• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 #include <asm/param.h>		/* for timeouts in units of HZ */
43 
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46 
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50 
51 /*
52  *  Needed function prototypes.
53  */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir(struct sym_hcb *);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62 
63 /*
64  *  Print a buffer in hexadecimal format with a ".\n" at end.
65  */
sym_printl_hex(u_char * p,int n)66 static void sym_printl_hex(u_char *p, int n)
67 {
68 	while (n-- > 0)
69 		printf (" %x", *p++);
70 	printf (".\n");
71 }
72 
sym_print_msg(struct sym_ccb * cp,char * label,u_char * msg)73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74 {
75 	sym_print_addr(cp->cmd, "%s: ", label);
76 
77 	spi_print_msg(msg);
78 	printf("\n");
79 }
80 
sym_print_nego_msg(struct sym_hcb * np,int target,char * label,u_char * msg)81 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
82 {
83 	struct sym_tcb *tp = &np->target[target];
84 	dev_info(&tp->starget->dev, "%s: ", label);
85 
86 	spi_print_msg(msg);
87 	printf("\n");
88 }
89 
90 /*
91  *  Print something that tells about extended errors.
92  */
sym_print_xerr(struct scsi_cmnd * cmd,int x_status)93 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
94 {
95 	if (x_status & XE_PARITY_ERR) {
96 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
97 	}
98 	if (x_status & XE_EXTRA_DATA) {
99 		sym_print_addr(cmd, "extraneous data discarded.\n");
100 	}
101 	if (x_status & XE_BAD_PHASE) {
102 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
103 	}
104 	if (x_status & XE_SODL_UNRUN) {
105 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
106 	}
107 	if (x_status & XE_SWIDE_OVRUN) {
108 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
109 	}
110 }
111 
112 /*
113  *  Return a string for SCSI BUS mode.
114  */
sym_scsi_bus_mode(int mode)115 static char *sym_scsi_bus_mode(int mode)
116 {
117 	switch(mode) {
118 	case SMODE_HVD:	return "HVD";
119 	case SMODE_SE:	return "SE";
120 	case SMODE_LVD: return "LVD";
121 	}
122 	return "??";
123 }
124 
125 /*
126  *  Soft reset the chip.
127  *
128  *  Raising SRST when the chip is running may cause
129  *  problems on dual function chips (see below).
130  *  On the other hand, LVD devices need some delay
131  *  to settle and report actual BUS mode in STEST4.
132  */
sym_chip_reset(struct sym_hcb * np)133 static void sym_chip_reset (struct sym_hcb *np)
134 {
135 	OUTB(np, nc_istat, SRST);
136 	INB(np, nc_mbox1);
137 	udelay(10);
138 	OUTB(np, nc_istat, 0);
139 	INB(np, nc_mbox1);
140 	udelay(2000);	/* For BUS MODE to settle */
141 }
142 
143 /*
144  *  Really soft reset the chip.:)
145  *
146  *  Some 896 and 876 chip revisions may hang-up if we set
147  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
148  *  are running.
149  *  So, we need to abort the current operation prior to
150  *  soft resetting the chip.
151  */
sym_soft_reset(struct sym_hcb * np)152 static void sym_soft_reset (struct sym_hcb *np)
153 {
154 	u_char istat = 0;
155 	int i;
156 
157 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
158 		goto do_chip_reset;
159 
160 	OUTB(np, nc_istat, CABRT);
161 	for (i = 100000 ; i ; --i) {
162 		istat = INB(np, nc_istat);
163 		if (istat & SIP) {
164 			INW(np, nc_sist);
165 		}
166 		else if (istat & DIP) {
167 			if (INB(np, nc_dstat) & ABRT)
168 				break;
169 		}
170 		udelay(5);
171 	}
172 	OUTB(np, nc_istat, 0);
173 	if (!i)
174 		printf("%s: unable to abort current chip operation, "
175 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
176 do_chip_reset:
177 	sym_chip_reset(np);
178 }
179 
180 /*
181  *  Start reset process.
182  *
183  *  The interrupt handler will reinitialize the chip.
184  */
sym_start_reset(struct sym_hcb * np)185 static void sym_start_reset(struct sym_hcb *np)
186 {
187 	sym_reset_scsi_bus(np, 1);
188 }
189 
sym_reset_scsi_bus(struct sym_hcb * np,int enab_int)190 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
191 {
192 	u32 term;
193 	int retv = 0;
194 
195 	sym_soft_reset(np);	/* Soft reset the chip */
196 	if (enab_int)
197 		OUTW(np, nc_sien, RST);
198 	/*
199 	 *  Enable Tolerant, reset IRQD if present and
200 	 *  properly set IRQ mode, prior to resetting the bus.
201 	 */
202 	OUTB(np, nc_stest3, TE);
203 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
204 	OUTB(np, nc_scntl1, CRST);
205 	INB(np, nc_mbox1);
206 	udelay(200);
207 
208 	if (!SYM_SETUP_SCSI_BUS_CHECK)
209 		goto out;
210 	/*
211 	 *  Check for no terminators or SCSI bus shorts to ground.
212 	 *  Read SCSI data bus, data parity bits and control signals.
213 	 *  We are expecting RESET to be TRUE and other signals to be
214 	 *  FALSE.
215 	 */
216 	term =	INB(np, nc_sstat0);
217 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
218 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
219 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
220 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
221 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
222 
223 	if (!np->maxwide)
224 		term &= 0x3ffff;
225 
226 	if (term != (2<<7)) {
227 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
228 			sym_name(np));
229 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
230 			"0x%lx, expecting 0x%lx\n",
231 			sym_name(np),
232 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
233 			(u_long)term, (u_long)(2<<7));
234 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
235 			retv = 1;
236 	}
237 out:
238 	OUTB(np, nc_scntl1, 0);
239 	return retv;
240 }
241 
242 /*
243  *  Select SCSI clock frequency
244  */
sym_selectclock(struct sym_hcb * np,u_char scntl3)245 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
246 {
247 	/*
248 	 *  If multiplier not present or not selected, leave here.
249 	 */
250 	if (np->multiplier <= 1) {
251 		OUTB(np, nc_scntl3, scntl3);
252 		return;
253 	}
254 
255 	if (sym_verbose >= 2)
256 		printf ("%s: enabling clock multiplier\n", sym_name(np));
257 
258 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
259 	/*
260 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
261 	 *  Otherwise wait 50 micro-seconds (at least).
262 	 */
263 	if (np->features & FE_LCKFRQ) {
264 		int i = 20;
265 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
266 			udelay(20);
267 		if (!i)
268 			printf("%s: the chip cannot lock the frequency\n",
269 				sym_name(np));
270 	} else {
271 		INB(np, nc_mbox1);
272 		udelay(50+10);
273 	}
274 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
275 	OUTB(np, nc_scntl3, scntl3);
276 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
277 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
278 }
279 
280 
281 /*
282  *  Determine the chip's clock frequency.
283  *
284  *  This is essential for the negotiation of the synchronous
285  *  transfer rate.
286  *
287  *  Note: we have to return the correct value.
288  *  THERE IS NO SAFE DEFAULT VALUE.
289  *
290  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
291  *  53C860 and 53C875 rev. 1 support fast20 transfers but
292  *  do not have a clock doubler and so are provided with a
293  *  80 MHz clock. All other fast20 boards incorporate a doubler
294  *  and so should be delivered with a 40 MHz clock.
295  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
296  *  clock and provide a clock quadrupler (160 Mhz).
297  */
298 
299 /*
300  *  calculate SCSI clock frequency (in KHz)
301  */
getfreq(struct sym_hcb * np,int gen)302 static unsigned getfreq (struct sym_hcb *np, int gen)
303 {
304 	unsigned int ms = 0;
305 	unsigned int f;
306 
307 	/*
308 	 * Measure GEN timer delay in order
309 	 * to calculate SCSI clock frequency
310 	 *
311 	 * This code will never execute too
312 	 * many loop iterations (if DELAY is
313 	 * reasonably correct). It could get
314 	 * too low a delay (too high a freq.)
315 	 * if the CPU is slow executing the
316 	 * loop for some reason (an NMI, for
317 	 * example). For this reason we will
318 	 * if multiple measurements are to be
319 	 * performed trust the higher delay
320 	 * (lower frequency returned).
321 	 */
322 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
323 	INW(np, nc_sist);	/* clear pending scsi interrupt */
324 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
325 	INW(np, nc_sist);	/* another one, just to be sure :) */
326 	/*
327 	 * The C1010-33 core does not report GEN in SIST,
328 	 * if this interrupt is masked in SIEN.
329 	 * I don't know yet if the C1010-66 behaves the same way.
330 	 */
331 	if (np->features & FE_C10) {
332 		OUTW(np, nc_sien, GEN);
333 		OUTB(np, nc_istat1, SIRQD);
334 	}
335 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
336 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
337 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
338 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
339 		udelay(1000/4);    /* count in 1/4 of ms */
340 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
341 	/*
342 	 * Undo C1010-33 specific settings.
343 	 */
344 	if (np->features & FE_C10) {
345 		OUTW(np, nc_sien, 0);
346 		OUTB(np, nc_istat1, 0);
347 	}
348  	/*
349  	 * set prescaler to divide by whatever 0 means
350  	 * 0 ought to choose divide by 2, but appears
351  	 * to set divide by 3.5 mode in my 53c810 ...
352  	 */
353  	OUTB(np, nc_scntl3, 0);
354 
355   	/*
356  	 * adjust for prescaler, and convert into KHz
357   	 */
358 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
359 
360 	/*
361 	 * The C1010-33 result is biased by a factor
362 	 * of 2/3 compared to earlier chips.
363 	 */
364 	if (np->features & FE_C10)
365 		f = (f * 2) / 3;
366 
367 	if (sym_verbose >= 2)
368 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
369 			sym_name(np), gen, ms/4, f);
370 
371 	return f;
372 }
373 
sym_getfreq(struct sym_hcb * np)374 static unsigned sym_getfreq (struct sym_hcb *np)
375 {
376 	u_int f1, f2;
377 	int gen = 8;
378 
379 	getfreq (np, gen);	/* throw away first result */
380 	f1 = getfreq (np, gen);
381 	f2 = getfreq (np, gen);
382 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
383 	return f1;
384 }
385 
386 /*
387  *  Get/probe chip SCSI clock frequency
388  */
sym_getclock(struct sym_hcb * np,int mult)389 static void sym_getclock (struct sym_hcb *np, int mult)
390 {
391 	unsigned char scntl3 = np->sv_scntl3;
392 	unsigned char stest1 = np->sv_stest1;
393 	unsigned f1;
394 
395 	np->multiplier = 1;
396 	f1 = 40000;
397 	/*
398 	 *  True with 875/895/896/895A with clock multiplier selected
399 	 */
400 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
401 		if (sym_verbose >= 2)
402 			printf ("%s: clock multiplier found\n", sym_name(np));
403 		np->multiplier = mult;
404 	}
405 
406 	/*
407 	 *  If multiplier not found or scntl3 not 7,5,3,
408 	 *  reset chip and get frequency from general purpose timer.
409 	 *  Otherwise trust scntl3 BIOS setting.
410 	 */
411 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
412 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
413 		f1 = sym_getfreq (np);
414 
415 		if (sym_verbose)
416 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
417 
418 		if	(f1 <	45000)		f1 =  40000;
419 		else if (f1 <	55000)		f1 =  50000;
420 		else				f1 =  80000;
421 
422 		if (f1 < 80000 && mult > 1) {
423 			if (sym_verbose >= 2)
424 				printf ("%s: clock multiplier assumed\n",
425 					sym_name(np));
426 			np->multiplier	= mult;
427 		}
428 	} else {
429 		if	((scntl3 & 7) == 3)	f1 =  40000;
430 		else if	((scntl3 & 7) == 5)	f1 =  80000;
431 		else 				f1 = 160000;
432 
433 		f1 /= np->multiplier;
434 	}
435 
436 	/*
437 	 *  Compute controller synchronous parameters.
438 	 */
439 	f1		*= np->multiplier;
440 	np->clock_khz	= f1;
441 }
442 
443 /*
444  *  Get/probe PCI clock frequency
445  */
sym_getpciclock(struct sym_hcb * np)446 static int sym_getpciclock (struct sym_hcb *np)
447 {
448 	int f = 0;
449 
450 	/*
451 	 *  For now, we only need to know about the actual
452 	 *  PCI BUS clock frequency for C1010-66 chips.
453 	 */
454 #if 1
455 	if (np->features & FE_66MHZ) {
456 #else
457 	if (1) {
458 #endif
459 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
460 		f = sym_getfreq(np);
461 		OUTB(np, nc_stest1, 0);
462 	}
463 	np->pciclk_khz = f;
464 
465 	return f;
466 }
467 
468 /*
469  *  SYMBIOS chip clock divisor table.
470  *
471  *  Divisors are multiplied by 10,000,000 in order to make
472  *  calculations more simple.
473  */
474 #define _5M 5000000
475 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
476 
477 /*
478  *  Get clock factor and sync divisor for a given
479  *  synchronous factor period.
480  */
481 static int
482 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
483 {
484 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
485 	int	div = np->clock_divn;	/* Number of divisors supported	*/
486 	u32	fak;			/* Sync factor in sxfer		*/
487 	u32	per;			/* Period in tenths of ns	*/
488 	u32	kpc;			/* (per * clk)			*/
489 	int	ret;
490 
491 	/*
492 	 *  Compute the synchronous period in tenths of nano-seconds
493 	 */
494 	if (dt && sfac <= 9)	per = 125;
495 	else if	(sfac <= 10)	per = 250;
496 	else if	(sfac == 11)	per = 303;
497 	else if	(sfac == 12)	per = 500;
498 	else			per = 40 * sfac;
499 	ret = per;
500 
501 	kpc = per * clk;
502 	if (dt)
503 		kpc <<= 1;
504 
505 	/*
506 	 *  For earliest C10 revision 0, we cannot use extra
507 	 *  clocks for the setting of the SCSI clocking.
508 	 *  Note that this limits the lowest sync data transfer
509 	 *  to 5 Mega-transfers per second and may result in
510 	 *  using higher clock divisors.
511 	 */
512 #if 1
513 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
514 		/*
515 		 *  Look for the lowest clock divisor that allows an
516 		 *  output speed not faster than the period.
517 		 */
518 		while (div > 0) {
519 			--div;
520 			if (kpc > (div_10M[div] << 2)) {
521 				++div;
522 				break;
523 			}
524 		}
525 		fak = 0;			/* No extra clocks */
526 		if (div == np->clock_divn) {	/* Are we too fast ? */
527 			ret = -1;
528 		}
529 		*divp = div;
530 		*fakp = fak;
531 		return ret;
532 	}
533 #endif
534 
535 	/*
536 	 *  Look for the greatest clock divisor that allows an
537 	 *  input speed faster than the period.
538 	 */
539 	while (div-- > 0)
540 		if (kpc >= (div_10M[div] << 2)) break;
541 
542 	/*
543 	 *  Calculate the lowest clock factor that allows an output
544 	 *  speed not faster than the period, and the max output speed.
545 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
546 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
547 	 */
548 	if (dt) {
549 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
550 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
551 	} else {
552 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
553 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
554 	}
555 
556 	/*
557 	 *  Check against our hardware limits, or bugs :).
558 	 */
559 	if (fak > 2) {
560 		fak = 2;
561 		ret = -1;
562 	}
563 
564 	/*
565 	 *  Compute and return sync parameters.
566 	 */
567 	*divp = div;
568 	*fakp = fak;
569 
570 	return ret;
571 }
572 
573 /*
574  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
575  *  128 transfers. All chips support at least 16 transfers
576  *  bursts. The 825A, 875 and 895 chips support bursts of up
577  *  to 128 transfers and the 895A and 896 support bursts of up
578  *  to 64 transfers. All other chips support up to 16
579  *  transfers bursts.
580  *
581  *  For PCI 32 bit data transfers each transfer is a DWORD.
582  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
583  *
584  *  We use log base 2 (burst length) as internal code, with
585  *  value 0 meaning "burst disabled".
586  */
587 
588 /*
589  *  Burst length from burst code.
590  */
591 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
592 
593 /*
594  *  Burst code from io register bits.
595  */
596 #define burst_code(dmode, ctest4, ctest5) \
597 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
598 
599 /*
600  *  Set initial io register bits from burst code.
601  */
602 static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
603 {
604 	np->rv_ctest4	&= ~0x80;
605 	np->rv_dmode	&= ~(0x3 << 6);
606 	np->rv_ctest5	&= ~0x4;
607 
608 	if (!bc) {
609 		np->rv_ctest4	|= 0x80;
610 	}
611 	else {
612 		--bc;
613 		np->rv_dmode	|= ((bc & 0x3) << 6);
614 		np->rv_ctest5	|= (bc & 0x4);
615 	}
616 }
617 
618 /*
619  *  Save initial settings of some IO registers.
620  *  Assumed to have been set by BIOS.
621  *  We cannot reset the chip prior to reading the
622  *  IO registers, since informations will be lost.
623  *  Since the SCRIPTS processor may be running, this
624  *  is not safe on paper, but it seems to work quite
625  *  well. :)
626  */
627 static void sym_save_initial_setting (struct sym_hcb *np)
628 {
629 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
630 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
631 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
632 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
633 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
634 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
635 	np->sv_gpcntl	= INB(np, nc_gpcntl);
636 	np->sv_stest1	= INB(np, nc_stest1);
637 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
638 	np->sv_stest4	= INB(np, nc_stest4);
639 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
640 		np->sv_scntl4	= INB(np, nc_scntl4);
641 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
642 	}
643 	else
644 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
645 }
646 
647 /*
648  *  Set SCSI BUS mode.
649  *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
650  *    through the STEST4 IO register.
651  *  - For previous generation chips (825/825A/875), the user has to tell us
652  *    how to check against HVD, since a 100% safe algorithm is not possible.
653  */
654 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
655 {
656 	if (np->scsi_mode)
657 		return;
658 
659 	np->scsi_mode = SMODE_SE;
660 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
661 		np->scsi_mode = (np->sv_stest4 & SMODE);
662 	else if	(np->features & FE_DIFF) {
663 		if (SYM_SETUP_SCSI_DIFF == 1) {
664 			if (np->sv_scntl3) {
665 				if (np->sv_stest2 & 0x20)
666 					np->scsi_mode = SMODE_HVD;
667 			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
668 				if (!(INB(np, nc_gpreg) & 0x08))
669 					np->scsi_mode = SMODE_HVD;
670 			}
671 		} else if (SYM_SETUP_SCSI_DIFF == 2)
672 			np->scsi_mode = SMODE_HVD;
673 	}
674 	if (np->scsi_mode == SMODE_HVD)
675 		np->rv_stest2 |= 0x20;
676 }
677 
678 /*
679  *  Prepare io register values used by sym_start_up()
680  *  according to selected and supported features.
681  */
682 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
683 {
684 	struct sym_data *sym_data = shost_priv(shost);
685 	struct pci_dev *pdev = sym_data->pdev;
686 	u_char	burst_max;
687 	u32	period;
688 	int i;
689 
690 	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
691 
692 	/*
693 	 *  Guess the frequency of the chip's clock.
694 	 */
695 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
696 		np->clock_khz = 160000;
697 	else if	(np->features & FE_ULTRA)
698 		np->clock_khz = 80000;
699 	else
700 		np->clock_khz = 40000;
701 
702 	/*
703 	 *  Get the clock multiplier factor.
704  	 */
705 	if	(np->features & FE_QUAD)
706 		np->multiplier	= 4;
707 	else if	(np->features & FE_DBLR)
708 		np->multiplier	= 2;
709 	else
710 		np->multiplier	= 1;
711 
712 	/*
713 	 *  Measure SCSI clock frequency for chips
714 	 *  it may vary from assumed one.
715 	 */
716 	if (np->features & FE_VARCLK)
717 		sym_getclock(np, np->multiplier);
718 
719 	/*
720 	 * Divisor to be used for async (timer pre-scaler).
721 	 */
722 	i = np->clock_divn - 1;
723 	while (--i >= 0) {
724 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
725 			++i;
726 			break;
727 		}
728 	}
729 	np->rv_scntl3 = i+1;
730 
731 	/*
732 	 * The C1010 uses hardwired divisors for async.
733 	 * So, we just throw away, the async. divisor.:-)
734 	 */
735 	if (np->features & FE_C10)
736 		np->rv_scntl3 = 0;
737 
738 	/*
739 	 * Minimum synchronous period factor supported by the chip.
740 	 * Btw, 'period' is in tenths of nanoseconds.
741 	 */
742 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
743 
744 	if	(period <= 250)		np->minsync = 10;
745 	else if	(period <= 303)		np->minsync = 11;
746 	else if	(period <= 500)		np->minsync = 12;
747 	else				np->minsync = (period + 40 - 1) / 40;
748 
749 	/*
750 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
751 	 */
752 	if	(np->minsync < 25 &&
753 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
754 		np->minsync = 25;
755 	else if	(np->minsync < 12 &&
756 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
757 		np->minsync = 12;
758 
759 	/*
760 	 * Maximum synchronous period factor supported by the chip.
761 	 */
762 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
763 	np->maxsync = period > 2540 ? 254 : period / 10;
764 
765 	/*
766 	 * If chip is a C1010, guess the sync limits in DT mode.
767 	 */
768 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
769 		if (np->clock_khz == 160000) {
770 			np->minsync_dt = 9;
771 			np->maxsync_dt = 50;
772 			np->maxoffs_dt = nvram->type ? 62 : 31;
773 		}
774 	}
775 
776 	/*
777 	 *  64 bit addressing  (895A/896/1010) ?
778 	 */
779 	if (np->features & FE_DAC) {
780 		if (!use_dac(np))
781 			np->rv_ccntl1 |= (DDAC);
782 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
783 			np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
784 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
785 			np->rv_ccntl1 |= (0 | EXTIBMV);
786 	}
787 
788 	/*
789 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
790   	 */
791 	if (np->features & FE_NOPM)
792 		np->rv_ccntl0	|= (ENPMJ);
793 
794  	/*
795 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
796 	 *  In dual channel mode, contention occurs if internal cycles
797 	 *  are used. Disable internal cycles.
798 	 */
799 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
800 	    pdev->revision < 0x1)
801 		np->rv_ccntl0	|=  DILS;
802 
803 	/*
804 	 *  Select burst length (dwords)
805 	 */
806 	burst_max	= SYM_SETUP_BURST_ORDER;
807 	if (burst_max == 255)
808 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
809 				       np->sv_ctest5);
810 	if (burst_max > 7)
811 		burst_max = 7;
812 	if (burst_max > np->maxburst)
813 		burst_max = np->maxburst;
814 
815 	/*
816 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
817 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
818 	 *  based transactions on LOAD/STORE instructions. So we have
819 	 *  to prevent these chips from using such PCI transactions in
820 	 *  this driver. The generic ncr driver that does not use
821 	 *  LOAD/STORE instructions does not need this work-around.
822 	 */
823 	if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
824 	     pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
825 	    (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
826 	     pdev->revision <= 0x1))
827 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
828 
829 	/*
830 	 *  Select all supported special features.
831 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
832 	 *  does not help, but burst op fetch (BOF) does.
833 	 *  Disabling PFEN makes sure BOF will be used.
834 	 */
835 	if (np->features & FE_ERL)
836 		np->rv_dmode	|= ERL;		/* Enable Read Line */
837 	if (np->features & FE_BOF)
838 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
839 	if (np->features & FE_ERMP)
840 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
841 #if 1
842 	if ((np->features & FE_PFEN) && !np->ram_ba)
843 #else
844 	if (np->features & FE_PFEN)
845 #endif
846 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
847 	if (np->features & FE_CLSE)
848 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
849 	if (np->features & FE_WRIE)
850 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
851 	if (np->features & FE_DFS)
852 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
853 
854 	/*
855 	 *  Select some other
856 	 */
857 	np->rv_ctest4	|= MPEE; /* Master parity checking */
858 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
859 
860 	/*
861 	 *  Get parity checking, host ID and verbose mode from NVRAM
862 	 */
863 	np->myaddr = 255;
864 	np->scsi_mode = 0;
865 	sym_nvram_setup_host(shost, np, nvram);
866 
867 	/*
868 	 *  Get SCSI addr of host adapter (set by bios?).
869 	 */
870 	if (np->myaddr == 255) {
871 		np->myaddr = INB(np, nc_scid) & 0x07;
872 		if (!np->myaddr)
873 			np->myaddr = SYM_SETUP_HOST_ID;
874 	}
875 
876 	/*
877 	 *  Prepare initial io register bits for burst length
878 	 */
879 	sym_init_burst(np, burst_max);
880 
881 	sym_set_bus_mode(np, nvram);
882 
883 	/*
884 	 *  Set LED support from SCRIPTS.
885 	 *  Ignore this feature for boards known to use a
886 	 *  specific GPIO wiring and for the 895A, 896
887 	 *  and 1010 that drive the LED directly.
888 	 */
889 	if ((SYM_SETUP_SCSI_LED ||
890 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
891 	      (nvram->type == SYM_TEKRAM_NVRAM &&
892 	       pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
893 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
894 		np->features |= FE_LED0;
895 
896 	/*
897 	 *  Set irq mode.
898 	 */
899 	switch(SYM_SETUP_IRQ_MODE & 3) {
900 	case 2:
901 		np->rv_dcntl	|= IRQM;
902 		break;
903 	case 1:
904 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
905 		break;
906 	default:
907 		break;
908 	}
909 
910 	/*
911 	 *  Configure targets according to driver setup.
912 	 *  If NVRAM present get targets setup from NVRAM.
913 	 */
914 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
915 		struct sym_tcb *tp = &np->target[i];
916 
917 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
918 		tp->usrtags = SYM_SETUP_MAX_TAG;
919 		tp->usr_width = np->maxwide;
920 		tp->usr_period = 9;
921 
922 		sym_nvram_setup_target(tp, i, nvram);
923 
924 		if (!tp->usrtags)
925 			tp->usrflags &= ~SYM_TAGS_ENABLED;
926 	}
927 
928 	/*
929 	 *  Let user know about the settings.
930 	 */
931 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
932 		sym_nvram_type(nvram), np->myaddr,
933 		(np->features & FE_ULTRA3) ? 80 :
934 		(np->features & FE_ULTRA2) ? 40 :
935 		(np->features & FE_ULTRA)  ? 20 : 10,
936 		sym_scsi_bus_mode(np->scsi_mode),
937 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
938 	/*
939 	 *  Tell him more on demand.
940 	 */
941 	if (sym_verbose) {
942 		printf("%s: %s IRQ line driver%s\n",
943 			sym_name(np),
944 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
945 			np->ram_ba ? ", using on-chip SRAM" : "");
946 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
947 		if (np->features & FE_NOPM)
948 			printf("%s: handling phase mismatch from SCRIPTS.\n",
949 			       sym_name(np));
950 	}
951 	/*
952 	 *  And still more.
953 	 */
954 	if (sym_verbose >= 2) {
955 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
956 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
957 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
958 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
959 
960 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
961 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
962 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
963 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
964 	}
965 
966 	return 0;
967 }
968 
969 /*
970  *  Test the pci bus snoop logic :-(
971  *
972  *  Has to be called with interrupts disabled.
973  */
974 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
975 static int sym_regtest(struct sym_hcb *np)
976 {
977 	register volatile u32 data;
978 	/*
979 	 *  chip registers may NOT be cached.
980 	 *  write 0xffffffff to a read only register area,
981 	 *  and try to read it back.
982 	 */
983 	data = 0xffffffff;
984 	OUTL(np, nc_dstat, data);
985 	data = INL(np, nc_dstat);
986 #if 1
987 	if (data == 0xffffffff) {
988 #else
989 	if ((data & 0xe2f0fffd) != 0x02000080) {
990 #endif
991 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
992 			(unsigned) data);
993 		return 0x10;
994 	}
995 	return 0;
996 }
997 #else
998 static inline int sym_regtest(struct sym_hcb *np)
999 {
1000 	return 0;
1001 }
1002 #endif
1003 
1004 static int sym_snooptest(struct sym_hcb *np)
1005 {
1006 	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1007 	int i, err;
1008 
1009 	err = sym_regtest(np);
1010 	if (err)
1011 		return err;
1012 restart_test:
1013 	/*
1014 	 *  Enable Master Parity Checking as we intend
1015 	 *  to enable it for normal operations.
1016 	 */
1017 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1018 	/*
1019 	 *  init
1020 	 */
1021 	pc  = SCRIPTZ_BA(np, snooptest);
1022 	host_wr = 1;
1023 	sym_wr  = 2;
1024 	/*
1025 	 *  Set memory and register.
1026 	 */
1027 	np->scratch = cpu_to_scr(host_wr);
1028 	OUTL(np, nc_temp, sym_wr);
1029 	/*
1030 	 *  Start script (exchange values)
1031 	 */
1032 	OUTL(np, nc_dsa, np->hcb_ba);
1033 	OUTL_DSP(np, pc);
1034 	/*
1035 	 *  Wait 'til done (with timeout)
1036 	 */
1037 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1038 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1039 			break;
1040 	if (i>=SYM_SNOOP_TIMEOUT) {
1041 		printf ("CACHE TEST FAILED: timeout.\n");
1042 		return (0x20);
1043 	}
1044 	/*
1045 	 *  Check for fatal DMA errors.
1046 	 */
1047 	dstat = INB(np, nc_dstat);
1048 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1049 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1050 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1051 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1052 			sym_name(np));
1053 		np->rv_ctest4 &= ~MPEE;
1054 		goto restart_test;
1055 	}
1056 #endif
1057 	if (dstat & (MDPE|BF|IID)) {
1058 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1059 		return (0x80);
1060 	}
1061 	/*
1062 	 *  Save termination position.
1063 	 */
1064 	pc = INL(np, nc_dsp);
1065 	/*
1066 	 *  Read memory and register.
1067 	 */
1068 	host_rd = scr_to_cpu(np->scratch);
1069 	sym_rd  = INL(np, nc_scratcha);
1070 	sym_bk  = INL(np, nc_temp);
1071 	/*
1072 	 *  Check termination position.
1073 	 */
1074 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1075 		printf ("CACHE TEST FAILED: script execution failed.\n");
1076 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1077 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1078 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1079 		return (0x40);
1080 	}
1081 	/*
1082 	 *  Show results.
1083 	 */
1084 	if (host_wr != sym_rd) {
1085 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1086 			(int) host_wr, (int) sym_rd);
1087 		err |= 1;
1088 	}
1089 	if (host_rd != sym_wr) {
1090 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1091 			(int) sym_wr, (int) host_rd);
1092 		err |= 2;
1093 	}
1094 	if (sym_bk != sym_wr) {
1095 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1096 			(int) sym_wr, (int) sym_bk);
1097 		err |= 4;
1098 	}
1099 
1100 	return err;
1101 }
1102 
1103 /*
1104  *  log message for real hard errors
1105  *
1106  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1107  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1108  *
1109  *  exception register:
1110  *  	ds:	dstat
1111  *  	si:	sist
1112  *
1113  *  SCSI bus lines:
1114  *  	so:	control lines as driven by chip.
1115  *  	si:	control lines as seen by chip.
1116  *  	sd:	scsi data lines as seen by chip.
1117  *
1118  *  wide/fastmode:
1119  *  	sx:	sxfer  (see the manual)
1120  *  	s3:	scntl3 (see the manual)
1121  *  	s4:	scntl4 (see the manual)
1122  *
1123  *  current script command:
1124  *  	dsp:	script address (relative to start of script).
1125  *  	dbc:	first word of script command.
1126  *
1127  *  First 24 register of the chip:
1128  *  	r0..rf
1129  */
1130 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1131 {
1132 	struct sym_hcb *np = sym_get_hcb(shost);
1133 	u32	dsp;
1134 	int	script_ofs;
1135 	int	script_size;
1136 	char	*script_name;
1137 	u_char	*script_base;
1138 	int	i;
1139 
1140 	dsp	= INL(np, nc_dsp);
1141 
1142 	if	(dsp > np->scripta_ba &&
1143 		 dsp <= np->scripta_ba + np->scripta_sz) {
1144 		script_ofs	= dsp - np->scripta_ba;
1145 		script_size	= np->scripta_sz;
1146 		script_base	= (u_char *) np->scripta0;
1147 		script_name	= "scripta";
1148 	}
1149 	else if (np->scriptb_ba < dsp &&
1150 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1151 		script_ofs	= dsp - np->scriptb_ba;
1152 		script_size	= np->scriptb_sz;
1153 		script_base	= (u_char *) np->scriptb0;
1154 		script_name	= "scriptb";
1155 	} else {
1156 		script_ofs	= dsp;
1157 		script_size	= 0;
1158 		script_base	= NULL;
1159 		script_name	= "mem";
1160 	}
1161 
1162 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1163 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1164 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1165 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1166 		(unsigned)INB(np, nc_scntl3),
1167 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1168 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1169 
1170 	if (((script_ofs & 3) == 0) &&
1171 	    (unsigned)script_ofs < script_size) {
1172 		printf ("%s: script cmd = %08x\n", sym_name(np),
1173 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1174 	}
1175 
1176 	printf("%s: regdump:", sym_name(np));
1177 	for (i = 0; i < 24; i++)
1178 		printf(" %02x", (unsigned)INB_OFF(np, i));
1179 	printf(".\n");
1180 
1181 	/*
1182 	 *  PCI BUS error.
1183 	 */
1184 	if (dstat & (MDPE|BF))
1185 		sym_log_bus_error(shost);
1186 }
1187 
1188 void sym_dump_registers(struct Scsi_Host *shost)
1189 {
1190 	struct sym_hcb *np = sym_get_hcb(shost);
1191 	u_short sist;
1192 	u_char dstat;
1193 
1194 	sist = INW(np, nc_sist);
1195 	dstat = INB(np, nc_dstat);
1196 	sym_log_hard_error(shost, sist, dstat);
1197 }
1198 
1199 static struct sym_chip sym_dev_table[] = {
1200  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1201  FE_ERL}
1202  ,
1203 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1204  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1205  FE_BOF}
1206  ,
1207 #else
1208  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1209  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1210  ,
1211 #endif
1212  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1213  FE_BOF|FE_ERL}
1214  ,
1215  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1216  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1217  ,
1218  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1219  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1220  ,
1221  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1222  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1223  ,
1224  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1225  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1226  FE_RAM|FE_DIFF|FE_VARCLK}
1227  ,
1228  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1229  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1230  FE_RAM|FE_DIFF|FE_VARCLK}
1231  ,
1232  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1233  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1234  FE_RAM|FE_DIFF|FE_VARCLK}
1235  ,
1236  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1237  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1238  FE_RAM|FE_DIFF|FE_VARCLK}
1239  ,
1240 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1241  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1242  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1243  FE_RAM|FE_LCKFRQ}
1244  ,
1245 #else
1246  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1247  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1248  FE_RAM|FE_LCKFRQ}
1249  ,
1250 #endif
1251  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1252  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1253  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1254  ,
1255  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1256  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1257  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1258  ,
1259  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1260  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1261  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1262  ,
1263  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1264  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1265  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1266  FE_C10}
1267  ,
1268  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1269  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1270  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1271  FE_C10|FE_U3EN}
1272  ,
1273  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1274  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1275  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1276  FE_C10|FE_U3EN}
1277  ,
1278  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1279  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1280  FE_RAM|FE_IO256|FE_LEDC}
1281 };
1282 
1283 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1284 
1285 /*
1286  *  Look up the chip table.
1287  *
1288  *  Return a pointer to the chip entry if found,
1289  *  zero otherwise.
1290  */
1291 struct sym_chip *
1292 sym_lookup_chip_table (u_short device_id, u_char revision)
1293 {
1294 	struct	sym_chip *chip;
1295 	int	i;
1296 
1297 	for (i = 0; i < sym_num_devs; i++) {
1298 		chip = &sym_dev_table[i];
1299 		if (device_id != chip->device_id)
1300 			continue;
1301 		if (revision > chip->revision_id)
1302 			continue;
1303 		return chip;
1304 	}
1305 
1306 	return NULL;
1307 }
1308 
1309 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1310 /*
1311  *  Lookup the 64 bit DMA segments map.
1312  *  This is only used if the direct mapping
1313  *  has been unsuccessful.
1314  */
1315 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1316 {
1317 	int i;
1318 
1319 	if (!use_dac(np))
1320 		goto weird;
1321 
1322 	/* Look up existing mappings */
1323 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1324 		if (h == np->dmap_bah[i])
1325 			return i;
1326 	}
1327 	/* If direct mapping is free, get it */
1328 	if (!np->dmap_bah[s])
1329 		goto new;
1330 	/* Collision -> lookup free mappings */
1331 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1332 		if (!np->dmap_bah[s])
1333 			goto new;
1334 	}
1335 weird:
1336 	panic("sym: ran out of 64 bit DMA segment registers");
1337 	return -1;
1338 new:
1339 	np->dmap_bah[s] = h;
1340 	np->dmap_dirty = 1;
1341 	return s;
1342 }
1343 
1344 /*
1345  *  Update IO registers scratch C..R so they will be
1346  *  in sync. with queued CCB expectations.
1347  */
1348 static void sym_update_dmap_regs(struct sym_hcb *np)
1349 {
1350 	int o, i;
1351 
1352 	if (!np->dmap_dirty)
1353 		return;
1354 	o = offsetof(struct sym_reg, nc_scrx[0]);
1355 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1356 		OUTL_OFF(np, o, np->dmap_bah[i]);
1357 		o += 4;
1358 	}
1359 	np->dmap_dirty = 0;
1360 }
1361 #endif
1362 
1363 /* Enforce all the fiddly SPI rules and the chip limitations */
1364 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1365 		struct sym_trans *goal)
1366 {
1367 	if (!spi_support_wide(starget))
1368 		goal->width = 0;
1369 
1370 	if (!spi_support_sync(starget)) {
1371 		goal->iu = 0;
1372 		goal->dt = 0;
1373 		goal->qas = 0;
1374 		goal->offset = 0;
1375 		return;
1376 	}
1377 
1378 	if (spi_support_dt(starget)) {
1379 		if (spi_support_dt_only(starget))
1380 			goal->dt = 1;
1381 
1382 		if (goal->offset == 0)
1383 			goal->dt = 0;
1384 	} else {
1385 		goal->dt = 0;
1386 	}
1387 
1388 	/* Some targets fail to properly negotiate DT in SE mode */
1389 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1390 		goal->dt = 0;
1391 
1392 	if (goal->dt) {
1393 		/* all DT transfers must be wide */
1394 		goal->width = 1;
1395 		if (goal->offset > np->maxoffs_dt)
1396 			goal->offset = np->maxoffs_dt;
1397 		if (goal->period < np->minsync_dt)
1398 			goal->period = np->minsync_dt;
1399 		if (goal->period > np->maxsync_dt)
1400 			goal->period = np->maxsync_dt;
1401 	} else {
1402 		goal->iu = goal->qas = 0;
1403 		if (goal->offset > np->maxoffs)
1404 			goal->offset = np->maxoffs;
1405 		if (goal->period < np->minsync)
1406 			goal->period = np->minsync;
1407 		if (goal->period > np->maxsync)
1408 			goal->period = np->maxsync;
1409 	}
1410 }
1411 
1412 /*
1413  *  Prepare the next negotiation message if needed.
1414  *
1415  *  Fill in the part of message buffer that contains the
1416  *  negotiation and the nego_status field of the CCB.
1417  *  Returns the size of the message in bytes.
1418  */
1419 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1420 {
1421 	struct sym_tcb *tp = &np->target[cp->target];
1422 	struct scsi_target *starget = tp->starget;
1423 	struct sym_trans *goal = &tp->tgoal;
1424 	int msglen = 0;
1425 	int nego;
1426 
1427 	sym_check_goals(np, starget, goal);
1428 
1429 	/*
1430 	 * Many devices implement PPR in a buggy way, so only use it if we
1431 	 * really want to.
1432 	 */
1433 	if (goal->renego == NS_PPR || (goal->offset &&
1434 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1435 		nego = NS_PPR;
1436 	} else if (goal->renego == NS_WIDE || goal->width) {
1437 		nego = NS_WIDE;
1438 	} else if (goal->renego == NS_SYNC || goal->offset) {
1439 		nego = NS_SYNC;
1440 	} else {
1441 		goal->check_nego = 0;
1442 		nego = 0;
1443 	}
1444 
1445 	switch (nego) {
1446 	case NS_SYNC:
1447 		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1448 				goal->offset);
1449 		break;
1450 	case NS_WIDE:
1451 		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1452 		break;
1453 	case NS_PPR:
1454 		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1455 				goal->offset, goal->width,
1456 				(goal->iu ? PPR_OPT_IU : 0) |
1457 					(goal->dt ? PPR_OPT_DT : 0) |
1458 					(goal->qas ? PPR_OPT_QAS : 0));
1459 		break;
1460 	}
1461 
1462 	cp->nego_status = nego;
1463 
1464 	if (nego) {
1465 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1466 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1467 			sym_print_nego_msg(np, cp->target,
1468 					  nego == NS_SYNC ? "sync msgout" :
1469 					  nego == NS_WIDE ? "wide msgout" :
1470 					  "ppr msgout", msgptr);
1471 		}
1472 	}
1473 
1474 	return msglen;
1475 }
1476 
1477 /*
1478  *  Insert a job into the start queue.
1479  */
1480 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1481 {
1482 	u_short	qidx;
1483 
1484 #ifdef SYM_CONF_IARB_SUPPORT
1485 	/*
1486 	 *  If the previously queued CCB is not yet done,
1487 	 *  set the IARB hint. The SCRIPTS will go with IARB
1488 	 *  for this job when starting the previous one.
1489 	 *  We leave devices a chance to win arbitration by
1490 	 *  not using more than 'iarb_max' consecutive
1491 	 *  immediate arbitrations.
1492 	 */
1493 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1494 		np->last_cp->host_flags |= HF_HINT_IARB;
1495 		++np->iarb_count;
1496 	}
1497 	else
1498 		np->iarb_count = 0;
1499 	np->last_cp = cp;
1500 #endif
1501 
1502 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1503 	/*
1504 	 *  Make SCRIPTS aware of the 64 bit DMA
1505 	 *  segment registers not being up-to-date.
1506 	 */
1507 	if (np->dmap_dirty)
1508 		cp->host_xflags |= HX_DMAP_DIRTY;
1509 #endif
1510 
1511 	/*
1512 	 *  Insert first the idle task and then our job.
1513 	 *  The MBs should ensure proper ordering.
1514 	 */
1515 	qidx = np->squeueput + 2;
1516 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1517 
1518 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1519 	MEMORY_WRITE_BARRIER();
1520 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1521 
1522 	np->squeueput = qidx;
1523 
1524 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1525 		scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1526 							np->squeueput);
1527 
1528 	/*
1529 	 *  Script processor may be waiting for reselect.
1530 	 *  Wake it up.
1531 	 */
1532 	MEMORY_WRITE_BARRIER();
1533 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1534 }
1535 
1536 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1537 /*
1538  *  Start next ready-to-start CCBs.
1539  */
1540 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1541 {
1542 	SYM_QUEHEAD *qp;
1543 	struct sym_ccb *cp;
1544 
1545 	/*
1546 	 *  Paranoia, as usual. :-)
1547 	 */
1548 	assert(!lp->started_tags || !lp->started_no_tag);
1549 
1550 	/*
1551 	 *  Try to start as many commands as asked by caller.
1552 	 *  Prevent from having both tagged and untagged
1553 	 *  commands queued to the device at the same time.
1554 	 */
1555 	while (maxn--) {
1556 		qp = sym_remque_head(&lp->waiting_ccbq);
1557 		if (!qp)
1558 			break;
1559 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1560 		if (cp->tag != NO_TAG) {
1561 			if (lp->started_no_tag ||
1562 			    lp->started_tags >= lp->started_max) {
1563 				sym_insque_head(qp, &lp->waiting_ccbq);
1564 				break;
1565 			}
1566 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1567 			lp->head.resel_sa =
1568 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1569 			++lp->started_tags;
1570 		} else {
1571 			if (lp->started_no_tag || lp->started_tags) {
1572 				sym_insque_head(qp, &lp->waiting_ccbq);
1573 				break;
1574 			}
1575 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1576 			lp->head.resel_sa =
1577 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1578 			++lp->started_no_tag;
1579 		}
1580 		cp->started = 1;
1581 		sym_insque_tail(qp, &lp->started_ccbq);
1582 		sym_put_start_queue(np, cp);
1583 	}
1584 }
1585 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1586 
1587 /*
1588  *  The chip may have completed jobs. Look at the DONE QUEUE.
1589  *
1590  *  On paper, memory read barriers may be needed here to
1591  *  prevent out of order LOADs by the CPU from having
1592  *  prefetched stale data prior to DMA having occurred.
1593  */
1594 static int sym_wakeup_done (struct sym_hcb *np)
1595 {
1596 	struct sym_ccb *cp;
1597 	int i, n;
1598 	u32 dsa;
1599 
1600 	n = 0;
1601 	i = np->dqueueget;
1602 
1603 	/* MEMORY_READ_BARRIER(); */
1604 	while (1) {
1605 		dsa = scr_to_cpu(np->dqueue[i]);
1606 		if (!dsa)
1607 			break;
1608 		np->dqueue[i] = 0;
1609 		if ((i = i+2) >= MAX_QUEUE*2)
1610 			i = 0;
1611 
1612 		cp = sym_ccb_from_dsa(np, dsa);
1613 		if (cp) {
1614 			MEMORY_READ_BARRIER();
1615 			sym_complete_ok (np, cp);
1616 			++n;
1617 		}
1618 		else
1619 			printf ("%s: bad DSA (%x) in done queue.\n",
1620 				sym_name(np), (u_int) dsa);
1621 	}
1622 	np->dqueueget = i;
1623 
1624 	return n;
1625 }
1626 
1627 /*
1628  *  Complete all CCBs queued to the COMP queue.
1629  *
1630  *  These CCBs are assumed:
1631  *  - Not to be referenced either by devices or
1632  *    SCRIPTS-related queues and datas.
1633  *  - To have to be completed with an error condition
1634  *    or requeued.
1635  *
1636  *  The device queue freeze count is incremented
1637  *  for each CCB that does not prevent this.
1638  *  This function is called when all CCBs involved
1639  *  in error handling/recovery have been reaped.
1640  */
1641 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1642 {
1643 	SYM_QUEHEAD *qp;
1644 	struct sym_ccb *cp;
1645 
1646 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1647 		struct scsi_cmnd *cmd;
1648 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1649 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1650 		/* Leave quiet CCBs waiting for resources */
1651 		if (cp->host_status == HS_WAIT)
1652 			continue;
1653 		cmd = cp->cmd;
1654 		if (cam_status)
1655 			sym_set_cam_status(cmd, cam_status);
1656 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1657 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1658 			struct sym_tcb *tp = &np->target[cp->target];
1659 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1660 			if (lp) {
1661 				sym_remque(&cp->link2_ccbq);
1662 				sym_insque_tail(&cp->link2_ccbq,
1663 				                &lp->waiting_ccbq);
1664 				if (cp->started) {
1665 					if (cp->tag != NO_TAG)
1666 						--lp->started_tags;
1667 					else
1668 						--lp->started_no_tag;
1669 				}
1670 			}
1671 			cp->started = 0;
1672 			continue;
1673 		}
1674 #endif
1675 		sym_free_ccb(np, cp);
1676 		sym_xpt_done(np, cmd);
1677 	}
1678 }
1679 
1680 /*
1681  *  Complete all active CCBs with error.
1682  *  Used on CHIP/SCSI RESET.
1683  */
1684 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1685 {
1686 	/*
1687 	 *  Move all active CCBs to the COMP queue
1688 	 *  and flush this queue.
1689 	 */
1690 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1691 	sym_que_init(&np->busy_ccbq);
1692 	sym_flush_comp_queue(np, cam_status);
1693 }
1694 
1695 /*
1696  *  Start chip.
1697  *
1698  *  'reason' means:
1699  *     0: initialisation.
1700  *     1: SCSI BUS RESET delivered or received.
1701  *     2: SCSI BUS MODE changed.
1702  */
1703 void sym_start_up(struct Scsi_Host *shost, int reason)
1704 {
1705 	struct sym_data *sym_data = shost_priv(shost);
1706 	struct pci_dev *pdev = sym_data->pdev;
1707 	struct sym_hcb *np = sym_data->ncb;
1708  	int	i;
1709 	u32	phys;
1710 
1711  	/*
1712 	 *  Reset chip if asked, otherwise just clear fifos.
1713  	 */
1714 	if (reason == 1)
1715 		sym_soft_reset(np);
1716 	else {
1717 		OUTB(np, nc_stest3, TE|CSF);
1718 		OUTONB(np, nc_ctest3, CLF);
1719 	}
1720 
1721 	/*
1722 	 *  Clear Start Queue
1723 	 */
1724 	phys = np->squeue_ba;
1725 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1726 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1727 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1728 	}
1729 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1730 
1731 	/*
1732 	 *  Start at first entry.
1733 	 */
1734 	np->squeueput = 0;
1735 
1736 	/*
1737 	 *  Clear Done Queue
1738 	 */
1739 	phys = np->dqueue_ba;
1740 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1741 		np->dqueue[i]   = 0;
1742 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1743 	}
1744 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1745 
1746 	/*
1747 	 *  Start at first entry.
1748 	 */
1749 	np->dqueueget = 0;
1750 
1751 	/*
1752 	 *  Install patches in scripts.
1753 	 *  This also let point to first position the start
1754 	 *  and done queue pointers used from SCRIPTS.
1755 	 */
1756 	np->fw_patch(shost);
1757 
1758 	/*
1759 	 *  Wakeup all pending jobs.
1760 	 */
1761 	sym_flush_busy_queue(np, DID_RESET);
1762 
1763 	/*
1764 	 *  Init chip.
1765 	 */
1766 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1767 	INB(np, nc_mbox1);
1768 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1769 
1770 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1771 					/*  full arb., ena parity, par->ATN  */
1772 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1773 
1774 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1775 
1776 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1777 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1778 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1779 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1780 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1781 
1782 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1783 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1784 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1785 
1786 	/* Extended Sreq/Sack filtering not supported on the C10 */
1787 	if (np->features & FE_C10)
1788 		OUTB(np, nc_stest2, np->rv_stest2);
1789 	else
1790 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1791 
1792 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1793 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1794 
1795 	/*
1796 	 *  For now, disable AIP generation on C1010-66.
1797 	 */
1798 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1799 		OUTB(np, nc_aipcntl1, DISAIP);
1800 
1801 	/*
1802 	 *  C10101 rev. 0 errata.
1803 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1804 	 *  STEST1 register to disable SGE. We probably should do
1805 	 *  that from SCRIPTS for each selection/reselection, but
1806 	 *  I just don't want. :)
1807 	 */
1808 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1809 	    pdev->revision < 1)
1810 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1811 
1812 	/*
1813 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1814 	 *  Disable overlapped arbitration for some dual function devices,
1815 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1816 	 */
1817 	if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1818 		OUTB(np, nc_ctest0, (1<<5));
1819 	else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1820 		np->rv_ccntl0 |= DPR;
1821 
1822 	/*
1823 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1824 	 *  and/or hardware phase mismatch, since only such chips
1825 	 *  seem to support those IO registers.
1826 	 */
1827 	if (np->features & (FE_DAC|FE_NOPM)) {
1828 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1829 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1830 	}
1831 
1832 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1833 	/*
1834 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1835 	 *  DMA address range our data structures are located in.
1836 	 */
1837 	if (use_dac(np)) {
1838 		np->dmap_bah[0] = 0;	/* ??? */
1839 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1840 		OUTL(np, nc_drs, np->dmap_bah[0]);
1841 	}
1842 #endif
1843 
1844 	/*
1845 	 *  If phase mismatch handled by scripts (895A/896/1010),
1846 	 *  set PM jump addresses.
1847 	 */
1848 	if (np->features & FE_NOPM) {
1849 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1850 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1851 	}
1852 
1853 	/*
1854 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1855 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1856 	 */
1857 	if (np->features & FE_LED0)
1858 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1859 	else if (np->features & FE_LEDC)
1860 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1861 
1862 	/*
1863 	 *      enable ints
1864 	 */
1865 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1866 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1867 
1868 	/*
1869 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1870 	 *  Try to eat the spurious SBMC interrupt that may occur when
1871 	 *  we reset the chip but not the SCSI BUS (at initialization).
1872 	 */
1873 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1874 		OUTONW(np, nc_sien, SBMC);
1875 		if (reason == 0) {
1876 			INB(np, nc_mbox1);
1877 			mdelay(100);
1878 			INW(np, nc_sist);
1879 		}
1880 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1881 	}
1882 
1883 	/*
1884 	 *  Fill in target structure.
1885 	 *  Reinitialize usrsync.
1886 	 *  Reinitialize usrwide.
1887 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1888 	 */
1889 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1890 		struct sym_tcb *tp = &np->target[i];
1891 
1892 		tp->to_reset  = 0;
1893 		tp->head.sval = 0;
1894 		tp->head.wval = np->rv_scntl3;
1895 		tp->head.uval = 0;
1896 		if (tp->lun0p)
1897 			tp->lun0p->to_clear = 0;
1898 		if (tp->lunmp) {
1899 			int ln;
1900 
1901 			for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1902 				if (tp->lunmp[ln])
1903 					tp->lunmp[ln]->to_clear = 0;
1904 		}
1905 	}
1906 
1907 	/*
1908 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1909 	 *  and start script processor.
1910 	 *  We do the download preferently from the CPU.
1911 	 *  For platforms that may not support PCI memory mapping,
1912 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1913 	 */
1914 	phys = SCRIPTA_BA(np, init);
1915 	if (np->ram_ba) {
1916 		if (sym_verbose >= 2)
1917 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1918 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1919 		if (np->features & FE_RAM8K) {
1920 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1921 			phys = scr_to_cpu(np->scr_ram_seg);
1922 			OUTL(np, nc_mmws, phys);
1923 			OUTL(np, nc_mmrs, phys);
1924 			OUTL(np, nc_sfs,  phys);
1925 			phys = SCRIPTB_BA(np, start64);
1926 		}
1927 	}
1928 
1929 	np->istat_sem = 0;
1930 
1931 	OUTL(np, nc_dsa, np->hcb_ba);
1932 	OUTL_DSP(np, phys);
1933 
1934 	/*
1935 	 *  Notify the XPT about the RESET condition.
1936 	 */
1937 	if (reason != 0)
1938 		sym_xpt_async_bus_reset(np);
1939 }
1940 
1941 /*
1942  *  Switch trans mode for current job and its target.
1943  */
1944 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1945 			 u_char per, u_char wide, u_char div, u_char fak)
1946 {
1947 	SYM_QUEHEAD *qp;
1948 	u_char sval, wval, uval;
1949 	struct sym_tcb *tp = &np->target[target];
1950 
1951 	assert(target == (INB(np, nc_sdid) & 0x0f));
1952 
1953 	sval = tp->head.sval;
1954 	wval = tp->head.wval;
1955 	uval = tp->head.uval;
1956 
1957 #if 0
1958 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1959 		sval, wval, uval, np->rv_scntl3);
1960 #endif
1961 	/*
1962 	 *  Set the offset.
1963 	 */
1964 	if (!(np->features & FE_C10))
1965 		sval = (sval & ~0x1f) | ofs;
1966 	else
1967 		sval = (sval & ~0x3f) | ofs;
1968 
1969 	/*
1970 	 *  Set the sync divisor and extra clock factor.
1971 	 */
1972 	if (ofs != 0) {
1973 		wval = (wval & ~0x70) | ((div+1) << 4);
1974 		if (!(np->features & FE_C10))
1975 			sval = (sval & ~0xe0) | (fak << 5);
1976 		else {
1977 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1978 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1979 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1980 		}
1981 	}
1982 
1983 	/*
1984 	 *  Set the bus width.
1985 	 */
1986 	wval = wval & ~EWS;
1987 	if (wide != 0)
1988 		wval |= EWS;
1989 
1990 	/*
1991 	 *  Set misc. ultra enable bits.
1992 	 */
1993 	if (np->features & FE_C10) {
1994 		uval = uval & ~(U3EN|AIPCKEN);
1995 		if (opts)	{
1996 			assert(np->features & FE_U3EN);
1997 			uval |= U3EN;
1998 		}
1999 	} else {
2000 		wval = wval & ~ULTRA;
2001 		if (per <= 12)	wval |= ULTRA;
2002 	}
2003 
2004 	/*
2005 	 *   Stop there if sync parameters are unchanged.
2006 	 */
2007 	if (tp->head.sval == sval &&
2008 	    tp->head.wval == wval &&
2009 	    tp->head.uval == uval)
2010 		return;
2011 	tp->head.sval = sval;
2012 	tp->head.wval = wval;
2013 	tp->head.uval = uval;
2014 
2015 	/*
2016 	 *  Disable extended Sreq/Sack filtering if per < 50.
2017 	 *  Not supported on the C1010.
2018 	 */
2019 	if (per < 50 && !(np->features & FE_C10))
2020 		OUTOFFB(np, nc_stest2, EXT);
2021 
2022 	/*
2023 	 *  set actual value and sync_status
2024 	 */
2025 	OUTB(np, nc_sxfer,  tp->head.sval);
2026 	OUTB(np, nc_scntl3, tp->head.wval);
2027 
2028 	if (np->features & FE_C10) {
2029 		OUTB(np, nc_scntl4, tp->head.uval);
2030 	}
2031 
2032 	/*
2033 	 *  patch ALL busy ccbs of this target.
2034 	 */
2035 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2036 		struct sym_ccb *cp;
2037 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2038 		if (cp->target != target)
2039 			continue;
2040 		cp->phys.select.sel_scntl3 = tp->head.wval;
2041 		cp->phys.select.sel_sxfer  = tp->head.sval;
2042 		if (np->features & FE_C10) {
2043 			cp->phys.select.sel_scntl4 = tp->head.uval;
2044 		}
2045 	}
2046 }
2047 
2048 static void sym_announce_transfer_rate(struct sym_tcb *tp)
2049 {
2050 	struct scsi_target *starget = tp->starget;
2051 
2052 	if (tp->tprint.period != spi_period(starget) ||
2053 	    tp->tprint.offset != spi_offset(starget) ||
2054 	    tp->tprint.width != spi_width(starget) ||
2055 	    tp->tprint.iu != spi_iu(starget) ||
2056 	    tp->tprint.dt != spi_dt(starget) ||
2057 	    tp->tprint.qas != spi_qas(starget) ||
2058 	    !tp->tprint.check_nego) {
2059 		tp->tprint.period = spi_period(starget);
2060 		tp->tprint.offset = spi_offset(starget);
2061 		tp->tprint.width = spi_width(starget);
2062 		tp->tprint.iu = spi_iu(starget);
2063 		tp->tprint.dt = spi_dt(starget);
2064 		tp->tprint.qas = spi_qas(starget);
2065 		tp->tprint.check_nego = 1;
2066 
2067 		spi_display_xfer_agreement(starget);
2068 	}
2069 }
2070 
2071 /*
2072  *  We received a WDTR.
2073  *  Let everything be aware of the changes.
2074  */
2075 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2076 {
2077 	struct sym_tcb *tp = &np->target[target];
2078 	struct scsi_target *starget = tp->starget;
2079 
2080 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2081 
2082 	if (wide)
2083 		tp->tgoal.renego = NS_WIDE;
2084 	else
2085 		tp->tgoal.renego = 0;
2086 	tp->tgoal.check_nego = 0;
2087 	tp->tgoal.width = wide;
2088 	spi_offset(starget) = 0;
2089 	spi_period(starget) = 0;
2090 	spi_width(starget) = wide;
2091 	spi_iu(starget) = 0;
2092 	spi_dt(starget) = 0;
2093 	spi_qas(starget) = 0;
2094 
2095 	if (sym_verbose >= 3)
2096 		sym_announce_transfer_rate(tp);
2097 }
2098 
2099 /*
2100  *  We received a SDTR.
2101  *  Let everything be aware of the changes.
2102  */
2103 static void
2104 sym_setsync(struct sym_hcb *np, int target,
2105             u_char ofs, u_char per, u_char div, u_char fak)
2106 {
2107 	struct sym_tcb *tp = &np->target[target];
2108 	struct scsi_target *starget = tp->starget;
2109 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2110 
2111 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2112 
2113 	if (wide)
2114 		tp->tgoal.renego = NS_WIDE;
2115 	else if (ofs)
2116 		tp->tgoal.renego = NS_SYNC;
2117 	else
2118 		tp->tgoal.renego = 0;
2119 	spi_period(starget) = per;
2120 	spi_offset(starget) = ofs;
2121 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2122 
2123 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2124 		tp->tgoal.period = per;
2125 		tp->tgoal.offset = ofs;
2126 		tp->tgoal.check_nego = 0;
2127 	}
2128 
2129 	sym_announce_transfer_rate(tp);
2130 }
2131 
2132 /*
2133  *  We received a PPR.
2134  *  Let everything be aware of the changes.
2135  */
2136 static void
2137 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2138              u_char per, u_char wide, u_char div, u_char fak)
2139 {
2140 	struct sym_tcb *tp = &np->target[target];
2141 	struct scsi_target *starget = tp->starget;
2142 
2143 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2144 
2145 	if (wide || ofs)
2146 		tp->tgoal.renego = NS_PPR;
2147 	else
2148 		tp->tgoal.renego = 0;
2149 	spi_width(starget) = tp->tgoal.width = wide;
2150 	spi_period(starget) = tp->tgoal.period = per;
2151 	spi_offset(starget) = tp->tgoal.offset = ofs;
2152 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2153 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2154 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2155 	tp->tgoal.check_nego = 0;
2156 
2157 	sym_announce_transfer_rate(tp);
2158 }
2159 
2160 /*
2161  *  generic recovery from scsi interrupt
2162  *
2163  *  The doc says that when the chip gets an SCSI interrupt,
2164  *  it tries to stop in an orderly fashion, by completing
2165  *  an instruction fetch that had started or by flushing
2166  *  the DMA fifo for a write to memory that was executing.
2167  *  Such a fashion is not enough to know if the instruction
2168  *  that was just before the current DSP value has been
2169  *  executed or not.
2170  *
2171  *  There are some small SCRIPTS sections that deal with
2172  *  the start queue and the done queue that may break any
2173  *  assomption from the C code if we are interrupted
2174  *  inside, so we reset if this happens. Btw, since these
2175  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2176  *  started SCSI operations, it is very unlikely to happen.
2177  *
2178  *  All the driver data structures are supposed to be
2179  *  allocated from the same 4 GB memory window, so there
2180  *  is a 1 to 1 relationship between DSA and driver data
2181  *  structures. Since we are careful :) to invalidate the
2182  *  DSA when we complete a command or when the SCRIPTS
2183  *  pushes a DSA into a queue, we can trust it when it
2184  *  points to a CCB.
2185  */
2186 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2187 {
2188 	u32	dsp	= INL(np, nc_dsp);
2189 	u32	dsa	= INL(np, nc_dsa);
2190 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2191 
2192 	/*
2193 	 *  If we haven't been interrupted inside the SCRIPTS
2194 	 *  critical pathes, we can safely restart the SCRIPTS
2195 	 *  and trust the DSA value if it matches a CCB.
2196 	 */
2197 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2198 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2199 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2200 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2201 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2202 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2203 	    (!(dsp > SCRIPTA_BA(np, done) &&
2204 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2205 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2206 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2207 		/*
2208 		 *  If we have a CCB, let the SCRIPTS call us back for
2209 		 *  the handling of the error with SCRATCHA filled with
2210 		 *  STARTPOS. This way, we will be able to freeze the
2211 		 *  device queue and requeue awaiting IOs.
2212 		 */
2213 		if (cp) {
2214 			cp->host_status = hsts;
2215 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2216 		}
2217 		/*
2218 		 *  Otherwise just restart the SCRIPTS.
2219 		 */
2220 		else {
2221 			OUTL(np, nc_dsa, 0xffffff);
2222 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2223 		}
2224 	}
2225 	else
2226 		goto reset_all;
2227 
2228 	return;
2229 
2230 reset_all:
2231 	sym_start_reset(np);
2232 }
2233 
2234 /*
2235  *  chip exception handler for selection timeout
2236  */
2237 static void sym_int_sto (struct sym_hcb *np)
2238 {
2239 	u32 dsp	= INL(np, nc_dsp);
2240 
2241 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2242 
2243 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2244 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2245 	else
2246 		sym_start_reset(np);
2247 }
2248 
2249 /*
2250  *  chip exception handler for unexpected disconnect
2251  */
2252 static void sym_int_udc (struct sym_hcb *np)
2253 {
2254 	printf ("%s: unexpected disconnect\n", sym_name(np));
2255 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2256 }
2257 
2258 /*
2259  *  chip exception handler for SCSI bus mode change
2260  *
2261  *  spi2-r12 11.2.3 says a transceiver mode change must
2262  *  generate a reset event and a device that detects a reset
2263  *  event shall initiate a hard reset. It says also that a
2264  *  device that detects a mode change shall set data transfer
2265  *  mode to eight bit asynchronous, etc...
2266  *  So, just reinitializing all except chip should be enough.
2267  */
2268 static void sym_int_sbmc(struct Scsi_Host *shost)
2269 {
2270 	struct sym_hcb *np = sym_get_hcb(shost);
2271 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2272 
2273 	/*
2274 	 *  Notify user.
2275 	 */
2276 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2277 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2278 
2279 	/*
2280 	 *  Should suspend command processing for a few seconds and
2281 	 *  reinitialize all except the chip.
2282 	 */
2283 	sym_start_up(shost, 2);
2284 }
2285 
2286 /*
2287  *  chip exception handler for SCSI parity error.
2288  *
2289  *  When the chip detects a SCSI parity error and is
2290  *  currently executing a (CH)MOV instruction, it does
2291  *  not interrupt immediately, but tries to finish the
2292  *  transfer of the current scatter entry before
2293  *  interrupting. The following situations may occur:
2294  *
2295  *  - The complete scatter entry has been transferred
2296  *    without the device having changed phase.
2297  *    The chip will then interrupt with the DSP pointing
2298  *    to the instruction that follows the MOV.
2299  *
2300  *  - A phase mismatch occurs before the MOV finished
2301  *    and phase errors are to be handled by the C code.
2302  *    The chip will then interrupt with both PAR and MA
2303  *    conditions set.
2304  *
2305  *  - A phase mismatch occurs before the MOV finished and
2306  *    phase errors are to be handled by SCRIPTS.
2307  *    The chip will load the DSP with the phase mismatch
2308  *    JUMP address and interrupt the host processor.
2309  */
2310 static void sym_int_par (struct sym_hcb *np, u_short sist)
2311 {
2312 	u_char	hsts	= INB(np, HS_PRT);
2313 	u32	dsp	= INL(np, nc_dsp);
2314 	u32	dbc	= INL(np, nc_dbc);
2315 	u32	dsa	= INL(np, nc_dsa);
2316 	u_char	sbcl	= INB(np, nc_sbcl);
2317 	u_char	cmd	= dbc >> 24;
2318 	int phase	= cmd & 7;
2319 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2320 
2321 	if (printk_ratelimit())
2322 		printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2323 			sym_name(np), hsts, dbc, sbcl);
2324 
2325 	/*
2326 	 *  Check that the chip is connected to the SCSI BUS.
2327 	 */
2328 	if (!(INB(np, nc_scntl1) & ISCON)) {
2329 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2330 		return;
2331 	}
2332 
2333 	/*
2334 	 *  If the nexus is not clearly identified, reset the bus.
2335 	 *  We will try to do better later.
2336 	 */
2337 	if (!cp)
2338 		goto reset_all;
2339 
2340 	/*
2341 	 *  Check instruction was a MOV, direction was INPUT and
2342 	 *  ATN is asserted.
2343 	 */
2344 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2345 		goto reset_all;
2346 
2347 	/*
2348 	 *  Keep track of the parity error.
2349 	 */
2350 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2351 	cp->xerr_status |= XE_PARITY_ERR;
2352 
2353 	/*
2354 	 *  Prepare the message to send to the device.
2355 	 */
2356 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2357 
2358 	/*
2359 	 *  If the old phase was DATA IN phase, we have to deal with
2360 	 *  the 3 situations described above.
2361 	 *  For other input phases (MSG IN and STATUS), the device
2362 	 *  must resend the whole thing that failed parity checking
2363 	 *  or signal error. So, jumping to dispatcher should be OK.
2364 	 */
2365 	if (phase == 1 || phase == 5) {
2366 		/* Phase mismatch handled by SCRIPTS */
2367 		if (dsp == SCRIPTB_BA(np, pm_handle))
2368 			OUTL_DSP(np, dsp);
2369 		/* Phase mismatch handled by the C code */
2370 		else if (sist & MA)
2371 			sym_int_ma (np);
2372 		/* No phase mismatch occurred */
2373 		else {
2374 			sym_set_script_dp (np, cp, dsp);
2375 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2376 		}
2377 	}
2378 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2379 #if 1				/* in message-in phase due to the relection  */
2380 		goto reset_all; /* path and various message anticipations.   */
2381 #else
2382 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2383 #endif
2384 	else
2385 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2386 	return;
2387 
2388 reset_all:
2389 	sym_start_reset(np);
2390 	return;
2391 }
2392 
2393 /*
2394  *  chip exception handler for phase errors.
2395  *
2396  *  We have to construct a new transfer descriptor,
2397  *  to transfer the rest of the current block.
2398  */
2399 static void sym_int_ma (struct sym_hcb *np)
2400 {
2401 	u32	dbc;
2402 	u32	rest;
2403 	u32	dsp;
2404 	u32	dsa;
2405 	u32	nxtdsp;
2406 	u32	*vdsp;
2407 	u32	oadr, olen;
2408 	u32	*tblp;
2409         u32	newcmd;
2410 	u_int	delta;
2411 	u_char	cmd;
2412 	u_char	hflags, hflags0;
2413 	struct	sym_pmc *pm;
2414 	struct sym_ccb *cp;
2415 
2416 	dsp	= INL(np, nc_dsp);
2417 	dbc	= INL(np, nc_dbc);
2418 	dsa	= INL(np, nc_dsa);
2419 
2420 	cmd	= dbc >> 24;
2421 	rest	= dbc & 0xffffff;
2422 	delta	= 0;
2423 
2424 	/*
2425 	 *  locate matching cp if any.
2426 	 */
2427 	cp = sym_ccb_from_dsa(np, dsa);
2428 
2429 	/*
2430 	 *  Donnot take into account dma fifo and various buffers in
2431 	 *  INPUT phase since the chip flushes everything before
2432 	 *  raising the MA interrupt for interrupted INPUT phases.
2433 	 *  For DATA IN phase, we will check for the SWIDE later.
2434 	 */
2435 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2436 		u_char ss0, ss2;
2437 
2438 		if (np->features & FE_DFBC)
2439 			delta = INW(np, nc_dfbc);
2440 		else {
2441 			u32 dfifo;
2442 
2443 			/*
2444 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2445 			 */
2446 			dfifo = INL(np, nc_dfifo);
2447 
2448 			/*
2449 			 *  Calculate remaining bytes in DMA fifo.
2450 			 *  (CTEST5 = dfifo >> 16)
2451 			 */
2452 			if (dfifo & (DFS << 16))
2453 				delta = ((((dfifo >> 8) & 0x300) |
2454 				          (dfifo & 0xff)) - rest) & 0x3ff;
2455 			else
2456 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2457 		}
2458 
2459 		/*
2460 		 *  The data in the dma fifo has not been transferred to
2461 		 *  the target -> add the amount to the rest
2462 		 *  and clear the data.
2463 		 *  Check the sstat2 register in case of wide transfer.
2464 		 */
2465 		rest += delta;
2466 		ss0  = INB(np, nc_sstat0);
2467 		if (ss0 & OLF) rest++;
2468 		if (!(np->features & FE_C10))
2469 			if (ss0 & ORF) rest++;
2470 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2471 			ss2 = INB(np, nc_sstat2);
2472 			if (ss2 & OLF1) rest++;
2473 			if (!(np->features & FE_C10))
2474 				if (ss2 & ORF1) rest++;
2475 		}
2476 
2477 		/*
2478 		 *  Clear fifos.
2479 		 */
2480 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2481 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2482 	}
2483 
2484 	/*
2485 	 *  log the information
2486 	 */
2487 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2488 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2489 			(unsigned) rest, (unsigned) delta);
2490 
2491 	/*
2492 	 *  try to find the interrupted script command,
2493 	 *  and the address at which to continue.
2494 	 */
2495 	vdsp	= NULL;
2496 	nxtdsp	= 0;
2497 	if	(dsp >  np->scripta_ba &&
2498 		 dsp <= np->scripta_ba + np->scripta_sz) {
2499 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2500 		nxtdsp = dsp;
2501 	}
2502 	else if	(dsp >  np->scriptb_ba &&
2503 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2504 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2505 		nxtdsp = dsp;
2506 	}
2507 
2508 	/*
2509 	 *  log the information
2510 	 */
2511 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2512 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2513 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2514 	}
2515 
2516 	if (!vdsp) {
2517 		printf ("%s: interrupted SCRIPT address not found.\n",
2518 			sym_name (np));
2519 		goto reset_all;
2520 	}
2521 
2522 	if (!cp) {
2523 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2524 			sym_name (np));
2525 		goto reset_all;
2526 	}
2527 
2528 	/*
2529 	 *  get old startaddress and old length.
2530 	 */
2531 	oadr = scr_to_cpu(vdsp[1]);
2532 
2533 	if (cmd & 0x10) {	/* Table indirect */
2534 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2535 		olen = scr_to_cpu(tblp[0]);
2536 		oadr = scr_to_cpu(tblp[1]);
2537 	} else {
2538 		tblp = (u32 *) 0;
2539 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2540 	}
2541 
2542 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2543 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2544 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2545 			tblp,
2546 			(unsigned) olen,
2547 			(unsigned) oadr);
2548 	}
2549 
2550 	/*
2551 	 *  check cmd against assumed interrupted script command.
2552 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2553 	 *  the phase.
2554 	 */
2555 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2556 		sym_print_addr(cp->cmd,
2557 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2558 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2559 
2560 		goto reset_all;
2561 	}
2562 
2563 	/*
2564 	 *  if old phase not dataphase, leave here.
2565 	 */
2566 	if (cmd & 2) {
2567 		sym_print_addr(cp->cmd,
2568 			"phase change %x-%x %d@%08x resid=%d.\n",
2569 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2570 			(unsigned)oadr, (unsigned)rest);
2571 		goto unexpected_phase;
2572 	}
2573 
2574 	/*
2575 	 *  Choose the correct PM save area.
2576 	 *
2577 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2578 	 *  this stuff. The equivalent code is implemented in
2579 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2580 	 *  handle PM from the SCRIPTS processor.
2581 	 */
2582 	hflags0 = INB(np, HF_PRT);
2583 	hflags = hflags0;
2584 
2585 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2586 		if (hflags & HF_IN_PM0)
2587 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2588 		else if	(hflags & HF_IN_PM1)
2589 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2590 
2591 		if (hflags & HF_DP_SAVED)
2592 			hflags ^= HF_ACT_PM;
2593 	}
2594 
2595 	if (!(hflags & HF_ACT_PM)) {
2596 		pm = &cp->phys.pm0;
2597 		newcmd = SCRIPTA_BA(np, pm0_data);
2598 	}
2599 	else {
2600 		pm = &cp->phys.pm1;
2601 		newcmd = SCRIPTA_BA(np, pm1_data);
2602 	}
2603 
2604 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2605 	if (hflags != hflags0)
2606 		OUTB(np, HF_PRT, hflags);
2607 
2608 	/*
2609 	 *  fillin the phase mismatch context
2610 	 */
2611 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2612 	pm->sg.size = cpu_to_scr(rest);
2613 	pm->ret     = cpu_to_scr(nxtdsp);
2614 
2615 	/*
2616 	 *  If we have a SWIDE,
2617 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2618 	 *  - compute the SCRIPTS address to restart from,
2619 	 *  - move current data pointer context by one byte.
2620 	 */
2621 	nxtdsp = SCRIPTA_BA(np, dispatch);
2622 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2623 	    (INB(np, nc_scntl2) & WSR)) {
2624 		u32 tmp;
2625 
2626 		/*
2627 		 *  Set up the table indirect for the MOVE
2628 		 *  of the residual byte and adjust the data
2629 		 *  pointer context.
2630 		 */
2631 		tmp = scr_to_cpu(pm->sg.addr);
2632 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2633 		pm->sg.addr = cpu_to_scr(tmp + 1);
2634 		tmp = scr_to_cpu(pm->sg.size);
2635 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2636 		pm->sg.size = cpu_to_scr(tmp - 1);
2637 
2638 		/*
2639 		 *  If only the residual byte is to be moved,
2640 		 *  no PM context is needed.
2641 		 */
2642 		if ((tmp&0xffffff) == 1)
2643 			newcmd = pm->ret;
2644 
2645 		/*
2646 		 *  Prepare the address of SCRIPTS that will
2647 		 *  move the residual byte to memory.
2648 		 */
2649 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2650 	}
2651 
2652 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2653 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2654 			hflags0, hflags, newcmd,
2655 			(unsigned)scr_to_cpu(pm->sg.addr),
2656 			(unsigned)scr_to_cpu(pm->sg.size),
2657 			(unsigned)scr_to_cpu(pm->ret));
2658 	}
2659 
2660 	/*
2661 	 *  Restart the SCRIPTS processor.
2662 	 */
2663 	sym_set_script_dp (np, cp, newcmd);
2664 	OUTL_DSP(np, nxtdsp);
2665 	return;
2666 
2667 	/*
2668 	 *  Unexpected phase changes that occurs when the current phase
2669 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2670 	 *  Such event may only happen when the SCRIPTS is using a
2671 	 *  multibyte SCSI MOVE.
2672 	 *
2673 	 *  Phase change		Some possible cause
2674 	 *
2675 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2676 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2677 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2678 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2679 	 *  			negotiation messages.
2680 	 *
2681 	 *  The code below does not care of the new phase and so
2682 	 *  trusts the target. Why to annoy it ?
2683 	 *  If the interrupted phase is COMMAND phase, we restart at
2684 	 *  dispatcher.
2685 	 *  If a target does not get all the messages after selection,
2686 	 *  the code assumes blindly that the target discards extended
2687 	 *  messages and clears the negotiation status.
2688 	 *  If the target does not want all our response to negotiation,
2689 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2690 	 *  bloat for such a should_not_happen situation).
2691 	 *  In all other situation, we reset the BUS.
2692 	 *  Are these assumptions reasonable ? (Wait and see ...)
2693 	 */
2694 unexpected_phase:
2695 	dsp -= 8;
2696 	nxtdsp = 0;
2697 
2698 	switch (cmd & 7) {
2699 	case 2:	/* COMMAND phase */
2700 		nxtdsp = SCRIPTA_BA(np, dispatch);
2701 		break;
2702 #if 0
2703 	case 3:	/* STATUS  phase */
2704 		nxtdsp = SCRIPTA_BA(np, dispatch);
2705 		break;
2706 #endif
2707 	case 6:	/* MSG OUT phase */
2708 		/*
2709 		 *  If the device may want to use untagged when we want
2710 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2711 		 *  since we will not be able to handle reselect.
2712 		 *  Otherwise, we just don't care.
2713 		 */
2714 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2715 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2716 				cp->host_status = HS_BUSY;
2717 				np->msgout[0] = IDENTIFY(0, cp->lun);
2718 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2719 			}
2720 			else
2721 				nxtdsp = SCRIPTB_BA(np, ident_break);
2722 		}
2723 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2724 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2725 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2726 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2727 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2728 				struct scsi_device *dev = cp->cmd->device;
2729 				dev->ppr = 0;
2730 			}
2731 		}
2732 		break;
2733 #if 0
2734 	case 7:	/* MSG IN  phase */
2735 		nxtdsp = SCRIPTA_BA(np, clrack);
2736 		break;
2737 #endif
2738 	}
2739 
2740 	if (nxtdsp) {
2741 		OUTL_DSP(np, nxtdsp);
2742 		return;
2743 	}
2744 
2745 reset_all:
2746 	sym_start_reset(np);
2747 }
2748 
2749 /*
2750  *  chip interrupt handler
2751  *
2752  *  In normal situations, interrupt conditions occur one at
2753  *  a time. But when something bad happens on the SCSI BUS,
2754  *  the chip may raise several interrupt flags before
2755  *  stopping and interrupting the CPU. The additionnal
2756  *  interrupt flags are stacked in some extra registers
2757  *  after the SIP and/or DIP flag has been raised in the
2758  *  ISTAT. After the CPU has read the interrupt condition
2759  *  flag from SIST or DSTAT, the chip unstacks the other
2760  *  interrupt flags and sets the corresponding bits in
2761  *  SIST or DSTAT. Since the chip starts stacking once the
2762  *  SIP or DIP flag is set, there is a small window of time
2763  *  where the stacking does not occur.
2764  *
2765  *  Typically, multiple interrupt conditions may happen in
2766  *  the following situations:
2767  *
2768  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2769  *    When an parity error is detected in input phase
2770  *    and the device switches to msg-in phase inside a
2771  *    block MOV.
2772  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2773  *    When a stupid device does not want to handle the
2774  *    recovery of an SCSI parity error.
2775  *  - Some combinations of STO, PAR, UDC, ...
2776  *    When using non compliant SCSI stuff, when user is
2777  *    doing non compliant hot tampering on the BUS, when
2778  *    something really bad happens to a device, etc ...
2779  *
2780  *  The heuristic suggested by SYMBIOS to handle
2781  *  multiple interrupts is to try unstacking all
2782  *  interrupts conditions and to handle them on some
2783  *  priority based on error severity.
2784  *  This will work when the unstacking has been
2785  *  successful, but we cannot be 100 % sure of that,
2786  *  since the CPU may have been faster to unstack than
2787  *  the chip is able to stack. Hmmm ... But it seems that
2788  *  such a situation is very unlikely to happen.
2789  *
2790  *  If this happen, for example STO caught by the CPU
2791  *  then UDC happenning before the CPU have restarted
2792  *  the SCRIPTS, the driver may wrongly complete the
2793  *  same command on UDC, since the SCRIPTS didn't restart
2794  *  and the DSA still points to the same command.
2795  *  We avoid this situation by setting the DSA to an
2796  *  invalid value when the CCB is completed and before
2797  *  restarting the SCRIPTS.
2798  *
2799  *  Another issue is that we need some section of our
2800  *  recovery procedures to be somehow uninterruptible but
2801  *  the SCRIPTS processor does not provides such a
2802  *  feature. For this reason, we handle recovery preferently
2803  *  from the C code and check against some SCRIPTS critical
2804  *  sections from the C code.
2805  *
2806  *  Hopefully, the interrupt handling of the driver is now
2807  *  able to resist to weird BUS error conditions, but donnot
2808  *  ask me for any guarantee that it will never fail. :-)
2809  *  Use at your own decision and risk.
2810  */
2811 
2812 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2813 {
2814 	struct sym_data *sym_data = shost_priv(shost);
2815 	struct sym_hcb *np = sym_data->ncb;
2816 	struct pci_dev *pdev = sym_data->pdev;
2817 	u_char	istat, istatc;
2818 	u_char	dstat;
2819 	u_short	sist;
2820 
2821 	/*
2822 	 *  interrupt on the fly ?
2823 	 *  (SCRIPTS may still be running)
2824 	 *
2825 	 *  A `dummy read' is needed to ensure that the
2826 	 *  clear of the INTF flag reaches the device
2827 	 *  and that posted writes are flushed to memory
2828 	 *  before the scanning of the DONE queue.
2829 	 *  Note that SCRIPTS also (dummy) read to memory
2830 	 *  prior to deliver the INTF interrupt condition.
2831 	 */
2832 	istat = INB(np, nc_istat);
2833 	if (istat & INTF) {
2834 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2835 		istat |= INB(np, nc_istat);		/* DUMMY READ */
2836 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2837 		sym_wakeup_done(np);
2838 	}
2839 
2840 	if (!(istat & (SIP|DIP)))
2841 		return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2842 
2843 #if 0	/* We should never get this one */
2844 	if (istat & CABRT)
2845 		OUTB(np, nc_istat, CABRT);
2846 #endif
2847 
2848 	/*
2849 	 *  PAR and MA interrupts may occur at the same time,
2850 	 *  and we need to know of both in order to handle
2851 	 *  this situation properly. We try to unstack SCSI
2852 	 *  interrupts for that reason. BTW, I dislike a LOT
2853 	 *  such a loop inside the interrupt routine.
2854 	 *  Even if DMA interrupt stacking is very unlikely to
2855 	 *  happen, we also try unstacking these ones, since
2856 	 *  this has no performance impact.
2857 	 */
2858 	sist	= 0;
2859 	dstat	= 0;
2860 	istatc	= istat;
2861 	do {
2862 		if (istatc & SIP)
2863 			sist  |= INW(np, nc_sist);
2864 		if (istatc & DIP)
2865 			dstat |= INB(np, nc_dstat);
2866 		istatc = INB(np, nc_istat);
2867 		istat |= istatc;
2868 
2869 		/* Prevent deadlock waiting on a condition that may
2870 		 * never clear. */
2871 		if (unlikely(sist == 0xffff && dstat == 0xff)) {
2872 			if (pci_channel_offline(pdev))
2873 				return IRQ_NONE;
2874 		}
2875 	} while (istatc & (SIP|DIP));
2876 
2877 	if (DEBUG_FLAGS & DEBUG_TINY)
2878 		printf ("<%d|%x:%x|%x:%x>",
2879 			(int)INB(np, nc_scr0),
2880 			dstat,sist,
2881 			(unsigned)INL(np, nc_dsp),
2882 			(unsigned)INL(np, nc_dbc));
2883 	/*
2884 	 *  On paper, a memory read barrier may be needed here to
2885 	 *  prevent out of order LOADs by the CPU from having
2886 	 *  prefetched stale data prior to DMA having occurred.
2887 	 *  And since we are paranoid ... :)
2888 	 */
2889 	MEMORY_READ_BARRIER();
2890 
2891 	/*
2892 	 *  First, interrupts we want to service cleanly.
2893 	 *
2894 	 *  Phase mismatch (MA) is the most frequent interrupt
2895 	 *  for chip earlier than the 896 and so we have to service
2896 	 *  it as quickly as possible.
2897 	 *  A SCSI parity error (PAR) may be combined with a phase
2898 	 *  mismatch condition (MA).
2899 	 *  Programmed interrupts (SIR) are used to call the C code
2900 	 *  from SCRIPTS.
2901 	 *  The single step interrupt (SSI) is not used in this
2902 	 *  driver.
2903 	 */
2904 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2905 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2906 		if	(sist & PAR)	sym_int_par (np, sist);
2907 		else if (sist & MA)	sym_int_ma (np);
2908 		else if (dstat & SIR)	sym_int_sir(np);
2909 		else if (dstat & SSI)	OUTONB_STD();
2910 		else			goto unknown_int;
2911 		return IRQ_HANDLED;
2912 	}
2913 
2914 	/*
2915 	 *  Now, interrupts that donnot happen in normal
2916 	 *  situations and that we may need to recover from.
2917 	 *
2918 	 *  On SCSI RESET (RST), we reset everything.
2919 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2920 	 *  active CCBs with RESET status, prepare all devices
2921 	 *  for negotiating again and restart the SCRIPTS.
2922 	 *  On STO and UDC, we complete the CCB with the corres-
2923 	 *  ponding status and restart the SCRIPTS.
2924 	 */
2925 	if (sist & RST) {
2926 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2927 		sym_start_up(shost, 1);
2928 		return IRQ_HANDLED;
2929 	}
2930 
2931 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2932 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2933 
2934 	if (!(sist  & (GEN|HTH|SGE)) &&
2935 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2936 		if	(sist & SBMC)	sym_int_sbmc(shost);
2937 		else if (sist & STO)	sym_int_sto (np);
2938 		else if (sist & UDC)	sym_int_udc (np);
2939 		else			goto unknown_int;
2940 		return IRQ_HANDLED;
2941 	}
2942 
2943 	/*
2944 	 *  Now, interrupts we are not able to recover cleanly.
2945 	 *
2946 	 *  Log message for hard errors.
2947 	 *  Reset everything.
2948 	 */
2949 
2950 	sym_log_hard_error(shost, sist, dstat);
2951 
2952 	if ((sist & (GEN|HTH|SGE)) ||
2953 		(dstat & (MDPE|BF|ABRT|IID))) {
2954 		sym_start_reset(np);
2955 		return IRQ_HANDLED;
2956 	}
2957 
2958 unknown_int:
2959 	/*
2960 	 *  We just miss the cause of the interrupt. :(
2961 	 *  Print a message. The timeout will do the real work.
2962 	 */
2963 	printf(	"%s: unknown interrupt(s) ignored, "
2964 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2965 		sym_name(np), istat, dstat, sist);
2966 	return IRQ_NONE;
2967 }
2968 
2969 /*
2970  *  Dequeue from the START queue all CCBs that match
2971  *  a given target/lun/task condition (-1 means all),
2972  *  and move them from the BUSY queue to the COMP queue
2973  *  with DID_SOFT_ERROR status condition.
2974  *  This function is used during error handling/recovery.
2975  *  It is called with SCRIPTS not running.
2976  */
2977 static int
2978 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2979 {
2980 	int j;
2981 	struct sym_ccb *cp;
2982 
2983 	/*
2984 	 *  Make sure the starting index is within range.
2985 	 */
2986 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2987 
2988 	/*
2989 	 *  Walk until end of START queue and dequeue every job
2990 	 *  that matches the target/lun/task condition.
2991 	 */
2992 	j = i;
2993 	while (i != np->squeueput) {
2994 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2995 		assert(cp);
2996 #ifdef SYM_CONF_IARB_SUPPORT
2997 		/* Forget hints for IARB, they may be no longer relevant */
2998 		cp->host_flags &= ~HF_HINT_IARB;
2999 #endif
3000 		if ((target == -1 || cp->target == target) &&
3001 		    (lun    == -1 || cp->lun    == lun)    &&
3002 		    (task   == -1 || cp->tag    == task)) {
3003 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
3004 			sym_remque(&cp->link_ccbq);
3005 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3006 		}
3007 		else {
3008 			if (i != j)
3009 				np->squeue[j] = np->squeue[i];
3010 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
3011 		}
3012 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
3013 	}
3014 	if (i != j)		/* Copy back the idle task if needed */
3015 		np->squeue[j] = np->squeue[i];
3016 	np->squeueput = j;	/* Update our current start queue pointer */
3017 
3018 	return (i - j) / 2;
3019 }
3020 
3021 /*
3022  *  chip handler for bad SCSI status condition
3023  *
3024  *  In case of bad SCSI status, we unqueue all the tasks
3025  *  currently queued to the controller but not yet started
3026  *  and then restart the SCRIPTS processor immediately.
3027  *
3028  *  QUEUE FULL and BUSY conditions are handled the same way.
3029  *  Basically all the not yet started tasks are requeued in
3030  *  device queue and the queue is frozen until a completion.
3031  *
3032  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3033  *  the CCB of the failed command to prepare a REQUEST SENSE
3034  *  SCSI command and queue it to the controller queue.
3035  *
3036  *  SCRATCHA is assumed to have been loaded with STARTPOS
3037  *  before the SCRIPTS called the C code.
3038  */
3039 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3040 {
3041 	u32		startp;
3042 	u_char		s_status = cp->ssss_status;
3043 	u_char		h_flags  = cp->host_flags;
3044 	int		msglen;
3045 	int		i;
3046 
3047 	/*
3048 	 *  Compute the index of the next job to start from SCRIPTS.
3049 	 */
3050 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3051 
3052 	/*
3053 	 *  The last CCB queued used for IARB hint may be
3054 	 *  no longer relevant. Forget it.
3055 	 */
3056 #ifdef SYM_CONF_IARB_SUPPORT
3057 	if (np->last_cp)
3058 		np->last_cp = 0;
3059 #endif
3060 
3061 	/*
3062 	 *  Now deal with the SCSI status.
3063 	 */
3064 	switch(s_status) {
3065 	case S_BUSY:
3066 	case S_QUEUE_FULL:
3067 		if (sym_verbose >= 2) {
3068 			sym_print_addr(cp->cmd, "%s\n",
3069 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3070 		}
3071 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3072 		sym_complete_error (np, cp);
3073 		break;
3074 	case S_TERMINATED:
3075 	case S_CHECK_COND:
3076 		/*
3077 		 *  If we get an SCSI error when requesting sense, give up.
3078 		 */
3079 		if (h_flags & HF_SENSE) {
3080 			sym_complete_error (np, cp);
3081 			break;
3082 		}
3083 
3084 		/*
3085 		 *  Dequeue all queued CCBs for that device not yet started,
3086 		 *  and restart the SCRIPTS processor immediately.
3087 		 */
3088 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3089 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3090 
3091  		/*
3092 		 *  Save some info of the actual IO.
3093 		 *  Compute the data residual.
3094 		 */
3095 		cp->sv_scsi_status = cp->ssss_status;
3096 		cp->sv_xerr_status = cp->xerr_status;
3097 		cp->sv_resid = sym_compute_residual(np, cp);
3098 
3099 		/*
3100 		 *  Prepare all needed data structures for
3101 		 *  requesting sense data.
3102 		 */
3103 
3104 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3105 		msglen = 1;
3106 
3107 		/*
3108 		 *  If we are currently using anything different from
3109 		 *  async. 8 bit data transfers with that target,
3110 		 *  start a negotiation, since the device may want
3111 		 *  to report us a UNIT ATTENTION condition due to
3112 		 *  a cause we currently ignore, and we donnot want
3113 		 *  to be stuck with WIDE and/or SYNC data transfer.
3114 		 *
3115 		 *  cp->nego_status is filled by sym_prepare_nego().
3116 		 */
3117 		cp->nego_status = 0;
3118 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3119 		/*
3120 		 *  Message table indirect structure.
3121 		 */
3122 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3123 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3124 
3125 		/*
3126 		 *  sense command
3127 		 */
3128 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3129 		cp->phys.cmd.size	= cpu_to_scr(6);
3130 
3131 		/*
3132 		 *  patch requested size into sense command
3133 		 */
3134 		cp->sensecmd[0]		= REQUEST_SENSE;
3135 		cp->sensecmd[1]		= 0;
3136 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3137 			cp->sensecmd[1]	= cp->lun << 5;
3138 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3139 		cp->data_len		= SYM_SNS_BBUF_LEN;
3140 
3141 		/*
3142 		 *  sense data
3143 		 */
3144 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3145 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3146 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3147 
3148 		/*
3149 		 *  requeue the command.
3150 		 */
3151 		startp = SCRIPTB_BA(np, sdata_in);
3152 
3153 		cp->phys.head.savep	= cpu_to_scr(startp);
3154 		cp->phys.head.lastp	= cpu_to_scr(startp);
3155 		cp->startp		= cpu_to_scr(startp);
3156 		cp->goalp		= cpu_to_scr(startp + 16);
3157 
3158 		cp->host_xflags = 0;
3159 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3160 		cp->ssss_status = S_ILLEGAL;
3161 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3162 		cp->xerr_status = 0;
3163 		cp->extra_bytes = 0;
3164 
3165 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3166 
3167 		/*
3168 		 *  Requeue the command.
3169 		 */
3170 		sym_put_start_queue(np, cp);
3171 
3172 		/*
3173 		 *  Give back to upper layer everything we have dequeued.
3174 		 */
3175 		sym_flush_comp_queue(np, 0);
3176 		break;
3177 	}
3178 }
3179 
3180 /*
3181  *  After a device has accepted some management message
3182  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3183  *  a device signals a UNIT ATTENTION condition, some
3184  *  tasks are thrown away by the device. We are required
3185  *  to reflect that on our tasks list since the device
3186  *  will never complete these tasks.
3187  *
3188  *  This function move from the BUSY queue to the COMP
3189  *  queue all disconnected CCBs for a given target that
3190  *  match the following criteria:
3191  *  - lun=-1  means any logical UNIT otherwise a given one.
3192  *  - task=-1 means any task, otherwise a given one.
3193  */
3194 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3195 {
3196 	SYM_QUEHEAD qtmp, *qp;
3197 	int i = 0;
3198 	struct sym_ccb *cp;
3199 
3200 	/*
3201 	 *  Move the entire BUSY queue to our temporary queue.
3202 	 */
3203 	sym_que_init(&qtmp);
3204 	sym_que_splice(&np->busy_ccbq, &qtmp);
3205 	sym_que_init(&np->busy_ccbq);
3206 
3207 	/*
3208 	 *  Put all CCBs that matches our criteria into
3209 	 *  the COMP queue and put back other ones into
3210 	 *  the BUSY queue.
3211 	 */
3212 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
3213 		struct scsi_cmnd *cmd;
3214 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3215 		cmd = cp->cmd;
3216 		if (cp->host_status != HS_DISCONNECT ||
3217 		    cp->target != target	     ||
3218 		    (lun  != -1 && cp->lun != lun)   ||
3219 		    (task != -1 &&
3220 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3221 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3222 			continue;
3223 		}
3224 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3225 
3226 		/* Preserve the software timeout condition */
3227 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3228 			sym_set_cam_status(cmd, cam_status);
3229 		++i;
3230 #if 0
3231 printf("XXXX TASK @%p CLEARED\n", cp);
3232 #endif
3233 	}
3234 	return i;
3235 }
3236 
3237 /*
3238  *  chip handler for TASKS recovery
3239  *
3240  *  We cannot safely abort a command, while the SCRIPTS
3241  *  processor is running, since we just would be in race
3242  *  with it.
3243  *
3244  *  As long as we have tasks to abort, we keep the SEM
3245  *  bit set in the ISTAT. When this bit is set, the
3246  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3247  *  each time it enters the scheduler.
3248  *
3249  *  If we have to reset a target, clear tasks of a unit,
3250  *  or to perform the abort of a disconnected job, we
3251  *  restart the SCRIPTS for selecting the target. Once
3252  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3253  *  If it loses arbitration, the SCRIPTS will interrupt again
3254  *  the next time it will enter its scheduler, and so on ...
3255  *
3256  *  On SIR_TARGET_SELECTED, we scan for the more
3257  *  appropriate thing to do:
3258  *
3259  *  - If nothing, we just sent a M_ABORT message to the
3260  *    target to get rid of the useless SCSI bus ownership.
3261  *    According to the specs, no tasks shall be affected.
3262  *  - If the target is to be reset, we send it a M_RESET
3263  *    message.
3264  *  - If a logical UNIT is to be cleared , we send the
3265  *    IDENTIFY(lun) + M_ABORT.
3266  *  - If an untagged task is to be aborted, we send the
3267  *    IDENTIFY(lun) + M_ABORT.
3268  *  - If a tagged task is to be aborted, we send the
3269  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3270  *
3271  *  Once our 'kiss of death' :) message has been accepted
3272  *  by the target, the SCRIPTS interrupts again
3273  *  (SIR_ABORT_SENT). On this interrupt, we complete
3274  *  all the CCBs that should have been aborted by the
3275  *  target according to our message.
3276  */
3277 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3278 {
3279 	SYM_QUEHEAD *qp;
3280 	struct sym_ccb *cp;
3281 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3282 	struct scsi_target *starget;
3283 	int target=-1, lun=-1, task;
3284 	int i, k;
3285 
3286 	switch(num) {
3287 	/*
3288 	 *  The SCRIPTS processor stopped before starting
3289 	 *  the next command in order to allow us to perform
3290 	 *  some task recovery.
3291 	 */
3292 	case SIR_SCRIPT_STOPPED:
3293 		/*
3294 		 *  Do we have any target to reset or unit to clear ?
3295 		 */
3296 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3297 			tp = &np->target[i];
3298 			if (tp->to_reset ||
3299 			    (tp->lun0p && tp->lun0p->to_clear)) {
3300 				target = i;
3301 				break;
3302 			}
3303 			if (!tp->lunmp)
3304 				continue;
3305 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3306 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3307 					target	= i;
3308 					break;
3309 				}
3310 			}
3311 			if (target != -1)
3312 				break;
3313 		}
3314 
3315 		/*
3316 		 *  If not, walk the busy queue for any
3317 		 *  disconnected CCB to be aborted.
3318 		 */
3319 		if (target == -1) {
3320 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3321 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3322 				if (cp->host_status != HS_DISCONNECT)
3323 					continue;
3324 				if (cp->to_abort) {
3325 					target = cp->target;
3326 					break;
3327 				}
3328 			}
3329 		}
3330 
3331 		/*
3332 		 *  If some target is to be selected,
3333 		 *  prepare and start the selection.
3334 		 */
3335 		if (target != -1) {
3336 			tp = &np->target[target];
3337 			np->abrt_sel.sel_id	= target;
3338 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3339 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3340 			OUTL(np, nc_dsa, np->hcb_ba);
3341 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3342 			return;
3343 		}
3344 
3345 		/*
3346 		 *  Now look for a CCB to abort that haven't started yet.
3347 		 *  Btw, the SCRIPTS processor is still stopped, so
3348 		 *  we are not in race.
3349 		 */
3350 		i = 0;
3351 		cp = NULL;
3352 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3353 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3354 			if (cp->host_status != HS_BUSY &&
3355 			    cp->host_status != HS_NEGOTIATE)
3356 				continue;
3357 			if (!cp->to_abort)
3358 				continue;
3359 #ifdef SYM_CONF_IARB_SUPPORT
3360 			/*
3361 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3362 			 *    want to cancel the last queued CCB, since the
3363 			 *    SCRIPTS may have anticipated the selection.
3364 			 */
3365 			if (cp == np->last_cp) {
3366 				cp->to_abort = 0;
3367 				continue;
3368 			}
3369 #endif
3370 			i = 1;	/* Means we have found some */
3371 			break;
3372 		}
3373 		if (!i) {
3374 			/*
3375 			 *  We are done, so we donnot need
3376 			 *  to synchronize with the SCRIPTS anylonger.
3377 			 *  Remove the SEM flag from the ISTAT.
3378 			 */
3379 			np->istat_sem = 0;
3380 			OUTB(np, nc_istat, SIGP);
3381 			break;
3382 		}
3383 		/*
3384 		 *  Compute index of next position in the start
3385 		 *  queue the SCRIPTS intends to start and dequeue
3386 		 *  all CCBs for that device that haven't been started.
3387 		 */
3388 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3389 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3390 
3391 		/*
3392 		 *  Make sure at least our IO to abort has been dequeued.
3393 		 */
3394 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3395 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3396 #else
3397 		sym_remque(&cp->link_ccbq);
3398 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3399 #endif
3400 		/*
3401 		 *  Keep track in cam status of the reason of the abort.
3402 		 */
3403 		if (cp->to_abort == 2)
3404 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3405 		else
3406 			sym_set_cam_status(cp->cmd, DID_ABORT);
3407 
3408 		/*
3409 		 *  Complete with error everything that we have dequeued.
3410 	 	 */
3411 		sym_flush_comp_queue(np, 0);
3412 		break;
3413 	/*
3414 	 *  The SCRIPTS processor has selected a target
3415 	 *  we may have some manual recovery to perform for.
3416 	 */
3417 	case SIR_TARGET_SELECTED:
3418 		target = INB(np, nc_sdid) & 0xf;
3419 		tp = &np->target[target];
3420 
3421 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3422 
3423 		/*
3424 		 *  If the target is to be reset, prepare a
3425 		 *  M_RESET message and clear the to_reset flag
3426 		 *  since we donnot expect this operation to fail.
3427 		 */
3428 		if (tp->to_reset) {
3429 			np->abrt_msg[0] = M_RESET;
3430 			np->abrt_tbl.size = 1;
3431 			tp->to_reset = 0;
3432 			break;
3433 		}
3434 
3435 		/*
3436 		 *  Otherwise, look for some logical unit to be cleared.
3437 		 */
3438 		if (tp->lun0p && tp->lun0p->to_clear)
3439 			lun = 0;
3440 		else if (tp->lunmp) {
3441 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3442 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3443 					lun = k;
3444 					break;
3445 				}
3446 			}
3447 		}
3448 
3449 		/*
3450 		 *  If a logical unit is to be cleared, prepare
3451 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3452 		 */
3453 		if (lun != -1) {
3454 			struct sym_lcb *lp = sym_lp(tp, lun);
3455 			lp->to_clear = 0; /* We don't expect to fail here */
3456 			np->abrt_msg[0] = IDENTIFY(0, lun);
3457 			np->abrt_msg[1] = M_ABORT;
3458 			np->abrt_tbl.size = 2;
3459 			break;
3460 		}
3461 
3462 		/*
3463 		 *  Otherwise, look for some disconnected job to
3464 		 *  abort for this target.
3465 		 */
3466 		i = 0;
3467 		cp = NULL;
3468 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3469 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3470 			if (cp->host_status != HS_DISCONNECT)
3471 				continue;
3472 			if (cp->target != target)
3473 				continue;
3474 			if (!cp->to_abort)
3475 				continue;
3476 			i = 1;	/* Means we have some */
3477 			break;
3478 		}
3479 
3480 		/*
3481 		 *  If we have none, probably since the device has
3482 		 *  completed the command before we won abitration,
3483 		 *  send a M_ABORT message without IDENTIFY.
3484 		 *  According to the specs, the device must just
3485 		 *  disconnect the BUS and not abort any task.
3486 		 */
3487 		if (!i) {
3488 			np->abrt_msg[0] = M_ABORT;
3489 			np->abrt_tbl.size = 1;
3490 			break;
3491 		}
3492 
3493 		/*
3494 		 *  We have some task to abort.
3495 		 *  Set the IDENTIFY(lun)
3496 		 */
3497 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3498 
3499 		/*
3500 		 *  If we want to abort an untagged command, we
3501 		 *  will send a IDENTIFY + M_ABORT.
3502 		 *  Otherwise (tagged command), we will send
3503 		 *  a IDENTITFY + task attributes + ABORT TAG.
3504 		 */
3505 		if (cp->tag == NO_TAG) {
3506 			np->abrt_msg[1] = M_ABORT;
3507 			np->abrt_tbl.size = 2;
3508 		} else {
3509 			np->abrt_msg[1] = cp->scsi_smsg[1];
3510 			np->abrt_msg[2] = cp->scsi_smsg[2];
3511 			np->abrt_msg[3] = M_ABORT_TAG;
3512 			np->abrt_tbl.size = 4;
3513 		}
3514 		/*
3515 		 *  Keep track of software timeout condition, since the
3516 		 *  peripheral driver may not count retries on abort
3517 		 *  conditions not due to timeout.
3518 		 */
3519 		if (cp->to_abort == 2)
3520 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3521 		cp->to_abort = 0; /* We donnot expect to fail here */
3522 		break;
3523 
3524 	/*
3525 	 *  The target has accepted our message and switched
3526 	 *  to BUS FREE phase as we expected.
3527 	 */
3528 	case SIR_ABORT_SENT:
3529 		target = INB(np, nc_sdid) & 0xf;
3530 		tp = &np->target[target];
3531 		starget = tp->starget;
3532 
3533 		/*
3534 		**  If we didn't abort anything, leave here.
3535 		*/
3536 		if (np->abrt_msg[0] == M_ABORT)
3537 			break;
3538 
3539 		/*
3540 		 *  If we sent a M_RESET, then a hardware reset has
3541 		 *  been performed by the target.
3542 		 *  - Reset everything to async 8 bit
3543 		 *  - Tell ourself to negotiate next time :-)
3544 		 *  - Prepare to clear all disconnected CCBs for
3545 		 *    this target from our task list (lun=task=-1)
3546 		 */
3547 		lun = -1;
3548 		task = -1;
3549 		if (np->abrt_msg[0] == M_RESET) {
3550 			tp->head.sval = 0;
3551 			tp->head.wval = np->rv_scntl3;
3552 			tp->head.uval = 0;
3553 			spi_period(starget) = 0;
3554 			spi_offset(starget) = 0;
3555 			spi_width(starget) = 0;
3556 			spi_iu(starget) = 0;
3557 			spi_dt(starget) = 0;
3558 			spi_qas(starget) = 0;
3559 			tp->tgoal.check_nego = 1;
3560 			tp->tgoal.renego = 0;
3561 		}
3562 
3563 		/*
3564 		 *  Otherwise, check for the LUN and TASK(s)
3565 		 *  concerned by the cancelation.
3566 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3567 		 *  or an ABORT message :-)
3568 		 */
3569 		else {
3570 			lun = np->abrt_msg[0] & 0x3f;
3571 			if (np->abrt_msg[1] == M_ABORT_TAG)
3572 				task = np->abrt_msg[2];
3573 		}
3574 
3575 		/*
3576 		 *  Complete all the CCBs the device should have
3577 		 *  aborted due to our 'kiss of death' message.
3578 		 */
3579 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3580 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3581 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3582 		sym_flush_comp_queue(np, 0);
3583 
3584  		/*
3585 		 *  If we sent a BDR, make upper layer aware of that.
3586  		 */
3587 		if (np->abrt_msg[0] == M_RESET)
3588 			starget_printk(KERN_NOTICE, starget,
3589 							"has been reset\n");
3590 		break;
3591 	}
3592 
3593 	/*
3594 	 *  Print to the log the message we intend to send.
3595 	 */
3596 	if (num == SIR_TARGET_SELECTED) {
3597 		dev_info(&tp->starget->dev, "control msgout:");
3598 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3599 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3600 	}
3601 
3602 	/*
3603 	 *  Let the SCRIPTS processor continue.
3604 	 */
3605 	OUTONB_STD();
3606 }
3607 
3608 /*
3609  *  Gerard's alchemy:) that deals with with the data
3610  *  pointer for both MDP and the residual calculation.
3611  *
3612  *  I didn't want to bloat the code by more than 200
3613  *  lines for the handling of both MDP and the residual.
3614  *  This has been achieved by using a data pointer
3615  *  representation consisting in an index in the data
3616  *  array (dp_sg) and a negative offset (dp_ofs) that
3617  *  have the following meaning:
3618  *
3619  *  - dp_sg = SYM_CONF_MAX_SG
3620  *    we are at the end of the data script.
3621  *  - dp_sg < SYM_CONF_MAX_SG
3622  *    dp_sg points to the next entry of the scatter array
3623  *    we want to transfer.
3624  *  - dp_ofs < 0
3625  *    dp_ofs represents the residual of bytes of the
3626  *    previous entry scatter entry we will send first.
3627  *  - dp_ofs = 0
3628  *    no residual to send first.
3629  *
3630  *  The function sym_evaluate_dp() accepts an arbitray
3631  *  offset (basically from the MDP message) and returns
3632  *  the corresponding values of dp_sg and dp_ofs.
3633  */
3634 
3635 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3636 {
3637 	u32	dp_scr;
3638 	int	dp_ofs, dp_sg, dp_sgmin;
3639 	int	tmp;
3640 	struct sym_pmc *pm;
3641 
3642 	/*
3643 	 *  Compute the resulted data pointer in term of a script
3644 	 *  address within some DATA script and a signed byte offset.
3645 	 */
3646 	dp_scr = scr;
3647 	dp_ofs = *ofs;
3648 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3649 		pm = &cp->phys.pm0;
3650 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3651 		pm = &cp->phys.pm1;
3652 	else
3653 		pm = NULL;
3654 
3655 	if (pm) {
3656 		dp_scr  = scr_to_cpu(pm->ret);
3657 		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3658 	}
3659 
3660 	/*
3661 	 *  If we are auto-sensing, then we are done.
3662 	 */
3663 	if (cp->host_flags & HF_SENSE) {
3664 		*ofs = dp_ofs;
3665 		return 0;
3666 	}
3667 
3668 	/*
3669 	 *  Deduce the index of the sg entry.
3670 	 *  Keep track of the index of the first valid entry.
3671 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3672 	 *  end of the data.
3673 	 */
3674 	tmp = scr_to_cpu(cp->goalp);
3675 	dp_sg = SYM_CONF_MAX_SG;
3676 	if (dp_scr != tmp)
3677 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3678 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3679 
3680 	/*
3681 	 *  Move to the sg entry the data pointer belongs to.
3682 	 *
3683 	 *  If we are inside the data area, we expect result to be:
3684 	 *
3685 	 *  Either,
3686 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3687 	 *      the data pointer belongs to (or the end of the data)
3688 	 *  Or,
3689 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3690 	 *      the data pointer belongs to + 1.
3691 	 */
3692 	if (dp_ofs < 0) {
3693 		int n;
3694 		while (dp_sg > dp_sgmin) {
3695 			--dp_sg;
3696 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3697 			n = dp_ofs + (tmp & 0xffffff);
3698 			if (n > 0) {
3699 				++dp_sg;
3700 				break;
3701 			}
3702 			dp_ofs = n;
3703 		}
3704 	}
3705 	else if (dp_ofs > 0) {
3706 		while (dp_sg < SYM_CONF_MAX_SG) {
3707 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3708 			dp_ofs -= (tmp & 0xffffff);
3709 			++dp_sg;
3710 			if (dp_ofs <= 0)
3711 				break;
3712 		}
3713 	}
3714 
3715 	/*
3716 	 *  Make sure the data pointer is inside the data area.
3717 	 *  If not, return some error.
3718 	 */
3719 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3720 		goto out_err;
3721 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3722 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3723 		goto out_err;
3724 
3725 	/*
3726 	 *  Save the extreme pointer if needed.
3727 	 */
3728 	if (dp_sg > cp->ext_sg ||
3729             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3730 		cp->ext_sg  = dp_sg;
3731 		cp->ext_ofs = dp_ofs;
3732 	}
3733 
3734 	/*
3735 	 *  Return data.
3736 	 */
3737 	*ofs = dp_ofs;
3738 	return dp_sg;
3739 
3740 out_err:
3741 	return -1;
3742 }
3743 
3744 /*
3745  *  chip handler for MODIFY DATA POINTER MESSAGE
3746  *
3747  *  We also call this function on IGNORE WIDE RESIDUE
3748  *  messages that do not match a SWIDE full condition.
3749  *  Btw, we assume in that situation that such a message
3750  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3751  */
3752 
3753 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3754 {
3755 	int dp_ofs	= ofs;
3756 	u32	dp_scr	= sym_get_script_dp (np, cp);
3757 	u32	dp_ret;
3758 	u32	tmp;
3759 	u_char	hflags;
3760 	int	dp_sg;
3761 	struct	sym_pmc *pm;
3762 
3763 	/*
3764 	 *  Not supported for auto-sense.
3765 	 */
3766 	if (cp->host_flags & HF_SENSE)
3767 		goto out_reject;
3768 
3769 	/*
3770 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3771 	 *  to the resulted data pointer.
3772 	 */
3773 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3774 	if (dp_sg < 0)
3775 		goto out_reject;
3776 
3777 	/*
3778 	 *  And our alchemy:) allows to easily calculate the data
3779 	 *  script address we want to return for the next data phase.
3780 	 */
3781 	dp_ret = cpu_to_scr(cp->goalp);
3782 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3783 
3784 	/*
3785 	 *  If offset / scatter entry is zero we donnot need
3786 	 *  a context for the new current data pointer.
3787 	 */
3788 	if (dp_ofs == 0) {
3789 		dp_scr = dp_ret;
3790 		goto out_ok;
3791 	}
3792 
3793 	/*
3794 	 *  Get a context for the new current data pointer.
3795 	 */
3796 	hflags = INB(np, HF_PRT);
3797 
3798 	if (hflags & HF_DP_SAVED)
3799 		hflags ^= HF_ACT_PM;
3800 
3801 	if (!(hflags & HF_ACT_PM)) {
3802 		pm  = &cp->phys.pm0;
3803 		dp_scr = SCRIPTA_BA(np, pm0_data);
3804 	}
3805 	else {
3806 		pm = &cp->phys.pm1;
3807 		dp_scr = SCRIPTA_BA(np, pm1_data);
3808 	}
3809 
3810 	hflags &= ~(HF_DP_SAVED);
3811 
3812 	OUTB(np, HF_PRT, hflags);
3813 
3814 	/*
3815 	 *  Set up the new current data pointer.
3816 	 *  ofs < 0 there, and for the next data phase, we
3817 	 *  want to transfer part of the data of the sg entry
3818 	 *  corresponding to index dp_sg-1 prior to returning
3819 	 *  to the main data script.
3820 	 */
3821 	pm->ret = cpu_to_scr(dp_ret);
3822 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3823 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3824 	pm->sg.addr = cpu_to_scr(tmp);
3825 	pm->sg.size = cpu_to_scr(-dp_ofs);
3826 
3827 out_ok:
3828 	sym_set_script_dp (np, cp, dp_scr);
3829 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3830 	return;
3831 
3832 out_reject:
3833 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3834 }
3835 
3836 
3837 /*
3838  *  chip calculation of the data residual.
3839  *
3840  *  As I used to say, the requirement of data residual
3841  *  in SCSI is broken, useless and cannot be achieved
3842  *  without huge complexity.
3843  *  But most OSes and even the official CAM require it.
3844  *  When stupidity happens to be so widely spread inside
3845  *  a community, it gets hard to convince.
3846  *
3847  *  Anyway, I don't care, since I am not going to use
3848  *  any software that considers this data residual as
3849  *  a relevant information. :)
3850  */
3851 
3852 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3853 {
3854 	int dp_sg, dp_sgmin, resid = 0;
3855 	int dp_ofs = 0;
3856 
3857 	/*
3858 	 *  Check for some data lost or just thrown away.
3859 	 *  We are not required to be quite accurate in this
3860 	 *  situation. Btw, if we are odd for output and the
3861 	 *  device claims some more data, it may well happen
3862 	 *  than our residual be zero. :-)
3863 	 */
3864 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3865 		if (cp->xerr_status & XE_EXTRA_DATA)
3866 			resid -= cp->extra_bytes;
3867 		if (cp->xerr_status & XE_SODL_UNRUN)
3868 			++resid;
3869 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3870 			--resid;
3871 	}
3872 
3873 	/*
3874 	 *  If all data has been transferred,
3875 	 *  there is no residual.
3876 	 */
3877 	if (cp->phys.head.lastp == cp->goalp)
3878 		return resid;
3879 
3880 	/*
3881 	 *  If no data transfer occurs, or if the data
3882 	 *  pointer is weird, return full residual.
3883 	 */
3884 	if (cp->startp == cp->phys.head.lastp ||
3885 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3886 			    &dp_ofs) < 0) {
3887 		return cp->data_len - cp->odd_byte_adjustment;
3888 	}
3889 
3890 	/*
3891 	 *  If we were auto-sensing, then we are done.
3892 	 */
3893 	if (cp->host_flags & HF_SENSE) {
3894 		return -dp_ofs;
3895 	}
3896 
3897 	/*
3898 	 *  We are now full comfortable in the computation
3899 	 *  of the data residual (2's complement).
3900 	 */
3901 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3902 	resid = -cp->ext_ofs;
3903 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3904 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3905 		resid += (tmp & 0xffffff);
3906 	}
3907 
3908 	resid -= cp->odd_byte_adjustment;
3909 
3910 	/*
3911 	 *  Hopefully, the result is not too wrong.
3912 	 */
3913 	return resid;
3914 }
3915 
3916 /*
3917  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3918  *
3919  *  When we try to negotiate, we append the negotiation message
3920  *  to the identify and (maybe) simple tag message.
3921  *  The host status field is set to HS_NEGOTIATE to mark this
3922  *  situation.
3923  *
3924  *  If the target doesn't answer this message immediately
3925  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3926  *  will be raised eventually.
3927  *  The handler removes the HS_NEGOTIATE status, and sets the
3928  *  negotiated value to the default (async / nowide).
3929  *
3930  *  If we receive a matching answer immediately, we check it
3931  *  for validity, and set the values.
3932  *
3933  *  If we receive a Reject message immediately, we assume the
3934  *  negotiation has failed, and fall back to standard values.
3935  *
3936  *  If we receive a negotiation message while not in HS_NEGOTIATE
3937  *  state, it's a target initiated negotiation. We prepare a
3938  *  (hopefully) valid answer, set our parameters, and send back
3939  *  this answer to the target.
3940  *
3941  *  If the target doesn't fetch the answer (no message out phase),
3942  *  we assume the negotiation has failed, and fall back to default
3943  *  settings (SIR_NEGO_PROTO interrupt).
3944  *
3945  *  When we set the values, we adjust them in all ccbs belonging
3946  *  to this target, in the controller's register, and in the "phys"
3947  *  field of the controller's struct sym_hcb.
3948  */
3949 
3950 /*
3951  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3952  */
3953 static int
3954 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3955 {
3956 	int target = cp->target;
3957 	u_char	chg, ofs, per, fak, div;
3958 
3959 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3960 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3961 	}
3962 
3963 	/*
3964 	 *  Get requested values.
3965 	 */
3966 	chg = 0;
3967 	per = np->msgin[3];
3968 	ofs = np->msgin[4];
3969 
3970 	/*
3971 	 *  Check values against our limits.
3972 	 */
3973 	if (ofs) {
3974 		if (ofs > np->maxoffs)
3975 			{chg = 1; ofs = np->maxoffs;}
3976 	}
3977 
3978 	if (ofs) {
3979 		if (per < np->minsync)
3980 			{chg = 1; per = np->minsync;}
3981 	}
3982 
3983 	/*
3984 	 *  Get new chip synchronous parameters value.
3985 	 */
3986 	div = fak = 0;
3987 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3988 		goto reject_it;
3989 
3990 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3991 		sym_print_addr(cp->cmd,
3992 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3993 				ofs, per, div, fak, chg);
3994 	}
3995 
3996 	/*
3997 	 *  If it was an answer we want to change,
3998 	 *  then it isn't acceptable. Reject it.
3999 	 */
4000 	if (!req && chg)
4001 		goto reject_it;
4002 
4003 	/*
4004 	 *  Apply new values.
4005 	 */
4006 	sym_setsync (np, target, ofs, per, div, fak);
4007 
4008 	/*
4009 	 *  It was an answer. We are done.
4010 	 */
4011 	if (!req)
4012 		return 0;
4013 
4014 	/*
4015 	 *  It was a request. Prepare an answer message.
4016 	 */
4017 	spi_populate_sync_msg(np->msgout, per, ofs);
4018 
4019 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4020 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4021 	}
4022 
4023 	np->msgin [0] = M_NOOP;
4024 
4025 	return 0;
4026 
4027 reject_it:
4028 	sym_setsync (np, target, 0, 0, 0, 0);
4029 	return -1;
4030 }
4031 
4032 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4033 {
4034 	int req = 1;
4035 	int result;
4036 
4037 	/*
4038 	 *  Request or answer ?
4039 	 */
4040 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4041 		OUTB(np, HS_PRT, HS_BUSY);
4042 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4043 			goto reject_it;
4044 		req = 0;
4045 	}
4046 
4047 	/*
4048 	 *  Check and apply new values.
4049 	 */
4050 	result = sym_sync_nego_check(np, req, cp);
4051 	if (result)	/* Not acceptable, reject it */
4052 		goto reject_it;
4053 	if (req) {	/* Was a request, send response. */
4054 		cp->nego_status = NS_SYNC;
4055 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4056 	}
4057 	else		/* Was a response, we are done. */
4058 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4059 	return;
4060 
4061 reject_it:
4062 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4063 }
4064 
4065 /*
4066  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4067  */
4068 static int
4069 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4070 {
4071 	struct sym_tcb *tp = &np->target[target];
4072 	unsigned char fak, div;
4073 	int dt, chg = 0;
4074 
4075 	unsigned char per = np->msgin[3];
4076 	unsigned char ofs = np->msgin[5];
4077 	unsigned char wide = np->msgin[6];
4078 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4079 
4080 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4081 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4082 	}
4083 
4084 	/*
4085 	 *  Check values against our limits.
4086 	 */
4087 	if (wide > np->maxwide) {
4088 		chg = 1;
4089 		wide = np->maxwide;
4090 	}
4091 	if (!wide || !(np->features & FE_U3EN))
4092 		opts = 0;
4093 
4094 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4095 		chg = 1;
4096 
4097 	dt = opts & PPR_OPT_DT;
4098 
4099 	if (ofs) {
4100 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4101 		if (ofs > maxoffs) {
4102 			chg = 1;
4103 			ofs = maxoffs;
4104 		}
4105 	}
4106 
4107 	if (ofs) {
4108 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4109 		if (per < minsync) {
4110 			chg = 1;
4111 			per = minsync;
4112 		}
4113 	}
4114 
4115 	/*
4116 	 *  Get new chip synchronous parameters value.
4117 	 */
4118 	div = fak = 0;
4119 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4120 		goto reject_it;
4121 
4122 	/*
4123 	 *  If it was an answer we want to change,
4124 	 *  then it isn't acceptable. Reject it.
4125 	 */
4126 	if (!req && chg)
4127 		goto reject_it;
4128 
4129 	/*
4130 	 *  Apply new values.
4131 	 */
4132 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4133 
4134 	/*
4135 	 *  It was an answer. We are done.
4136 	 */
4137 	if (!req)
4138 		return 0;
4139 
4140 	/*
4141 	 *  It was a request. Prepare an answer message.
4142 	 */
4143 	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4144 
4145 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4146 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4147 	}
4148 
4149 	np->msgin [0] = M_NOOP;
4150 
4151 	return 0;
4152 
4153 reject_it:
4154 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4155 	/*
4156 	 *  If it is a device response that should result in
4157 	 *  ST, we may want to try a legacy negotiation later.
4158 	 */
4159 	if (!req && !opts) {
4160 		tp->tgoal.period = per;
4161 		tp->tgoal.offset = ofs;
4162 		tp->tgoal.width = wide;
4163 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4164 		tp->tgoal.check_nego = 1;
4165 	}
4166 	return -1;
4167 }
4168 
4169 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4170 {
4171 	int req = 1;
4172 	int result;
4173 
4174 	/*
4175 	 *  Request or answer ?
4176 	 */
4177 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4178 		OUTB(np, HS_PRT, HS_BUSY);
4179 		if (cp->nego_status && cp->nego_status != NS_PPR)
4180 			goto reject_it;
4181 		req = 0;
4182 	}
4183 
4184 	/*
4185 	 *  Check and apply new values.
4186 	 */
4187 	result = sym_ppr_nego_check(np, req, cp->target);
4188 	if (result)	/* Not acceptable, reject it */
4189 		goto reject_it;
4190 	if (req) {	/* Was a request, send response. */
4191 		cp->nego_status = NS_PPR;
4192 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4193 	}
4194 	else		/* Was a response, we are done. */
4195 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4196 	return;
4197 
4198 reject_it:
4199 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4200 }
4201 
4202 /*
4203  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4204  */
4205 static int
4206 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4207 {
4208 	int target = cp->target;
4209 	u_char	chg, wide;
4210 
4211 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4212 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4213 	}
4214 
4215 	/*
4216 	 *  Get requested values.
4217 	 */
4218 	chg  = 0;
4219 	wide = np->msgin[3];
4220 
4221 	/*
4222 	 *  Check values against our limits.
4223 	 */
4224 	if (wide > np->maxwide) {
4225 		chg = 1;
4226 		wide = np->maxwide;
4227 	}
4228 
4229 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4230 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4231 				wide, chg);
4232 	}
4233 
4234 	/*
4235 	 *  If it was an answer we want to change,
4236 	 *  then it isn't acceptable. Reject it.
4237 	 */
4238 	if (!req && chg)
4239 		goto reject_it;
4240 
4241 	/*
4242 	 *  Apply new values.
4243 	 */
4244 	sym_setwide (np, target, wide);
4245 
4246 	/*
4247 	 *  It was an answer. We are done.
4248 	 */
4249 	if (!req)
4250 		return 0;
4251 
4252 	/*
4253 	 *  It was a request. Prepare an answer message.
4254 	 */
4255 	spi_populate_width_msg(np->msgout, wide);
4256 
4257 	np->msgin [0] = M_NOOP;
4258 
4259 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4260 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4261 	}
4262 
4263 	return 0;
4264 
4265 reject_it:
4266 	return -1;
4267 }
4268 
4269 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4270 {
4271 	int req = 1;
4272 	int result;
4273 
4274 	/*
4275 	 *  Request or answer ?
4276 	 */
4277 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4278 		OUTB(np, HS_PRT, HS_BUSY);
4279 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4280 			goto reject_it;
4281 		req = 0;
4282 	}
4283 
4284 	/*
4285 	 *  Check and apply new values.
4286 	 */
4287 	result = sym_wide_nego_check(np, req, cp);
4288 	if (result)	/* Not acceptable, reject it */
4289 		goto reject_it;
4290 	if (req) {	/* Was a request, send response. */
4291 		cp->nego_status = NS_WIDE;
4292 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4293 	} else {		/* Was a response. */
4294 		/*
4295 		 * Negotiate for SYNC immediately after WIDE response.
4296 		 * This allows to negotiate for both WIDE and SYNC on
4297 		 * a single SCSI command (Suggested by Justin Gibbs).
4298 		 */
4299 		if (tp->tgoal.offset) {
4300 			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4301 					tp->tgoal.offset);
4302 
4303 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4304 				sym_print_nego_msg(np, cp->target,
4305 				                   "sync msgout", np->msgout);
4306 			}
4307 
4308 			cp->nego_status = NS_SYNC;
4309 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4310 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4311 			return;
4312 		} else
4313 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4314 	}
4315 
4316 	return;
4317 
4318 reject_it:
4319 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4320 }
4321 
4322 /*
4323  *  Reset DT, SYNC or WIDE to default settings.
4324  *
4325  *  Called when a negotiation does not succeed either
4326  *  on rejection or on protocol error.
4327  *
4328  *  A target that understands a PPR message should never
4329  *  reject it, and messing with it is very unlikely.
4330  *  So, if a PPR makes problems, we may just want to
4331  *  try a legacy negotiation later.
4332  */
4333 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4334 {
4335 	switch (cp->nego_status) {
4336 	case NS_PPR:
4337 #if 0
4338 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4339 #else
4340 		if (tp->tgoal.period < np->minsync)
4341 			tp->tgoal.period = np->minsync;
4342 		if (tp->tgoal.offset > np->maxoffs)
4343 			tp->tgoal.offset = np->maxoffs;
4344 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4345 		tp->tgoal.check_nego = 1;
4346 #endif
4347 		break;
4348 	case NS_SYNC:
4349 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4350 		break;
4351 	case NS_WIDE:
4352 		sym_setwide (np, cp->target, 0);
4353 		break;
4354 	}
4355 	np->msgin [0] = M_NOOP;
4356 	np->msgout[0] = M_NOOP;
4357 	cp->nego_status = 0;
4358 }
4359 
4360 /*
4361  *  chip handler for MESSAGE REJECT received in response to
4362  *  PPR, WIDE or SYNCHRONOUS negotiation.
4363  */
4364 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4365 {
4366 	sym_nego_default(np, tp, cp);
4367 	OUTB(np, HS_PRT, HS_BUSY);
4368 }
4369 
4370 /*
4371  *  chip exception handler for programmed interrupts.
4372  */
4373 static void sym_int_sir(struct sym_hcb *np)
4374 {
4375 	u_char	num	= INB(np, nc_dsps);
4376 	u32	dsa	= INL(np, nc_dsa);
4377 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4378 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4379 	struct sym_tcb *tp	= &np->target[target];
4380 	int	tmp;
4381 
4382 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4383 
4384 	switch (num) {
4385 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4386 	/*
4387 	 *  SCRIPTS tell us that we may have to update
4388 	 *  64 bit DMA segment registers.
4389 	 */
4390 	case SIR_DMAP_DIRTY:
4391 		sym_update_dmap_regs(np);
4392 		goto out;
4393 #endif
4394 	/*
4395 	 *  Command has been completed with error condition
4396 	 *  or has been auto-sensed.
4397 	 */
4398 	case SIR_COMPLETE_ERROR:
4399 		sym_complete_error(np, cp);
4400 		return;
4401 	/*
4402 	 *  The C code is currently trying to recover from something.
4403 	 *  Typically, user want to abort some command.
4404 	 */
4405 	case SIR_SCRIPT_STOPPED:
4406 	case SIR_TARGET_SELECTED:
4407 	case SIR_ABORT_SENT:
4408 		sym_sir_task_recovery(np, num);
4409 		return;
4410 	/*
4411 	 *  The device didn't go to MSG OUT phase after having
4412 	 *  been selected with ATN.  We do not want to handle that.
4413 	 */
4414 	case SIR_SEL_ATN_NO_MSG_OUT:
4415 		scmd_printk(KERN_WARNING, cp->cmd,
4416 				"No MSG OUT phase after selection with ATN\n");
4417 		goto out_stuck;
4418 	/*
4419 	 *  The device didn't switch to MSG IN phase after
4420 	 *  having reselected the initiator.
4421 	 */
4422 	case SIR_RESEL_NO_MSG_IN:
4423 		scmd_printk(KERN_WARNING, cp->cmd,
4424 				"No MSG IN phase after reselection\n");
4425 		goto out_stuck;
4426 	/*
4427 	 *  After reselection, the device sent a message that wasn't
4428 	 *  an IDENTIFY.
4429 	 */
4430 	case SIR_RESEL_NO_IDENTIFY:
4431 		scmd_printk(KERN_WARNING, cp->cmd,
4432 				"No IDENTIFY after reselection\n");
4433 		goto out_stuck;
4434 	/*
4435 	 *  The device reselected a LUN we do not know about.
4436 	 */
4437 	case SIR_RESEL_BAD_LUN:
4438 		np->msgout[0] = M_RESET;
4439 		goto out;
4440 	/*
4441 	 *  The device reselected for an untagged nexus and we
4442 	 *  haven't any.
4443 	 */
4444 	case SIR_RESEL_BAD_I_T_L:
4445 		np->msgout[0] = M_ABORT;
4446 		goto out;
4447 	/*
4448 	 * The device reselected for a tagged nexus that we do not have.
4449 	 */
4450 	case SIR_RESEL_BAD_I_T_L_Q:
4451 		np->msgout[0] = M_ABORT_TAG;
4452 		goto out;
4453 	/*
4454 	 *  The SCRIPTS let us know that the device has grabbed
4455 	 *  our message and will abort the job.
4456 	 */
4457 	case SIR_RESEL_ABORTED:
4458 		np->lastmsg = np->msgout[0];
4459 		np->msgout[0] = M_NOOP;
4460 		scmd_printk(KERN_WARNING, cp->cmd,
4461 			"message %x sent on bad reselection\n", np->lastmsg);
4462 		goto out;
4463 	/*
4464 	 *  The SCRIPTS let us know that a message has been
4465 	 *  successfully sent to the device.
4466 	 */
4467 	case SIR_MSG_OUT_DONE:
4468 		np->lastmsg = np->msgout[0];
4469 		np->msgout[0] = M_NOOP;
4470 		/* Should we really care of that */
4471 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4472 			if (cp) {
4473 				cp->xerr_status &= ~XE_PARITY_ERR;
4474 				if (!cp->xerr_status)
4475 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4476 			}
4477 		}
4478 		goto out;
4479 	/*
4480 	 *  The device didn't send a GOOD SCSI status.
4481 	 *  We may have some work to do prior to allow
4482 	 *  the SCRIPTS processor to continue.
4483 	 */
4484 	case SIR_BAD_SCSI_STATUS:
4485 		if (!cp)
4486 			goto out;
4487 		sym_sir_bad_scsi_status(np, num, cp);
4488 		return;
4489 	/*
4490 	 *  We are asked by the SCRIPTS to prepare a
4491 	 *  REJECT message.
4492 	 */
4493 	case SIR_REJECT_TO_SEND:
4494 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4495 		np->msgout[0] = M_REJECT;
4496 		goto out;
4497 	/*
4498 	 *  We have been ODD at the end of a DATA IN
4499 	 *  transfer and the device didn't send a
4500 	 *  IGNORE WIDE RESIDUE message.
4501 	 *  It is a data overrun condition.
4502 	 */
4503 	case SIR_SWIDE_OVERRUN:
4504 		if (cp) {
4505 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4506 			cp->xerr_status |= XE_SWIDE_OVRUN;
4507 		}
4508 		goto out;
4509 	/*
4510 	 *  We have been ODD at the end of a DATA OUT
4511 	 *  transfer.
4512 	 *  It is a data underrun condition.
4513 	 */
4514 	case SIR_SODL_UNDERRUN:
4515 		if (cp) {
4516 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4517 			cp->xerr_status |= XE_SODL_UNRUN;
4518 		}
4519 		goto out;
4520 	/*
4521 	 *  The device wants us to tranfer more data than
4522 	 *  expected or in the wrong direction.
4523 	 *  The number of extra bytes is in scratcha.
4524 	 *  It is a data overrun condition.
4525 	 */
4526 	case SIR_DATA_OVERRUN:
4527 		if (cp) {
4528 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4529 			cp->xerr_status |= XE_EXTRA_DATA;
4530 			cp->extra_bytes += INL(np, nc_scratcha);
4531 		}
4532 		goto out;
4533 	/*
4534 	 *  The device switched to an illegal phase (4/5).
4535 	 */
4536 	case SIR_BAD_PHASE:
4537 		if (cp) {
4538 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4539 			cp->xerr_status |= XE_BAD_PHASE;
4540 		}
4541 		goto out;
4542 	/*
4543 	 *  We received a message.
4544 	 */
4545 	case SIR_MSG_RECEIVED:
4546 		if (!cp)
4547 			goto out_stuck;
4548 		switch (np->msgin [0]) {
4549 		/*
4550 		 *  We received an extended message.
4551 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4552 		 *  and reject all other extended messages.
4553 		 */
4554 		case M_EXTENDED:
4555 			switch (np->msgin [2]) {
4556 			case M_X_MODIFY_DP:
4557 				if (DEBUG_FLAGS & DEBUG_POINTER)
4558 					sym_print_msg(cp, "extended msg ",
4559 						      np->msgin);
4560 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4561 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4562 				sym_modify_dp(np, tp, cp, tmp);
4563 				return;
4564 			case M_X_SYNC_REQ:
4565 				sym_sync_nego(np, tp, cp);
4566 				return;
4567 			case M_X_PPR_REQ:
4568 				sym_ppr_nego(np, tp, cp);
4569 				return;
4570 			case M_X_WIDE_REQ:
4571 				sym_wide_nego(np, tp, cp);
4572 				return;
4573 			default:
4574 				goto out_reject;
4575 			}
4576 			break;
4577 		/*
4578 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4579 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4580 		 *  RESIDUE messages that haven't been anticipated by
4581 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4582 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4583 		 */
4584 		case M_IGN_RESIDUE:
4585 			if (DEBUG_FLAGS & DEBUG_POINTER)
4586 				sym_print_msg(cp, "1 or 2 byte ", np->msgin);
4587 			if (cp->host_flags & HF_SENSE)
4588 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4589 			else
4590 				sym_modify_dp(np, tp, cp, -1);
4591 			return;
4592 		case M_REJECT:
4593 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4594 				sym_nego_rejected(np, tp, cp);
4595 			else {
4596 				sym_print_addr(cp->cmd,
4597 					"M_REJECT received (%x:%x).\n",
4598 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4599 			}
4600 			goto out_clrack;
4601 			break;
4602 		default:
4603 			goto out_reject;
4604 		}
4605 		break;
4606 	/*
4607 	 *  We received an unknown message.
4608 	 *  Ignore all MSG IN phases and reject it.
4609 	 */
4610 	case SIR_MSG_WEIRD:
4611 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4612 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4613 		return;
4614 	/*
4615 	 *  Negotiation failed.
4616 	 *  Target does not send us the reply.
4617 	 *  Remove the HS_NEGOTIATE status.
4618 	 */
4619 	case SIR_NEGO_FAILED:
4620 		OUTB(np, HS_PRT, HS_BUSY);
4621 	/*
4622 	 *  Negotiation failed.
4623 	 *  Target does not want answer message.
4624 	 */
4625 	case SIR_NEGO_PROTO:
4626 		sym_nego_default(np, tp, cp);
4627 		goto out;
4628 	}
4629 
4630 out:
4631 	OUTONB_STD();
4632 	return;
4633 out_reject:
4634 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4635 	return;
4636 out_clrack:
4637 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4638 	return;
4639 out_stuck:
4640 	return;
4641 }
4642 
4643 /*
4644  *  Acquire a control block
4645  */
4646 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4647 {
4648 	u_char tn = cmd->device->id;
4649 	u_char ln = cmd->device->lun;
4650 	struct sym_tcb *tp = &np->target[tn];
4651 	struct sym_lcb *lp = sym_lp(tp, ln);
4652 	u_short tag = NO_TAG;
4653 	SYM_QUEHEAD *qp;
4654 	struct sym_ccb *cp = NULL;
4655 
4656 	/*
4657 	 *  Look for a free CCB
4658 	 */
4659 	if (sym_que_empty(&np->free_ccbq))
4660 		sym_alloc_ccb(np);
4661 	qp = sym_remque_head(&np->free_ccbq);
4662 	if (!qp)
4663 		goto out;
4664 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4665 
4666 	{
4667 		/*
4668 		 *  If we have been asked for a tagged command.
4669 		 */
4670 		if (tag_order) {
4671 			/*
4672 			 *  Debugging purpose.
4673 			 */
4674 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4675 			if (lp->busy_itl != 0)
4676 				goto out_free;
4677 #endif
4678 			/*
4679 			 *  Allocate resources for tags if not yet.
4680 			 */
4681 			if (!lp->cb_tags) {
4682 				sym_alloc_lcb_tags(np, tn, ln);
4683 				if (!lp->cb_tags)
4684 					goto out_free;
4685 			}
4686 			/*
4687 			 *  Get a tag for this SCSI IO and set up
4688 			 *  the CCB bus address for reselection,
4689 			 *  and count it for this LUN.
4690 			 *  Toggle reselect path to tagged.
4691 			 */
4692 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4693 				tag = lp->cb_tags[lp->ia_tag];
4694 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4695 					lp->ia_tag = 0;
4696 				++lp->busy_itlq;
4697 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4698 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4699 				lp->head.resel_sa =
4700 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4701 #endif
4702 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4703 				cp->tags_si = lp->tags_si;
4704 				++lp->tags_sum[cp->tags_si];
4705 				++lp->tags_since;
4706 #endif
4707 			}
4708 			else
4709 				goto out_free;
4710 		}
4711 		/*
4712 		 *  This command will not be tagged.
4713 		 *  If we already have either a tagged or untagged
4714 		 *  one, refuse to overlap this untagged one.
4715 		 */
4716 		else {
4717 			/*
4718 			 *  Debugging purpose.
4719 			 */
4720 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4721 			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4722 				goto out_free;
4723 #endif
4724 			/*
4725 			 *  Count this nexus for this LUN.
4726 			 *  Set up the CCB bus address for reselection.
4727 			 *  Toggle reselect path to untagged.
4728 			 */
4729 			++lp->busy_itl;
4730 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4731 			if (lp->busy_itl == 1) {
4732 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4733 				lp->head.resel_sa =
4734 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4735 			}
4736 			else
4737 				goto out_free;
4738 #endif
4739 		}
4740 	}
4741 	/*
4742 	 *  Put the CCB into the busy queue.
4743 	 */
4744 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4745 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4746 	if (lp) {
4747 		sym_remque(&cp->link2_ccbq);
4748 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4749 	}
4750 
4751 #endif
4752 	cp->to_abort = 0;
4753 	cp->odd_byte_adjustment = 0;
4754 	cp->tag	   = tag;
4755 	cp->order  = tag_order;
4756 	cp->target = tn;
4757 	cp->lun    = ln;
4758 
4759 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4760 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4761 	}
4762 
4763 out:
4764 	return cp;
4765 out_free:
4766 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4767 	return NULL;
4768 }
4769 
4770 /*
4771  *  Release one control block
4772  */
4773 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4774 {
4775 	struct sym_tcb *tp = &np->target[cp->target];
4776 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4777 
4778 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4779 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4780 				cp, cp->tag);
4781 	}
4782 
4783 	/*
4784 	 *  If LCB available,
4785 	 */
4786 	if (lp) {
4787 		/*
4788 		 *  If tagged, release the tag, set the relect path
4789 		 */
4790 		if (cp->tag != NO_TAG) {
4791 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4792 			--lp->tags_sum[cp->tags_si];
4793 #endif
4794 			/*
4795 			 *  Free the tag value.
4796 			 */
4797 			lp->cb_tags[lp->if_tag] = cp->tag;
4798 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4799 				lp->if_tag = 0;
4800 			/*
4801 			 *  Make the reselect path invalid,
4802 			 *  and uncount this CCB.
4803 			 */
4804 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4805 			--lp->busy_itlq;
4806 		} else {	/* Untagged */
4807 			/*
4808 			 *  Make the reselect path invalid,
4809 			 *  and uncount this CCB.
4810 			 */
4811 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4812 			--lp->busy_itl;
4813 		}
4814 		/*
4815 		 *  If no JOB active, make the LUN reselect path invalid.
4816 		 */
4817 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4818 			lp->head.resel_sa =
4819 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4820 	}
4821 
4822 	/*
4823 	 *  We donnot queue more than 1 ccb per target
4824 	 *  with negotiation at any time. If this ccb was
4825 	 *  used for negotiation, clear this info in the tcb.
4826 	 */
4827 	if (cp == tp->nego_cp)
4828 		tp->nego_cp = NULL;
4829 
4830 #ifdef SYM_CONF_IARB_SUPPORT
4831 	/*
4832 	 *  If we just complete the last queued CCB,
4833 	 *  clear this info that is no longer relevant.
4834 	 */
4835 	if (cp == np->last_cp)
4836 		np->last_cp = 0;
4837 #endif
4838 
4839 	/*
4840 	 *  Make this CCB available.
4841 	 */
4842 	cp->cmd = NULL;
4843 	cp->host_status = HS_IDLE;
4844 	sym_remque(&cp->link_ccbq);
4845 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4846 
4847 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4848 	if (lp) {
4849 		sym_remque(&cp->link2_ccbq);
4850 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4851 		if (cp->started) {
4852 			if (cp->tag != NO_TAG)
4853 				--lp->started_tags;
4854 			else
4855 				--lp->started_no_tag;
4856 		}
4857 	}
4858 	cp->started = 0;
4859 #endif
4860 }
4861 
4862 /*
4863  *  Allocate a CCB from memory and initialize its fixed part.
4864  */
4865 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4866 {
4867 	struct sym_ccb *cp = NULL;
4868 	int hcode;
4869 
4870 	/*
4871 	 *  Prevent from allocating more CCBs than we can
4872 	 *  queue to the controller.
4873 	 */
4874 	if (np->actccbs >= SYM_CONF_MAX_START)
4875 		return NULL;
4876 
4877 	/*
4878 	 *  Allocate memory for this CCB.
4879 	 */
4880 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4881 	if (!cp)
4882 		goto out_free;
4883 
4884 	/*
4885 	 *  Count it.
4886 	 */
4887 	np->actccbs++;
4888 
4889 	/*
4890 	 *  Compute the bus address of this ccb.
4891 	 */
4892 	cp->ccb_ba = vtobus(cp);
4893 
4894 	/*
4895 	 *  Insert this ccb into the hashed list.
4896 	 */
4897 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4898 	cp->link_ccbh = np->ccbh[hcode];
4899 	np->ccbh[hcode] = cp;
4900 
4901 	/*
4902 	 *  Initialyze the start and restart actions.
4903 	 */
4904 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4905 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4906 
4907  	/*
4908 	 *  Initilialyze some other fields.
4909 	 */
4910 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4911 
4912 	/*
4913 	 *  Chain into free ccb queue.
4914 	 */
4915 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4916 
4917 	/*
4918 	 *  Chain into optionnal lists.
4919 	 */
4920 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4921 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4922 #endif
4923 	return cp;
4924 out_free:
4925 	if (cp)
4926 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4927 	return NULL;
4928 }
4929 
4930 /*
4931  *  Look up a CCB from a DSA value.
4932  */
4933 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4934 {
4935 	int hcode;
4936 	struct sym_ccb *cp;
4937 
4938 	hcode = CCB_HASH_CODE(dsa);
4939 	cp = np->ccbh[hcode];
4940 	while (cp) {
4941 		if (cp->ccb_ba == dsa)
4942 			break;
4943 		cp = cp->link_ccbh;
4944 	}
4945 
4946 	return cp;
4947 }
4948 
4949 /*
4950  *  Target control block initialisation.
4951  *  Nothing important to do at the moment.
4952  */
4953 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4954 {
4955 #if 0	/*  Hmmm... this checking looks paranoid. */
4956 	/*
4957 	 *  Check some alignments required by the chip.
4958 	 */
4959 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4960 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4961 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4962 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4963 #endif
4964 }
4965 
4966 /*
4967  *  Lun control block allocation and initialization.
4968  */
4969 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4970 {
4971 	struct sym_tcb *tp = &np->target[tn];
4972 	struct sym_lcb *lp = NULL;
4973 
4974 	/*
4975 	 *  Initialize the target control block if not yet.
4976 	 */
4977 	sym_init_tcb (np, tn);
4978 
4979 	/*
4980 	 *  Allocate the LCB bus address array.
4981 	 *  Compute the bus address of this table.
4982 	 */
4983 	if (ln && !tp->luntbl) {
4984 		int i;
4985 
4986 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4987 		if (!tp->luntbl)
4988 			goto fail;
4989 		for (i = 0 ; i < 64 ; i++)
4990 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4991 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4992 	}
4993 
4994 	/*
4995 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4996 	 */
4997 	if (ln && !tp->lunmp) {
4998 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4999 				GFP_ATOMIC);
5000 		if (!tp->lunmp)
5001 			goto fail;
5002 	}
5003 
5004 	/*
5005 	 *  Allocate the lcb.
5006 	 *  Make it available to the chip.
5007 	 */
5008 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5009 	if (!lp)
5010 		goto fail;
5011 	if (ln) {
5012 		tp->lunmp[ln] = lp;
5013 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5014 	}
5015 	else {
5016 		tp->lun0p = lp;
5017 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5018 	}
5019 	tp->nlcb++;
5020 
5021 	/*
5022 	 *  Let the itl task point to error handling.
5023 	 */
5024 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5025 
5026 	/*
5027 	 *  Set the reselect pattern to our default. :)
5028 	 */
5029 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5030 
5031 	/*
5032 	 *  Set user capabilities.
5033 	 */
5034 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5035 
5036 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5037 	/*
5038 	 *  Initialize device queueing.
5039 	 */
5040 	sym_que_init(&lp->waiting_ccbq);
5041 	sym_que_init(&lp->started_ccbq);
5042 	lp->started_max   = SYM_CONF_MAX_TASK;
5043 	lp->started_limit = SYM_CONF_MAX_TASK;
5044 #endif
5045 
5046 fail:
5047 	return lp;
5048 }
5049 
5050 /*
5051  *  Allocate LCB resources for tagged command queuing.
5052  */
5053 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5054 {
5055 	struct sym_tcb *tp = &np->target[tn];
5056 	struct sym_lcb *lp = sym_lp(tp, ln);
5057 	int i;
5058 
5059 	/*
5060 	 *  Allocate the task table and and the tag allocation
5061 	 *  circular buffer. We want both or none.
5062 	 */
5063 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5064 	if (!lp->itlq_tbl)
5065 		goto fail;
5066 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5067 	if (!lp->cb_tags) {
5068 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5069 		lp->itlq_tbl = NULL;
5070 		goto fail;
5071 	}
5072 
5073 	/*
5074 	 *  Initialize the task table with invalid entries.
5075 	 */
5076 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5077 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5078 
5079 	/*
5080 	 *  Fill up the tag buffer with tag numbers.
5081 	 */
5082 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5083 		lp->cb_tags[i] = i;
5084 
5085 	/*
5086 	 *  Make the task table available to SCRIPTS,
5087 	 *  And accept tagged commands now.
5088 	 */
5089 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5090 
5091 	return;
5092 fail:
5093 	return;
5094 }
5095 
5096 /*
5097  *  Lun control block deallocation. Returns the number of valid remaining LCBs
5098  *  for the target.
5099  */
5100 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5101 {
5102 	struct sym_tcb *tp = &np->target[tn];
5103 	struct sym_lcb *lp = sym_lp(tp, ln);
5104 
5105 	tp->nlcb--;
5106 
5107 	if (ln) {
5108 		if (!tp->nlcb) {
5109 			kfree(tp->lunmp);
5110 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5111 			tp->lunmp = NULL;
5112 			tp->luntbl = NULL;
5113 			tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5114 		} else {
5115 			tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5116 			tp->lunmp[ln] = NULL;
5117 		}
5118 	} else {
5119 		tp->lun0p = NULL;
5120 		tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5121 	}
5122 
5123 	if (lp->itlq_tbl) {
5124 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5125 		kfree(lp->cb_tags);
5126 	}
5127 
5128 	sym_mfree_dma(lp, sizeof(*lp), "LCB");
5129 
5130 	return tp->nlcb;
5131 }
5132 
5133 /*
5134  *  Queue a SCSI IO to the controller.
5135  */
5136 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5137 {
5138 	struct scsi_device *sdev = cmd->device;
5139 	struct sym_tcb *tp;
5140 	struct sym_lcb *lp;
5141 	u_char	*msgptr;
5142 	u_int   msglen;
5143 	int can_disconnect;
5144 
5145 	/*
5146 	 *  Keep track of the IO in our CCB.
5147 	 */
5148 	cp->cmd = cmd;
5149 
5150 	/*
5151 	 *  Retrieve the target descriptor.
5152 	 */
5153 	tp = &np->target[cp->target];
5154 
5155 	/*
5156 	 *  Retrieve the lun descriptor.
5157 	 */
5158 	lp = sym_lp(tp, sdev->lun);
5159 
5160 	can_disconnect = (cp->tag != NO_TAG) ||
5161 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5162 
5163 	msgptr = cp->scsi_smsg;
5164 	msglen = 0;
5165 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5166 
5167 	/*
5168 	 *  Build the tag message if present.
5169 	 */
5170 	if (cp->tag != NO_TAG) {
5171 		u_char order = cp->order;
5172 
5173 		switch(order) {
5174 		case M_ORDERED_TAG:
5175 			break;
5176 		case M_HEAD_TAG:
5177 			break;
5178 		default:
5179 			order = M_SIMPLE_TAG;
5180 		}
5181 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5182 		/*
5183 		 *  Avoid too much reordering of SCSI commands.
5184 		 *  The algorithm tries to prevent completion of any
5185 		 *  tagged command from being delayed against more
5186 		 *  than 3 times the max number of queued commands.
5187 		 */
5188 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5189 			lp->tags_si = !(lp->tags_si);
5190 			if (lp->tags_sum[lp->tags_si]) {
5191 				order = M_ORDERED_TAG;
5192 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5193 					sym_print_addr(cmd,
5194 						"ordered tag forced.\n");
5195 				}
5196 			}
5197 			lp->tags_since = 0;
5198 		}
5199 #endif
5200 		msgptr[msglen++] = order;
5201 
5202 		/*
5203 		 *  For less than 128 tags, actual tags are numbered
5204 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5205 		 *  with devices that have problems with #TAG 0 or too
5206 		 *  great #TAG numbers. For more tags (up to 256),
5207 		 *  we use directly our tag number.
5208 		 */
5209 #if SYM_CONF_MAX_TASK > (512/4)
5210 		msgptr[msglen++] = cp->tag;
5211 #else
5212 		msgptr[msglen++] = (cp->tag << 1) + 1;
5213 #endif
5214 	}
5215 
5216 	/*
5217 	 *  Build a negotiation message if needed.
5218 	 *  (nego_status is filled by sym_prepare_nego())
5219 	 *
5220 	 *  Always negotiate on INQUIRY and REQUEST SENSE.
5221 	 *
5222 	 */
5223 	cp->nego_status = 0;
5224 	if ((tp->tgoal.check_nego ||
5225 	     cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5226 	    !tp->nego_cp && lp) {
5227 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5228 	}
5229 
5230 	/*
5231 	 *  Startqueue
5232 	 */
5233 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5234 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5235 
5236 	/*
5237 	 *  select
5238 	 */
5239 	cp->phys.select.sel_id		= cp->target;
5240 	cp->phys.select.sel_scntl3	= tp->head.wval;
5241 	cp->phys.select.sel_sxfer	= tp->head.sval;
5242 	cp->phys.select.sel_scntl4	= tp->head.uval;
5243 
5244 	/*
5245 	 *  message
5246 	 */
5247 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5248 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5249 
5250 	/*
5251 	 *  status
5252 	 */
5253 	cp->host_xflags		= 0;
5254 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5255 	cp->ssss_status		= S_ILLEGAL;
5256 	cp->xerr_status		= 0;
5257 	cp->host_flags		= 0;
5258 	cp->extra_bytes		= 0;
5259 
5260 	/*
5261 	 *  extreme data pointer.
5262 	 *  shall be positive, so -1 is lower than lowest.:)
5263 	 */
5264 	cp->ext_sg  = -1;
5265 	cp->ext_ofs = 0;
5266 
5267 	/*
5268 	 *  Build the CDB and DATA descriptor block
5269 	 *  and start the IO.
5270 	 */
5271 	return sym_setup_data_and_start(np, cmd, cp);
5272 }
5273 
5274 /*
5275  *  Reset a SCSI target (all LUNs of this target).
5276  */
5277 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5278 {
5279 	struct sym_tcb *tp;
5280 
5281 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5282 		return -1;
5283 
5284 	tp = &np->target[target];
5285 	tp->to_reset = 1;
5286 
5287 	np->istat_sem = SEM;
5288 	OUTB(np, nc_istat, SIGP|SEM);
5289 
5290 	return 0;
5291 }
5292 
5293 /*
5294  *  Abort a SCSI IO.
5295  */
5296 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5297 {
5298 	/*
5299 	 *  Check that the IO is active.
5300 	 */
5301 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5302 		return -1;
5303 
5304 	/*
5305 	 *  If a previous abort didn't succeed in time,
5306 	 *  perform a BUS reset.
5307 	 */
5308 	if (cp->to_abort) {
5309 		sym_reset_scsi_bus(np, 1);
5310 		return 0;
5311 	}
5312 
5313 	/*
5314 	 *  Mark the CCB for abort and allow time for.
5315 	 */
5316 	cp->to_abort = timed_out ? 2 : 1;
5317 
5318 	/*
5319 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5320 	 */
5321 	np->istat_sem = SEM;
5322 	OUTB(np, nc_istat, SIGP|SEM);
5323 	return 0;
5324 }
5325 
5326 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5327 {
5328 	struct sym_ccb *cp;
5329 	SYM_QUEHEAD *qp;
5330 
5331 	/*
5332 	 *  Look up our CCB control block.
5333 	 */
5334 	cp = NULL;
5335 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5336 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5337 		if (cp2->cmd == cmd) {
5338 			cp = cp2;
5339 			break;
5340 		}
5341 	}
5342 
5343 	return sym_abort_ccb(np, cp, timed_out);
5344 }
5345 
5346 /*
5347  *  Complete execution of a SCSI command with extended
5348  *  error, SCSI status error, or having been auto-sensed.
5349  *
5350  *  The SCRIPTS processor is not running there, so we
5351  *  can safely access IO registers and remove JOBs from
5352  *  the START queue.
5353  *  SCRATCHA is assumed to have been loaded with STARTPOS
5354  *  before the SCRIPTS called the C code.
5355  */
5356 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5357 {
5358 	struct scsi_device *sdev;
5359 	struct scsi_cmnd *cmd;
5360 	struct sym_tcb *tp;
5361 	struct sym_lcb *lp;
5362 	int resid;
5363 	int i;
5364 
5365 	/*
5366 	 *  Paranoid check. :)
5367 	 */
5368 	if (!cp || !cp->cmd)
5369 		return;
5370 
5371 	cmd = cp->cmd;
5372 	sdev = cmd->device;
5373 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5374 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5375 			cp->host_status, cp->ssss_status, cp->host_flags);
5376 	}
5377 
5378 	/*
5379 	 *  Get target and lun pointers.
5380 	 */
5381 	tp = &np->target[cp->target];
5382 	lp = sym_lp(tp, sdev->lun);
5383 
5384 	/*
5385 	 *  Check for extended errors.
5386 	 */
5387 	if (cp->xerr_status) {
5388 		if (sym_verbose)
5389 			sym_print_xerr(cmd, cp->xerr_status);
5390 		if (cp->host_status == HS_COMPLETE)
5391 			cp->host_status = HS_COMP_ERR;
5392 	}
5393 
5394 	/*
5395 	 *  Calculate the residual.
5396 	 */
5397 	resid = sym_compute_residual(np, cp);
5398 
5399 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5400 		resid  = 0;		 /* throw them away. :)		    */
5401 		cp->sv_resid = 0;
5402 	}
5403 #ifdef DEBUG_2_0_X
5404 if (resid)
5405 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5406 #endif
5407 
5408 	/*
5409 	 *  Dequeue all queued CCBs for that device
5410 	 *  not yet started by SCRIPTS.
5411 	 */
5412 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5413 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5414 
5415 	/*
5416 	 *  Restart the SCRIPTS processor.
5417 	 */
5418 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5419 
5420 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5421 	if (cp->host_status == HS_COMPLETE &&
5422 	    cp->ssss_status == S_QUEUE_FULL) {
5423 		if (!lp || lp->started_tags - i < 2)
5424 			goto weirdness;
5425 		/*
5426 		 *  Decrease queue depth as needed.
5427 		 */
5428 		lp->started_max = lp->started_tags - i - 1;
5429 		lp->num_sgood = 0;
5430 
5431 		if (sym_verbose >= 2) {
5432 			sym_print_addr(cmd, " queue depth is now %d\n",
5433 					lp->started_max);
5434 		}
5435 
5436 		/*
5437 		 *  Repair the CCB.
5438 		 */
5439 		cp->host_status = HS_BUSY;
5440 		cp->ssss_status = S_ILLEGAL;
5441 
5442 		/*
5443 		 *  Let's requeue it to device.
5444 		 */
5445 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5446 		goto finish;
5447 	}
5448 weirdness:
5449 #endif
5450 	/*
5451 	 *  Build result in CAM ccb.
5452 	 */
5453 	sym_set_cam_result_error(np, cp, resid);
5454 
5455 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5456 finish:
5457 #endif
5458 	/*
5459 	 *  Add this one to the COMP queue.
5460 	 */
5461 	sym_remque(&cp->link_ccbq);
5462 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5463 
5464 	/*
5465 	 *  Complete all those commands with either error
5466 	 *  or requeue condition.
5467 	 */
5468 	sym_flush_comp_queue(np, 0);
5469 
5470 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5471 	/*
5472 	 *  Donnot start more than 1 command after an error.
5473 	 */
5474 	sym_start_next_ccbs(np, lp, 1);
5475 #endif
5476 }
5477 
5478 /*
5479  *  Complete execution of a successful SCSI command.
5480  *
5481  *  Only successful commands go to the DONE queue,
5482  *  since we need to have the SCRIPTS processor
5483  *  stopped on any error condition.
5484  *  The SCRIPTS processor is running while we are
5485  *  completing successful commands.
5486  */
5487 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5488 {
5489 	struct sym_tcb *tp;
5490 	struct sym_lcb *lp;
5491 	struct scsi_cmnd *cmd;
5492 	int resid;
5493 
5494 	/*
5495 	 *  Paranoid check. :)
5496 	 */
5497 	if (!cp || !cp->cmd)
5498 		return;
5499 	assert (cp->host_status == HS_COMPLETE);
5500 
5501 	/*
5502 	 *  Get user command.
5503 	 */
5504 	cmd = cp->cmd;
5505 
5506 	/*
5507 	 *  Get target and lun pointers.
5508 	 */
5509 	tp = &np->target[cp->target];
5510 	lp = sym_lp(tp, cp->lun);
5511 
5512 	/*
5513 	 *  If all data have been transferred, given than no
5514 	 *  extended error did occur, there is no residual.
5515 	 */
5516 	resid = 0;
5517 	if (cp->phys.head.lastp != cp->goalp)
5518 		resid = sym_compute_residual(np, cp);
5519 
5520 	/*
5521 	 *  Wrong transfer residuals may be worse than just always
5522 	 *  returning zero. User can disable this feature in
5523 	 *  sym53c8xx.h. Residual support is enabled by default.
5524 	 */
5525 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5526 		resid  = 0;
5527 #ifdef DEBUG_2_0_X
5528 if (resid)
5529 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5530 #endif
5531 
5532 	/*
5533 	 *  Build result in CAM ccb.
5534 	 */
5535 	sym_set_cam_result_ok(cp, cmd, resid);
5536 
5537 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5538 	/*
5539 	 *  If max number of started ccbs had been reduced,
5540 	 *  increase it if 200 good status received.
5541 	 */
5542 	if (lp && lp->started_max < lp->started_limit) {
5543 		++lp->num_sgood;
5544 		if (lp->num_sgood >= 200) {
5545 			lp->num_sgood = 0;
5546 			++lp->started_max;
5547 			if (sym_verbose >= 2) {
5548 				sym_print_addr(cmd, " queue depth is now %d\n",
5549 				       lp->started_max);
5550 			}
5551 		}
5552 	}
5553 #endif
5554 
5555 	/*
5556 	 *  Free our CCB.
5557 	 */
5558 	sym_free_ccb (np, cp);
5559 
5560 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5561 	/*
5562 	 *  Requeue a couple of awaiting scsi commands.
5563 	 */
5564 	if (!sym_que_empty(&lp->waiting_ccbq))
5565 		sym_start_next_ccbs(np, lp, 2);
5566 #endif
5567 	/*
5568 	 *  Complete the command.
5569 	 */
5570 	sym_xpt_done(np, cmd);
5571 }
5572 
5573 /*
5574  *  Soft-attach the controller.
5575  */
5576 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5577 {
5578 	struct sym_hcb *np = sym_get_hcb(shost);
5579 	int i;
5580 
5581 	/*
5582 	 *  Get some info about the firmware.
5583 	 */
5584 	np->scripta_sz	 = fw->a_size;
5585 	np->scriptb_sz	 = fw->b_size;
5586 	np->scriptz_sz	 = fw->z_size;
5587 	np->fw_setup	 = fw->setup;
5588 	np->fw_patch	 = fw->patch;
5589 	np->fw_name	 = fw->name;
5590 
5591 	/*
5592 	 *  Save setting of some IO registers, so we will
5593 	 *  be able to probe specific implementations.
5594 	 */
5595 	sym_save_initial_setting (np);
5596 
5597 	/*
5598 	 *  Reset the chip now, since it has been reported
5599 	 *  that SCSI clock calibration may not work properly
5600 	 *  if the chip is currently active.
5601 	 */
5602 	sym_chip_reset(np);
5603 
5604 	/*
5605 	 *  Prepare controller and devices settings, according
5606 	 *  to chip features, user set-up and driver set-up.
5607 	 */
5608 	sym_prepare_setting(shost, np, nvram);
5609 
5610 	/*
5611 	 *  Check the PCI clock frequency.
5612 	 *  Must be performed after prepare_setting since it destroys
5613 	 *  STEST1 that is used to probe for the clock doubler.
5614 	 */
5615 	i = sym_getpciclock(np);
5616 	if (i > 37000 && !(np->features & FE_66MHZ))
5617 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5618 			sym_name(np), i);
5619 
5620 	/*
5621 	 *  Allocate the start queue.
5622 	 */
5623 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5624 	if (!np->squeue)
5625 		goto attach_failed;
5626 	np->squeue_ba = vtobus(np->squeue);
5627 
5628 	/*
5629 	 *  Allocate the done queue.
5630 	 */
5631 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5632 	if (!np->dqueue)
5633 		goto attach_failed;
5634 	np->dqueue_ba = vtobus(np->dqueue);
5635 
5636 	/*
5637 	 *  Allocate the target bus address array.
5638 	 */
5639 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5640 	if (!np->targtbl)
5641 		goto attach_failed;
5642 	np->targtbl_ba = vtobus(np->targtbl);
5643 
5644 	/*
5645 	 *  Allocate SCRIPTS areas.
5646 	 */
5647 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5648 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5649 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5650 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5651 		goto attach_failed;
5652 
5653 	/*
5654 	 *  Allocate the array of lists of CCBs hashed by DSA.
5655 	 */
5656 	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5657 	if (!np->ccbh)
5658 		goto attach_failed;
5659 
5660 	/*
5661 	 *  Initialyze the CCB free and busy queues.
5662 	 */
5663 	sym_que_init(&np->free_ccbq);
5664 	sym_que_init(&np->busy_ccbq);
5665 	sym_que_init(&np->comp_ccbq);
5666 
5667 	/*
5668 	 *  Initialization for optional handling
5669 	 *  of device queueing.
5670 	 */
5671 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5672 	sym_que_init(&np->dummy_ccbq);
5673 #endif
5674 	/*
5675 	 *  Allocate some CCB. We need at least ONE.
5676 	 */
5677 	if (!sym_alloc_ccb(np))
5678 		goto attach_failed;
5679 
5680 	/*
5681 	 *  Calculate BUS addresses where we are going
5682 	 *  to load the SCRIPTS.
5683 	 */
5684 	np->scripta_ba	= vtobus(np->scripta0);
5685 	np->scriptb_ba	= vtobus(np->scriptb0);
5686 	np->scriptz_ba	= vtobus(np->scriptz0);
5687 
5688 	if (np->ram_ba) {
5689 		np->scripta_ba = np->ram_ba;
5690 		if (np->features & FE_RAM8K) {
5691 			np->scriptb_ba = np->scripta_ba + 4096;
5692 #if 0	/* May get useful for 64 BIT PCI addressing */
5693 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5694 #endif
5695 		}
5696 	}
5697 
5698 	/*
5699 	 *  Copy scripts to controller instance.
5700 	 */
5701 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5702 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5703 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5704 
5705 	/*
5706 	 *  Setup variable parts in scripts and compute
5707 	 *  scripts bus addresses used from the C code.
5708 	 */
5709 	np->fw_setup(np, fw);
5710 
5711 	/*
5712 	 *  Bind SCRIPTS with physical addresses usable by the
5713 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5714 	 */
5715 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5716 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5717 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5718 
5719 #ifdef SYM_CONF_IARB_SUPPORT
5720 	/*
5721 	 *    If user wants IARB to be set when we win arbitration
5722 	 *    and have other jobs, compute the max number of consecutive
5723 	 *    settings of IARB hints before we leave devices a chance to
5724 	 *    arbitrate for reselection.
5725 	 */
5726 #ifdef	SYM_SETUP_IARB_MAX
5727 	np->iarb_max = SYM_SETUP_IARB_MAX;
5728 #else
5729 	np->iarb_max = 4;
5730 #endif
5731 #endif
5732 
5733 	/*
5734 	 *  Prepare the idle and invalid task actions.
5735 	 */
5736 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5737 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5738 	np->idletask_ba		= vtobus(&np->idletask);
5739 
5740 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5741 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5742 	np->notask_ba		= vtobus(&np->notask);
5743 
5744 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5745 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5746 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5747 
5748 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5749 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5750 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5751 
5752 	/*
5753 	 *  Allocate and prepare the lun JUMP table that is used
5754 	 *  for a target prior the probing of devices (bad lun table).
5755 	 *  A private table will be allocated for the target on the
5756 	 *  first INQUIRY response received.
5757 	 */
5758 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5759 	if (!np->badluntbl)
5760 		goto attach_failed;
5761 
5762 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5763 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5764 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5765 
5766 	/*
5767 	 *  Prepare the bus address array that contains the bus
5768 	 *  address of each target control block.
5769 	 *  For now, assume all logical units are wrong. :)
5770 	 */
5771 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5772 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5773 		np->target[i].head.luntbl_sa =
5774 				cpu_to_scr(vtobus(np->badluntbl));
5775 		np->target[i].head.lun0_sa =
5776 				cpu_to_scr(vtobus(&np->badlun_sa));
5777 	}
5778 
5779 	/*
5780 	 *  Now check the cache handling of the pci chipset.
5781 	 */
5782 	if (sym_snooptest (np)) {
5783 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5784 		goto attach_failed;
5785 	}
5786 
5787 	/*
5788 	 *  Sigh! we are done.
5789 	 */
5790 	return 0;
5791 
5792 attach_failed:
5793 	return -ENXIO;
5794 }
5795 
5796 /*
5797  *  Free everything that has been allocated for this device.
5798  */
5799 void sym_hcb_free(struct sym_hcb *np)
5800 {
5801 	SYM_QUEHEAD *qp;
5802 	struct sym_ccb *cp;
5803 	struct sym_tcb *tp;
5804 	int target;
5805 
5806 	if (np->scriptz0)
5807 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5808 	if (np->scriptb0)
5809 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5810 	if (np->scripta0)
5811 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5812 	if (np->squeue)
5813 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5814 	if (np->dqueue)
5815 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5816 
5817 	if (np->actccbs) {
5818 		while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5819 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5820 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5821 		}
5822 	}
5823 	kfree(np->ccbh);
5824 
5825 	if (np->badluntbl)
5826 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5827 
5828 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5829 		tp = &np->target[target];
5830 		if (tp->luntbl)
5831 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5832 #if SYM_CONF_MAX_LUN > 1
5833 		kfree(tp->lunmp);
5834 #endif
5835 	}
5836 	if (np->targtbl)
5837 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5838 }
5839