1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55
56 /* A. Checksumming of received packets by device.
57 *
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
60 *
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
66 *
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
72 *
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
79 *
80 * B. Checksumming on output.
81 *
82 * NONE: skb is checksummed by protocol or csum is not required.
83 *
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
87 *
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 *
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
104 *
105 * Any questions? No questions, good. --ANK
106 */
107
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
115 };
116 #endif
117
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 struct net_device *physindev;
122 struct net_device *physoutdev;
123 unsigned int mask;
124 unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
132
133 __u32 qlen;
134 spinlock_t lock;
135 };
136
137 struct sk_buff;
138
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
142 *
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
145 */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151
152 typedef struct skb_frag_struct skb_frag_t;
153
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
165 };
166
skb_frag_size(const skb_frag_t * frag)167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 return frag->size;
170 }
171
skb_frag_size_set(skb_frag_t * frag,unsigned int size)172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 frag->size = size;
175 }
176
skb_frag_size_add(skb_frag_t * frag,int delta)177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 frag->size += delta;
180 }
181
skb_frag_size_sub(skb_frag_t * frag,int delta)182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 frag->size -= delta;
185 }
186
187 #define HAVE_HW_TIME_STAMP
188
189 /**
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
194 *
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
198 *
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
205 *
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
208 *
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211 */
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
215 };
216
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
221
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
224
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
227
228 /* device driver supports TX zero-copy buffers */
229 SKBTX_DEV_ZEROCOPY = 1 << 3,
230
231 /* generate wifi status information (where possible) */
232 SKBTX_WIFI_STATUS = 1 << 4,
233 };
234
235 /*
236 * The callback notifies userspace to release buffers when skb DMA is done in
237 * lower device, the skb last reference should be 0 when calling this.
238 * The ctx field is used to track device context.
239 * The desc field is used to track userspace buffer index.
240 */
241 struct ubuf_info {
242 void (*callback)(struct ubuf_info *);
243 void *ctx;
244 unsigned long desc;
245 };
246
247 /* This data is invariant across clones and lives at
248 * the end of the header data, ie. at skb->end.
249 */
250 struct skb_shared_info {
251 unsigned char nr_frags;
252 __u8 tx_flags;
253 unsigned short gso_size;
254 /* Warning: this field is not always filled in (UFO)! */
255 unsigned short gso_segs;
256 unsigned short gso_type;
257 struct sk_buff *frag_list;
258 struct skb_shared_hwtstamps hwtstamps;
259 __be32 ip6_frag_id;
260
261 /*
262 * Warning : all fields before dataref are cleared in __alloc_skb()
263 */
264 atomic_t dataref;
265
266 /* Intermediate layers must ensure that destructor_arg
267 * remains valid until skb destructor */
268 void * destructor_arg;
269
270 /* must be last field, see pskb_expand_head() */
271 skb_frag_t frags[MAX_SKB_FRAGS];
272 };
273
274 /* We divide dataref into two halves. The higher 16 bits hold references
275 * to the payload part of skb->data. The lower 16 bits hold references to
276 * the entire skb->data. A clone of a headerless skb holds the length of
277 * the header in skb->hdr_len.
278 *
279 * All users must obey the rule that the skb->data reference count must be
280 * greater than or equal to the payload reference count.
281 *
282 * Holding a reference to the payload part means that the user does not
283 * care about modifications to the header part of skb->data.
284 */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287
288
289 enum {
290 SKB_FCLONE_UNAVAILABLE,
291 SKB_FCLONE_ORIG,
292 SKB_FCLONE_CLONE,
293 };
294
295 enum {
296 SKB_GSO_TCPV4 = 1 << 0,
297 SKB_GSO_UDP = 1 << 1,
298
299 /* This indicates the skb is from an untrusted source. */
300 SKB_GSO_DODGY = 1 << 2,
301
302 /* This indicates the tcp segment has CWR set. */
303 SKB_GSO_TCP_ECN = 1 << 3,
304
305 SKB_GSO_TCPV6 = 1 << 4,
306
307 SKB_GSO_FCOE = 1 << 5,
308 };
309
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324
325 /**
326 * struct sk_buff - socket buffer
327 * @next: Next buffer in list
328 * @prev: Previous buffer in list
329 * @tstamp: Time we arrived
330 * @sk: Socket we are owned by
331 * @dev: Device we arrived on/are leaving by
332 * @cb: Control buffer. Free for use by every layer. Put private vars here
333 * @_skb_refdst: destination entry (with norefcount bit)
334 * @sp: the security path, used for xfrm
335 * @len: Length of actual data
336 * @data_len: Data length
337 * @mac_len: Length of link layer header
338 * @hdr_len: writable header length of cloned skb
339 * @csum: Checksum (must include start/offset pair)
340 * @csum_start: Offset from skb->head where checksumming should start
341 * @csum_offset: Offset from csum_start where checksum should be stored
342 * @priority: Packet queueing priority
343 * @local_df: allow local fragmentation
344 * @cloned: Head may be cloned (check refcnt to be sure)
345 * @ip_summed: Driver fed us an IP checksum
346 * @nohdr: Payload reference only, must not modify header
347 * @nfctinfo: Relationship of this skb to the connection
348 * @pkt_type: Packet class
349 * @fclone: skbuff clone status
350 * @ipvs_property: skbuff is owned by ipvs
351 * @peeked: this packet has been seen already, so stats have been
352 * done for it, don't do them again
353 * @nf_trace: netfilter packet trace flag
354 * @protocol: Packet protocol from driver
355 * @destructor: Destruct function
356 * @nfct: Associated connection, if any
357 * @nfct_reasm: netfilter conntrack re-assembly pointer
358 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359 * @skb_iif: ifindex of device we arrived on
360 * @tc_index: Traffic control index
361 * @tc_verd: traffic control verdict
362 * @rxhash: the packet hash computed on receive
363 * @queue_mapping: Queue mapping for multiqueue devices
364 * @ndisc_nodetype: router type (from link layer)
365 * @ooo_okay: allow the mapping of a socket to a queue to be changed
366 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367 * ports.
368 * @wifi_acked_valid: wifi_acked was set
369 * @wifi_acked: whether frame was acked on wifi or not
370 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
371 * @dma_cookie: a cookie to one of several possible DMA operations
372 * done by skb DMA functions
373 * @secmark: security marking
374 * @mark: Generic packet mark
375 * @dropcount: total number of sk_receive_queue overflows
376 * @vlan_tci: vlan tag control information
377 * @transport_header: Transport layer header
378 * @network_header: Network layer header
379 * @mac_header: Link layer header
380 * @tail: Tail pointer
381 * @end: End pointer
382 * @head: Head of buffer
383 * @data: Data head pointer
384 * @truesize: Buffer size
385 * @users: User count - see {datagram,tcp}.c
386 */
387
388 struct sk_buff {
389 /* These two members must be first. */
390 struct sk_buff *next;
391 struct sk_buff *prev;
392
393 ktime_t tstamp;
394
395 struct sock *sk;
396 struct net_device *dev;
397
398 /*
399 * This is the control buffer. It is free to use for every
400 * layer. Please put your private variables there. If you
401 * want to keep them across layers you have to do a skb_clone()
402 * first. This is owned by whoever has the skb queued ATM.
403 */
404 char cb[48] __aligned(8);
405
406 unsigned long _skb_refdst;
407 #ifdef CONFIG_XFRM
408 struct sec_path *sp;
409 #endif
410 unsigned int len,
411 data_len;
412 __u16 mac_len,
413 hdr_len;
414 union {
415 __wsum csum;
416 struct {
417 __u16 csum_start;
418 __u16 csum_offset;
419 };
420 };
421 __u32 priority;
422 kmemcheck_bitfield_begin(flags1);
423 __u8 local_df:1,
424 cloned:1,
425 ip_summed:2,
426 nohdr:1,
427 nfctinfo:3;
428 __u8 pkt_type:3,
429 fclone:2,
430 ipvs_property:1,
431 peeked:1,
432 nf_trace:1;
433 kmemcheck_bitfield_end(flags1);
434 __be16 protocol;
435
436 void (*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 struct nf_conntrack *nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 struct sk_buff *nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 struct nf_bridge_info *nf_bridge;
445 #endif
446
447 int skb_iif;
448
449 __u32 rxhash;
450
451 __u16 vlan_tci;
452
453 #ifdef CONFIG_NET_SCHED
454 __u16 tc_index; /* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 __u16 tc_verd; /* traffic control verdict */
457 #endif
458 #endif
459
460 __u16 queue_mapping;
461 kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 __u8 ndisc_nodetype:2;
464 #endif
465 __u8 ooo_okay:1;
466 __u8 l4_rxhash:1;
467 __u8 wifi_acked_valid:1;
468 __u8 wifi_acked:1;
469 __u8 no_fcs:1;
470 /* 9/11 bit hole (depending on ndisc_nodetype presence) */
471 kmemcheck_bitfield_end(flags2);
472
473 #ifdef CONFIG_NET_DMA
474 dma_cookie_t dma_cookie;
475 #endif
476 #ifdef CONFIG_NETWORK_SECMARK
477 __u32 secmark;
478 #endif
479 union {
480 __u32 mark;
481 __u32 dropcount;
482 __u32 reserved_tailroom;
483 };
484
485 sk_buff_data_t transport_header;
486 sk_buff_data_t network_header;
487 sk_buff_data_t mac_header;
488 /* These elements must be at the end, see alloc_skb() for details. */
489 sk_buff_data_t tail;
490 sk_buff_data_t end;
491 unsigned char *head,
492 *data;
493 unsigned int truesize;
494 atomic_t users;
495 };
496
497 #ifdef __KERNEL__
498 /*
499 * Handling routines are only of interest to the kernel
500 */
501 #include <linux/slab.h>
502
503
504 /*
505 * skb might have a dst pointer attached, refcounted or not.
506 * _skb_refdst low order bit is set if refcount was _not_ taken
507 */
508 #define SKB_DST_NOREF 1UL
509 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
510
511 /**
512 * skb_dst - returns skb dst_entry
513 * @skb: buffer
514 *
515 * Returns skb dst_entry, regardless of reference taken or not.
516 */
skb_dst(const struct sk_buff * skb)517 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
518 {
519 /* If refdst was not refcounted, check we still are in a
520 * rcu_read_lock section
521 */
522 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
523 !rcu_read_lock_held() &&
524 !rcu_read_lock_bh_held());
525 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
526 }
527
528 /**
529 * skb_dst_set - sets skb dst
530 * @skb: buffer
531 * @dst: dst entry
532 *
533 * Sets skb dst, assuming a reference was taken on dst and should
534 * be released by skb_dst_drop()
535 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)536 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
537 {
538 skb->_skb_refdst = (unsigned long)dst;
539 }
540
541 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
542
543 /**
544 * skb_dst_is_noref - Test if skb dst isn't refcounted
545 * @skb: buffer
546 */
skb_dst_is_noref(const struct sk_buff * skb)547 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
548 {
549 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
550 }
551
skb_rtable(const struct sk_buff * skb)552 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
553 {
554 return (struct rtable *)skb_dst(skb);
555 }
556
557 extern void kfree_skb(struct sk_buff *skb);
558 extern void consume_skb(struct sk_buff *skb);
559 extern void __kfree_skb(struct sk_buff *skb);
560 extern struct sk_buff *__alloc_skb(unsigned int size,
561 gfp_t priority, int fclone, int node);
562 extern struct sk_buff *build_skb(void *data);
alloc_skb(unsigned int size,gfp_t priority)563 static inline struct sk_buff *alloc_skb(unsigned int size,
564 gfp_t priority)
565 {
566 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
567 }
568
alloc_skb_fclone(unsigned int size,gfp_t priority)569 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
570 gfp_t priority)
571 {
572 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
573 }
574
575 extern void skb_recycle(struct sk_buff *skb);
576 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
577
578 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
579 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
580 extern struct sk_buff *skb_clone(struct sk_buff *skb,
581 gfp_t priority);
582 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
583 gfp_t priority);
584 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
585 int headroom, gfp_t gfp_mask);
586
587 extern int pskb_expand_head(struct sk_buff *skb,
588 int nhead, int ntail,
589 gfp_t gfp_mask);
590 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
591 unsigned int headroom);
592 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
593 int newheadroom, int newtailroom,
594 gfp_t priority);
595 extern int skb_to_sgvec(struct sk_buff *skb,
596 struct scatterlist *sg, int offset,
597 int len);
598 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
599 struct sk_buff **trailer);
600 extern int skb_pad(struct sk_buff *skb, int pad);
601 #define dev_kfree_skb(a) consume_skb(a)
602
603 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
604 int getfrag(void *from, char *to, int offset,
605 int len,int odd, struct sk_buff *skb),
606 void *from, int length);
607
608 struct skb_seq_state {
609 __u32 lower_offset;
610 __u32 upper_offset;
611 __u32 frag_idx;
612 __u32 stepped_offset;
613 struct sk_buff *root_skb;
614 struct sk_buff *cur_skb;
615 __u8 *frag_data;
616 };
617
618 extern void skb_prepare_seq_read(struct sk_buff *skb,
619 unsigned int from, unsigned int to,
620 struct skb_seq_state *st);
621 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
622 struct skb_seq_state *st);
623 extern void skb_abort_seq_read(struct skb_seq_state *st);
624
625 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
626 unsigned int to, struct ts_config *config,
627 struct ts_state *state);
628
629 extern void __skb_get_rxhash(struct sk_buff *skb);
skb_get_rxhash(struct sk_buff * skb)630 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
631 {
632 if (!skb->rxhash)
633 __skb_get_rxhash(skb);
634
635 return skb->rxhash;
636 }
637
638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)639 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
640 {
641 return skb->head + skb->end;
642 }
643 #else
skb_end_pointer(const struct sk_buff * skb)644 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
645 {
646 return skb->end;
647 }
648 #endif
649
650 /* Internal */
651 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
652
skb_hwtstamps(struct sk_buff * skb)653 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
654 {
655 return &skb_shinfo(skb)->hwtstamps;
656 }
657
658 /**
659 * skb_queue_empty - check if a queue is empty
660 * @list: queue head
661 *
662 * Returns true if the queue is empty, false otherwise.
663 */
skb_queue_empty(const struct sk_buff_head * list)664 static inline int skb_queue_empty(const struct sk_buff_head *list)
665 {
666 return list->next == (struct sk_buff *)list;
667 }
668
669 /**
670 * skb_queue_is_last - check if skb is the last entry in the queue
671 * @list: queue head
672 * @skb: buffer
673 *
674 * Returns true if @skb is the last buffer on the list.
675 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)676 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
677 const struct sk_buff *skb)
678 {
679 return skb->next == (struct sk_buff *)list;
680 }
681
682 /**
683 * skb_queue_is_first - check if skb is the first entry in the queue
684 * @list: queue head
685 * @skb: buffer
686 *
687 * Returns true if @skb is the first buffer on the list.
688 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)689 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
690 const struct sk_buff *skb)
691 {
692 return skb->prev == (struct sk_buff *)list;
693 }
694
695 /**
696 * skb_queue_next - return the next packet in the queue
697 * @list: queue head
698 * @skb: current buffer
699 *
700 * Return the next packet in @list after @skb. It is only valid to
701 * call this if skb_queue_is_last() evaluates to false.
702 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)703 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
704 const struct sk_buff *skb)
705 {
706 /* This BUG_ON may seem severe, but if we just return then we
707 * are going to dereference garbage.
708 */
709 BUG_ON(skb_queue_is_last(list, skb));
710 return skb->next;
711 }
712
713 /**
714 * skb_queue_prev - return the prev packet in the queue
715 * @list: queue head
716 * @skb: current buffer
717 *
718 * Return the prev packet in @list before @skb. It is only valid to
719 * call this if skb_queue_is_first() evaluates to false.
720 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)721 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
722 const struct sk_buff *skb)
723 {
724 /* This BUG_ON may seem severe, but if we just return then we
725 * are going to dereference garbage.
726 */
727 BUG_ON(skb_queue_is_first(list, skb));
728 return skb->prev;
729 }
730
731 /**
732 * skb_get - reference buffer
733 * @skb: buffer to reference
734 *
735 * Makes another reference to a socket buffer and returns a pointer
736 * to the buffer.
737 */
skb_get(struct sk_buff * skb)738 static inline struct sk_buff *skb_get(struct sk_buff *skb)
739 {
740 atomic_inc(&skb->users);
741 return skb;
742 }
743
744 /*
745 * If users == 1, we are the only owner and are can avoid redundant
746 * atomic change.
747 */
748
749 /**
750 * skb_cloned - is the buffer a clone
751 * @skb: buffer to check
752 *
753 * Returns true if the buffer was generated with skb_clone() and is
754 * one of multiple shared copies of the buffer. Cloned buffers are
755 * shared data so must not be written to under normal circumstances.
756 */
skb_cloned(const struct sk_buff * skb)757 static inline int skb_cloned(const struct sk_buff *skb)
758 {
759 return skb->cloned &&
760 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
761 }
762
763 /**
764 * skb_header_cloned - is the header a clone
765 * @skb: buffer to check
766 *
767 * Returns true if modifying the header part of the buffer requires
768 * the data to be copied.
769 */
skb_header_cloned(const struct sk_buff * skb)770 static inline int skb_header_cloned(const struct sk_buff *skb)
771 {
772 int dataref;
773
774 if (!skb->cloned)
775 return 0;
776
777 dataref = atomic_read(&skb_shinfo(skb)->dataref);
778 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
779 return dataref != 1;
780 }
781
782 /**
783 * skb_header_release - release reference to header
784 * @skb: buffer to operate on
785 *
786 * Drop a reference to the header part of the buffer. This is done
787 * by acquiring a payload reference. You must not read from the header
788 * part of skb->data after this.
789 */
skb_header_release(struct sk_buff * skb)790 static inline void skb_header_release(struct sk_buff *skb)
791 {
792 BUG_ON(skb->nohdr);
793 skb->nohdr = 1;
794 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
795 }
796
797 /**
798 * skb_shared - is the buffer shared
799 * @skb: buffer to check
800 *
801 * Returns true if more than one person has a reference to this
802 * buffer.
803 */
skb_shared(const struct sk_buff * skb)804 static inline int skb_shared(const struct sk_buff *skb)
805 {
806 return atomic_read(&skb->users) != 1;
807 }
808
809 /**
810 * skb_share_check - check if buffer is shared and if so clone it
811 * @skb: buffer to check
812 * @pri: priority for memory allocation
813 *
814 * If the buffer is shared the buffer is cloned and the old copy
815 * drops a reference. A new clone with a single reference is returned.
816 * If the buffer is not shared the original buffer is returned. When
817 * being called from interrupt status or with spinlocks held pri must
818 * be GFP_ATOMIC.
819 *
820 * NULL is returned on a memory allocation failure.
821 */
skb_share_check(struct sk_buff * skb,gfp_t pri)822 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
823 gfp_t pri)
824 {
825 might_sleep_if(pri & __GFP_WAIT);
826 if (skb_shared(skb)) {
827 struct sk_buff *nskb = skb_clone(skb, pri);
828 kfree_skb(skb);
829 skb = nskb;
830 }
831 return skb;
832 }
833
834 /*
835 * Copy shared buffers into a new sk_buff. We effectively do COW on
836 * packets to handle cases where we have a local reader and forward
837 * and a couple of other messy ones. The normal one is tcpdumping
838 * a packet thats being forwarded.
839 */
840
841 /**
842 * skb_unshare - make a copy of a shared buffer
843 * @skb: buffer to check
844 * @pri: priority for memory allocation
845 *
846 * If the socket buffer is a clone then this function creates a new
847 * copy of the data, drops a reference count on the old copy and returns
848 * the new copy with the reference count at 1. If the buffer is not a clone
849 * the original buffer is returned. When called with a spinlock held or
850 * from interrupt state @pri must be %GFP_ATOMIC
851 *
852 * %NULL is returned on a memory allocation failure.
853 */
skb_unshare(struct sk_buff * skb,gfp_t pri)854 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
855 gfp_t pri)
856 {
857 might_sleep_if(pri & __GFP_WAIT);
858 if (skb_cloned(skb)) {
859 struct sk_buff *nskb = skb_copy(skb, pri);
860 kfree_skb(skb); /* Free our shared copy */
861 skb = nskb;
862 }
863 return skb;
864 }
865
866 /**
867 * skb_peek - peek at the head of an &sk_buff_head
868 * @list_: list to peek at
869 *
870 * Peek an &sk_buff. Unlike most other operations you _MUST_
871 * be careful with this one. A peek leaves the buffer on the
872 * list and someone else may run off with it. You must hold
873 * the appropriate locks or have a private queue to do this.
874 *
875 * Returns %NULL for an empty list or a pointer to the head element.
876 * The reference count is not incremented and the reference is therefore
877 * volatile. Use with caution.
878 */
skb_peek(const struct sk_buff_head * list_)879 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
880 {
881 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
882 if (list == (struct sk_buff *)list_)
883 list = NULL;
884 return list;
885 }
886
887 /**
888 * skb_peek_next - peek skb following the given one from a queue
889 * @skb: skb to start from
890 * @list_: list to peek at
891 *
892 * Returns %NULL when the end of the list is met or a pointer to the
893 * next element. The reference count is not incremented and the
894 * reference is therefore volatile. Use with caution.
895 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)896 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
897 const struct sk_buff_head *list_)
898 {
899 struct sk_buff *next = skb->next;
900 if (next == (struct sk_buff *)list_)
901 next = NULL;
902 return next;
903 }
904
905 /**
906 * skb_peek_tail - peek at the tail of an &sk_buff_head
907 * @list_: list to peek at
908 *
909 * Peek an &sk_buff. Unlike most other operations you _MUST_
910 * be careful with this one. A peek leaves the buffer on the
911 * list and someone else may run off with it. You must hold
912 * the appropriate locks or have a private queue to do this.
913 *
914 * Returns %NULL for an empty list or a pointer to the tail element.
915 * The reference count is not incremented and the reference is therefore
916 * volatile. Use with caution.
917 */
skb_peek_tail(const struct sk_buff_head * list_)918 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
919 {
920 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
921 if (list == (struct sk_buff *)list_)
922 list = NULL;
923 return list;
924 }
925
926 /**
927 * skb_queue_len - get queue length
928 * @list_: list to measure
929 *
930 * Return the length of an &sk_buff queue.
931 */
skb_queue_len(const struct sk_buff_head * list_)932 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
933 {
934 return list_->qlen;
935 }
936
937 /**
938 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
939 * @list: queue to initialize
940 *
941 * This initializes only the list and queue length aspects of
942 * an sk_buff_head object. This allows to initialize the list
943 * aspects of an sk_buff_head without reinitializing things like
944 * the spinlock. It can also be used for on-stack sk_buff_head
945 * objects where the spinlock is known to not be used.
946 */
__skb_queue_head_init(struct sk_buff_head * list)947 static inline void __skb_queue_head_init(struct sk_buff_head *list)
948 {
949 list->prev = list->next = (struct sk_buff *)list;
950 list->qlen = 0;
951 }
952
953 /*
954 * This function creates a split out lock class for each invocation;
955 * this is needed for now since a whole lot of users of the skb-queue
956 * infrastructure in drivers have different locking usage (in hardirq)
957 * than the networking core (in softirq only). In the long run either the
958 * network layer or drivers should need annotation to consolidate the
959 * main types of usage into 3 classes.
960 */
skb_queue_head_init(struct sk_buff_head * list)961 static inline void skb_queue_head_init(struct sk_buff_head *list)
962 {
963 spin_lock_init(&list->lock);
964 __skb_queue_head_init(list);
965 }
966
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)967 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
968 struct lock_class_key *class)
969 {
970 skb_queue_head_init(list);
971 lockdep_set_class(&list->lock, class);
972 }
973
974 /*
975 * Insert an sk_buff on a list.
976 *
977 * The "__skb_xxxx()" functions are the non-atomic ones that
978 * can only be called with interrupts disabled.
979 */
980 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)981 static inline void __skb_insert(struct sk_buff *newsk,
982 struct sk_buff *prev, struct sk_buff *next,
983 struct sk_buff_head *list)
984 {
985 newsk->next = next;
986 newsk->prev = prev;
987 next->prev = prev->next = newsk;
988 list->qlen++;
989 }
990
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)991 static inline void __skb_queue_splice(const struct sk_buff_head *list,
992 struct sk_buff *prev,
993 struct sk_buff *next)
994 {
995 struct sk_buff *first = list->next;
996 struct sk_buff *last = list->prev;
997
998 first->prev = prev;
999 prev->next = first;
1000
1001 last->next = next;
1002 next->prev = last;
1003 }
1004
1005 /**
1006 * skb_queue_splice - join two skb lists, this is designed for stacks
1007 * @list: the new list to add
1008 * @head: the place to add it in the first list
1009 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1010 static inline void skb_queue_splice(const struct sk_buff_head *list,
1011 struct sk_buff_head *head)
1012 {
1013 if (!skb_queue_empty(list)) {
1014 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1015 head->qlen += list->qlen;
1016 }
1017 }
1018
1019 /**
1020 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1021 * @list: the new list to add
1022 * @head: the place to add it in the first list
1023 *
1024 * The list at @list is reinitialised
1025 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1026 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1027 struct sk_buff_head *head)
1028 {
1029 if (!skb_queue_empty(list)) {
1030 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1031 head->qlen += list->qlen;
1032 __skb_queue_head_init(list);
1033 }
1034 }
1035
1036 /**
1037 * skb_queue_splice_tail - join two skb lists, each list being a queue
1038 * @list: the new list to add
1039 * @head: the place to add it in the first list
1040 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1041 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1042 struct sk_buff_head *head)
1043 {
1044 if (!skb_queue_empty(list)) {
1045 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1046 head->qlen += list->qlen;
1047 }
1048 }
1049
1050 /**
1051 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1052 * @list: the new list to add
1053 * @head: the place to add it in the first list
1054 *
1055 * Each of the lists is a queue.
1056 * The list at @list is reinitialised
1057 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1058 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1059 struct sk_buff_head *head)
1060 {
1061 if (!skb_queue_empty(list)) {
1062 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1063 head->qlen += list->qlen;
1064 __skb_queue_head_init(list);
1065 }
1066 }
1067
1068 /**
1069 * __skb_queue_after - queue a buffer at the list head
1070 * @list: list to use
1071 * @prev: place after this buffer
1072 * @newsk: buffer to queue
1073 *
1074 * Queue a buffer int the middle of a list. This function takes no locks
1075 * and you must therefore hold required locks before calling it.
1076 *
1077 * A buffer cannot be placed on two lists at the same time.
1078 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1079 static inline void __skb_queue_after(struct sk_buff_head *list,
1080 struct sk_buff *prev,
1081 struct sk_buff *newsk)
1082 {
1083 __skb_insert(newsk, prev, prev->next, list);
1084 }
1085
1086 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1087 struct sk_buff_head *list);
1088
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1089 static inline void __skb_queue_before(struct sk_buff_head *list,
1090 struct sk_buff *next,
1091 struct sk_buff *newsk)
1092 {
1093 __skb_insert(newsk, next->prev, next, list);
1094 }
1095
1096 /**
1097 * __skb_queue_head - queue a buffer at the list head
1098 * @list: list to use
1099 * @newsk: buffer to queue
1100 *
1101 * Queue a buffer at the start of a list. This function takes no locks
1102 * and you must therefore hold required locks before calling it.
1103 *
1104 * A buffer cannot be placed on two lists at the same time.
1105 */
1106 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1107 static inline void __skb_queue_head(struct sk_buff_head *list,
1108 struct sk_buff *newsk)
1109 {
1110 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1111 }
1112
1113 /**
1114 * __skb_queue_tail - queue a buffer at the list tail
1115 * @list: list to use
1116 * @newsk: buffer to queue
1117 *
1118 * Queue a buffer at the end of a list. This function takes no locks
1119 * and you must therefore hold required locks before calling it.
1120 *
1121 * A buffer cannot be placed on two lists at the same time.
1122 */
1123 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1124 static inline void __skb_queue_tail(struct sk_buff_head *list,
1125 struct sk_buff *newsk)
1126 {
1127 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1128 }
1129
1130 /*
1131 * remove sk_buff from list. _Must_ be called atomically, and with
1132 * the list known..
1133 */
1134 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1135 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1136 {
1137 struct sk_buff *next, *prev;
1138
1139 list->qlen--;
1140 next = skb->next;
1141 prev = skb->prev;
1142 skb->next = skb->prev = NULL;
1143 next->prev = prev;
1144 prev->next = next;
1145 }
1146
1147 /**
1148 * __skb_dequeue - remove from the head of the queue
1149 * @list: list to dequeue from
1150 *
1151 * Remove the head of the list. This function does not take any locks
1152 * so must be used with appropriate locks held only. The head item is
1153 * returned or %NULL if the list is empty.
1154 */
1155 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1156 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1157 {
1158 struct sk_buff *skb = skb_peek(list);
1159 if (skb)
1160 __skb_unlink(skb, list);
1161 return skb;
1162 }
1163
1164 /**
1165 * __skb_dequeue_tail - remove from the tail of the queue
1166 * @list: list to dequeue from
1167 *
1168 * Remove the tail of the list. This function does not take any locks
1169 * so must be used with appropriate locks held only. The tail item is
1170 * returned or %NULL if the list is empty.
1171 */
1172 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1173 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1174 {
1175 struct sk_buff *skb = skb_peek_tail(list);
1176 if (skb)
1177 __skb_unlink(skb, list);
1178 return skb;
1179 }
1180
1181
skb_is_nonlinear(const struct sk_buff * skb)1182 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1183 {
1184 return skb->data_len;
1185 }
1186
skb_headlen(const struct sk_buff * skb)1187 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1188 {
1189 return skb->len - skb->data_len;
1190 }
1191
skb_pagelen(const struct sk_buff * skb)1192 static inline int skb_pagelen(const struct sk_buff *skb)
1193 {
1194 int i, len = 0;
1195
1196 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1197 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1198 return len + skb_headlen(skb);
1199 }
1200
1201 /**
1202 * __skb_fill_page_desc - initialise a paged fragment in an skb
1203 * @skb: buffer containing fragment to be initialised
1204 * @i: paged fragment index to initialise
1205 * @page: the page to use for this fragment
1206 * @off: the offset to the data with @page
1207 * @size: the length of the data
1208 *
1209 * Initialises the @i'th fragment of @skb to point to &size bytes at
1210 * offset @off within @page.
1211 *
1212 * Does not take any additional reference on the fragment.
1213 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1214 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1215 struct page *page, int off, int size)
1216 {
1217 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1218
1219 frag->page.p = page;
1220 frag->page_offset = off;
1221 skb_frag_size_set(frag, size);
1222 }
1223
1224 /**
1225 * skb_fill_page_desc - initialise a paged fragment in an skb
1226 * @skb: buffer containing fragment to be initialised
1227 * @i: paged fragment index to initialise
1228 * @page: the page to use for this fragment
1229 * @off: the offset to the data with @page
1230 * @size: the length of the data
1231 *
1232 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1233 * @skb to point to &size bytes at offset @off within @page. In
1234 * addition updates @skb such that @i is the last fragment.
1235 *
1236 * Does not take any additional reference on the fragment.
1237 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1238 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1239 struct page *page, int off, int size)
1240 {
1241 __skb_fill_page_desc(skb, i, page, off, size);
1242 skb_shinfo(skb)->nr_frags = i + 1;
1243 }
1244
1245 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1246 int off, int size, unsigned int truesize);
1247
1248 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1249 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1250 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1251
1252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1253 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1254 {
1255 return skb->head + skb->tail;
1256 }
1257
skb_reset_tail_pointer(struct sk_buff * skb)1258 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1259 {
1260 skb->tail = skb->data - skb->head;
1261 }
1262
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1263 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1264 {
1265 skb_reset_tail_pointer(skb);
1266 skb->tail += offset;
1267 }
1268 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1269 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1270 {
1271 return skb->tail;
1272 }
1273
skb_reset_tail_pointer(struct sk_buff * skb)1274 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1275 {
1276 skb->tail = skb->data;
1277 }
1278
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1279 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1280 {
1281 skb->tail = skb->data + offset;
1282 }
1283
1284 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1285
1286 /*
1287 * Add data to an sk_buff
1288 */
1289 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1290 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1291 {
1292 unsigned char *tmp = skb_tail_pointer(skb);
1293 SKB_LINEAR_ASSERT(skb);
1294 skb->tail += len;
1295 skb->len += len;
1296 return tmp;
1297 }
1298
1299 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1300 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1301 {
1302 skb->data -= len;
1303 skb->len += len;
1304 return skb->data;
1305 }
1306
1307 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1308 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1309 {
1310 skb->len -= len;
1311 BUG_ON(skb->len < skb->data_len);
1312 return skb->data += len;
1313 }
1314
skb_pull_inline(struct sk_buff * skb,unsigned int len)1315 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1316 {
1317 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1318 }
1319
1320 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1321
__pskb_pull(struct sk_buff * skb,unsigned int len)1322 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1323 {
1324 if (len > skb_headlen(skb) &&
1325 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1326 return NULL;
1327 skb->len -= len;
1328 return skb->data += len;
1329 }
1330
pskb_pull(struct sk_buff * skb,unsigned int len)1331 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1332 {
1333 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1334 }
1335
pskb_may_pull(struct sk_buff * skb,unsigned int len)1336 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1337 {
1338 if (likely(len <= skb_headlen(skb)))
1339 return 1;
1340 if (unlikely(len > skb->len))
1341 return 0;
1342 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1343 }
1344
1345 /**
1346 * skb_headroom - bytes at buffer head
1347 * @skb: buffer to check
1348 *
1349 * Return the number of bytes of free space at the head of an &sk_buff.
1350 */
skb_headroom(const struct sk_buff * skb)1351 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1352 {
1353 return skb->data - skb->head;
1354 }
1355
1356 /**
1357 * skb_tailroom - bytes at buffer end
1358 * @skb: buffer to check
1359 *
1360 * Return the number of bytes of free space at the tail of an sk_buff
1361 */
skb_tailroom(const struct sk_buff * skb)1362 static inline int skb_tailroom(const struct sk_buff *skb)
1363 {
1364 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1365 }
1366
1367 /**
1368 * skb_availroom - bytes at buffer end
1369 * @skb: buffer to check
1370 *
1371 * Return the number of bytes of free space at the tail of an sk_buff
1372 * allocated by sk_stream_alloc()
1373 */
skb_availroom(const struct sk_buff * skb)1374 static inline int skb_availroom(const struct sk_buff *skb)
1375 {
1376 if (skb_is_nonlinear(skb))
1377 return 0;
1378
1379 return skb->end - skb->tail - skb->reserved_tailroom;
1380 }
1381
1382 /**
1383 * skb_reserve - adjust headroom
1384 * @skb: buffer to alter
1385 * @len: bytes to move
1386 *
1387 * Increase the headroom of an empty &sk_buff by reducing the tail
1388 * room. This is only allowed for an empty buffer.
1389 */
skb_reserve(struct sk_buff * skb,int len)1390 static inline void skb_reserve(struct sk_buff *skb, int len)
1391 {
1392 skb->data += len;
1393 skb->tail += len;
1394 }
1395
skb_reset_mac_len(struct sk_buff * skb)1396 static inline void skb_reset_mac_len(struct sk_buff *skb)
1397 {
1398 skb->mac_len = skb->network_header - skb->mac_header;
1399 }
1400
1401 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_transport_header(const struct sk_buff * skb)1402 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1403 {
1404 return skb->head + skb->transport_header;
1405 }
1406
skb_reset_transport_header(struct sk_buff * skb)1407 static inline void skb_reset_transport_header(struct sk_buff *skb)
1408 {
1409 skb->transport_header = skb->data - skb->head;
1410 }
1411
skb_set_transport_header(struct sk_buff * skb,const int offset)1412 static inline void skb_set_transport_header(struct sk_buff *skb,
1413 const int offset)
1414 {
1415 skb_reset_transport_header(skb);
1416 skb->transport_header += offset;
1417 }
1418
skb_network_header(const struct sk_buff * skb)1419 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1420 {
1421 return skb->head + skb->network_header;
1422 }
1423
skb_reset_network_header(struct sk_buff * skb)1424 static inline void skb_reset_network_header(struct sk_buff *skb)
1425 {
1426 skb->network_header = skb->data - skb->head;
1427 }
1428
skb_set_network_header(struct sk_buff * skb,const int offset)1429 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1430 {
1431 skb_reset_network_header(skb);
1432 skb->network_header += offset;
1433 }
1434
skb_mac_header(const struct sk_buff * skb)1435 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1436 {
1437 return skb->head + skb->mac_header;
1438 }
1439
skb_mac_header_was_set(const struct sk_buff * skb)1440 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1441 {
1442 return skb->mac_header != ~0U;
1443 }
1444
skb_reset_mac_header(struct sk_buff * skb)1445 static inline void skb_reset_mac_header(struct sk_buff *skb)
1446 {
1447 skb->mac_header = skb->data - skb->head;
1448 }
1449
skb_set_mac_header(struct sk_buff * skb,const int offset)1450 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1451 {
1452 skb_reset_mac_header(skb);
1453 skb->mac_header += offset;
1454 }
1455
1456 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1457
skb_transport_header(const struct sk_buff * skb)1458 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1459 {
1460 return skb->transport_header;
1461 }
1462
skb_reset_transport_header(struct sk_buff * skb)1463 static inline void skb_reset_transport_header(struct sk_buff *skb)
1464 {
1465 skb->transport_header = skb->data;
1466 }
1467
skb_set_transport_header(struct sk_buff * skb,const int offset)1468 static inline void skb_set_transport_header(struct sk_buff *skb,
1469 const int offset)
1470 {
1471 skb->transport_header = skb->data + offset;
1472 }
1473
skb_network_header(const struct sk_buff * skb)1474 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1475 {
1476 return skb->network_header;
1477 }
1478
skb_reset_network_header(struct sk_buff * skb)1479 static inline void skb_reset_network_header(struct sk_buff *skb)
1480 {
1481 skb->network_header = skb->data;
1482 }
1483
skb_set_network_header(struct sk_buff * skb,const int offset)1484 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1485 {
1486 skb->network_header = skb->data + offset;
1487 }
1488
skb_mac_header(const struct sk_buff * skb)1489 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1490 {
1491 return skb->mac_header;
1492 }
1493
skb_mac_header_was_set(const struct sk_buff * skb)1494 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1495 {
1496 return skb->mac_header != NULL;
1497 }
1498
skb_reset_mac_header(struct sk_buff * skb)1499 static inline void skb_reset_mac_header(struct sk_buff *skb)
1500 {
1501 skb->mac_header = skb->data;
1502 }
1503
skb_set_mac_header(struct sk_buff * skb,const int offset)1504 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1505 {
1506 skb->mac_header = skb->data + offset;
1507 }
1508 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1509
skb_mac_header_rebuild(struct sk_buff * skb)1510 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1511 {
1512 if (skb_mac_header_was_set(skb)) {
1513 const unsigned char *old_mac = skb_mac_header(skb);
1514
1515 skb_set_mac_header(skb, -skb->mac_len);
1516 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1517 }
1518 }
1519
skb_checksum_start_offset(const struct sk_buff * skb)1520 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1521 {
1522 return skb->csum_start - skb_headroom(skb);
1523 }
1524
skb_transport_offset(const struct sk_buff * skb)1525 static inline int skb_transport_offset(const struct sk_buff *skb)
1526 {
1527 return skb_transport_header(skb) - skb->data;
1528 }
1529
skb_network_header_len(const struct sk_buff * skb)1530 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1531 {
1532 return skb->transport_header - skb->network_header;
1533 }
1534
skb_network_offset(const struct sk_buff * skb)1535 static inline int skb_network_offset(const struct sk_buff *skb)
1536 {
1537 return skb_network_header(skb) - skb->data;
1538 }
1539
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1540 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1541 {
1542 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1543 }
1544
1545 /*
1546 * CPUs often take a performance hit when accessing unaligned memory
1547 * locations. The actual performance hit varies, it can be small if the
1548 * hardware handles it or large if we have to take an exception and fix it
1549 * in software.
1550 *
1551 * Since an ethernet header is 14 bytes network drivers often end up with
1552 * the IP header at an unaligned offset. The IP header can be aligned by
1553 * shifting the start of the packet by 2 bytes. Drivers should do this
1554 * with:
1555 *
1556 * skb_reserve(skb, NET_IP_ALIGN);
1557 *
1558 * The downside to this alignment of the IP header is that the DMA is now
1559 * unaligned. On some architectures the cost of an unaligned DMA is high
1560 * and this cost outweighs the gains made by aligning the IP header.
1561 *
1562 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1563 * to be overridden.
1564 */
1565 #ifndef NET_IP_ALIGN
1566 #define NET_IP_ALIGN 2
1567 #endif
1568
1569 /*
1570 * The networking layer reserves some headroom in skb data (via
1571 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1572 * the header has to grow. In the default case, if the header has to grow
1573 * 32 bytes or less we avoid the reallocation.
1574 *
1575 * Unfortunately this headroom changes the DMA alignment of the resulting
1576 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1577 * on some architectures. An architecture can override this value,
1578 * perhaps setting it to a cacheline in size (since that will maintain
1579 * cacheline alignment of the DMA). It must be a power of 2.
1580 *
1581 * Various parts of the networking layer expect at least 32 bytes of
1582 * headroom, you should not reduce this.
1583 *
1584 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1585 * to reduce average number of cache lines per packet.
1586 * get_rps_cpus() for example only access one 64 bytes aligned block :
1587 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1588 */
1589 #ifndef NET_SKB_PAD
1590 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1591 #endif
1592
1593 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1594
__skb_trim(struct sk_buff * skb,unsigned int len)1595 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1596 {
1597 if (unlikely(skb_is_nonlinear(skb))) {
1598 WARN_ON(1);
1599 return;
1600 }
1601 skb->len = len;
1602 skb_set_tail_pointer(skb, len);
1603 }
1604
1605 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1606
__pskb_trim(struct sk_buff * skb,unsigned int len)1607 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1608 {
1609 if (skb->data_len)
1610 return ___pskb_trim(skb, len);
1611 __skb_trim(skb, len);
1612 return 0;
1613 }
1614
pskb_trim(struct sk_buff * skb,unsigned int len)1615 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1616 {
1617 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1618 }
1619
1620 /**
1621 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1622 * @skb: buffer to alter
1623 * @len: new length
1624 *
1625 * This is identical to pskb_trim except that the caller knows that
1626 * the skb is not cloned so we should never get an error due to out-
1627 * of-memory.
1628 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)1629 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1630 {
1631 int err = pskb_trim(skb, len);
1632 BUG_ON(err);
1633 }
1634
1635 /**
1636 * skb_orphan - orphan a buffer
1637 * @skb: buffer to orphan
1638 *
1639 * If a buffer currently has an owner then we call the owner's
1640 * destructor function and make the @skb unowned. The buffer continues
1641 * to exist but is no longer charged to its former owner.
1642 */
skb_orphan(struct sk_buff * skb)1643 static inline void skb_orphan(struct sk_buff *skb)
1644 {
1645 if (skb->destructor)
1646 skb->destructor(skb);
1647 skb->destructor = NULL;
1648 skb->sk = NULL;
1649 }
1650
1651 /**
1652 * __skb_queue_purge - empty a list
1653 * @list: list to empty
1654 *
1655 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1656 * the list and one reference dropped. This function does not take the
1657 * list lock and the caller must hold the relevant locks to use it.
1658 */
1659 extern void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)1660 static inline void __skb_queue_purge(struct sk_buff_head *list)
1661 {
1662 struct sk_buff *skb;
1663 while ((skb = __skb_dequeue(list)) != NULL)
1664 kfree_skb(skb);
1665 }
1666
1667 /**
1668 * __dev_alloc_skb - allocate an skbuff for receiving
1669 * @length: length to allocate
1670 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1671 *
1672 * Allocate a new &sk_buff and assign it a usage count of one. The
1673 * buffer has unspecified headroom built in. Users should allocate
1674 * the headroom they think they need without accounting for the
1675 * built in space. The built in space is used for optimisations.
1676 *
1677 * %NULL is returned if there is no free memory.
1678 */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)1679 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1680 gfp_t gfp_mask)
1681 {
1682 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1683 if (likely(skb))
1684 skb_reserve(skb, NET_SKB_PAD);
1685 return skb;
1686 }
1687
1688 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1689
1690 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1691 unsigned int length, gfp_t gfp_mask);
1692
1693 /**
1694 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1695 * @dev: network device to receive on
1696 * @length: length to allocate
1697 *
1698 * Allocate a new &sk_buff and assign it a usage count of one. The
1699 * buffer has unspecified headroom built in. Users should allocate
1700 * the headroom they think they need without accounting for the
1701 * built in space. The built in space is used for optimisations.
1702 *
1703 * %NULL is returned if there is no free memory. Although this function
1704 * allocates memory it can be called from an interrupt.
1705 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)1706 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1707 unsigned int length)
1708 {
1709 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1710 }
1711
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)1712 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1713 unsigned int length, gfp_t gfp)
1714 {
1715 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1716
1717 if (NET_IP_ALIGN && skb)
1718 skb_reserve(skb, NET_IP_ALIGN);
1719 return skb;
1720 }
1721
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)1722 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1723 unsigned int length)
1724 {
1725 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1726 }
1727
1728 /**
1729 * skb_frag_page - retrieve the page refered to by a paged fragment
1730 * @frag: the paged fragment
1731 *
1732 * Returns the &struct page associated with @frag.
1733 */
skb_frag_page(const skb_frag_t * frag)1734 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1735 {
1736 return frag->page.p;
1737 }
1738
1739 /**
1740 * __skb_frag_ref - take an addition reference on a paged fragment.
1741 * @frag: the paged fragment
1742 *
1743 * Takes an additional reference on the paged fragment @frag.
1744 */
__skb_frag_ref(skb_frag_t * frag)1745 static inline void __skb_frag_ref(skb_frag_t *frag)
1746 {
1747 get_page(skb_frag_page(frag));
1748 }
1749
1750 /**
1751 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1752 * @skb: the buffer
1753 * @f: the fragment offset.
1754 *
1755 * Takes an additional reference on the @f'th paged fragment of @skb.
1756 */
skb_frag_ref(struct sk_buff * skb,int f)1757 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1758 {
1759 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1760 }
1761
1762 /**
1763 * __skb_frag_unref - release a reference on a paged fragment.
1764 * @frag: the paged fragment
1765 *
1766 * Releases a reference on the paged fragment @frag.
1767 */
__skb_frag_unref(skb_frag_t * frag)1768 static inline void __skb_frag_unref(skb_frag_t *frag)
1769 {
1770 put_page(skb_frag_page(frag));
1771 }
1772
1773 /**
1774 * skb_frag_unref - release a reference on a paged fragment of an skb.
1775 * @skb: the buffer
1776 * @f: the fragment offset
1777 *
1778 * Releases a reference on the @f'th paged fragment of @skb.
1779 */
skb_frag_unref(struct sk_buff * skb,int f)1780 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1781 {
1782 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1783 }
1784
1785 /**
1786 * skb_frag_address - gets the address of the data contained in a paged fragment
1787 * @frag: the paged fragment buffer
1788 *
1789 * Returns the address of the data within @frag. The page must already
1790 * be mapped.
1791 */
skb_frag_address(const skb_frag_t * frag)1792 static inline void *skb_frag_address(const skb_frag_t *frag)
1793 {
1794 return page_address(skb_frag_page(frag)) + frag->page_offset;
1795 }
1796
1797 /**
1798 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1799 * @frag: the paged fragment buffer
1800 *
1801 * Returns the address of the data within @frag. Checks that the page
1802 * is mapped and returns %NULL otherwise.
1803 */
skb_frag_address_safe(const skb_frag_t * frag)1804 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1805 {
1806 void *ptr = page_address(skb_frag_page(frag));
1807 if (unlikely(!ptr))
1808 return NULL;
1809
1810 return ptr + frag->page_offset;
1811 }
1812
1813 /**
1814 * __skb_frag_set_page - sets the page contained in a paged fragment
1815 * @frag: the paged fragment
1816 * @page: the page to set
1817 *
1818 * Sets the fragment @frag to contain @page.
1819 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)1820 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1821 {
1822 frag->page.p = page;
1823 }
1824
1825 /**
1826 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1827 * @skb: the buffer
1828 * @f: the fragment offset
1829 * @page: the page to set
1830 *
1831 * Sets the @f'th fragment of @skb to contain @page.
1832 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)1833 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1834 struct page *page)
1835 {
1836 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1837 }
1838
1839 /**
1840 * skb_frag_dma_map - maps a paged fragment via the DMA API
1841 * @dev: the device to map the fragment to
1842 * @frag: the paged fragment to map
1843 * @offset: the offset within the fragment (starting at the
1844 * fragment's own offset)
1845 * @size: the number of bytes to map
1846 * @dir: the direction of the mapping (%PCI_DMA_*)
1847 *
1848 * Maps the page associated with @frag to @device.
1849 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)1850 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1851 const skb_frag_t *frag,
1852 size_t offset, size_t size,
1853 enum dma_data_direction dir)
1854 {
1855 return dma_map_page(dev, skb_frag_page(frag),
1856 frag->page_offset + offset, size, dir);
1857 }
1858
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)1859 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1860 gfp_t gfp_mask)
1861 {
1862 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1863 }
1864
1865 /**
1866 * skb_clone_writable - is the header of a clone writable
1867 * @skb: buffer to check
1868 * @len: length up to which to write
1869 *
1870 * Returns true if modifying the header part of the cloned buffer
1871 * does not requires the data to be copied.
1872 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)1873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1874 {
1875 return !skb_header_cloned(skb) &&
1876 skb_headroom(skb) + len <= skb->hdr_len;
1877 }
1878
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)1879 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1880 int cloned)
1881 {
1882 int delta = 0;
1883
1884 if (headroom > skb_headroom(skb))
1885 delta = headroom - skb_headroom(skb);
1886
1887 if (delta || cloned)
1888 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1889 GFP_ATOMIC);
1890 return 0;
1891 }
1892
1893 /**
1894 * skb_cow - copy header of skb when it is required
1895 * @skb: buffer to cow
1896 * @headroom: needed headroom
1897 *
1898 * If the skb passed lacks sufficient headroom or its data part
1899 * is shared, data is reallocated. If reallocation fails, an error
1900 * is returned and original skb is not changed.
1901 *
1902 * The result is skb with writable area skb->head...skb->tail
1903 * and at least @headroom of space at head.
1904 */
skb_cow(struct sk_buff * skb,unsigned int headroom)1905 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1906 {
1907 return __skb_cow(skb, headroom, skb_cloned(skb));
1908 }
1909
1910 /**
1911 * skb_cow_head - skb_cow but only making the head writable
1912 * @skb: buffer to cow
1913 * @headroom: needed headroom
1914 *
1915 * This function is identical to skb_cow except that we replace the
1916 * skb_cloned check by skb_header_cloned. It should be used when
1917 * you only need to push on some header and do not need to modify
1918 * the data.
1919 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)1920 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1921 {
1922 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1923 }
1924
1925 /**
1926 * skb_padto - pad an skbuff up to a minimal size
1927 * @skb: buffer to pad
1928 * @len: minimal length
1929 *
1930 * Pads up a buffer to ensure the trailing bytes exist and are
1931 * blanked. If the buffer already contains sufficient data it
1932 * is untouched. Otherwise it is extended. Returns zero on
1933 * success. The skb is freed on error.
1934 */
1935
skb_padto(struct sk_buff * skb,unsigned int len)1936 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1937 {
1938 unsigned int size = skb->len;
1939 if (likely(size >= len))
1940 return 0;
1941 return skb_pad(skb, len - size);
1942 }
1943
skb_add_data(struct sk_buff * skb,char __user * from,int copy)1944 static inline int skb_add_data(struct sk_buff *skb,
1945 char __user *from, int copy)
1946 {
1947 const int off = skb->len;
1948
1949 if (skb->ip_summed == CHECKSUM_NONE) {
1950 int err = 0;
1951 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1952 copy, 0, &err);
1953 if (!err) {
1954 skb->csum = csum_block_add(skb->csum, csum, off);
1955 return 0;
1956 }
1957 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1958 return 0;
1959
1960 __skb_trim(skb, off);
1961 return -EFAULT;
1962 }
1963
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)1964 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1965 const struct page *page, int off)
1966 {
1967 if (i) {
1968 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1969
1970 return page == skb_frag_page(frag) &&
1971 off == frag->page_offset + skb_frag_size(frag);
1972 }
1973 return 0;
1974 }
1975
__skb_linearize(struct sk_buff * skb)1976 static inline int __skb_linearize(struct sk_buff *skb)
1977 {
1978 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1979 }
1980
1981 /**
1982 * skb_linearize - convert paged skb to linear one
1983 * @skb: buffer to linarize
1984 *
1985 * If there is no free memory -ENOMEM is returned, otherwise zero
1986 * is returned and the old skb data released.
1987 */
skb_linearize(struct sk_buff * skb)1988 static inline int skb_linearize(struct sk_buff *skb)
1989 {
1990 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1991 }
1992
1993 /**
1994 * skb_linearize_cow - make sure skb is linear and writable
1995 * @skb: buffer to process
1996 *
1997 * If there is no free memory -ENOMEM is returned, otherwise zero
1998 * is returned and the old skb data released.
1999 */
skb_linearize_cow(struct sk_buff * skb)2000 static inline int skb_linearize_cow(struct sk_buff *skb)
2001 {
2002 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2003 __skb_linearize(skb) : 0;
2004 }
2005
2006 /**
2007 * skb_postpull_rcsum - update checksum for received skb after pull
2008 * @skb: buffer to update
2009 * @start: start of data before pull
2010 * @len: length of data pulled
2011 *
2012 * After doing a pull on a received packet, you need to call this to
2013 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2014 * CHECKSUM_NONE so that it can be recomputed from scratch.
2015 */
2016
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2017 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2018 const void *start, unsigned int len)
2019 {
2020 if (skb->ip_summed == CHECKSUM_COMPLETE)
2021 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2022 }
2023
2024 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2025
2026 /**
2027 * pskb_trim_rcsum - trim received skb and update checksum
2028 * @skb: buffer to trim
2029 * @len: new length
2030 *
2031 * This is exactly the same as pskb_trim except that it ensures the
2032 * checksum of received packets are still valid after the operation.
2033 */
2034
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2035 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2036 {
2037 if (likely(len >= skb->len))
2038 return 0;
2039 if (skb->ip_summed == CHECKSUM_COMPLETE)
2040 skb->ip_summed = CHECKSUM_NONE;
2041 return __pskb_trim(skb, len);
2042 }
2043
2044 #define skb_queue_walk(queue, skb) \
2045 for (skb = (queue)->next; \
2046 skb != (struct sk_buff *)(queue); \
2047 skb = skb->next)
2048
2049 #define skb_queue_walk_safe(queue, skb, tmp) \
2050 for (skb = (queue)->next, tmp = skb->next; \
2051 skb != (struct sk_buff *)(queue); \
2052 skb = tmp, tmp = skb->next)
2053
2054 #define skb_queue_walk_from(queue, skb) \
2055 for (; skb != (struct sk_buff *)(queue); \
2056 skb = skb->next)
2057
2058 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2059 for (tmp = skb->next; \
2060 skb != (struct sk_buff *)(queue); \
2061 skb = tmp, tmp = skb->next)
2062
2063 #define skb_queue_reverse_walk(queue, skb) \
2064 for (skb = (queue)->prev; \
2065 skb != (struct sk_buff *)(queue); \
2066 skb = skb->prev)
2067
2068 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2069 for (skb = (queue)->prev, tmp = skb->prev; \
2070 skb != (struct sk_buff *)(queue); \
2071 skb = tmp, tmp = skb->prev)
2072
2073 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2074 for (tmp = skb->prev; \
2075 skb != (struct sk_buff *)(queue); \
2076 skb = tmp, tmp = skb->prev)
2077
skb_has_frag_list(const struct sk_buff * skb)2078 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2079 {
2080 return skb_shinfo(skb)->frag_list != NULL;
2081 }
2082
skb_frag_list_init(struct sk_buff * skb)2083 static inline void skb_frag_list_init(struct sk_buff *skb)
2084 {
2085 skb_shinfo(skb)->frag_list = NULL;
2086 }
2087
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)2088 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2089 {
2090 frag->next = skb_shinfo(skb)->frag_list;
2091 skb_shinfo(skb)->frag_list = frag;
2092 }
2093
2094 #define skb_walk_frags(skb, iter) \
2095 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2096
2097 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2098 int *peeked, int *off, int *err);
2099 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2100 int noblock, int *err);
2101 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2102 struct poll_table_struct *wait);
2103 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2104 int offset, struct iovec *to,
2105 int size);
2106 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2107 int hlen,
2108 struct iovec *iov);
2109 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2110 int offset,
2111 const struct iovec *from,
2112 int from_offset,
2113 int len);
2114 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2115 int offset,
2116 const struct iovec *to,
2117 int to_offset,
2118 int size);
2119 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2120 extern void skb_free_datagram_locked(struct sock *sk,
2121 struct sk_buff *skb);
2122 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2123 unsigned int flags);
2124 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2125 int len, __wsum csum);
2126 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2127 void *to, int len);
2128 extern int skb_store_bits(struct sk_buff *skb, int offset,
2129 const void *from, int len);
2130 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2131 int offset, u8 *to, int len,
2132 __wsum csum);
2133 extern int skb_splice_bits(struct sk_buff *skb,
2134 unsigned int offset,
2135 struct pipe_inode_info *pipe,
2136 unsigned int len,
2137 unsigned int flags);
2138 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2139 extern void skb_split(struct sk_buff *skb,
2140 struct sk_buff *skb1, const u32 len);
2141 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2142 int shiftlen);
2143
2144 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2145 netdev_features_t features);
2146
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2147 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2148 int len, void *buffer)
2149 {
2150 int hlen = skb_headlen(skb);
2151
2152 if (hlen - offset >= len)
2153 return skb->data + offset;
2154
2155 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2156 return NULL;
2157
2158 return buffer;
2159 }
2160
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2161 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2162 void *to,
2163 const unsigned int len)
2164 {
2165 memcpy(to, skb->data, len);
2166 }
2167
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2168 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2169 const int offset, void *to,
2170 const unsigned int len)
2171 {
2172 memcpy(to, skb->data + offset, len);
2173 }
2174
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2175 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2176 const void *from,
2177 const unsigned int len)
2178 {
2179 memcpy(skb->data, from, len);
2180 }
2181
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2182 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2183 const int offset,
2184 const void *from,
2185 const unsigned int len)
2186 {
2187 memcpy(skb->data + offset, from, len);
2188 }
2189
2190 extern void skb_init(void);
2191
skb_get_ktime(const struct sk_buff * skb)2192 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2193 {
2194 return skb->tstamp;
2195 }
2196
2197 /**
2198 * skb_get_timestamp - get timestamp from a skb
2199 * @skb: skb to get stamp from
2200 * @stamp: pointer to struct timeval to store stamp in
2201 *
2202 * Timestamps are stored in the skb as offsets to a base timestamp.
2203 * This function converts the offset back to a struct timeval and stores
2204 * it in stamp.
2205 */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2206 static inline void skb_get_timestamp(const struct sk_buff *skb,
2207 struct timeval *stamp)
2208 {
2209 *stamp = ktime_to_timeval(skb->tstamp);
2210 }
2211
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2212 static inline void skb_get_timestampns(const struct sk_buff *skb,
2213 struct timespec *stamp)
2214 {
2215 *stamp = ktime_to_timespec(skb->tstamp);
2216 }
2217
__net_timestamp(struct sk_buff * skb)2218 static inline void __net_timestamp(struct sk_buff *skb)
2219 {
2220 skb->tstamp = ktime_get_real();
2221 }
2222
net_timedelta(ktime_t t)2223 static inline ktime_t net_timedelta(ktime_t t)
2224 {
2225 return ktime_sub(ktime_get_real(), t);
2226 }
2227
net_invalid_timestamp(void)2228 static inline ktime_t net_invalid_timestamp(void)
2229 {
2230 return ktime_set(0, 0);
2231 }
2232
2233 extern void skb_timestamping_init(void);
2234
2235 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2236
2237 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2238 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2239
2240 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2241
skb_clone_tx_timestamp(struct sk_buff * skb)2242 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2243 {
2244 }
2245
skb_defer_rx_timestamp(struct sk_buff * skb)2246 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2247 {
2248 return false;
2249 }
2250
2251 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2252
2253 /**
2254 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2255 *
2256 * PHY drivers may accept clones of transmitted packets for
2257 * timestamping via their phy_driver.txtstamp method. These drivers
2258 * must call this function to return the skb back to the stack, with
2259 * or without a timestamp.
2260 *
2261 * @skb: clone of the the original outgoing packet
2262 * @hwtstamps: hardware time stamps, may be NULL if not available
2263 *
2264 */
2265 void skb_complete_tx_timestamp(struct sk_buff *skb,
2266 struct skb_shared_hwtstamps *hwtstamps);
2267
2268 /**
2269 * skb_tstamp_tx - queue clone of skb with send time stamps
2270 * @orig_skb: the original outgoing packet
2271 * @hwtstamps: hardware time stamps, may be NULL if not available
2272 *
2273 * If the skb has a socket associated, then this function clones the
2274 * skb (thus sharing the actual data and optional structures), stores
2275 * the optional hardware time stamping information (if non NULL) or
2276 * generates a software time stamp (otherwise), then queues the clone
2277 * to the error queue of the socket. Errors are silently ignored.
2278 */
2279 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2280 struct skb_shared_hwtstamps *hwtstamps);
2281
sw_tx_timestamp(struct sk_buff * skb)2282 static inline void sw_tx_timestamp(struct sk_buff *skb)
2283 {
2284 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2285 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2286 skb_tstamp_tx(skb, NULL);
2287 }
2288
2289 /**
2290 * skb_tx_timestamp() - Driver hook for transmit timestamping
2291 *
2292 * Ethernet MAC Drivers should call this function in their hard_xmit()
2293 * function immediately before giving the sk_buff to the MAC hardware.
2294 *
2295 * @skb: A socket buffer.
2296 */
skb_tx_timestamp(struct sk_buff * skb)2297 static inline void skb_tx_timestamp(struct sk_buff *skb)
2298 {
2299 skb_clone_tx_timestamp(skb);
2300 sw_tx_timestamp(skb);
2301 }
2302
2303 /**
2304 * skb_complete_wifi_ack - deliver skb with wifi status
2305 *
2306 * @skb: the original outgoing packet
2307 * @acked: ack status
2308 *
2309 */
2310 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2311
2312 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2313 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2314
skb_csum_unnecessary(const struct sk_buff * skb)2315 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2316 {
2317 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2318 }
2319
2320 /**
2321 * skb_checksum_complete - Calculate checksum of an entire packet
2322 * @skb: packet to process
2323 *
2324 * This function calculates the checksum over the entire packet plus
2325 * the value of skb->csum. The latter can be used to supply the
2326 * checksum of a pseudo header as used by TCP/UDP. It returns the
2327 * checksum.
2328 *
2329 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2330 * this function can be used to verify that checksum on received
2331 * packets. In that case the function should return zero if the
2332 * checksum is correct. In particular, this function will return zero
2333 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2334 * hardware has already verified the correctness of the checksum.
2335 */
skb_checksum_complete(struct sk_buff * skb)2336 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2337 {
2338 return skb_csum_unnecessary(skb) ?
2339 0 : __skb_checksum_complete(skb);
2340 }
2341
2342 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2343 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)2344 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2345 {
2346 if (nfct && atomic_dec_and_test(&nfct->use))
2347 nf_conntrack_destroy(nfct);
2348 }
nf_conntrack_get(struct nf_conntrack * nfct)2349 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2350 {
2351 if (nfct)
2352 atomic_inc(&nfct->use);
2353 }
2354 #endif
2355 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
nf_conntrack_get_reasm(struct sk_buff * skb)2356 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2357 {
2358 if (skb)
2359 atomic_inc(&skb->users);
2360 }
nf_conntrack_put_reasm(struct sk_buff * skb)2361 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2362 {
2363 if (skb)
2364 kfree_skb(skb);
2365 }
2366 #endif
2367 #ifdef CONFIG_BRIDGE_NETFILTER
nf_bridge_put(struct nf_bridge_info * nf_bridge)2368 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2369 {
2370 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2371 kfree(nf_bridge);
2372 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)2373 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2374 {
2375 if (nf_bridge)
2376 atomic_inc(&nf_bridge->use);
2377 }
2378 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)2379 static inline void nf_reset(struct sk_buff *skb)
2380 {
2381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2382 nf_conntrack_put(skb->nfct);
2383 skb->nfct = NULL;
2384 #endif
2385 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2386 nf_conntrack_put_reasm(skb->nfct_reasm);
2387 skb->nfct_reasm = NULL;
2388 #endif
2389 #ifdef CONFIG_BRIDGE_NETFILTER
2390 nf_bridge_put(skb->nf_bridge);
2391 skb->nf_bridge = NULL;
2392 #endif
2393 }
2394
nf_reset_trace(struct sk_buff * skb)2395 static inline void nf_reset_trace(struct sk_buff *skb)
2396 {
2397 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2398 skb->nf_trace = 0;
2399 #endif
2400 }
2401
2402 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src)2403 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2404 {
2405 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2406 dst->nfct = src->nfct;
2407 nf_conntrack_get(src->nfct);
2408 dst->nfctinfo = src->nfctinfo;
2409 #endif
2410 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2411 dst->nfct_reasm = src->nfct_reasm;
2412 nf_conntrack_get_reasm(src->nfct_reasm);
2413 #endif
2414 #ifdef CONFIG_BRIDGE_NETFILTER
2415 dst->nf_bridge = src->nf_bridge;
2416 nf_bridge_get(src->nf_bridge);
2417 #endif
2418 }
2419
nf_copy(struct sk_buff * dst,const struct sk_buff * src)2420 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2421 {
2422 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2423 nf_conntrack_put(dst->nfct);
2424 #endif
2425 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2426 nf_conntrack_put_reasm(dst->nfct_reasm);
2427 #endif
2428 #ifdef CONFIG_BRIDGE_NETFILTER
2429 nf_bridge_put(dst->nf_bridge);
2430 #endif
2431 __nf_copy(dst, src);
2432 }
2433
2434 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2435 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2436 {
2437 to->secmark = from->secmark;
2438 }
2439
skb_init_secmark(struct sk_buff * skb)2440 static inline void skb_init_secmark(struct sk_buff *skb)
2441 {
2442 skb->secmark = 0;
2443 }
2444 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2445 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2446 { }
2447
skb_init_secmark(struct sk_buff * skb)2448 static inline void skb_init_secmark(struct sk_buff *skb)
2449 { }
2450 #endif
2451
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)2452 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2453 {
2454 skb->queue_mapping = queue_mapping;
2455 }
2456
skb_get_queue_mapping(const struct sk_buff * skb)2457 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2458 {
2459 return skb->queue_mapping;
2460 }
2461
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)2462 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2463 {
2464 to->queue_mapping = from->queue_mapping;
2465 }
2466
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)2467 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2468 {
2469 skb->queue_mapping = rx_queue + 1;
2470 }
2471
skb_get_rx_queue(const struct sk_buff * skb)2472 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2473 {
2474 return skb->queue_mapping - 1;
2475 }
2476
skb_rx_queue_recorded(const struct sk_buff * skb)2477 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2478 {
2479 return skb->queue_mapping != 0;
2480 }
2481
2482 extern u16 __skb_tx_hash(const struct net_device *dev,
2483 const struct sk_buff *skb,
2484 unsigned int num_tx_queues);
2485
2486 #ifdef CONFIG_XFRM
skb_sec_path(struct sk_buff * skb)2487 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2488 {
2489 return skb->sp;
2490 }
2491 #else
skb_sec_path(struct sk_buff * skb)2492 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2493 {
2494 return NULL;
2495 }
2496 #endif
2497
skb_is_gso(const struct sk_buff * skb)2498 static inline bool skb_is_gso(const struct sk_buff *skb)
2499 {
2500 return skb_shinfo(skb)->gso_size;
2501 }
2502
skb_is_gso_v6(const struct sk_buff * skb)2503 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2504 {
2505 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2506 }
2507
2508 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2509
skb_warn_if_lro(const struct sk_buff * skb)2510 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2511 {
2512 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2513 * wanted then gso_type will be set. */
2514 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2515
2516 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2517 unlikely(shinfo->gso_type == 0)) {
2518 __skb_warn_lro_forwarding(skb);
2519 return true;
2520 }
2521 return false;
2522 }
2523
skb_forward_csum(struct sk_buff * skb)2524 static inline void skb_forward_csum(struct sk_buff *skb)
2525 {
2526 /* Unfortunately we don't support this one. Any brave souls? */
2527 if (skb->ip_summed == CHECKSUM_COMPLETE)
2528 skb->ip_summed = CHECKSUM_NONE;
2529 }
2530
2531 /**
2532 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2533 * @skb: skb to check
2534 *
2535 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2536 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2537 * use this helper, to document places where we make this assertion.
2538 */
skb_checksum_none_assert(const struct sk_buff * skb)2539 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2540 {
2541 #ifdef DEBUG
2542 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2543 #endif
2544 }
2545
2546 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2547
skb_is_recycleable(const struct sk_buff * skb,int skb_size)2548 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2549 {
2550 if (irqs_disabled())
2551 return false;
2552
2553 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2554 return false;
2555
2556 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2557 return false;
2558
2559 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2560 if (skb_end_pointer(skb) - skb->head < skb_size)
2561 return false;
2562
2563 if (skb_shared(skb) || skb_cloned(skb))
2564 return false;
2565
2566 return true;
2567 }
2568 #endif /* __KERNEL__ */
2569 #endif /* _LINUX_SKBUFF_H */
2570