• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Definitions for the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:
5  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
6  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *	modify it under the terms of the GNU General Public License
10  *	as published by the Free Software Foundation; either version
11  *	2 of the License, or (at your option) any later version.
12  */
13 
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16 
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41 
42 #define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
43 				 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X)	\
45 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
50 
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) +						\
53 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
54 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55 
56 /* A. Checksumming of received packets by device.
57  *
58  *	NONE: device failed to checksum this packet.
59  *		skb->csum is undefined.
60  *
61  *	UNNECESSARY: device parsed packet and wouldbe verified checksum.
62  *		skb->csum is undefined.
63  *	      It is bad option, but, unfortunately, many of vendors do this.
64  *	      Apparently with secret goal to sell you new device, when you
65  *	      will add new protocol to your host. F.e. IPv6. 8)
66  *
67  *	COMPLETE: the most generic way. Device supplied checksum of _all_
68  *	    the packet as seen by netif_rx in skb->csum.
69  *	    NOTE: Even if device supports only some protocols, but
70  *	    is able to produce some skb->csum, it MUST use COMPLETE,
71  *	    not UNNECESSARY.
72  *
73  *	PARTIAL: identical to the case for output below.  This may occur
74  *	    on a packet received directly from another Linux OS, e.g.,
75  *	    a virtualised Linux kernel on the same host.  The packet can
76  *	    be treated in the same way as UNNECESSARY except that on
77  *	    output (i.e., forwarding) the checksum must be filled in
78  *	    by the OS or the hardware.
79  *
80  * B. Checksumming on output.
81  *
82  *	NONE: skb is checksummed by protocol or csum is not required.
83  *
84  *	PARTIAL: device is required to csum packet as seen by hard_start_xmit
85  *	from skb->csum_start to the end and to record the checksum
86  *	at skb->csum_start + skb->csum_offset.
87  *
88  *	Device must show its capabilities in dev->features, set
89  *	at device setup time.
90  *	NETIF_F_HW_CSUM	- it is clever device, it is able to checksum
91  *			  everything.
92  *	NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93  *			  TCP/UDP over IPv4. Sigh. Vendors like this
94  *			  way by an unknown reason. Though, see comment above
95  *			  about CHECKSUM_UNNECESSARY. 8)
96  *	NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97  *
98  *	UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99  *	that do not want net to perform the checksum calculation should use
100  *	this flag in their outgoing skbs.
101  *	NETIF_F_FCOE_CRC  this indicates the device can do FCoE FC CRC
102  *			  offload. Correspondingly, the FCoE protocol driver
103  *			  stack should use CHECKSUM_UNNECESSARY.
104  *
105  *	Any questions? No questions, good. 		--ANK
106  */
107 
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111 
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 	atomic_t use;
115 };
116 #endif
117 
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 	atomic_t use;
121 	struct net_device *physindev;
122 	struct net_device *physoutdev;
123 	unsigned int mask;
124 	unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127 
128 struct sk_buff_head {
129 	/* These two members must be first. */
130 	struct sk_buff	*next;
131 	struct sk_buff	*prev;
132 
133 	__u32		qlen;
134 	spinlock_t	lock;
135 };
136 
137 struct sk_buff;
138 
139 /* To allow 64K frame to be packed as single skb without frag_list we
140  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141  * buffers which do not start on a page boundary.
142  *
143  * Since GRO uses frags we allocate at least 16 regardless of page
144  * size.
145  */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151 
152 typedef struct skb_frag_struct skb_frag_t;
153 
154 struct skb_frag_struct {
155 	struct {
156 		struct page *p;
157 	} page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 	__u32 page_offset;
160 	__u32 size;
161 #else
162 	__u16 page_offset;
163 	__u16 size;
164 #endif
165 };
166 
skb_frag_size(const skb_frag_t * frag)167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 	return frag->size;
170 }
171 
skb_frag_size_set(skb_frag_t * frag,unsigned int size)172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 	frag->size = size;
175 }
176 
skb_frag_size_add(skb_frag_t * frag,int delta)177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 	frag->size += delta;
180 }
181 
skb_frag_size_sub(skb_frag_t * frag,int delta)182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 	frag->size -= delta;
185 }
186 
187 #define HAVE_HW_TIME_STAMP
188 
189 /**
190  * struct skb_shared_hwtstamps - hardware time stamps
191  * @hwtstamp:	hardware time stamp transformed into duration
192  *		since arbitrary point in time
193  * @syststamp:	hwtstamp transformed to system time base
194  *
195  * Software time stamps generated by ktime_get_real() are stored in
196  * skb->tstamp. The relation between the different kinds of time
197  * stamps is as follows:
198  *
199  * syststamp and tstamp can be compared against each other in
200  * arbitrary combinations.  The accuracy of a
201  * syststamp/tstamp/"syststamp from other device" comparison is
202  * limited by the accuracy of the transformation into system time
203  * base. This depends on the device driver and its underlying
204  * hardware.
205  *
206  * hwtstamps can only be compared against other hwtstamps from
207  * the same device.
208  *
209  * This structure is attached to packets as part of the
210  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211  */
212 struct skb_shared_hwtstamps {
213 	ktime_t	hwtstamp;
214 	ktime_t	syststamp;
215 };
216 
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 	/* generate hardware time stamp */
220 	SKBTX_HW_TSTAMP = 1 << 0,
221 
222 	/* generate software time stamp */
223 	SKBTX_SW_TSTAMP = 1 << 1,
224 
225 	/* device driver is going to provide hardware time stamp */
226 	SKBTX_IN_PROGRESS = 1 << 2,
227 
228 	/* device driver supports TX zero-copy buffers */
229 	SKBTX_DEV_ZEROCOPY = 1 << 3,
230 
231 	/* generate wifi status information (where possible) */
232 	SKBTX_WIFI_STATUS = 1 << 4,
233 };
234 
235 /*
236  * The callback notifies userspace to release buffers when skb DMA is done in
237  * lower device, the skb last reference should be 0 when calling this.
238  * The ctx field is used to track device context.
239  * The desc field is used to track userspace buffer index.
240  */
241 struct ubuf_info {
242 	void (*callback)(struct ubuf_info *);
243 	void *ctx;
244 	unsigned long desc;
245 };
246 
247 /* This data is invariant across clones and lives at
248  * the end of the header data, ie. at skb->end.
249  */
250 struct skb_shared_info {
251 	unsigned char	nr_frags;
252 	__u8		tx_flags;
253 	unsigned short	gso_size;
254 	/* Warning: this field is not always filled in (UFO)! */
255 	unsigned short	gso_segs;
256 	unsigned short  gso_type;
257 	struct sk_buff	*frag_list;
258 	struct skb_shared_hwtstamps hwtstamps;
259 	__be32          ip6_frag_id;
260 
261 	/*
262 	 * Warning : all fields before dataref are cleared in __alloc_skb()
263 	 */
264 	atomic_t	dataref;
265 
266 	/* Intermediate layers must ensure that destructor_arg
267 	 * remains valid until skb destructor */
268 	void *		destructor_arg;
269 
270 	/* must be last field, see pskb_expand_head() */
271 	skb_frag_t	frags[MAX_SKB_FRAGS];
272 };
273 
274 /* We divide dataref into two halves.  The higher 16 bits hold references
275  * to the payload part of skb->data.  The lower 16 bits hold references to
276  * the entire skb->data.  A clone of a headerless skb holds the length of
277  * the header in skb->hdr_len.
278  *
279  * All users must obey the rule that the skb->data reference count must be
280  * greater than or equal to the payload reference count.
281  *
282  * Holding a reference to the payload part means that the user does not
283  * care about modifications to the header part of skb->data.
284  */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287 
288 
289 enum {
290 	SKB_FCLONE_UNAVAILABLE,
291 	SKB_FCLONE_ORIG,
292 	SKB_FCLONE_CLONE,
293 };
294 
295 enum {
296 	SKB_GSO_TCPV4 = 1 << 0,
297 	SKB_GSO_UDP = 1 << 1,
298 
299 	/* This indicates the skb is from an untrusted source. */
300 	SKB_GSO_DODGY = 1 << 2,
301 
302 	/* This indicates the tcp segment has CWR set. */
303 	SKB_GSO_TCP_ECN = 1 << 3,
304 
305 	SKB_GSO_TCPV6 = 1 << 4,
306 
307 	SKB_GSO_FCOE = 1 << 5,
308 };
309 
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313 
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319 
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321     defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324 
325 /**
326  *	struct sk_buff - socket buffer
327  *	@next: Next buffer in list
328  *	@prev: Previous buffer in list
329  *	@tstamp: Time we arrived
330  *	@sk: Socket we are owned by
331  *	@dev: Device we arrived on/are leaving by
332  *	@cb: Control buffer. Free for use by every layer. Put private vars here
333  *	@_skb_refdst: destination entry (with norefcount bit)
334  *	@sp: the security path, used for xfrm
335  *	@len: Length of actual data
336  *	@data_len: Data length
337  *	@mac_len: Length of link layer header
338  *	@hdr_len: writable header length of cloned skb
339  *	@csum: Checksum (must include start/offset pair)
340  *	@csum_start: Offset from skb->head where checksumming should start
341  *	@csum_offset: Offset from csum_start where checksum should be stored
342  *	@priority: Packet queueing priority
343  *	@local_df: allow local fragmentation
344  *	@cloned: Head may be cloned (check refcnt to be sure)
345  *	@ip_summed: Driver fed us an IP checksum
346  *	@nohdr: Payload reference only, must not modify header
347  *	@nfctinfo: Relationship of this skb to the connection
348  *	@pkt_type: Packet class
349  *	@fclone: skbuff clone status
350  *	@ipvs_property: skbuff is owned by ipvs
351  *	@peeked: this packet has been seen already, so stats have been
352  *		done for it, don't do them again
353  *	@nf_trace: netfilter packet trace flag
354  *	@protocol: Packet protocol from driver
355  *	@destructor: Destruct function
356  *	@nfct: Associated connection, if any
357  *	@nfct_reasm: netfilter conntrack re-assembly pointer
358  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359  *	@skb_iif: ifindex of device we arrived on
360  *	@tc_index: Traffic control index
361  *	@tc_verd: traffic control verdict
362  *	@rxhash: the packet hash computed on receive
363  *	@queue_mapping: Queue mapping for multiqueue devices
364  *	@ndisc_nodetype: router type (from link layer)
365  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
366  *	@l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367  *		ports.
368  *	@wifi_acked_valid: wifi_acked was set
369  *	@wifi_acked: whether frame was acked on wifi or not
370  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
371  *	@dma_cookie: a cookie to one of several possible DMA operations
372  *		done by skb DMA functions
373  *	@secmark: security marking
374  *	@mark: Generic packet mark
375  *	@dropcount: total number of sk_receive_queue overflows
376  *	@vlan_tci: vlan tag control information
377  *	@transport_header: Transport layer header
378  *	@network_header: Network layer header
379  *	@mac_header: Link layer header
380  *	@tail: Tail pointer
381  *	@end: End pointer
382  *	@head: Head of buffer
383  *	@data: Data head pointer
384  *	@truesize: Buffer size
385  *	@users: User count - see {datagram,tcp}.c
386  */
387 
388 struct sk_buff {
389 	/* These two members must be first. */
390 	struct sk_buff		*next;
391 	struct sk_buff		*prev;
392 
393 	ktime_t			tstamp;
394 
395 	struct sock		*sk;
396 	struct net_device	*dev;
397 
398 	/*
399 	 * This is the control buffer. It is free to use for every
400 	 * layer. Please put your private variables there. If you
401 	 * want to keep them across layers you have to do a skb_clone()
402 	 * first. This is owned by whoever has the skb queued ATM.
403 	 */
404 	char			cb[48] __aligned(8);
405 
406 	unsigned long		_skb_refdst;
407 #ifdef CONFIG_XFRM
408 	struct	sec_path	*sp;
409 #endif
410 	unsigned int		len,
411 				data_len;
412 	__u16			mac_len,
413 				hdr_len;
414 	union {
415 		__wsum		csum;
416 		struct {
417 			__u16	csum_start;
418 			__u16	csum_offset;
419 		};
420 	};
421 	__u32			priority;
422 	kmemcheck_bitfield_begin(flags1);
423 	__u8			local_df:1,
424 				cloned:1,
425 				ip_summed:2,
426 				nohdr:1,
427 				nfctinfo:3;
428 	__u8			pkt_type:3,
429 				fclone:2,
430 				ipvs_property:1,
431 				peeked:1,
432 				nf_trace:1;
433 	kmemcheck_bitfield_end(flags1);
434 	__be16			protocol;
435 
436 	void			(*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 	struct nf_conntrack	*nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 	struct sk_buff		*nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 	struct nf_bridge_info	*nf_bridge;
445 #endif
446 
447 	int			skb_iif;
448 
449 	__u32			rxhash;
450 
451 	__u16			vlan_tci;
452 
453 #ifdef CONFIG_NET_SCHED
454 	__u16			tc_index;	/* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 	__u16			tc_verd;	/* traffic control verdict */
457 #endif
458 #endif
459 
460 	__u16			queue_mapping;
461 	kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 	__u8			ndisc_nodetype:2;
464 #endif
465 	__u8			ooo_okay:1;
466 	__u8			l4_rxhash:1;
467 	__u8			wifi_acked_valid:1;
468 	__u8			wifi_acked:1;
469 	__u8			no_fcs:1;
470 	/* 9/11 bit hole (depending on ndisc_nodetype presence) */
471 	kmemcheck_bitfield_end(flags2);
472 
473 #ifdef CONFIG_NET_DMA
474 	dma_cookie_t		dma_cookie;
475 #endif
476 #ifdef CONFIG_NETWORK_SECMARK
477 	__u32			secmark;
478 #endif
479 	union {
480 		__u32		mark;
481 		__u32		dropcount;
482 		__u32		reserved_tailroom;
483 	};
484 
485 	sk_buff_data_t		transport_header;
486 	sk_buff_data_t		network_header;
487 	sk_buff_data_t		mac_header;
488 	/* These elements must be at the end, see alloc_skb() for details.  */
489 	sk_buff_data_t		tail;
490 	sk_buff_data_t		end;
491 	unsigned char		*head,
492 				*data;
493 	unsigned int		truesize;
494 	atomic_t		users;
495 };
496 
497 #ifdef __KERNEL__
498 /*
499  *	Handling routines are only of interest to the kernel
500  */
501 #include <linux/slab.h>
502 
503 
504 /*
505  * skb might have a dst pointer attached, refcounted or not.
506  * _skb_refdst low order bit is set if refcount was _not_ taken
507  */
508 #define SKB_DST_NOREF	1UL
509 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
510 
511 /**
512  * skb_dst - returns skb dst_entry
513  * @skb: buffer
514  *
515  * Returns skb dst_entry, regardless of reference taken or not.
516  */
skb_dst(const struct sk_buff * skb)517 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
518 {
519 	/* If refdst was not refcounted, check we still are in a
520 	 * rcu_read_lock section
521 	 */
522 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
523 		!rcu_read_lock_held() &&
524 		!rcu_read_lock_bh_held());
525 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
526 }
527 
528 /**
529  * skb_dst_set - sets skb dst
530  * @skb: buffer
531  * @dst: dst entry
532  *
533  * Sets skb dst, assuming a reference was taken on dst and should
534  * be released by skb_dst_drop()
535  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)536 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
537 {
538 	skb->_skb_refdst = (unsigned long)dst;
539 }
540 
541 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
542 
543 /**
544  * skb_dst_is_noref - Test if skb dst isn't refcounted
545  * @skb: buffer
546  */
skb_dst_is_noref(const struct sk_buff * skb)547 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
548 {
549 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
550 }
551 
skb_rtable(const struct sk_buff * skb)552 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
553 {
554 	return (struct rtable *)skb_dst(skb);
555 }
556 
557 extern void kfree_skb(struct sk_buff *skb);
558 extern void consume_skb(struct sk_buff *skb);
559 extern void	       __kfree_skb(struct sk_buff *skb);
560 extern struct sk_buff *__alloc_skb(unsigned int size,
561 				   gfp_t priority, int fclone, int node);
562 extern struct sk_buff *build_skb(void *data);
alloc_skb(unsigned int size,gfp_t priority)563 static inline struct sk_buff *alloc_skb(unsigned int size,
564 					gfp_t priority)
565 {
566 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
567 }
568 
alloc_skb_fclone(unsigned int size,gfp_t priority)569 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
570 					       gfp_t priority)
571 {
572 	return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
573 }
574 
575 extern void skb_recycle(struct sk_buff *skb);
576 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
577 
578 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
579 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
580 extern struct sk_buff *skb_clone(struct sk_buff *skb,
581 				 gfp_t priority);
582 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
583 				gfp_t priority);
584 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
585 				 int headroom, gfp_t gfp_mask);
586 
587 extern int	       pskb_expand_head(struct sk_buff *skb,
588 					int nhead, int ntail,
589 					gfp_t gfp_mask);
590 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
591 					    unsigned int headroom);
592 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
593 				       int newheadroom, int newtailroom,
594 				       gfp_t priority);
595 extern int	       skb_to_sgvec(struct sk_buff *skb,
596 				    struct scatterlist *sg, int offset,
597 				    int len);
598 extern int	       skb_cow_data(struct sk_buff *skb, int tailbits,
599 				    struct sk_buff **trailer);
600 extern int	       skb_pad(struct sk_buff *skb, int pad);
601 #define dev_kfree_skb(a)	consume_skb(a)
602 
603 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
604 			int getfrag(void *from, char *to, int offset,
605 			int len,int odd, struct sk_buff *skb),
606 			void *from, int length);
607 
608 struct skb_seq_state {
609 	__u32		lower_offset;
610 	__u32		upper_offset;
611 	__u32		frag_idx;
612 	__u32		stepped_offset;
613 	struct sk_buff	*root_skb;
614 	struct sk_buff	*cur_skb;
615 	__u8		*frag_data;
616 };
617 
618 extern void	      skb_prepare_seq_read(struct sk_buff *skb,
619 					   unsigned int from, unsigned int to,
620 					   struct skb_seq_state *st);
621 extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
622 				   struct skb_seq_state *st);
623 extern void	      skb_abort_seq_read(struct skb_seq_state *st);
624 
625 extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
626 				    unsigned int to, struct ts_config *config,
627 				    struct ts_state *state);
628 
629 extern void __skb_get_rxhash(struct sk_buff *skb);
skb_get_rxhash(struct sk_buff * skb)630 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
631 {
632 	if (!skb->rxhash)
633 		__skb_get_rxhash(skb);
634 
635 	return skb->rxhash;
636 }
637 
638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)639 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
640 {
641 	return skb->head + skb->end;
642 }
643 #else
skb_end_pointer(const struct sk_buff * skb)644 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
645 {
646 	return skb->end;
647 }
648 #endif
649 
650 /* Internal */
651 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
652 
skb_hwtstamps(struct sk_buff * skb)653 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
654 {
655 	return &skb_shinfo(skb)->hwtstamps;
656 }
657 
658 /**
659  *	skb_queue_empty - check if a queue is empty
660  *	@list: queue head
661  *
662  *	Returns true if the queue is empty, false otherwise.
663  */
skb_queue_empty(const struct sk_buff_head * list)664 static inline int skb_queue_empty(const struct sk_buff_head *list)
665 {
666 	return list->next == (struct sk_buff *)list;
667 }
668 
669 /**
670  *	skb_queue_is_last - check if skb is the last entry in the queue
671  *	@list: queue head
672  *	@skb: buffer
673  *
674  *	Returns true if @skb is the last buffer on the list.
675  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)676 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
677 				     const struct sk_buff *skb)
678 {
679 	return skb->next == (struct sk_buff *)list;
680 }
681 
682 /**
683  *	skb_queue_is_first - check if skb is the first entry in the queue
684  *	@list: queue head
685  *	@skb: buffer
686  *
687  *	Returns true if @skb is the first buffer on the list.
688  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)689 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
690 				      const struct sk_buff *skb)
691 {
692 	return skb->prev == (struct sk_buff *)list;
693 }
694 
695 /**
696  *	skb_queue_next - return the next packet in the queue
697  *	@list: queue head
698  *	@skb: current buffer
699  *
700  *	Return the next packet in @list after @skb.  It is only valid to
701  *	call this if skb_queue_is_last() evaluates to false.
702  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)703 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
704 					     const struct sk_buff *skb)
705 {
706 	/* This BUG_ON may seem severe, but if we just return then we
707 	 * are going to dereference garbage.
708 	 */
709 	BUG_ON(skb_queue_is_last(list, skb));
710 	return skb->next;
711 }
712 
713 /**
714  *	skb_queue_prev - return the prev packet in the queue
715  *	@list: queue head
716  *	@skb: current buffer
717  *
718  *	Return the prev packet in @list before @skb.  It is only valid to
719  *	call this if skb_queue_is_first() evaluates to false.
720  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)721 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
722 					     const struct sk_buff *skb)
723 {
724 	/* This BUG_ON may seem severe, but if we just return then we
725 	 * are going to dereference garbage.
726 	 */
727 	BUG_ON(skb_queue_is_first(list, skb));
728 	return skb->prev;
729 }
730 
731 /**
732  *	skb_get - reference buffer
733  *	@skb: buffer to reference
734  *
735  *	Makes another reference to a socket buffer and returns a pointer
736  *	to the buffer.
737  */
skb_get(struct sk_buff * skb)738 static inline struct sk_buff *skb_get(struct sk_buff *skb)
739 {
740 	atomic_inc(&skb->users);
741 	return skb;
742 }
743 
744 /*
745  * If users == 1, we are the only owner and are can avoid redundant
746  * atomic change.
747  */
748 
749 /**
750  *	skb_cloned - is the buffer a clone
751  *	@skb: buffer to check
752  *
753  *	Returns true if the buffer was generated with skb_clone() and is
754  *	one of multiple shared copies of the buffer. Cloned buffers are
755  *	shared data so must not be written to under normal circumstances.
756  */
skb_cloned(const struct sk_buff * skb)757 static inline int skb_cloned(const struct sk_buff *skb)
758 {
759 	return skb->cloned &&
760 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
761 }
762 
763 /**
764  *	skb_header_cloned - is the header a clone
765  *	@skb: buffer to check
766  *
767  *	Returns true if modifying the header part of the buffer requires
768  *	the data to be copied.
769  */
skb_header_cloned(const struct sk_buff * skb)770 static inline int skb_header_cloned(const struct sk_buff *skb)
771 {
772 	int dataref;
773 
774 	if (!skb->cloned)
775 		return 0;
776 
777 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
778 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
779 	return dataref != 1;
780 }
781 
782 /**
783  *	skb_header_release - release reference to header
784  *	@skb: buffer to operate on
785  *
786  *	Drop a reference to the header part of the buffer.  This is done
787  *	by acquiring a payload reference.  You must not read from the header
788  *	part of skb->data after this.
789  */
skb_header_release(struct sk_buff * skb)790 static inline void skb_header_release(struct sk_buff *skb)
791 {
792 	BUG_ON(skb->nohdr);
793 	skb->nohdr = 1;
794 	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
795 }
796 
797 /**
798  *	skb_shared - is the buffer shared
799  *	@skb: buffer to check
800  *
801  *	Returns true if more than one person has a reference to this
802  *	buffer.
803  */
skb_shared(const struct sk_buff * skb)804 static inline int skb_shared(const struct sk_buff *skb)
805 {
806 	return atomic_read(&skb->users) != 1;
807 }
808 
809 /**
810  *	skb_share_check - check if buffer is shared and if so clone it
811  *	@skb: buffer to check
812  *	@pri: priority for memory allocation
813  *
814  *	If the buffer is shared the buffer is cloned and the old copy
815  *	drops a reference. A new clone with a single reference is returned.
816  *	If the buffer is not shared the original buffer is returned. When
817  *	being called from interrupt status or with spinlocks held pri must
818  *	be GFP_ATOMIC.
819  *
820  *	NULL is returned on a memory allocation failure.
821  */
skb_share_check(struct sk_buff * skb,gfp_t pri)822 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
823 					      gfp_t pri)
824 {
825 	might_sleep_if(pri & __GFP_WAIT);
826 	if (skb_shared(skb)) {
827 		struct sk_buff *nskb = skb_clone(skb, pri);
828 		kfree_skb(skb);
829 		skb = nskb;
830 	}
831 	return skb;
832 }
833 
834 /*
835  *	Copy shared buffers into a new sk_buff. We effectively do COW on
836  *	packets to handle cases where we have a local reader and forward
837  *	and a couple of other messy ones. The normal one is tcpdumping
838  *	a packet thats being forwarded.
839  */
840 
841 /**
842  *	skb_unshare - make a copy of a shared buffer
843  *	@skb: buffer to check
844  *	@pri: priority for memory allocation
845  *
846  *	If the socket buffer is a clone then this function creates a new
847  *	copy of the data, drops a reference count on the old copy and returns
848  *	the new copy with the reference count at 1. If the buffer is not a clone
849  *	the original buffer is returned. When called with a spinlock held or
850  *	from interrupt state @pri must be %GFP_ATOMIC
851  *
852  *	%NULL is returned on a memory allocation failure.
853  */
skb_unshare(struct sk_buff * skb,gfp_t pri)854 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
855 					  gfp_t pri)
856 {
857 	might_sleep_if(pri & __GFP_WAIT);
858 	if (skb_cloned(skb)) {
859 		struct sk_buff *nskb = skb_copy(skb, pri);
860 		kfree_skb(skb);	/* Free our shared copy */
861 		skb = nskb;
862 	}
863 	return skb;
864 }
865 
866 /**
867  *	skb_peek - peek at the head of an &sk_buff_head
868  *	@list_: list to peek at
869  *
870  *	Peek an &sk_buff. Unlike most other operations you _MUST_
871  *	be careful with this one. A peek leaves the buffer on the
872  *	list and someone else may run off with it. You must hold
873  *	the appropriate locks or have a private queue to do this.
874  *
875  *	Returns %NULL for an empty list or a pointer to the head element.
876  *	The reference count is not incremented and the reference is therefore
877  *	volatile. Use with caution.
878  */
skb_peek(const struct sk_buff_head * list_)879 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
880 {
881 	struct sk_buff *list = ((const struct sk_buff *)list_)->next;
882 	if (list == (struct sk_buff *)list_)
883 		list = NULL;
884 	return list;
885 }
886 
887 /**
888  *	skb_peek_next - peek skb following the given one from a queue
889  *	@skb: skb to start from
890  *	@list_: list to peek at
891  *
892  *	Returns %NULL when the end of the list is met or a pointer to the
893  *	next element. The reference count is not incremented and the
894  *	reference is therefore volatile. Use with caution.
895  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)896 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
897 		const struct sk_buff_head *list_)
898 {
899 	struct sk_buff *next = skb->next;
900 	if (next == (struct sk_buff *)list_)
901 		next = NULL;
902 	return next;
903 }
904 
905 /**
906  *	skb_peek_tail - peek at the tail of an &sk_buff_head
907  *	@list_: list to peek at
908  *
909  *	Peek an &sk_buff. Unlike most other operations you _MUST_
910  *	be careful with this one. A peek leaves the buffer on the
911  *	list and someone else may run off with it. You must hold
912  *	the appropriate locks or have a private queue to do this.
913  *
914  *	Returns %NULL for an empty list or a pointer to the tail element.
915  *	The reference count is not incremented and the reference is therefore
916  *	volatile. Use with caution.
917  */
skb_peek_tail(const struct sk_buff_head * list_)918 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
919 {
920 	struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
921 	if (list == (struct sk_buff *)list_)
922 		list = NULL;
923 	return list;
924 }
925 
926 /**
927  *	skb_queue_len	- get queue length
928  *	@list_: list to measure
929  *
930  *	Return the length of an &sk_buff queue.
931  */
skb_queue_len(const struct sk_buff_head * list_)932 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
933 {
934 	return list_->qlen;
935 }
936 
937 /**
938  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
939  *	@list: queue to initialize
940  *
941  *	This initializes only the list and queue length aspects of
942  *	an sk_buff_head object.  This allows to initialize the list
943  *	aspects of an sk_buff_head without reinitializing things like
944  *	the spinlock.  It can also be used for on-stack sk_buff_head
945  *	objects where the spinlock is known to not be used.
946  */
__skb_queue_head_init(struct sk_buff_head * list)947 static inline void __skb_queue_head_init(struct sk_buff_head *list)
948 {
949 	list->prev = list->next = (struct sk_buff *)list;
950 	list->qlen = 0;
951 }
952 
953 /*
954  * This function creates a split out lock class for each invocation;
955  * this is needed for now since a whole lot of users of the skb-queue
956  * infrastructure in drivers have different locking usage (in hardirq)
957  * than the networking core (in softirq only). In the long run either the
958  * network layer or drivers should need annotation to consolidate the
959  * main types of usage into 3 classes.
960  */
skb_queue_head_init(struct sk_buff_head * list)961 static inline void skb_queue_head_init(struct sk_buff_head *list)
962 {
963 	spin_lock_init(&list->lock);
964 	__skb_queue_head_init(list);
965 }
966 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)967 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
968 		struct lock_class_key *class)
969 {
970 	skb_queue_head_init(list);
971 	lockdep_set_class(&list->lock, class);
972 }
973 
974 /*
975  *	Insert an sk_buff on a list.
976  *
977  *	The "__skb_xxxx()" functions are the non-atomic ones that
978  *	can only be called with interrupts disabled.
979  */
980 extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)981 static inline void __skb_insert(struct sk_buff *newsk,
982 				struct sk_buff *prev, struct sk_buff *next,
983 				struct sk_buff_head *list)
984 {
985 	newsk->next = next;
986 	newsk->prev = prev;
987 	next->prev  = prev->next = newsk;
988 	list->qlen++;
989 }
990 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)991 static inline void __skb_queue_splice(const struct sk_buff_head *list,
992 				      struct sk_buff *prev,
993 				      struct sk_buff *next)
994 {
995 	struct sk_buff *first = list->next;
996 	struct sk_buff *last = list->prev;
997 
998 	first->prev = prev;
999 	prev->next = first;
1000 
1001 	last->next = next;
1002 	next->prev = last;
1003 }
1004 
1005 /**
1006  *	skb_queue_splice - join two skb lists, this is designed for stacks
1007  *	@list: the new list to add
1008  *	@head: the place to add it in the first list
1009  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1010 static inline void skb_queue_splice(const struct sk_buff_head *list,
1011 				    struct sk_buff_head *head)
1012 {
1013 	if (!skb_queue_empty(list)) {
1014 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1015 		head->qlen += list->qlen;
1016 	}
1017 }
1018 
1019 /**
1020  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1021  *	@list: the new list to add
1022  *	@head: the place to add it in the first list
1023  *
1024  *	The list at @list is reinitialised
1025  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1026 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1027 					 struct sk_buff_head *head)
1028 {
1029 	if (!skb_queue_empty(list)) {
1030 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1031 		head->qlen += list->qlen;
1032 		__skb_queue_head_init(list);
1033 	}
1034 }
1035 
1036 /**
1037  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1038  *	@list: the new list to add
1039  *	@head: the place to add it in the first list
1040  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1041 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1042 					 struct sk_buff_head *head)
1043 {
1044 	if (!skb_queue_empty(list)) {
1045 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1046 		head->qlen += list->qlen;
1047 	}
1048 }
1049 
1050 /**
1051  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1052  *	@list: the new list to add
1053  *	@head: the place to add it in the first list
1054  *
1055  *	Each of the lists is a queue.
1056  *	The list at @list is reinitialised
1057  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)1058 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1059 					      struct sk_buff_head *head)
1060 {
1061 	if (!skb_queue_empty(list)) {
1062 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1063 		head->qlen += list->qlen;
1064 		__skb_queue_head_init(list);
1065 	}
1066 }
1067 
1068 /**
1069  *	__skb_queue_after - queue a buffer at the list head
1070  *	@list: list to use
1071  *	@prev: place after this buffer
1072  *	@newsk: buffer to queue
1073  *
1074  *	Queue a buffer int the middle of a list. This function takes no locks
1075  *	and you must therefore hold required locks before calling it.
1076  *
1077  *	A buffer cannot be placed on two lists at the same time.
1078  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)1079 static inline void __skb_queue_after(struct sk_buff_head *list,
1080 				     struct sk_buff *prev,
1081 				     struct sk_buff *newsk)
1082 {
1083 	__skb_insert(newsk, prev, prev->next, list);
1084 }
1085 
1086 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1087 		       struct sk_buff_head *list);
1088 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)1089 static inline void __skb_queue_before(struct sk_buff_head *list,
1090 				      struct sk_buff *next,
1091 				      struct sk_buff *newsk)
1092 {
1093 	__skb_insert(newsk, next->prev, next, list);
1094 }
1095 
1096 /**
1097  *	__skb_queue_head - queue a buffer at the list head
1098  *	@list: list to use
1099  *	@newsk: buffer to queue
1100  *
1101  *	Queue a buffer at the start of a list. This function takes no locks
1102  *	and you must therefore hold required locks before calling it.
1103  *
1104  *	A buffer cannot be placed on two lists at the same time.
1105  */
1106 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1107 static inline void __skb_queue_head(struct sk_buff_head *list,
1108 				    struct sk_buff *newsk)
1109 {
1110 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1111 }
1112 
1113 /**
1114  *	__skb_queue_tail - queue a buffer at the list tail
1115  *	@list: list to use
1116  *	@newsk: buffer to queue
1117  *
1118  *	Queue a buffer at the end of a list. This function takes no locks
1119  *	and you must therefore hold required locks before calling it.
1120  *
1121  *	A buffer cannot be placed on two lists at the same time.
1122  */
1123 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1124 static inline void __skb_queue_tail(struct sk_buff_head *list,
1125 				   struct sk_buff *newsk)
1126 {
1127 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
1128 }
1129 
1130 /*
1131  * remove sk_buff from list. _Must_ be called atomically, and with
1132  * the list known..
1133  */
1134 extern void	   skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1135 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1136 {
1137 	struct sk_buff *next, *prev;
1138 
1139 	list->qlen--;
1140 	next	   = skb->next;
1141 	prev	   = skb->prev;
1142 	skb->next  = skb->prev = NULL;
1143 	next->prev = prev;
1144 	prev->next = next;
1145 }
1146 
1147 /**
1148  *	__skb_dequeue - remove from the head of the queue
1149  *	@list: list to dequeue from
1150  *
1151  *	Remove the head of the list. This function does not take any locks
1152  *	so must be used with appropriate locks held only. The head item is
1153  *	returned or %NULL if the list is empty.
1154  */
1155 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
__skb_dequeue(struct sk_buff_head * list)1156 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1157 {
1158 	struct sk_buff *skb = skb_peek(list);
1159 	if (skb)
1160 		__skb_unlink(skb, list);
1161 	return skb;
1162 }
1163 
1164 /**
1165  *	__skb_dequeue_tail - remove from the tail of the queue
1166  *	@list: list to dequeue from
1167  *
1168  *	Remove the tail of the list. This function does not take any locks
1169  *	so must be used with appropriate locks held only. The tail item is
1170  *	returned or %NULL if the list is empty.
1171  */
1172 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
__skb_dequeue_tail(struct sk_buff_head * list)1173 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1174 {
1175 	struct sk_buff *skb = skb_peek_tail(list);
1176 	if (skb)
1177 		__skb_unlink(skb, list);
1178 	return skb;
1179 }
1180 
1181 
skb_is_nonlinear(const struct sk_buff * skb)1182 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1183 {
1184 	return skb->data_len;
1185 }
1186 
skb_headlen(const struct sk_buff * skb)1187 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1188 {
1189 	return skb->len - skb->data_len;
1190 }
1191 
skb_pagelen(const struct sk_buff * skb)1192 static inline int skb_pagelen(const struct sk_buff *skb)
1193 {
1194 	int i, len = 0;
1195 
1196 	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1197 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1198 	return len + skb_headlen(skb);
1199 }
1200 
1201 /**
1202  * __skb_fill_page_desc - initialise a paged fragment in an skb
1203  * @skb: buffer containing fragment to be initialised
1204  * @i: paged fragment index to initialise
1205  * @page: the page to use for this fragment
1206  * @off: the offset to the data with @page
1207  * @size: the length of the data
1208  *
1209  * Initialises the @i'th fragment of @skb to point to &size bytes at
1210  * offset @off within @page.
1211  *
1212  * Does not take any additional reference on the fragment.
1213  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1214 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1215 					struct page *page, int off, int size)
1216 {
1217 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1218 
1219 	frag->page.p		  = page;
1220 	frag->page_offset	  = off;
1221 	skb_frag_size_set(frag, size);
1222 }
1223 
1224 /**
1225  * skb_fill_page_desc - initialise a paged fragment in an skb
1226  * @skb: buffer containing fragment to be initialised
1227  * @i: paged fragment index to initialise
1228  * @page: the page to use for this fragment
1229  * @off: the offset to the data with @page
1230  * @size: the length of the data
1231  *
1232  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1233  * @skb to point to &size bytes at offset @off within @page. In
1234  * addition updates @skb such that @i is the last fragment.
1235  *
1236  * Does not take any additional reference on the fragment.
1237  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)1238 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1239 				      struct page *page, int off, int size)
1240 {
1241 	__skb_fill_page_desc(skb, i, page, off, size);
1242 	skb_shinfo(skb)->nr_frags = i + 1;
1243 }
1244 
1245 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1246 			    int off, int size, unsigned int truesize);
1247 
1248 #define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1249 #define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
1250 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1251 
1252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)1253 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1254 {
1255 	return skb->head + skb->tail;
1256 }
1257 
skb_reset_tail_pointer(struct sk_buff * skb)1258 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1259 {
1260 	skb->tail = skb->data - skb->head;
1261 }
1262 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1263 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1264 {
1265 	skb_reset_tail_pointer(skb);
1266 	skb->tail += offset;
1267 }
1268 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)1269 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1270 {
1271 	return skb->tail;
1272 }
1273 
skb_reset_tail_pointer(struct sk_buff * skb)1274 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1275 {
1276 	skb->tail = skb->data;
1277 }
1278 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)1279 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1280 {
1281 	skb->tail = skb->data + offset;
1282 }
1283 
1284 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1285 
1286 /*
1287  *	Add data to an sk_buff
1288  */
1289 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)1290 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1291 {
1292 	unsigned char *tmp = skb_tail_pointer(skb);
1293 	SKB_LINEAR_ASSERT(skb);
1294 	skb->tail += len;
1295 	skb->len  += len;
1296 	return tmp;
1297 }
1298 
1299 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)1300 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1301 {
1302 	skb->data -= len;
1303 	skb->len  += len;
1304 	return skb->data;
1305 }
1306 
1307 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)1308 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1309 {
1310 	skb->len -= len;
1311 	BUG_ON(skb->len < skb->data_len);
1312 	return skb->data += len;
1313 }
1314 
skb_pull_inline(struct sk_buff * skb,unsigned int len)1315 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1316 {
1317 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1318 }
1319 
1320 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1321 
__pskb_pull(struct sk_buff * skb,unsigned int len)1322 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1323 {
1324 	if (len > skb_headlen(skb) &&
1325 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1326 		return NULL;
1327 	skb->len -= len;
1328 	return skb->data += len;
1329 }
1330 
pskb_pull(struct sk_buff * skb,unsigned int len)1331 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1332 {
1333 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1334 }
1335 
pskb_may_pull(struct sk_buff * skb,unsigned int len)1336 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1337 {
1338 	if (likely(len <= skb_headlen(skb)))
1339 		return 1;
1340 	if (unlikely(len > skb->len))
1341 		return 0;
1342 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1343 }
1344 
1345 /**
1346  *	skb_headroom - bytes at buffer head
1347  *	@skb: buffer to check
1348  *
1349  *	Return the number of bytes of free space at the head of an &sk_buff.
1350  */
skb_headroom(const struct sk_buff * skb)1351 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1352 {
1353 	return skb->data - skb->head;
1354 }
1355 
1356 /**
1357  *	skb_tailroom - bytes at buffer end
1358  *	@skb: buffer to check
1359  *
1360  *	Return the number of bytes of free space at the tail of an sk_buff
1361  */
skb_tailroom(const struct sk_buff * skb)1362 static inline int skb_tailroom(const struct sk_buff *skb)
1363 {
1364 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1365 }
1366 
1367 /**
1368  *	skb_availroom - bytes at buffer end
1369  *	@skb: buffer to check
1370  *
1371  *	Return the number of bytes of free space at the tail of an sk_buff
1372  *	allocated by sk_stream_alloc()
1373  */
skb_availroom(const struct sk_buff * skb)1374 static inline int skb_availroom(const struct sk_buff *skb)
1375 {
1376 	if (skb_is_nonlinear(skb))
1377 		return 0;
1378 
1379 	return skb->end - skb->tail - skb->reserved_tailroom;
1380 }
1381 
1382 /**
1383  *	skb_reserve - adjust headroom
1384  *	@skb: buffer to alter
1385  *	@len: bytes to move
1386  *
1387  *	Increase the headroom of an empty &sk_buff by reducing the tail
1388  *	room. This is only allowed for an empty buffer.
1389  */
skb_reserve(struct sk_buff * skb,int len)1390 static inline void skb_reserve(struct sk_buff *skb, int len)
1391 {
1392 	skb->data += len;
1393 	skb->tail += len;
1394 }
1395 
skb_reset_mac_len(struct sk_buff * skb)1396 static inline void skb_reset_mac_len(struct sk_buff *skb)
1397 {
1398 	skb->mac_len = skb->network_header - skb->mac_header;
1399 }
1400 
1401 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_transport_header(const struct sk_buff * skb)1402 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1403 {
1404 	return skb->head + skb->transport_header;
1405 }
1406 
skb_reset_transport_header(struct sk_buff * skb)1407 static inline void skb_reset_transport_header(struct sk_buff *skb)
1408 {
1409 	skb->transport_header = skb->data - skb->head;
1410 }
1411 
skb_set_transport_header(struct sk_buff * skb,const int offset)1412 static inline void skb_set_transport_header(struct sk_buff *skb,
1413 					    const int offset)
1414 {
1415 	skb_reset_transport_header(skb);
1416 	skb->transport_header += offset;
1417 }
1418 
skb_network_header(const struct sk_buff * skb)1419 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1420 {
1421 	return skb->head + skb->network_header;
1422 }
1423 
skb_reset_network_header(struct sk_buff * skb)1424 static inline void skb_reset_network_header(struct sk_buff *skb)
1425 {
1426 	skb->network_header = skb->data - skb->head;
1427 }
1428 
skb_set_network_header(struct sk_buff * skb,const int offset)1429 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1430 {
1431 	skb_reset_network_header(skb);
1432 	skb->network_header += offset;
1433 }
1434 
skb_mac_header(const struct sk_buff * skb)1435 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1436 {
1437 	return skb->head + skb->mac_header;
1438 }
1439 
skb_mac_header_was_set(const struct sk_buff * skb)1440 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1441 {
1442 	return skb->mac_header != ~0U;
1443 }
1444 
skb_reset_mac_header(struct sk_buff * skb)1445 static inline void skb_reset_mac_header(struct sk_buff *skb)
1446 {
1447 	skb->mac_header = skb->data - skb->head;
1448 }
1449 
skb_set_mac_header(struct sk_buff * skb,const int offset)1450 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1451 {
1452 	skb_reset_mac_header(skb);
1453 	skb->mac_header += offset;
1454 }
1455 
1456 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1457 
skb_transport_header(const struct sk_buff * skb)1458 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1459 {
1460 	return skb->transport_header;
1461 }
1462 
skb_reset_transport_header(struct sk_buff * skb)1463 static inline void skb_reset_transport_header(struct sk_buff *skb)
1464 {
1465 	skb->transport_header = skb->data;
1466 }
1467 
skb_set_transport_header(struct sk_buff * skb,const int offset)1468 static inline void skb_set_transport_header(struct sk_buff *skb,
1469 					    const int offset)
1470 {
1471 	skb->transport_header = skb->data + offset;
1472 }
1473 
skb_network_header(const struct sk_buff * skb)1474 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1475 {
1476 	return skb->network_header;
1477 }
1478 
skb_reset_network_header(struct sk_buff * skb)1479 static inline void skb_reset_network_header(struct sk_buff *skb)
1480 {
1481 	skb->network_header = skb->data;
1482 }
1483 
skb_set_network_header(struct sk_buff * skb,const int offset)1484 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1485 {
1486 	skb->network_header = skb->data + offset;
1487 }
1488 
skb_mac_header(const struct sk_buff * skb)1489 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1490 {
1491 	return skb->mac_header;
1492 }
1493 
skb_mac_header_was_set(const struct sk_buff * skb)1494 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1495 {
1496 	return skb->mac_header != NULL;
1497 }
1498 
skb_reset_mac_header(struct sk_buff * skb)1499 static inline void skb_reset_mac_header(struct sk_buff *skb)
1500 {
1501 	skb->mac_header = skb->data;
1502 }
1503 
skb_set_mac_header(struct sk_buff * skb,const int offset)1504 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1505 {
1506 	skb->mac_header = skb->data + offset;
1507 }
1508 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1509 
skb_mac_header_rebuild(struct sk_buff * skb)1510 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1511 {
1512 	if (skb_mac_header_was_set(skb)) {
1513 		const unsigned char *old_mac = skb_mac_header(skb);
1514 
1515 		skb_set_mac_header(skb, -skb->mac_len);
1516 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1517 	}
1518 }
1519 
skb_checksum_start_offset(const struct sk_buff * skb)1520 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1521 {
1522 	return skb->csum_start - skb_headroom(skb);
1523 }
1524 
skb_transport_offset(const struct sk_buff * skb)1525 static inline int skb_transport_offset(const struct sk_buff *skb)
1526 {
1527 	return skb_transport_header(skb) - skb->data;
1528 }
1529 
skb_network_header_len(const struct sk_buff * skb)1530 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1531 {
1532 	return skb->transport_header - skb->network_header;
1533 }
1534 
skb_network_offset(const struct sk_buff * skb)1535 static inline int skb_network_offset(const struct sk_buff *skb)
1536 {
1537 	return skb_network_header(skb) - skb->data;
1538 }
1539 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)1540 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1541 {
1542 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
1543 }
1544 
1545 /*
1546  * CPUs often take a performance hit when accessing unaligned memory
1547  * locations. The actual performance hit varies, it can be small if the
1548  * hardware handles it or large if we have to take an exception and fix it
1549  * in software.
1550  *
1551  * Since an ethernet header is 14 bytes network drivers often end up with
1552  * the IP header at an unaligned offset. The IP header can be aligned by
1553  * shifting the start of the packet by 2 bytes. Drivers should do this
1554  * with:
1555  *
1556  * skb_reserve(skb, NET_IP_ALIGN);
1557  *
1558  * The downside to this alignment of the IP header is that the DMA is now
1559  * unaligned. On some architectures the cost of an unaligned DMA is high
1560  * and this cost outweighs the gains made by aligning the IP header.
1561  *
1562  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1563  * to be overridden.
1564  */
1565 #ifndef NET_IP_ALIGN
1566 #define NET_IP_ALIGN	2
1567 #endif
1568 
1569 /*
1570  * The networking layer reserves some headroom in skb data (via
1571  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1572  * the header has to grow. In the default case, if the header has to grow
1573  * 32 bytes or less we avoid the reallocation.
1574  *
1575  * Unfortunately this headroom changes the DMA alignment of the resulting
1576  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1577  * on some architectures. An architecture can override this value,
1578  * perhaps setting it to a cacheline in size (since that will maintain
1579  * cacheline alignment of the DMA). It must be a power of 2.
1580  *
1581  * Various parts of the networking layer expect at least 32 bytes of
1582  * headroom, you should not reduce this.
1583  *
1584  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1585  * to reduce average number of cache lines per packet.
1586  * get_rps_cpus() for example only access one 64 bytes aligned block :
1587  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1588  */
1589 #ifndef NET_SKB_PAD
1590 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1591 #endif
1592 
1593 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1594 
__skb_trim(struct sk_buff * skb,unsigned int len)1595 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1596 {
1597 	if (unlikely(skb_is_nonlinear(skb))) {
1598 		WARN_ON(1);
1599 		return;
1600 	}
1601 	skb->len = len;
1602 	skb_set_tail_pointer(skb, len);
1603 }
1604 
1605 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1606 
__pskb_trim(struct sk_buff * skb,unsigned int len)1607 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1608 {
1609 	if (skb->data_len)
1610 		return ___pskb_trim(skb, len);
1611 	__skb_trim(skb, len);
1612 	return 0;
1613 }
1614 
pskb_trim(struct sk_buff * skb,unsigned int len)1615 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1616 {
1617 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1618 }
1619 
1620 /**
1621  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1622  *	@skb: buffer to alter
1623  *	@len: new length
1624  *
1625  *	This is identical to pskb_trim except that the caller knows that
1626  *	the skb is not cloned so we should never get an error due to out-
1627  *	of-memory.
1628  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)1629 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1630 {
1631 	int err = pskb_trim(skb, len);
1632 	BUG_ON(err);
1633 }
1634 
1635 /**
1636  *	skb_orphan - orphan a buffer
1637  *	@skb: buffer to orphan
1638  *
1639  *	If a buffer currently has an owner then we call the owner's
1640  *	destructor function and make the @skb unowned. The buffer continues
1641  *	to exist but is no longer charged to its former owner.
1642  */
skb_orphan(struct sk_buff * skb)1643 static inline void skb_orphan(struct sk_buff *skb)
1644 {
1645 	if (skb->destructor)
1646 		skb->destructor(skb);
1647 	skb->destructor = NULL;
1648 	skb->sk		= NULL;
1649 }
1650 
1651 /**
1652  *	__skb_queue_purge - empty a list
1653  *	@list: list to empty
1654  *
1655  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1656  *	the list and one reference dropped. This function does not take the
1657  *	list lock and the caller must hold the relevant locks to use it.
1658  */
1659 extern void skb_queue_purge(struct sk_buff_head *list);
__skb_queue_purge(struct sk_buff_head * list)1660 static inline void __skb_queue_purge(struct sk_buff_head *list)
1661 {
1662 	struct sk_buff *skb;
1663 	while ((skb = __skb_dequeue(list)) != NULL)
1664 		kfree_skb(skb);
1665 }
1666 
1667 /**
1668  *	__dev_alloc_skb - allocate an skbuff for receiving
1669  *	@length: length to allocate
1670  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
1671  *
1672  *	Allocate a new &sk_buff and assign it a usage count of one. The
1673  *	buffer has unspecified headroom built in. Users should allocate
1674  *	the headroom they think they need without accounting for the
1675  *	built in space. The built in space is used for optimisations.
1676  *
1677  *	%NULL is returned if there is no free memory.
1678  */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)1679 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1680 					      gfp_t gfp_mask)
1681 {
1682 	struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1683 	if (likely(skb))
1684 		skb_reserve(skb, NET_SKB_PAD);
1685 	return skb;
1686 }
1687 
1688 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1689 
1690 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1691 		unsigned int length, gfp_t gfp_mask);
1692 
1693 /**
1694  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
1695  *	@dev: network device to receive on
1696  *	@length: length to allocate
1697  *
1698  *	Allocate a new &sk_buff and assign it a usage count of one. The
1699  *	buffer has unspecified headroom built in. Users should allocate
1700  *	the headroom they think they need without accounting for the
1701  *	built in space. The built in space is used for optimisations.
1702  *
1703  *	%NULL is returned if there is no free memory. Although this function
1704  *	allocates memory it can be called from an interrupt.
1705  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)1706 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1707 		unsigned int length)
1708 {
1709 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1710 }
1711 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)1712 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1713 		unsigned int length, gfp_t gfp)
1714 {
1715 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1716 
1717 	if (NET_IP_ALIGN && skb)
1718 		skb_reserve(skb, NET_IP_ALIGN);
1719 	return skb;
1720 }
1721 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)1722 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1723 		unsigned int length)
1724 {
1725 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1726 }
1727 
1728 /**
1729  * skb_frag_page - retrieve the page refered to by a paged fragment
1730  * @frag: the paged fragment
1731  *
1732  * Returns the &struct page associated with @frag.
1733  */
skb_frag_page(const skb_frag_t * frag)1734 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1735 {
1736 	return frag->page.p;
1737 }
1738 
1739 /**
1740  * __skb_frag_ref - take an addition reference on a paged fragment.
1741  * @frag: the paged fragment
1742  *
1743  * Takes an additional reference on the paged fragment @frag.
1744  */
__skb_frag_ref(skb_frag_t * frag)1745 static inline void __skb_frag_ref(skb_frag_t *frag)
1746 {
1747 	get_page(skb_frag_page(frag));
1748 }
1749 
1750 /**
1751  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1752  * @skb: the buffer
1753  * @f: the fragment offset.
1754  *
1755  * Takes an additional reference on the @f'th paged fragment of @skb.
1756  */
skb_frag_ref(struct sk_buff * skb,int f)1757 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1758 {
1759 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1760 }
1761 
1762 /**
1763  * __skb_frag_unref - release a reference on a paged fragment.
1764  * @frag: the paged fragment
1765  *
1766  * Releases a reference on the paged fragment @frag.
1767  */
__skb_frag_unref(skb_frag_t * frag)1768 static inline void __skb_frag_unref(skb_frag_t *frag)
1769 {
1770 	put_page(skb_frag_page(frag));
1771 }
1772 
1773 /**
1774  * skb_frag_unref - release a reference on a paged fragment of an skb.
1775  * @skb: the buffer
1776  * @f: the fragment offset
1777  *
1778  * Releases a reference on the @f'th paged fragment of @skb.
1779  */
skb_frag_unref(struct sk_buff * skb,int f)1780 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1781 {
1782 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1783 }
1784 
1785 /**
1786  * skb_frag_address - gets the address of the data contained in a paged fragment
1787  * @frag: the paged fragment buffer
1788  *
1789  * Returns the address of the data within @frag. The page must already
1790  * be mapped.
1791  */
skb_frag_address(const skb_frag_t * frag)1792 static inline void *skb_frag_address(const skb_frag_t *frag)
1793 {
1794 	return page_address(skb_frag_page(frag)) + frag->page_offset;
1795 }
1796 
1797 /**
1798  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1799  * @frag: the paged fragment buffer
1800  *
1801  * Returns the address of the data within @frag. Checks that the page
1802  * is mapped and returns %NULL otherwise.
1803  */
skb_frag_address_safe(const skb_frag_t * frag)1804 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1805 {
1806 	void *ptr = page_address(skb_frag_page(frag));
1807 	if (unlikely(!ptr))
1808 		return NULL;
1809 
1810 	return ptr + frag->page_offset;
1811 }
1812 
1813 /**
1814  * __skb_frag_set_page - sets the page contained in a paged fragment
1815  * @frag: the paged fragment
1816  * @page: the page to set
1817  *
1818  * Sets the fragment @frag to contain @page.
1819  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)1820 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1821 {
1822 	frag->page.p = page;
1823 }
1824 
1825 /**
1826  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1827  * @skb: the buffer
1828  * @f: the fragment offset
1829  * @page: the page to set
1830  *
1831  * Sets the @f'th fragment of @skb to contain @page.
1832  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)1833 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1834 				     struct page *page)
1835 {
1836 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1837 }
1838 
1839 /**
1840  * skb_frag_dma_map - maps a paged fragment via the DMA API
1841  * @dev: the device to map the fragment to
1842  * @frag: the paged fragment to map
1843  * @offset: the offset within the fragment (starting at the
1844  *          fragment's own offset)
1845  * @size: the number of bytes to map
1846  * @dir: the direction of the mapping (%PCI_DMA_*)
1847  *
1848  * Maps the page associated with @frag to @device.
1849  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)1850 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1851 					  const skb_frag_t *frag,
1852 					  size_t offset, size_t size,
1853 					  enum dma_data_direction dir)
1854 {
1855 	return dma_map_page(dev, skb_frag_page(frag),
1856 			    frag->page_offset + offset, size, dir);
1857 }
1858 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)1859 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1860 					gfp_t gfp_mask)
1861 {
1862 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1863 }
1864 
1865 /**
1866  *	skb_clone_writable - is the header of a clone writable
1867  *	@skb: buffer to check
1868  *	@len: length up to which to write
1869  *
1870  *	Returns true if modifying the header part of the cloned buffer
1871  *	does not requires the data to be copied.
1872  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)1873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1874 {
1875 	return !skb_header_cloned(skb) &&
1876 	       skb_headroom(skb) + len <= skb->hdr_len;
1877 }
1878 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)1879 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1880 			    int cloned)
1881 {
1882 	int delta = 0;
1883 
1884 	if (headroom > skb_headroom(skb))
1885 		delta = headroom - skb_headroom(skb);
1886 
1887 	if (delta || cloned)
1888 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1889 					GFP_ATOMIC);
1890 	return 0;
1891 }
1892 
1893 /**
1894  *	skb_cow - copy header of skb when it is required
1895  *	@skb: buffer to cow
1896  *	@headroom: needed headroom
1897  *
1898  *	If the skb passed lacks sufficient headroom or its data part
1899  *	is shared, data is reallocated. If reallocation fails, an error
1900  *	is returned and original skb is not changed.
1901  *
1902  *	The result is skb with writable area skb->head...skb->tail
1903  *	and at least @headroom of space at head.
1904  */
skb_cow(struct sk_buff * skb,unsigned int headroom)1905 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1906 {
1907 	return __skb_cow(skb, headroom, skb_cloned(skb));
1908 }
1909 
1910 /**
1911  *	skb_cow_head - skb_cow but only making the head writable
1912  *	@skb: buffer to cow
1913  *	@headroom: needed headroom
1914  *
1915  *	This function is identical to skb_cow except that we replace the
1916  *	skb_cloned check by skb_header_cloned.  It should be used when
1917  *	you only need to push on some header and do not need to modify
1918  *	the data.
1919  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)1920 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1921 {
1922 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
1923 }
1924 
1925 /**
1926  *	skb_padto	- pad an skbuff up to a minimal size
1927  *	@skb: buffer to pad
1928  *	@len: minimal length
1929  *
1930  *	Pads up a buffer to ensure the trailing bytes exist and are
1931  *	blanked. If the buffer already contains sufficient data it
1932  *	is untouched. Otherwise it is extended. Returns zero on
1933  *	success. The skb is freed on error.
1934  */
1935 
skb_padto(struct sk_buff * skb,unsigned int len)1936 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1937 {
1938 	unsigned int size = skb->len;
1939 	if (likely(size >= len))
1940 		return 0;
1941 	return skb_pad(skb, len - size);
1942 }
1943 
skb_add_data(struct sk_buff * skb,char __user * from,int copy)1944 static inline int skb_add_data(struct sk_buff *skb,
1945 			       char __user *from, int copy)
1946 {
1947 	const int off = skb->len;
1948 
1949 	if (skb->ip_summed == CHECKSUM_NONE) {
1950 		int err = 0;
1951 		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1952 							    copy, 0, &err);
1953 		if (!err) {
1954 			skb->csum = csum_block_add(skb->csum, csum, off);
1955 			return 0;
1956 		}
1957 	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
1958 		return 0;
1959 
1960 	__skb_trim(skb, off);
1961 	return -EFAULT;
1962 }
1963 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)1964 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1965 				   const struct page *page, int off)
1966 {
1967 	if (i) {
1968 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1969 
1970 		return page == skb_frag_page(frag) &&
1971 		       off == frag->page_offset + skb_frag_size(frag);
1972 	}
1973 	return 0;
1974 }
1975 
__skb_linearize(struct sk_buff * skb)1976 static inline int __skb_linearize(struct sk_buff *skb)
1977 {
1978 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1979 }
1980 
1981 /**
1982  *	skb_linearize - convert paged skb to linear one
1983  *	@skb: buffer to linarize
1984  *
1985  *	If there is no free memory -ENOMEM is returned, otherwise zero
1986  *	is returned and the old skb data released.
1987  */
skb_linearize(struct sk_buff * skb)1988 static inline int skb_linearize(struct sk_buff *skb)
1989 {
1990 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1991 }
1992 
1993 /**
1994  *	skb_linearize_cow - make sure skb is linear and writable
1995  *	@skb: buffer to process
1996  *
1997  *	If there is no free memory -ENOMEM is returned, otherwise zero
1998  *	is returned and the old skb data released.
1999  */
skb_linearize_cow(struct sk_buff * skb)2000 static inline int skb_linearize_cow(struct sk_buff *skb)
2001 {
2002 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2003 	       __skb_linearize(skb) : 0;
2004 }
2005 
2006 /**
2007  *	skb_postpull_rcsum - update checksum for received skb after pull
2008  *	@skb: buffer to update
2009  *	@start: start of data before pull
2010  *	@len: length of data pulled
2011  *
2012  *	After doing a pull on a received packet, you need to call this to
2013  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2014  *	CHECKSUM_NONE so that it can be recomputed from scratch.
2015  */
2016 
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2017 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2018 				      const void *start, unsigned int len)
2019 {
2020 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2021 		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2022 }
2023 
2024 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2025 
2026 /**
2027  *	pskb_trim_rcsum - trim received skb and update checksum
2028  *	@skb: buffer to trim
2029  *	@len: new length
2030  *
2031  *	This is exactly the same as pskb_trim except that it ensures the
2032  *	checksum of received packets are still valid after the operation.
2033  */
2034 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)2035 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2036 {
2037 	if (likely(len >= skb->len))
2038 		return 0;
2039 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2040 		skb->ip_summed = CHECKSUM_NONE;
2041 	return __pskb_trim(skb, len);
2042 }
2043 
2044 #define skb_queue_walk(queue, skb) \
2045 		for (skb = (queue)->next;					\
2046 		     skb != (struct sk_buff *)(queue);				\
2047 		     skb = skb->next)
2048 
2049 #define skb_queue_walk_safe(queue, skb, tmp)					\
2050 		for (skb = (queue)->next, tmp = skb->next;			\
2051 		     skb != (struct sk_buff *)(queue);				\
2052 		     skb = tmp, tmp = skb->next)
2053 
2054 #define skb_queue_walk_from(queue, skb)						\
2055 		for (; skb != (struct sk_buff *)(queue);			\
2056 		     skb = skb->next)
2057 
2058 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
2059 		for (tmp = skb->next;						\
2060 		     skb != (struct sk_buff *)(queue);				\
2061 		     skb = tmp, tmp = skb->next)
2062 
2063 #define skb_queue_reverse_walk(queue, skb) \
2064 		for (skb = (queue)->prev;					\
2065 		     skb != (struct sk_buff *)(queue);				\
2066 		     skb = skb->prev)
2067 
2068 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
2069 		for (skb = (queue)->prev, tmp = skb->prev;			\
2070 		     skb != (struct sk_buff *)(queue);				\
2071 		     skb = tmp, tmp = skb->prev)
2072 
2073 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
2074 		for (tmp = skb->prev;						\
2075 		     skb != (struct sk_buff *)(queue);				\
2076 		     skb = tmp, tmp = skb->prev)
2077 
skb_has_frag_list(const struct sk_buff * skb)2078 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2079 {
2080 	return skb_shinfo(skb)->frag_list != NULL;
2081 }
2082 
skb_frag_list_init(struct sk_buff * skb)2083 static inline void skb_frag_list_init(struct sk_buff *skb)
2084 {
2085 	skb_shinfo(skb)->frag_list = NULL;
2086 }
2087 
skb_frag_add_head(struct sk_buff * skb,struct sk_buff * frag)2088 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2089 {
2090 	frag->next = skb_shinfo(skb)->frag_list;
2091 	skb_shinfo(skb)->frag_list = frag;
2092 }
2093 
2094 #define skb_walk_frags(skb, iter)	\
2095 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2096 
2097 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2098 					   int *peeked, int *off, int *err);
2099 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2100 					 int noblock, int *err);
2101 extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
2102 				     struct poll_table_struct *wait);
2103 extern int	       skb_copy_datagram_iovec(const struct sk_buff *from,
2104 					       int offset, struct iovec *to,
2105 					       int size);
2106 extern int	       skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2107 							int hlen,
2108 							struct iovec *iov);
2109 extern int	       skb_copy_datagram_from_iovec(struct sk_buff *skb,
2110 						    int offset,
2111 						    const struct iovec *from,
2112 						    int from_offset,
2113 						    int len);
2114 extern int	       skb_copy_datagram_const_iovec(const struct sk_buff *from,
2115 						     int offset,
2116 						     const struct iovec *to,
2117 						     int to_offset,
2118 						     int size);
2119 extern void	       skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2120 extern void	       skb_free_datagram_locked(struct sock *sk,
2121 						struct sk_buff *skb);
2122 extern int	       skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2123 					 unsigned int flags);
2124 extern __wsum	       skb_checksum(const struct sk_buff *skb, int offset,
2125 				    int len, __wsum csum);
2126 extern int	       skb_copy_bits(const struct sk_buff *skb, int offset,
2127 				     void *to, int len);
2128 extern int	       skb_store_bits(struct sk_buff *skb, int offset,
2129 				      const void *from, int len);
2130 extern __wsum	       skb_copy_and_csum_bits(const struct sk_buff *skb,
2131 					      int offset, u8 *to, int len,
2132 					      __wsum csum);
2133 extern int             skb_splice_bits(struct sk_buff *skb,
2134 						unsigned int offset,
2135 						struct pipe_inode_info *pipe,
2136 						unsigned int len,
2137 						unsigned int flags);
2138 extern void	       skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2139 extern void	       skb_split(struct sk_buff *skb,
2140 				 struct sk_buff *skb1, const u32 len);
2141 extern int	       skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2142 				 int shiftlen);
2143 
2144 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2145 				   netdev_features_t features);
2146 
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)2147 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2148 				       int len, void *buffer)
2149 {
2150 	int hlen = skb_headlen(skb);
2151 
2152 	if (hlen - offset >= len)
2153 		return skb->data + offset;
2154 
2155 	if (skb_copy_bits(skb, offset, buffer, len) < 0)
2156 		return NULL;
2157 
2158 	return buffer;
2159 }
2160 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)2161 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2162 					     void *to,
2163 					     const unsigned int len)
2164 {
2165 	memcpy(to, skb->data, len);
2166 }
2167 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)2168 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2169 						    const int offset, void *to,
2170 						    const unsigned int len)
2171 {
2172 	memcpy(to, skb->data + offset, len);
2173 }
2174 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)2175 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2176 					   const void *from,
2177 					   const unsigned int len)
2178 {
2179 	memcpy(skb->data, from, len);
2180 }
2181 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)2182 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2183 						  const int offset,
2184 						  const void *from,
2185 						  const unsigned int len)
2186 {
2187 	memcpy(skb->data + offset, from, len);
2188 }
2189 
2190 extern void skb_init(void);
2191 
skb_get_ktime(const struct sk_buff * skb)2192 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2193 {
2194 	return skb->tstamp;
2195 }
2196 
2197 /**
2198  *	skb_get_timestamp - get timestamp from a skb
2199  *	@skb: skb to get stamp from
2200  *	@stamp: pointer to struct timeval to store stamp in
2201  *
2202  *	Timestamps are stored in the skb as offsets to a base timestamp.
2203  *	This function converts the offset back to a struct timeval and stores
2204  *	it in stamp.
2205  */
skb_get_timestamp(const struct sk_buff * skb,struct timeval * stamp)2206 static inline void skb_get_timestamp(const struct sk_buff *skb,
2207 				     struct timeval *stamp)
2208 {
2209 	*stamp = ktime_to_timeval(skb->tstamp);
2210 }
2211 
skb_get_timestampns(const struct sk_buff * skb,struct timespec * stamp)2212 static inline void skb_get_timestampns(const struct sk_buff *skb,
2213 				       struct timespec *stamp)
2214 {
2215 	*stamp = ktime_to_timespec(skb->tstamp);
2216 }
2217 
__net_timestamp(struct sk_buff * skb)2218 static inline void __net_timestamp(struct sk_buff *skb)
2219 {
2220 	skb->tstamp = ktime_get_real();
2221 }
2222 
net_timedelta(ktime_t t)2223 static inline ktime_t net_timedelta(ktime_t t)
2224 {
2225 	return ktime_sub(ktime_get_real(), t);
2226 }
2227 
net_invalid_timestamp(void)2228 static inline ktime_t net_invalid_timestamp(void)
2229 {
2230 	return ktime_set(0, 0);
2231 }
2232 
2233 extern void skb_timestamping_init(void);
2234 
2235 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2236 
2237 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2238 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2239 
2240 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2241 
skb_clone_tx_timestamp(struct sk_buff * skb)2242 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2243 {
2244 }
2245 
skb_defer_rx_timestamp(struct sk_buff * skb)2246 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2247 {
2248 	return false;
2249 }
2250 
2251 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2252 
2253 /**
2254  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2255  *
2256  * PHY drivers may accept clones of transmitted packets for
2257  * timestamping via their phy_driver.txtstamp method. These drivers
2258  * must call this function to return the skb back to the stack, with
2259  * or without a timestamp.
2260  *
2261  * @skb: clone of the the original outgoing packet
2262  * @hwtstamps: hardware time stamps, may be NULL if not available
2263  *
2264  */
2265 void skb_complete_tx_timestamp(struct sk_buff *skb,
2266 			       struct skb_shared_hwtstamps *hwtstamps);
2267 
2268 /**
2269  * skb_tstamp_tx - queue clone of skb with send time stamps
2270  * @orig_skb:	the original outgoing packet
2271  * @hwtstamps:	hardware time stamps, may be NULL if not available
2272  *
2273  * If the skb has a socket associated, then this function clones the
2274  * skb (thus sharing the actual data and optional structures), stores
2275  * the optional hardware time stamping information (if non NULL) or
2276  * generates a software time stamp (otherwise), then queues the clone
2277  * to the error queue of the socket.  Errors are silently ignored.
2278  */
2279 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2280 			struct skb_shared_hwtstamps *hwtstamps);
2281 
sw_tx_timestamp(struct sk_buff * skb)2282 static inline void sw_tx_timestamp(struct sk_buff *skb)
2283 {
2284 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2285 	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2286 		skb_tstamp_tx(skb, NULL);
2287 }
2288 
2289 /**
2290  * skb_tx_timestamp() - Driver hook for transmit timestamping
2291  *
2292  * Ethernet MAC Drivers should call this function in their hard_xmit()
2293  * function immediately before giving the sk_buff to the MAC hardware.
2294  *
2295  * @skb: A socket buffer.
2296  */
skb_tx_timestamp(struct sk_buff * skb)2297 static inline void skb_tx_timestamp(struct sk_buff *skb)
2298 {
2299 	skb_clone_tx_timestamp(skb);
2300 	sw_tx_timestamp(skb);
2301 }
2302 
2303 /**
2304  * skb_complete_wifi_ack - deliver skb with wifi status
2305  *
2306  * @skb: the original outgoing packet
2307  * @acked: ack status
2308  *
2309  */
2310 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2311 
2312 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2313 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2314 
skb_csum_unnecessary(const struct sk_buff * skb)2315 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2316 {
2317 	return skb->ip_summed & CHECKSUM_UNNECESSARY;
2318 }
2319 
2320 /**
2321  *	skb_checksum_complete - Calculate checksum of an entire packet
2322  *	@skb: packet to process
2323  *
2324  *	This function calculates the checksum over the entire packet plus
2325  *	the value of skb->csum.  The latter can be used to supply the
2326  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
2327  *	checksum.
2328  *
2329  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
2330  *	this function can be used to verify that checksum on received
2331  *	packets.  In that case the function should return zero if the
2332  *	checksum is correct.  In particular, this function will return zero
2333  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2334  *	hardware has already verified the correctness of the checksum.
2335  */
skb_checksum_complete(struct sk_buff * skb)2336 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2337 {
2338 	return skb_csum_unnecessary(skb) ?
2339 	       0 : __skb_checksum_complete(skb);
2340 }
2341 
2342 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2343 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
nf_conntrack_put(struct nf_conntrack * nfct)2344 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2345 {
2346 	if (nfct && atomic_dec_and_test(&nfct->use))
2347 		nf_conntrack_destroy(nfct);
2348 }
nf_conntrack_get(struct nf_conntrack * nfct)2349 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2350 {
2351 	if (nfct)
2352 		atomic_inc(&nfct->use);
2353 }
2354 #endif
2355 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
nf_conntrack_get_reasm(struct sk_buff * skb)2356 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2357 {
2358 	if (skb)
2359 		atomic_inc(&skb->users);
2360 }
nf_conntrack_put_reasm(struct sk_buff * skb)2361 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2362 {
2363 	if (skb)
2364 		kfree_skb(skb);
2365 }
2366 #endif
2367 #ifdef CONFIG_BRIDGE_NETFILTER
nf_bridge_put(struct nf_bridge_info * nf_bridge)2368 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2369 {
2370 	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2371 		kfree(nf_bridge);
2372 }
nf_bridge_get(struct nf_bridge_info * nf_bridge)2373 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2374 {
2375 	if (nf_bridge)
2376 		atomic_inc(&nf_bridge->use);
2377 }
2378 #endif /* CONFIG_BRIDGE_NETFILTER */
nf_reset(struct sk_buff * skb)2379 static inline void nf_reset(struct sk_buff *skb)
2380 {
2381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2382 	nf_conntrack_put(skb->nfct);
2383 	skb->nfct = NULL;
2384 #endif
2385 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2386 	nf_conntrack_put_reasm(skb->nfct_reasm);
2387 	skb->nfct_reasm = NULL;
2388 #endif
2389 #ifdef CONFIG_BRIDGE_NETFILTER
2390 	nf_bridge_put(skb->nf_bridge);
2391 	skb->nf_bridge = NULL;
2392 #endif
2393 }
2394 
nf_reset_trace(struct sk_buff * skb)2395 static inline void nf_reset_trace(struct sk_buff *skb)
2396 {
2397 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2398 	skb->nf_trace = 0;
2399 #endif
2400 }
2401 
2402 /* Note: This doesn't put any conntrack and bridge info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src)2403 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2404 {
2405 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2406 	dst->nfct = src->nfct;
2407 	nf_conntrack_get(src->nfct);
2408 	dst->nfctinfo = src->nfctinfo;
2409 #endif
2410 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2411 	dst->nfct_reasm = src->nfct_reasm;
2412 	nf_conntrack_get_reasm(src->nfct_reasm);
2413 #endif
2414 #ifdef CONFIG_BRIDGE_NETFILTER
2415 	dst->nf_bridge  = src->nf_bridge;
2416 	nf_bridge_get(src->nf_bridge);
2417 #endif
2418 }
2419 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)2420 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2421 {
2422 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2423 	nf_conntrack_put(dst->nfct);
2424 #endif
2425 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2426 	nf_conntrack_put_reasm(dst->nfct_reasm);
2427 #endif
2428 #ifdef CONFIG_BRIDGE_NETFILTER
2429 	nf_bridge_put(dst->nf_bridge);
2430 #endif
2431 	__nf_copy(dst, src);
2432 }
2433 
2434 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2435 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2436 {
2437 	to->secmark = from->secmark;
2438 }
2439 
skb_init_secmark(struct sk_buff * skb)2440 static inline void skb_init_secmark(struct sk_buff *skb)
2441 {
2442 	skb->secmark = 0;
2443 }
2444 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)2445 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2446 { }
2447 
skb_init_secmark(struct sk_buff * skb)2448 static inline void skb_init_secmark(struct sk_buff *skb)
2449 { }
2450 #endif
2451 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)2452 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2453 {
2454 	skb->queue_mapping = queue_mapping;
2455 }
2456 
skb_get_queue_mapping(const struct sk_buff * skb)2457 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2458 {
2459 	return skb->queue_mapping;
2460 }
2461 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)2462 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2463 {
2464 	to->queue_mapping = from->queue_mapping;
2465 }
2466 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)2467 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2468 {
2469 	skb->queue_mapping = rx_queue + 1;
2470 }
2471 
skb_get_rx_queue(const struct sk_buff * skb)2472 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2473 {
2474 	return skb->queue_mapping - 1;
2475 }
2476 
skb_rx_queue_recorded(const struct sk_buff * skb)2477 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2478 {
2479 	return skb->queue_mapping != 0;
2480 }
2481 
2482 extern u16 __skb_tx_hash(const struct net_device *dev,
2483 			 const struct sk_buff *skb,
2484 			 unsigned int num_tx_queues);
2485 
2486 #ifdef CONFIG_XFRM
skb_sec_path(struct sk_buff * skb)2487 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2488 {
2489 	return skb->sp;
2490 }
2491 #else
skb_sec_path(struct sk_buff * skb)2492 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2493 {
2494 	return NULL;
2495 }
2496 #endif
2497 
skb_is_gso(const struct sk_buff * skb)2498 static inline bool skb_is_gso(const struct sk_buff *skb)
2499 {
2500 	return skb_shinfo(skb)->gso_size;
2501 }
2502 
skb_is_gso_v6(const struct sk_buff * skb)2503 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2504 {
2505 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2506 }
2507 
2508 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2509 
skb_warn_if_lro(const struct sk_buff * skb)2510 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2511 {
2512 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
2513 	 * wanted then gso_type will be set. */
2514 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2515 
2516 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2517 	    unlikely(shinfo->gso_type == 0)) {
2518 		__skb_warn_lro_forwarding(skb);
2519 		return true;
2520 	}
2521 	return false;
2522 }
2523 
skb_forward_csum(struct sk_buff * skb)2524 static inline void skb_forward_csum(struct sk_buff *skb)
2525 {
2526 	/* Unfortunately we don't support this one.  Any brave souls? */
2527 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2528 		skb->ip_summed = CHECKSUM_NONE;
2529 }
2530 
2531 /**
2532  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2533  * @skb: skb to check
2534  *
2535  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2536  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2537  * use this helper, to document places where we make this assertion.
2538  */
skb_checksum_none_assert(const struct sk_buff * skb)2539 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2540 {
2541 #ifdef DEBUG
2542 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2543 #endif
2544 }
2545 
2546 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2547 
skb_is_recycleable(const struct sk_buff * skb,int skb_size)2548 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2549 {
2550 	if (irqs_disabled())
2551 		return false;
2552 
2553 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2554 		return false;
2555 
2556 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2557 		return false;
2558 
2559 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2560 	if (skb_end_pointer(skb) - skb->head < skb_size)
2561 		return false;
2562 
2563 	if (skb_shared(skb) || skb_cloned(skb))
2564 		return false;
2565 
2566 	return true;
2567 }
2568 #endif	/* __KERNEL__ */
2569 #endif	/* _LINUX_SKBUFF_H */
2570