struct perf_event *event)
1065 {
1066 if (!atomic_add_unless(&num_events, -1, 1)) {
1067 mutex_lock(&pmc_reserve_mutex);
1068 if (atomic_dec_return(&num_events) == 0)
1069 release_pmc_hardware();
1070 mutex_unlock(&pmc_reserve_mutex);
1071 }
1072 }
1073
1074 /*
1075 * Translate a generic cache event_id config to a raw event_id code.
1076 */
hw_perf_cache_event(u64 config,u64 * eventp)1077 static int hw_perf_cache_event(u64 config, u64 *eventp)
1078 {
1079 unsigned long type, op, result;
1080 int ev;
1081
1082 if (!ppmu->cache_events)
1083 return -EINVAL;
1084
1085 /* unpack config */
1086 type = config & 0xff;
1087 op = (config >> 8) & 0xff;
1088 result = (config >> 16) & 0xff;
1089
1090 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1091 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1092 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1093 return -EINVAL;
1094
1095 ev = (*ppmu->cache_events)[type][op][result];
1096 if (ev == 0)
1097 return -EOPNOTSUPP;
1098 if (ev == -1)
1099 return -EINVAL;
1100 *eventp = ev;
1101 return 0;
1102 }
1103
power_pmu_event_init(struct perf_event * event)1104 static int power_pmu_event_init(struct perf_event *event)
1105 {
1106 u64 ev;
1107 unsigned long flags;
1108 struct perf_event *ctrs[MAX_HWEVENTS];
1109 u64 events[MAX_HWEVENTS];
1110 unsigned int cflags[MAX_HWEVENTS];
1111 int n;
1112 int err;
1113 struct cpu_hw_events *cpuhw;
1114
1115 if (!ppmu)
1116 return -ENOENT;
1117
1118 /* does not support taken branch sampling */
1119 if (has_branch_stack(event))
1120 return -EOPNOTSUPP;
1121
1122 switch (event->attr.type) {
1123 case PERF_TYPE_HARDWARE:
1124 ev = event->attr.config;
1125 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1126 return -EOPNOTSUPP;
1127 ev = ppmu->generic_events[ev];
1128 break;
1129 case PERF_TYPE_HW_CACHE:
1130 err = hw_perf_cache_event(event->attr.config, &ev);
1131 if (err)
1132 return err;
1133 break;
1134 case PERF_TYPE_RAW:
1135 ev = event->attr.config;
1136 break;
1137 default:
1138 return -ENOENT;
1139 }
1140
1141 event->hw.config_base = ev;
1142 event->hw.idx = 0;
1143
1144 /*
1145 * If we are not running on a hypervisor, force the
1146 * exclude_hv bit to 0 so that we don't care what
1147 * the user set it to.
1148 */
1149 if (!firmware_has_feature(FW_FEATURE_LPAR))
1150 event->attr.exclude_hv = 0;
1151
1152 /*
1153 * If this is a per-task event, then we can use
1154 * PM_RUN_* events interchangeably with their non RUN_*
1155 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1156 * XXX we should check if the task is an idle task.
1157 */
1158 flags = 0;
1159 if (event->attach_state & PERF_ATTACH_TASK)
1160 flags |= PPMU_ONLY_COUNT_RUN;
1161
1162 /*
1163 * If this machine has limited events, check whether this
1164 * event_id could go on a limited event.
1165 */
1166 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1167 if (can_go_on_limited_pmc(event, ev, flags)) {
1168 flags |= PPMU_LIMITED_PMC_OK;
1169 } else if (ppmu->limited_pmc_event(ev)) {
1170 /*
1171 * The requested event_id is on a limited PMC,
1172 * but we can't use a limited PMC; see if any
1173 * alternative goes on a normal PMC.
1174 */
1175 ev = normal_pmc_alternative(ev, flags);
1176 if (!ev)
1177 return -EINVAL;
1178 }
1179 }
1180
1181 /*
1182 * If this is in a group, check if it can go on with all the
1183 * other hardware events in the group. We assume the event
1184 * hasn't been linked into its leader's sibling list at this point.
1185 */
1186 n = 0;
1187 if (event->group_leader != event) {
1188 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1189 ctrs, events, cflags);
1190 if (n < 0)
1191 return -EINVAL;
1192 }
1193 events[n] = ev;
1194 ctrs[n] = event;
1195 cflags[n] = flags;
1196 if (check_excludes(ctrs, cflags, n, 1))
1197 return -EINVAL;
1198
1199 cpuhw = &get_cpu_var(cpu_hw_events);
1200 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1201 put_cpu_var(cpu_hw_events);
1202 if (err)
1203 return -EINVAL;
1204
1205 event->hw.config = events[n];
1206 event->hw.event_base = cflags[n];
1207 event->hw.last_period = event->hw.sample_period;
1208 local64_set(&event->hw.period_left, event->hw.last_period);
1209
1210 /*
1211 * See if we need to reserve the PMU.
1212 * If no events are currently in use, then we have to take a
1213 * mutex to ensure that we don't race with another task doing
1214 * reserve_pmc_hardware or release_pmc_hardware.
1215 */
1216 err = 0;
1217 if (!atomic_inc_not_zero(&num_events)) {
1218 mutex_lock(&pmc_reserve_mutex);
1219 if (atomic_read(&num_events) == 0 &&
1220 reserve_pmc_hardware(perf_event_interrupt))
1221 err = -EBUSY;
1222 else
1223 atomic_inc(&num_events);
1224 mutex_unlock(&pmc_reserve_mutex);
1225 }
1226 event->destroy = hw_perf_event_destroy;
1227
1228 return err;
1229 }
1230
power_pmu_event_idx(struct perf_event * event)1231 static int power_pmu_event_idx(struct perf_event *event)
1232 {
1233 return event->hw.idx;
1234 }
1235
1236 struct pmu power_pmu = {
1237 .pmu_enable = power_pmu_enable,
1238 .pmu_disable = power_pmu_disable,
1239 .event_init = power_pmu_event_init,
1240 .add = power_pmu_add,
1241 .del = power_pmu_del,
1242 .start = power_pmu_start,
1243 .stop = power_pmu_stop,
1244 .read = power_pmu_read,
1245 .start_txn = power_pmu_start_txn,
1246 .cancel_txn = power_pmu_cancel_txn,
1247 .commit_txn = power_pmu_commit_txn,
1248 .event_idx = power_pmu_event_idx,
1249 };
1250
1251 /*
1252 * A counter has overflowed; update its count and record
1253 * things if requested. Note that interrupts are hard-disabled
1254 * here so there is no possibility of being interrupted.
1255 */
record_and_restart(struct perf_event * event,unsigned long val,struct pt_regs * regs)1256 static void record_and_restart(struct perf_event *event, unsigned long val,
1257 struct pt_regs *regs)
1258 {
1259 u64 period = event->hw.sample_period;
1260 s64 prev, delta, left;
1261 int record = 0;
1262
1263 if (event->hw.state & PERF_HES_STOPPED) {
1264 write_pmc(event->hw.idx, 0);
1265 return;
1266 }
1267
1268 /* we don't have to worry about interrupts here */
1269 prev = local64_read(&event->hw.prev_count);
1270 delta = check_and_compute_delta(prev, val);
1271 local64_add(delta, &event->count);
1272
1273 /*
1274 * See if the total period for this event has expired,
1275 * and update for the next period.
1276 */
1277 val = 0;
1278 left = local64_read(&event->hw.period_left) - delta;
1279 if (period) {
1280 if (left <= 0) {
1281 left += period;
1282 if (left <= 0)
1283 left = period;
1284 record = 1;
1285 event->hw.last_period = event->hw.sample_period;
1286 }
1287 if (left < 0x80000000LL)
1288 val = 0x80000000LL - left;
1289 }
1290
1291 write_pmc(event->hw.idx, val);
1292 local64_set(&event->hw.prev_count, val);
1293 local64_set(&event->hw.period_left, left);
1294 perf_event_update_userpage(event);
1295
1296 /*
1297 * Finally record data if requested.
1298 */
1299 if (record) {
1300 struct perf_sample_data data;
1301
1302 perf_sample_data_init(&data, ~0ULL);
1303 data.period = event->hw.last_period;
1304
1305 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1306 perf_get_data_addr(regs, &data.addr);
1307
1308 if (perf_event_overflow(event, &data, regs))
1309 power_pmu_stop(event, 0);
1310 }
1311 }
1312
1313 /*
1314 * Called from generic code to get the misc flags (i.e. processor mode)
1315 * for an event_id.
1316 */
perf_misc_flags(struct pt_regs * regs)1317 unsigned long perf_misc_flags(struct pt_regs *regs)
1318 {
1319 u32 flags = perf_get_misc_flags(regs);
1320
1321 if (flags)
1322 return flags;
1323 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1324 PERF_RECORD_MISC_KERNEL;
1325 }
1326
1327 /*
1328 * Called from generic code to get the instruction pointer
1329 * for an event_id.
1330 */
perf_instruction_pointer(struct pt_regs * regs)1331 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1332 {
1333 unsigned long mmcra = regs->dsisr;
1334
1335 /* Not a PMU interrupt */
1336 if (TRAP(regs) != 0xf00)
1337 return regs->nip;
1338
1339 /* Processor doesn't support sampling non marked events */
1340 if ((ppmu->flags & PPMU_NO_CONT_SAMPLING) &&
1341 !(mmcra & MMCRA_SAMPLE_ENABLE))
1342 return regs->nip;
1343
1344 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1345 }
1346
pmc_overflow(unsigned long val)1347 static bool pmc_overflow(unsigned long val)
1348 {
1349 if ((int)val < 0)
1350 return true;
1351
1352 /*
1353 * Events on POWER7 can roll back if a speculative event doesn't
1354 * eventually complete. Unfortunately in some rare cases they will
1355 * raise a performance monitor exception. We need to catch this to
1356 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1357 * cycles from overflow.
1358 *
1359 * We only do this if the first pass fails to find any overflowing
1360 * PMCs because a user might set a period of less than 256 and we
1361 * don't want to mistakenly reset them.
1362 */
1363 if (__is_processor(PV_POWER7) && ((0x80000000 - val) <= 256))
1364 return true;
1365
1366 return false;
1367 }
1368
1369 /*
1370 * Performance monitor interrupt stuff
1371 */
perf_event_interrupt(struct pt_regs * regs)1372 static void perf_event_interrupt(struct pt_regs *regs)
1373 {
1374 int i;
1375 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1376 struct perf_event *event;
1377 unsigned long val;
1378 int found = 0;
1379 int nmi;
1380
1381 if (cpuhw->n_limited)
1382 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1383 mfspr(SPRN_PMC6));
1384
1385 perf_read_regs(regs);
1386
1387 nmi = perf_intr_is_nmi(regs);
1388 if (nmi)
1389 nmi_enter();
1390 else
1391 irq_enter();
1392
1393 for (i = 0; i < cpuhw->n_events; ++i) {
1394 event = cpuhw->event[i];
1395 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1396 continue;
1397 val = read_pmc(event->hw.idx);
1398 if ((int)val < 0) {
1399 /* event has overflowed */
1400 found = 1;
1401 record_and_restart(event, val, regs);
1402 }
1403 }
1404
1405 /*
1406 * In case we didn't find and reset the event that caused
1407 * the interrupt, scan all events and reset any that are
1408 * negative, to avoid getting continual interrupts.
1409 * Any that we processed in the previous loop will not be negative.
1410 */
1411 if (!found) {
1412 for (i = 0; i < ppmu->n_counter; ++i) {
1413 if (is_limited_pmc(i + 1))
1414 continue;
1415 val = read_pmc(i + 1);
1416 if (pmc_overflow(val))
1417 write_pmc(i + 1, 0);
1418 }
1419 }
1420
1421 /*
1422 * Reset MMCR0 to its normal value. This will set PMXE and
1423 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1424 * and thus allow interrupts to occur again.
1425 * XXX might want to use MSR.PM to keep the events frozen until
1426 * we get back out of this interrupt.
1427 */
1428 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1429
1430 if (nmi)
1431 nmi_exit();
1432 else
1433 irq_exit();
1434 }
1435
power_pmu_setup(int cpu)1436 static void power_pmu_setup(int cpu)
1437 {
1438 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1439
1440 if (!ppmu)
1441 return;
1442 memset(cpuhw, 0, sizeof(*cpuhw));
1443 cpuhw->mmcr[0] = MMCR0_FC;
1444 }
1445
1446 static int __cpuinit
power_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1447 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1448 {
1449 unsigned int cpu = (long)hcpu;
1450
1451 switch (action & ~CPU_TASKS_FROZEN) {
1452 case CPU_UP_PREPARE:
1453 power_pmu_setup(cpu);
1454 break;
1455
1456 default:
1457 break;
1458 }
1459
1460 return NOTIFY_OK;
1461 }
1462
register_power_pmu(struct power_pmu * pmu)1463 int __cpuinit register_power_pmu(struct power_pmu *pmu)
1464 {
1465 if (ppmu)
1466 return -EBUSY; /* something's already registered */
1467
1468 ppmu = pmu;
1469 pr_info("%s performance monitor hardware support registered\n",
1470 pmu->name);
1471
1472 #ifdef MSR_HV
1473 /*
1474 * Use FCHV to ignore kernel events if MSR.HV is set.
1475 */
1476 if (mfmsr() & MSR_HV)
1477 freeze_events_kernel = MMCR0_FCHV;
1478 #endif /* CONFIG_PPC64 */
1479
1480 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
1481 perf_cpu_notifier(power_pmu_notifier);
1482
1483 return 0;
1484 }
1485