1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40
41 #include <linux/slab.h>
42 #include <asm/param.h> /* for timeouts in units of HZ */
43
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50
51 /*
52 * Needed function prototypes.
53 */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir(struct sym_hcb *);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62
63 /*
64 * Print a buffer in hexadecimal format with a ".\n" at end.
65 */
sym_printl_hex(u_char * p,int n)66 static void sym_printl_hex(u_char *p, int n)
67 {
68 while (n-- > 0)
69 printf (" %x", *p++);
70 printf (".\n");
71 }
72
sym_print_msg(struct sym_ccb * cp,char * label,u_char * msg)73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74 {
75 sym_print_addr(cp->cmd, "%s: ", label);
76
77 spi_print_msg(msg);
78 printf("\n");
79 }
80
sym_print_nego_msg(struct sym_hcb * np,int target,char * label,u_char * msg)81 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
82 {
83 struct sym_tcb *tp = &np->target[target];
84 dev_info(&tp->starget->dev, "%s: ", label);
85
86 spi_print_msg(msg);
87 printf("\n");
88 }
89
90 /*
91 * Print something that tells about extended errors.
92 */
sym_print_xerr(struct scsi_cmnd * cmd,int x_status)93 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
94 {
95 if (x_status & XE_PARITY_ERR) {
96 sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
97 }
98 if (x_status & XE_EXTRA_DATA) {
99 sym_print_addr(cmd, "extraneous data discarded.\n");
100 }
101 if (x_status & XE_BAD_PHASE) {
102 sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
103 }
104 if (x_status & XE_SODL_UNRUN) {
105 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
106 }
107 if (x_status & XE_SWIDE_OVRUN) {
108 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
109 }
110 }
111
112 /*
113 * Return a string for SCSI BUS mode.
114 */
sym_scsi_bus_mode(int mode)115 static char *sym_scsi_bus_mode(int mode)
116 {
117 switch(mode) {
118 case SMODE_HVD: return "HVD";
119 case SMODE_SE: return "SE";
120 case SMODE_LVD: return "LVD";
121 }
122 return "??";
123 }
124
125 /*
126 * Soft reset the chip.
127 *
128 * Raising SRST when the chip is running may cause
129 * problems on dual function chips (see below).
130 * On the other hand, LVD devices need some delay
131 * to settle and report actual BUS mode in STEST4.
132 */
sym_chip_reset(struct sym_hcb * np)133 static void sym_chip_reset (struct sym_hcb *np)
134 {
135 OUTB(np, nc_istat, SRST);
136 INB(np, nc_mbox1);
137 udelay(10);
138 OUTB(np, nc_istat, 0);
139 INB(np, nc_mbox1);
140 udelay(2000); /* For BUS MODE to settle */
141 }
142
143 /*
144 * Really soft reset the chip.:)
145 *
146 * Some 896 and 876 chip revisions may hang-up if we set
147 * the SRST (soft reset) bit at the wrong time when SCRIPTS
148 * are running.
149 * So, we need to abort the current operation prior to
150 * soft resetting the chip.
151 */
sym_soft_reset(struct sym_hcb * np)152 static void sym_soft_reset (struct sym_hcb *np)
153 {
154 u_char istat = 0;
155 int i;
156
157 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
158 goto do_chip_reset;
159
160 OUTB(np, nc_istat, CABRT);
161 for (i = 100000 ; i ; --i) {
162 istat = INB(np, nc_istat);
163 if (istat & SIP) {
164 INW(np, nc_sist);
165 }
166 else if (istat & DIP) {
167 if (INB(np, nc_dstat) & ABRT)
168 break;
169 }
170 udelay(5);
171 }
172 OUTB(np, nc_istat, 0);
173 if (!i)
174 printf("%s: unable to abort current chip operation, "
175 "ISTAT=0x%02x.\n", sym_name(np), istat);
176 do_chip_reset:
177 sym_chip_reset(np);
178 }
179
180 /*
181 * Start reset process.
182 *
183 * The interrupt handler will reinitialize the chip.
184 */
sym_start_reset(struct sym_hcb * np)185 static void sym_start_reset(struct sym_hcb *np)
186 {
187 sym_reset_scsi_bus(np, 1);
188 }
189
sym_reset_scsi_bus(struct sym_hcb * np,int enab_int)190 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
191 {
192 u32 term;
193 int retv = 0;
194
195 sym_soft_reset(np); /* Soft reset the chip */
196 if (enab_int)
197 OUTW(np, nc_sien, RST);
198 /*
199 * Enable Tolerant, reset IRQD if present and
200 * properly set IRQ mode, prior to resetting the bus.
201 */
202 OUTB(np, nc_stest3, TE);
203 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
204 OUTB(np, nc_scntl1, CRST);
205 INB(np, nc_mbox1);
206 udelay(200);
207
208 if (!SYM_SETUP_SCSI_BUS_CHECK)
209 goto out;
210 /*
211 * Check for no terminators or SCSI bus shorts to ground.
212 * Read SCSI data bus, data parity bits and control signals.
213 * We are expecting RESET to be TRUE and other signals to be
214 * FALSE.
215 */
216 term = INB(np, nc_sstat0);
217 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
218 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
219 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
220 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
221 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
222
223 if (!np->maxwide)
224 term &= 0x3ffff;
225
226 if (term != (2<<7)) {
227 printf("%s: suspicious SCSI data while resetting the BUS.\n",
228 sym_name(np));
229 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
230 "0x%lx, expecting 0x%lx\n",
231 sym_name(np),
232 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
233 (u_long)term, (u_long)(2<<7));
234 if (SYM_SETUP_SCSI_BUS_CHECK == 1)
235 retv = 1;
236 }
237 out:
238 OUTB(np, nc_scntl1, 0);
239 return retv;
240 }
241
242 /*
243 * Select SCSI clock frequency
244 */
sym_selectclock(struct sym_hcb * np,u_char scntl3)245 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
246 {
247 /*
248 * If multiplier not present or not selected, leave here.
249 */
250 if (np->multiplier <= 1) {
251 OUTB(np, nc_scntl3, scntl3);
252 return;
253 }
254
255 if (sym_verbose >= 2)
256 printf ("%s: enabling clock multiplier\n", sym_name(np));
257
258 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
259 /*
260 * Wait for the LCKFRQ bit to be set if supported by the chip.
261 * Otherwise wait 50 micro-seconds (at least).
262 */
263 if (np->features & FE_LCKFRQ) {
264 int i = 20;
265 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
266 udelay(20);
267 if (!i)
268 printf("%s: the chip cannot lock the frequency\n",
269 sym_name(np));
270 } else {
271 INB(np, nc_mbox1);
272 udelay(50+10);
273 }
274 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
275 OUTB(np, nc_scntl3, scntl3);
276 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
277 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
278 }
279
280
281 /*
282 * Determine the chip's clock frequency.
283 *
284 * This is essential for the negotiation of the synchronous
285 * transfer rate.
286 *
287 * Note: we have to return the correct value.
288 * THERE IS NO SAFE DEFAULT VALUE.
289 *
290 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
291 * 53C860 and 53C875 rev. 1 support fast20 transfers but
292 * do not have a clock doubler and so are provided with a
293 * 80 MHz clock. All other fast20 boards incorporate a doubler
294 * and so should be delivered with a 40 MHz clock.
295 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
296 * clock and provide a clock quadrupler (160 Mhz).
297 */
298
299 /*
300 * calculate SCSI clock frequency (in KHz)
301 */
getfreq(struct sym_hcb * np,int gen)302 static unsigned getfreq (struct sym_hcb *np, int gen)
303 {
304 unsigned int ms = 0;
305 unsigned int f;
306
307 /*
308 * Measure GEN timer delay in order
309 * to calculate SCSI clock frequency
310 *
311 * This code will never execute too
312 * many loop iterations (if DELAY is
313 * reasonably correct). It could get
314 * too low a delay (too high a freq.)
315 * if the CPU is slow executing the
316 * loop for some reason (an NMI, for
317 * example). For this reason we will
318 * if multiple measurements are to be
319 * performed trust the higher delay
320 * (lower frequency returned).
321 */
322 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
323 INW(np, nc_sist); /* clear pending scsi interrupt */
324 OUTB(np, nc_dien, 0); /* mask all dma interrupts */
325 INW(np, nc_sist); /* another one, just to be sure :) */
326 /*
327 * The C1010-33 core does not report GEN in SIST,
328 * if this interrupt is masked in SIEN.
329 * I don't know yet if the C1010-66 behaves the same way.
330 */
331 if (np->features & FE_C10) {
332 OUTW(np, nc_sien, GEN);
333 OUTB(np, nc_istat1, SIRQD);
334 }
335 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
336 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
337 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
338 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
339 udelay(1000/4); /* count in 1/4 of ms */
340 OUTB(np, nc_stime1, 0); /* disable general purpose timer */
341 /*
342 * Undo C1010-33 specific settings.
343 */
344 if (np->features & FE_C10) {
345 OUTW(np, nc_sien, 0);
346 OUTB(np, nc_istat1, 0);
347 }
348 /*
349 * set prescaler to divide by whatever 0 means
350 * 0 ought to choose divide by 2, but appears
351 * to set divide by 3.5 mode in my 53c810 ...
352 */
353 OUTB(np, nc_scntl3, 0);
354
355 /*
356 * adjust for prescaler, and convert into KHz
357 */
358 f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
359
360 /*
361 * The C1010-33 result is biased by a factor
362 * of 2/3 compared to earlier chips.
363 */
364 if (np->features & FE_C10)
365 f = (f * 2) / 3;
366
367 if (sym_verbose >= 2)
368 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
369 sym_name(np), gen, ms/4, f);
370
371 return f;
372 }
373
sym_getfreq(struct sym_hcb * np)374 static unsigned sym_getfreq (struct sym_hcb *np)
375 {
376 u_int f1, f2;
377 int gen = 8;
378
379 getfreq (np, gen); /* throw away first result */
380 f1 = getfreq (np, gen);
381 f2 = getfreq (np, gen);
382 if (f1 > f2) f1 = f2; /* trust lower result */
383 return f1;
384 }
385
386 /*
387 * Get/probe chip SCSI clock frequency
388 */
sym_getclock(struct sym_hcb * np,int mult)389 static void sym_getclock (struct sym_hcb *np, int mult)
390 {
391 unsigned char scntl3 = np->sv_scntl3;
392 unsigned char stest1 = np->sv_stest1;
393 unsigned f1;
394
395 np->multiplier = 1;
396 f1 = 40000;
397 /*
398 * True with 875/895/896/895A with clock multiplier selected
399 */
400 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
401 if (sym_verbose >= 2)
402 printf ("%s: clock multiplier found\n", sym_name(np));
403 np->multiplier = mult;
404 }
405
406 /*
407 * If multiplier not found or scntl3 not 7,5,3,
408 * reset chip and get frequency from general purpose timer.
409 * Otherwise trust scntl3 BIOS setting.
410 */
411 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
412 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
413 f1 = sym_getfreq (np);
414
415 if (sym_verbose)
416 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
417
418 if (f1 < 45000) f1 = 40000;
419 else if (f1 < 55000) f1 = 50000;
420 else f1 = 80000;
421
422 if (f1 < 80000 && mult > 1) {
423 if (sym_verbose >= 2)
424 printf ("%s: clock multiplier assumed\n",
425 sym_name(np));
426 np->multiplier = mult;
427 }
428 } else {
429 if ((scntl3 & 7) == 3) f1 = 40000;
430 else if ((scntl3 & 7) == 5) f1 = 80000;
431 else f1 = 160000;
432
433 f1 /= np->multiplier;
434 }
435
436 /*
437 * Compute controller synchronous parameters.
438 */
439 f1 *= np->multiplier;
440 np->clock_khz = f1;
441 }
442
443 /*
444 * Get/probe PCI clock frequency
445 */
sym_getpciclock(struct sym_hcb * np)446 static int sym_getpciclock (struct sym_hcb *np)
447 {
448 int f = 0;
449
450 /*
451 * For now, we only need to know about the actual
452 * PCI BUS clock frequency for C1010-66 chips.
453 */
454 #if 1
455 if (np->features & FE_66MHZ) {
456 #else
457 if (1) {
458 #endif
459 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
460 f = sym_getfreq(np);
461 OUTB(np, nc_stest1, 0);
462 }
463 np->pciclk_khz = f;
464
465 return f;
466 }
467
468 /*
469 * SYMBIOS chip clock divisor table.
470 *
471 * Divisors are multiplied by 10,000,000 in order to make
472 * calculations more simple.
473 */
474 #define _5M 5000000
475 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
476
477 /*
478 * Get clock factor and sync divisor for a given
479 * synchronous factor period.
480 */
481 static int
482 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
483 {
484 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
485 int div = np->clock_divn; /* Number of divisors supported */
486 u32 fak; /* Sync factor in sxfer */
487 u32 per; /* Period in tenths of ns */
488 u32 kpc; /* (per * clk) */
489 int ret;
490
491 /*
492 * Compute the synchronous period in tenths of nano-seconds
493 */
494 if (dt && sfac <= 9) per = 125;
495 else if (sfac <= 10) per = 250;
496 else if (sfac == 11) per = 303;
497 else if (sfac == 12) per = 500;
498 else per = 40 * sfac;
499 ret = per;
500
501 kpc = per * clk;
502 if (dt)
503 kpc <<= 1;
504
505 /*
506 * For earliest C10 revision 0, we cannot use extra
507 * clocks for the setting of the SCSI clocking.
508 * Note that this limits the lowest sync data transfer
509 * to 5 Mega-transfers per second and may result in
510 * using higher clock divisors.
511 */
512 #if 1
513 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
514 /*
515 * Look for the lowest clock divisor that allows an
516 * output speed not faster than the period.
517 */
518 while (div > 0) {
519 --div;
520 if (kpc > (div_10M[div] << 2)) {
521 ++div;
522 break;
523 }
524 }
525 fak = 0; /* No extra clocks */
526 if (div == np->clock_divn) { /* Are we too fast ? */
527 ret = -1;
528 }
529 *divp = div;
530 *fakp = fak;
531 return ret;
532 }
533 #endif
534
535 /*
536 * Look for the greatest clock divisor that allows an
537 * input speed faster than the period.
538 */
539 while (div-- > 0)
540 if (kpc >= (div_10M[div] << 2)) break;
541
542 /*
543 * Calculate the lowest clock factor that allows an output
544 * speed not faster than the period, and the max output speed.
545 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
546 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
547 */
548 if (dt) {
549 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
550 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
551 } else {
552 fak = (kpc - 1) / div_10M[div] + 1 - 4;
553 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
554 }
555
556 /*
557 * Check against our hardware limits, or bugs :).
558 */
559 if (fak > 2) {
560 fak = 2;
561 ret = -1;
562 }
563
564 /*
565 * Compute and return sync parameters.
566 */
567 *divp = div;
568 *fakp = fak;
569
570 return ret;
571 }
572
573 /*
574 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
575 * 128 transfers. All chips support at least 16 transfers
576 * bursts. The 825A, 875 and 895 chips support bursts of up
577 * to 128 transfers and the 895A and 896 support bursts of up
578 * to 64 transfers. All other chips support up to 16
579 * transfers bursts.
580 *
581 * For PCI 32 bit data transfers each transfer is a DWORD.
582 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
583 *
584 * We use log base 2 (burst length) as internal code, with
585 * value 0 meaning "burst disabled".
586 */
587
588 /*
589 * Burst length from burst code.
590 */
591 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
592
593 /*
594 * Burst code from io register bits.
595 */
596 #define burst_code(dmode, ctest4, ctest5) \
597 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
598
599 /*
600 * Set initial io register bits from burst code.
601 */
602 static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
603 {
604 np->rv_ctest4 &= ~0x80;
605 np->rv_dmode &= ~(0x3 << 6);
606 np->rv_ctest5 &= ~0x4;
607
608 if (!bc) {
609 np->rv_ctest4 |= 0x80;
610 }
611 else {
612 --bc;
613 np->rv_dmode |= ((bc & 0x3) << 6);
614 np->rv_ctest5 |= (bc & 0x4);
615 }
616 }
617
618 /*
619 * Save initial settings of some IO registers.
620 * Assumed to have been set by BIOS.
621 * We cannot reset the chip prior to reading the
622 * IO registers, since informations will be lost.
623 * Since the SCRIPTS processor may be running, this
624 * is not safe on paper, but it seems to work quite
625 * well. :)
626 */
627 static void sym_save_initial_setting (struct sym_hcb *np)
628 {
629 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
630 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
631 np->sv_dmode = INB(np, nc_dmode) & 0xce;
632 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
633 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
634 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
635 np->sv_gpcntl = INB(np, nc_gpcntl);
636 np->sv_stest1 = INB(np, nc_stest1);
637 np->sv_stest2 = INB(np, nc_stest2) & 0x20;
638 np->sv_stest4 = INB(np, nc_stest4);
639 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
640 np->sv_scntl4 = INB(np, nc_scntl4);
641 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
642 }
643 else
644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
645 }
646
647 /*
648 * Set SCSI BUS mode.
649 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
650 * through the STEST4 IO register.
651 * - For previous generation chips (825/825A/875), the user has to tell us
652 * how to check against HVD, since a 100% safe algorithm is not possible.
653 */
654 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
655 {
656 if (np->scsi_mode)
657 return;
658
659 np->scsi_mode = SMODE_SE;
660 if (np->features & (FE_ULTRA2|FE_ULTRA3))
661 np->scsi_mode = (np->sv_stest4 & SMODE);
662 else if (np->features & FE_DIFF) {
663 if (SYM_SETUP_SCSI_DIFF == 1) {
664 if (np->sv_scntl3) {
665 if (np->sv_stest2 & 0x20)
666 np->scsi_mode = SMODE_HVD;
667 } else if (nvram->type == SYM_SYMBIOS_NVRAM) {
668 if (!(INB(np, nc_gpreg) & 0x08))
669 np->scsi_mode = SMODE_HVD;
670 }
671 } else if (SYM_SETUP_SCSI_DIFF == 2)
672 np->scsi_mode = SMODE_HVD;
673 }
674 if (np->scsi_mode == SMODE_HVD)
675 np->rv_stest2 |= 0x20;
676 }
677
678 /*
679 * Prepare io register values used by sym_start_up()
680 * according to selected and supported features.
681 */
682 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
683 {
684 struct sym_data *sym_data = shost_priv(shost);
685 struct pci_dev *pdev = sym_data->pdev;
686 u_char burst_max;
687 u32 period;
688 int i;
689
690 np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
691
692 /*
693 * Guess the frequency of the chip's clock.
694 */
695 if (np->features & (FE_ULTRA3 | FE_ULTRA2))
696 np->clock_khz = 160000;
697 else if (np->features & FE_ULTRA)
698 np->clock_khz = 80000;
699 else
700 np->clock_khz = 40000;
701
702 /*
703 * Get the clock multiplier factor.
704 */
705 if (np->features & FE_QUAD)
706 np->multiplier = 4;
707 else if (np->features & FE_DBLR)
708 np->multiplier = 2;
709 else
710 np->multiplier = 1;
711
712 /*
713 * Measure SCSI clock frequency for chips
714 * it may vary from assumed one.
715 */
716 if (np->features & FE_VARCLK)
717 sym_getclock(np, np->multiplier);
718
719 /*
720 * Divisor to be used for async (timer pre-scaler).
721 */
722 i = np->clock_divn - 1;
723 while (--i >= 0) {
724 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
725 ++i;
726 break;
727 }
728 }
729 np->rv_scntl3 = i+1;
730
731 /*
732 * The C1010 uses hardwired divisors for async.
733 * So, we just throw away, the async. divisor.:-)
734 */
735 if (np->features & FE_C10)
736 np->rv_scntl3 = 0;
737
738 /*
739 * Minimum synchronous period factor supported by the chip.
740 * Btw, 'period' is in tenths of nanoseconds.
741 */
742 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
743
744 if (period <= 250) np->minsync = 10;
745 else if (period <= 303) np->minsync = 11;
746 else if (period <= 500) np->minsync = 12;
747 else np->minsync = (period + 40 - 1) / 40;
748
749 /*
750 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
751 */
752 if (np->minsync < 25 &&
753 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
754 np->minsync = 25;
755 else if (np->minsync < 12 &&
756 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
757 np->minsync = 12;
758
759 /*
760 * Maximum synchronous period factor supported by the chip.
761 */
762 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
763 np->maxsync = period > 2540 ? 254 : period / 10;
764
765 /*
766 * If chip is a C1010, guess the sync limits in DT mode.
767 */
768 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
769 if (np->clock_khz == 160000) {
770 np->minsync_dt = 9;
771 np->maxsync_dt = 50;
772 np->maxoffs_dt = nvram->type ? 62 : 31;
773 }
774 }
775
776 /*
777 * 64 bit addressing (895A/896/1010) ?
778 */
779 if (np->features & FE_DAC) {
780 if (!use_dac(np))
781 np->rv_ccntl1 |= (DDAC);
782 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
783 np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
784 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
785 np->rv_ccntl1 |= (0 | EXTIBMV);
786 }
787
788 /*
789 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
790 */
791 if (np->features & FE_NOPM)
792 np->rv_ccntl0 |= (ENPMJ);
793
794 /*
795 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
796 * In dual channel mode, contention occurs if internal cycles
797 * are used. Disable internal cycles.
798 */
799 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
800 pdev->revision < 0x1)
801 np->rv_ccntl0 |= DILS;
802
803 /*
804 * Select burst length (dwords)
805 */
806 burst_max = SYM_SETUP_BURST_ORDER;
807 if (burst_max == 255)
808 burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
809 np->sv_ctest5);
810 if (burst_max > 7)
811 burst_max = 7;
812 if (burst_max > np->maxburst)
813 burst_max = np->maxburst;
814
815 /*
816 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
817 * This chip and the 860 Rev 1 may wrongly use PCI cache line
818 * based transactions on LOAD/STORE instructions. So we have
819 * to prevent these chips from using such PCI transactions in
820 * this driver. The generic ncr driver that does not use
821 * LOAD/STORE instructions does not need this work-around.
822 */
823 if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
824 pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
825 (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
826 pdev->revision <= 0x1))
827 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
828
829 /*
830 * Select all supported special features.
831 * If we are using on-board RAM for scripts, prefetch (PFEN)
832 * does not help, but burst op fetch (BOF) does.
833 * Disabling PFEN makes sure BOF will be used.
834 */
835 if (np->features & FE_ERL)
836 np->rv_dmode |= ERL; /* Enable Read Line */
837 if (np->features & FE_BOF)
838 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
839 if (np->features & FE_ERMP)
840 np->rv_dmode |= ERMP; /* Enable Read Multiple */
841 #if 1
842 if ((np->features & FE_PFEN) && !np->ram_ba)
843 #else
844 if (np->features & FE_PFEN)
845 #endif
846 np->rv_dcntl |= PFEN; /* Prefetch Enable */
847 if (np->features & FE_CLSE)
848 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
849 if (np->features & FE_WRIE)
850 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
851 if (np->features & FE_DFS)
852 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
853
854 /*
855 * Select some other
856 */
857 np->rv_ctest4 |= MPEE; /* Master parity checking */
858 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
859
860 /*
861 * Get parity checking, host ID and verbose mode from NVRAM
862 */
863 np->myaddr = 255;
864 np->scsi_mode = 0;
865 sym_nvram_setup_host(shost, np, nvram);
866
867 /*
868 * Get SCSI addr of host adapter (set by bios?).
869 */
870 if (np->myaddr == 255) {
871 np->myaddr = INB(np, nc_scid) & 0x07;
872 if (!np->myaddr)
873 np->myaddr = SYM_SETUP_HOST_ID;
874 }
875
876 /*
877 * Prepare initial io register bits for burst length
878 */
879 sym_init_burst(np, burst_max);
880
881 sym_set_bus_mode(np, nvram);
882
883 /*
884 * Set LED support from SCRIPTS.
885 * Ignore this feature for boards known to use a
886 * specific GPIO wiring and for the 895A, 896
887 * and 1010 that drive the LED directly.
888 */
889 if ((SYM_SETUP_SCSI_LED ||
890 (nvram->type == SYM_SYMBIOS_NVRAM ||
891 (nvram->type == SYM_TEKRAM_NVRAM &&
892 pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
893 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
894 np->features |= FE_LED0;
895
896 /*
897 * Set irq mode.
898 */
899 switch(SYM_SETUP_IRQ_MODE & 3) {
900 case 2:
901 np->rv_dcntl |= IRQM;
902 break;
903 case 1:
904 np->rv_dcntl |= (np->sv_dcntl & IRQM);
905 break;
906 default:
907 break;
908 }
909
910 /*
911 * Configure targets according to driver setup.
912 * If NVRAM present get targets setup from NVRAM.
913 */
914 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
915 struct sym_tcb *tp = &np->target[i];
916
917 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
918 tp->usrtags = SYM_SETUP_MAX_TAG;
919 tp->usr_width = np->maxwide;
920 tp->usr_period = 9;
921
922 sym_nvram_setup_target(tp, i, nvram);
923
924 if (!tp->usrtags)
925 tp->usrflags &= ~SYM_TAGS_ENABLED;
926 }
927
928 /*
929 * Let user know about the settings.
930 */
931 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
932 sym_nvram_type(nvram), np->myaddr,
933 (np->features & FE_ULTRA3) ? 80 :
934 (np->features & FE_ULTRA2) ? 40 :
935 (np->features & FE_ULTRA) ? 20 : 10,
936 sym_scsi_bus_mode(np->scsi_mode),
937 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
938 /*
939 * Tell him more on demand.
940 */
941 if (sym_verbose) {
942 printf("%s: %s IRQ line driver%s\n",
943 sym_name(np),
944 np->rv_dcntl & IRQM ? "totem pole" : "open drain",
945 np->ram_ba ? ", using on-chip SRAM" : "");
946 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
947 if (np->features & FE_NOPM)
948 printf("%s: handling phase mismatch from SCRIPTS.\n",
949 sym_name(np));
950 }
951 /*
952 * And still more.
953 */
954 if (sym_verbose >= 2) {
955 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
956 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
957 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
958 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
959
960 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
961 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
962 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
963 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
964 }
965
966 return 0;
967 }
968
969 /*
970 * Test the pci bus snoop logic :-(
971 *
972 * Has to be called with interrupts disabled.
973 */
974 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
975 static int sym_regtest(struct sym_hcb *np)
976 {
977 register volatile u32 data;
978 /*
979 * chip registers may NOT be cached.
980 * write 0xffffffff to a read only register area,
981 * and try to read it back.
982 */
983 data = 0xffffffff;
984 OUTL(np, nc_dstat, data);
985 data = INL(np, nc_dstat);
986 #if 1
987 if (data == 0xffffffff) {
988 #else
989 if ((data & 0xe2f0fffd) != 0x02000080) {
990 #endif
991 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
992 (unsigned) data);
993 return 0x10;
994 }
995 return 0;
996 }
997 #else
998 static inline int sym_regtest(struct sym_hcb *np)
999 {
1000 return 0;
1001 }
1002 #endif
1003
1004 static int sym_snooptest(struct sym_hcb *np)
1005 {
1006 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1007 int i, err;
1008
1009 err = sym_regtest(np);
1010 if (err)
1011 return err;
1012 restart_test:
1013 /*
1014 * Enable Master Parity Checking as we intend
1015 * to enable it for normal operations.
1016 */
1017 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1018 /*
1019 * init
1020 */
1021 pc = SCRIPTZ_BA(np, snooptest);
1022 host_wr = 1;
1023 sym_wr = 2;
1024 /*
1025 * Set memory and register.
1026 */
1027 np->scratch = cpu_to_scr(host_wr);
1028 OUTL(np, nc_temp, sym_wr);
1029 /*
1030 * Start script (exchange values)
1031 */
1032 OUTL(np, nc_dsa, np->hcb_ba);
1033 OUTL_DSP(np, pc);
1034 /*
1035 * Wait 'til done (with timeout)
1036 */
1037 for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1038 if (INB(np, nc_istat) & (INTF|SIP|DIP))
1039 break;
1040 if (i>=SYM_SNOOP_TIMEOUT) {
1041 printf ("CACHE TEST FAILED: timeout.\n");
1042 return (0x20);
1043 }
1044 /*
1045 * Check for fatal DMA errors.
1046 */
1047 dstat = INB(np, nc_dstat);
1048 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1049 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1050 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1051 "DISABLING MASTER DATA PARITY CHECKING.\n",
1052 sym_name(np));
1053 np->rv_ctest4 &= ~MPEE;
1054 goto restart_test;
1055 }
1056 #endif
1057 if (dstat & (MDPE|BF|IID)) {
1058 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1059 return (0x80);
1060 }
1061 /*
1062 * Save termination position.
1063 */
1064 pc = INL(np, nc_dsp);
1065 /*
1066 * Read memory and register.
1067 */
1068 host_rd = scr_to_cpu(np->scratch);
1069 sym_rd = INL(np, nc_scratcha);
1070 sym_bk = INL(np, nc_temp);
1071 /*
1072 * Check termination position.
1073 */
1074 if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1075 printf ("CACHE TEST FAILED: script execution failed.\n");
1076 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1077 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1078 (u_long) SCRIPTZ_BA(np, snoopend) +8);
1079 return (0x40);
1080 }
1081 /*
1082 * Show results.
1083 */
1084 if (host_wr != sym_rd) {
1085 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1086 (int) host_wr, (int) sym_rd);
1087 err |= 1;
1088 }
1089 if (host_rd != sym_wr) {
1090 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1091 (int) sym_wr, (int) host_rd);
1092 err |= 2;
1093 }
1094 if (sym_bk != sym_wr) {
1095 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1096 (int) sym_wr, (int) sym_bk);
1097 err |= 4;
1098 }
1099
1100 return err;
1101 }
1102
1103 /*
1104 * log message for real hard errors
1105 *
1106 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1107 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1108 *
1109 * exception register:
1110 * ds: dstat
1111 * si: sist
1112 *
1113 * SCSI bus lines:
1114 * so: control lines as driven by chip.
1115 * si: control lines as seen by chip.
1116 * sd: scsi data lines as seen by chip.
1117 *
1118 * wide/fastmode:
1119 * sx: sxfer (see the manual)
1120 * s3: scntl3 (see the manual)
1121 * s4: scntl4 (see the manual)
1122 *
1123 * current script command:
1124 * dsp: script address (relative to start of script).
1125 * dbc: first word of script command.
1126 *
1127 * First 24 register of the chip:
1128 * r0..rf
1129 */
1130 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1131 {
1132 struct sym_hcb *np = sym_get_hcb(shost);
1133 u32 dsp;
1134 int script_ofs;
1135 int script_size;
1136 char *script_name;
1137 u_char *script_base;
1138 int i;
1139
1140 dsp = INL(np, nc_dsp);
1141
1142 if (dsp > np->scripta_ba &&
1143 dsp <= np->scripta_ba + np->scripta_sz) {
1144 script_ofs = dsp - np->scripta_ba;
1145 script_size = np->scripta_sz;
1146 script_base = (u_char *) np->scripta0;
1147 script_name = "scripta";
1148 }
1149 else if (np->scriptb_ba < dsp &&
1150 dsp <= np->scriptb_ba + np->scriptb_sz) {
1151 script_ofs = dsp - np->scriptb_ba;
1152 script_size = np->scriptb_sz;
1153 script_base = (u_char *) np->scriptb0;
1154 script_name = "scriptb";
1155 } else {
1156 script_ofs = dsp;
1157 script_size = 0;
1158 script_base = NULL;
1159 script_name = "mem";
1160 }
1161
1162 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1163 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1164 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1165 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1166 (unsigned)INB(np, nc_scntl3),
1167 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
1168 script_name, script_ofs, (unsigned)INL(np, nc_dbc));
1169
1170 if (((script_ofs & 3) == 0) &&
1171 (unsigned)script_ofs < script_size) {
1172 printf ("%s: script cmd = %08x\n", sym_name(np),
1173 scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1174 }
1175
1176 printf("%s: regdump:", sym_name(np));
1177 for (i = 0; i < 24; i++)
1178 printf(" %02x", (unsigned)INB_OFF(np, i));
1179 printf(".\n");
1180
1181 /*
1182 * PCI BUS error.
1183 */
1184 if (dstat & (MDPE|BF))
1185 sym_log_bus_error(shost);
1186 }
1187
1188 void sym_dump_registers(struct Scsi_Host *shost)
1189 {
1190 struct sym_hcb *np = sym_get_hcb(shost);
1191 u_short sist;
1192 u_char dstat;
1193
1194 sist = INW(np, nc_sist);
1195 dstat = INB(np, nc_dstat);
1196 sym_log_hard_error(shost, sist, dstat);
1197 }
1198
1199 static struct sym_chip sym_dev_table[] = {
1200 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1201 FE_ERL}
1202 ,
1203 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1204 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1205 FE_BOF}
1206 ,
1207 #else
1208 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
1209 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1210 ,
1211 #endif
1212 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
1213 FE_BOF|FE_ERL}
1214 ,
1215 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
1216 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1217 ,
1218 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
1219 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1220 ,
1221 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
1222 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1223 ,
1224 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1225 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1226 FE_RAM|FE_DIFF|FE_VARCLK}
1227 ,
1228 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1229 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1230 FE_RAM|FE_DIFF|FE_VARCLK}
1231 ,
1232 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1233 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1234 FE_RAM|FE_DIFF|FE_VARCLK}
1235 ,
1236 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1237 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1238 FE_RAM|FE_DIFF|FE_VARCLK}
1239 ,
1240 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1241 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1242 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1243 FE_RAM|FE_LCKFRQ}
1244 ,
1245 #else
1246 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1247 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1248 FE_RAM|FE_LCKFRQ}
1249 ,
1250 #endif
1251 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1252 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1253 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1254 ,
1255 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1256 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1257 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1258 ,
1259 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1260 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1261 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1262 ,
1263 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1264 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1265 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1266 FE_C10}
1267 ,
1268 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1269 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1270 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1271 FE_C10|FE_U3EN}
1272 ,
1273 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1274 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1275 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1276 FE_C10|FE_U3EN}
1277 ,
1278 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1279 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1280 FE_RAM|FE_IO256|FE_LEDC}
1281 };
1282
1283 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1284
1285 /*
1286 * Look up the chip table.
1287 *
1288 * Return a pointer to the chip entry if found,
1289 * zero otherwise.
1290 */
1291 struct sym_chip *
1292 sym_lookup_chip_table (u_short device_id, u_char revision)
1293 {
1294 struct sym_chip *chip;
1295 int i;
1296
1297 for (i = 0; i < sym_num_devs; i++) {
1298 chip = &sym_dev_table[i];
1299 if (device_id != chip->device_id)
1300 continue;
1301 if (revision > chip->revision_id)
1302 continue;
1303 return chip;
1304 }
1305
1306 return NULL;
1307 }
1308
1309 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1310 /*
1311 * Lookup the 64 bit DMA segments map.
1312 * This is only used if the direct mapping
1313 * has been unsuccessful.
1314 */
1315 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1316 {
1317 int i;
1318
1319 if (!use_dac(np))
1320 goto weird;
1321
1322 /* Look up existing mappings */
1323 for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1324 if (h == np->dmap_bah[i])
1325 return i;
1326 }
1327 /* If direct mapping is free, get it */
1328 if (!np->dmap_bah[s])
1329 goto new;
1330 /* Collision -> lookup free mappings */
1331 for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1332 if (!np->dmap_bah[s])
1333 goto new;
1334 }
1335 weird:
1336 panic("sym: ran out of 64 bit DMA segment registers");
1337 return -1;
1338 new:
1339 np->dmap_bah[s] = h;
1340 np->dmap_dirty = 1;
1341 return s;
1342 }
1343
1344 /*
1345 * Update IO registers scratch C..R so they will be
1346 * in sync. with queued CCB expectations.
1347 */
1348 static void sym_update_dmap_regs(struct sym_hcb *np)
1349 {
1350 int o, i;
1351
1352 if (!np->dmap_dirty)
1353 return;
1354 o = offsetof(struct sym_reg, nc_scrx[0]);
1355 for (i = 0; i < SYM_DMAP_SIZE; i++) {
1356 OUTL_OFF(np, o, np->dmap_bah[i]);
1357 o += 4;
1358 }
1359 np->dmap_dirty = 0;
1360 }
1361 #endif
1362
1363 /* Enforce all the fiddly SPI rules and the chip limitations */
1364 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1365 struct sym_trans *goal)
1366 {
1367 if (!spi_support_wide(starget))
1368 goal->width = 0;
1369
1370 if (!spi_support_sync(starget)) {
1371 goal->iu = 0;
1372 goal->dt = 0;
1373 goal->qas = 0;
1374 goal->offset = 0;
1375 return;
1376 }
1377
1378 if (spi_support_dt(starget)) {
1379 if (spi_support_dt_only(starget))
1380 goal->dt = 1;
1381
1382 if (goal->offset == 0)
1383 goal->dt = 0;
1384 } else {
1385 goal->dt = 0;
1386 }
1387
1388 /* Some targets fail to properly negotiate DT in SE mode */
1389 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1390 goal->dt = 0;
1391
1392 if (goal->dt) {
1393 /* all DT transfers must be wide */
1394 goal->width = 1;
1395 if (goal->offset > np->maxoffs_dt)
1396 goal->offset = np->maxoffs_dt;
1397 if (goal->period < np->minsync_dt)
1398 goal->period = np->minsync_dt;
1399 if (goal->period > np->maxsync_dt)
1400 goal->period = np->maxsync_dt;
1401 } else {
1402 goal->iu = goal->qas = 0;
1403 if (goal->offset > np->maxoffs)
1404 goal->offset = np->maxoffs;
1405 if (goal->period < np->minsync)
1406 goal->period = np->minsync;
1407 if (goal->period > np->maxsync)
1408 goal->period = np->maxsync;
1409 }
1410 }
1411
1412 /*
1413 * Prepare the next negotiation message if needed.
1414 *
1415 * Fill in the part of message buffer that contains the
1416 * negotiation and the nego_status field of the CCB.
1417 * Returns the size of the message in bytes.
1418 */
1419 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1420 {
1421 struct sym_tcb *tp = &np->target[cp->target];
1422 struct scsi_target *starget = tp->starget;
1423 struct sym_trans *goal = &tp->tgoal;
1424 int msglen = 0;
1425 int nego;
1426
1427 sym_check_goals(np, starget, goal);
1428
1429 /*
1430 * Many devices implement PPR in a buggy way, so only use it if we
1431 * really want to.
1432 */
1433 if (goal->renego == NS_PPR || (goal->offset &&
1434 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1435 nego = NS_PPR;
1436 } else if (goal->renego == NS_WIDE || goal->width) {
1437 nego = NS_WIDE;
1438 } else if (goal->renego == NS_SYNC || goal->offset) {
1439 nego = NS_SYNC;
1440 } else {
1441 goal->check_nego = 0;
1442 nego = 0;
1443 }
1444
1445 switch (nego) {
1446 case NS_SYNC:
1447 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1448 goal->offset);
1449 break;
1450 case NS_WIDE:
1451 msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1452 break;
1453 case NS_PPR:
1454 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1455 goal->offset, goal->width,
1456 (goal->iu ? PPR_OPT_IU : 0) |
1457 (goal->dt ? PPR_OPT_DT : 0) |
1458 (goal->qas ? PPR_OPT_QAS : 0));
1459 break;
1460 }
1461
1462 cp->nego_status = nego;
1463
1464 if (nego) {
1465 tp->nego_cp = cp; /* Keep track a nego will be performed */
1466 if (DEBUG_FLAGS & DEBUG_NEGO) {
1467 sym_print_nego_msg(np, cp->target,
1468 nego == NS_SYNC ? "sync msgout" :
1469 nego == NS_WIDE ? "wide msgout" :
1470 "ppr msgout", msgptr);
1471 }
1472 }
1473
1474 return msglen;
1475 }
1476
1477 /*
1478 * Insert a job into the start queue.
1479 */
1480 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1481 {
1482 u_short qidx;
1483
1484 #ifdef SYM_CONF_IARB_SUPPORT
1485 /*
1486 * If the previously queued CCB is not yet done,
1487 * set the IARB hint. The SCRIPTS will go with IARB
1488 * for this job when starting the previous one.
1489 * We leave devices a chance to win arbitration by
1490 * not using more than 'iarb_max' consecutive
1491 * immediate arbitrations.
1492 */
1493 if (np->last_cp && np->iarb_count < np->iarb_max) {
1494 np->last_cp->host_flags |= HF_HINT_IARB;
1495 ++np->iarb_count;
1496 }
1497 else
1498 np->iarb_count = 0;
1499 np->last_cp = cp;
1500 #endif
1501
1502 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1503 /*
1504 * Make SCRIPTS aware of the 64 bit DMA
1505 * segment registers not being up-to-date.
1506 */
1507 if (np->dmap_dirty)
1508 cp->host_xflags |= HX_DMAP_DIRTY;
1509 #endif
1510
1511 /*
1512 * Insert first the idle task and then our job.
1513 * The MBs should ensure proper ordering.
1514 */
1515 qidx = np->squeueput + 2;
1516 if (qidx >= MAX_QUEUE*2) qidx = 0;
1517
1518 np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
1519 MEMORY_WRITE_BARRIER();
1520 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1521
1522 np->squeueput = qidx;
1523
1524 if (DEBUG_FLAGS & DEBUG_QUEUE)
1525 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1526 np->squeueput);
1527
1528 /*
1529 * Script processor may be waiting for reselect.
1530 * Wake it up.
1531 */
1532 MEMORY_WRITE_BARRIER();
1533 OUTB(np, nc_istat, SIGP|np->istat_sem);
1534 }
1535
1536 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1537 /*
1538 * Start next ready-to-start CCBs.
1539 */
1540 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1541 {
1542 SYM_QUEHEAD *qp;
1543 struct sym_ccb *cp;
1544
1545 /*
1546 * Paranoia, as usual. :-)
1547 */
1548 assert(!lp->started_tags || !lp->started_no_tag);
1549
1550 /*
1551 * Try to start as many commands as asked by caller.
1552 * Prevent from having both tagged and untagged
1553 * commands queued to the device at the same time.
1554 */
1555 while (maxn--) {
1556 qp = sym_remque_head(&lp->waiting_ccbq);
1557 if (!qp)
1558 break;
1559 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1560 if (cp->tag != NO_TAG) {
1561 if (lp->started_no_tag ||
1562 lp->started_tags >= lp->started_max) {
1563 sym_insque_head(qp, &lp->waiting_ccbq);
1564 break;
1565 }
1566 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1567 lp->head.resel_sa =
1568 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1569 ++lp->started_tags;
1570 } else {
1571 if (lp->started_no_tag || lp->started_tags) {
1572 sym_insque_head(qp, &lp->waiting_ccbq);
1573 break;
1574 }
1575 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1576 lp->head.resel_sa =
1577 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1578 ++lp->started_no_tag;
1579 }
1580 cp->started = 1;
1581 sym_insque_tail(qp, &lp->started_ccbq);
1582 sym_put_start_queue(np, cp);
1583 }
1584 }
1585 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1586
1587 /*
1588 * The chip may have completed jobs. Look at the DONE QUEUE.
1589 *
1590 * On paper, memory read barriers may be needed here to
1591 * prevent out of order LOADs by the CPU from having
1592 * prefetched stale data prior to DMA having occurred.
1593 */
1594 static int sym_wakeup_done (struct sym_hcb *np)
1595 {
1596 struct sym_ccb *cp;
1597 int i, n;
1598 u32 dsa;
1599
1600 n = 0;
1601 i = np->dqueueget;
1602
1603 /* MEMORY_READ_BARRIER(); */
1604 while (1) {
1605 dsa = scr_to_cpu(np->dqueue[i]);
1606 if (!dsa)
1607 break;
1608 np->dqueue[i] = 0;
1609 if ((i = i+2) >= MAX_QUEUE*2)
1610 i = 0;
1611
1612 cp = sym_ccb_from_dsa(np, dsa);
1613 if (cp) {
1614 MEMORY_READ_BARRIER();
1615 sym_complete_ok (np, cp);
1616 ++n;
1617 }
1618 else
1619 printf ("%s: bad DSA (%x) in done queue.\n",
1620 sym_name(np), (u_int) dsa);
1621 }
1622 np->dqueueget = i;
1623
1624 return n;
1625 }
1626
1627 /*
1628 * Complete all CCBs queued to the COMP queue.
1629 *
1630 * These CCBs are assumed:
1631 * - Not to be referenced either by devices or
1632 * SCRIPTS-related queues and datas.
1633 * - To have to be completed with an error condition
1634 * or requeued.
1635 *
1636 * The device queue freeze count is incremented
1637 * for each CCB that does not prevent this.
1638 * This function is called when all CCBs involved
1639 * in error handling/recovery have been reaped.
1640 */
1641 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1642 {
1643 SYM_QUEHEAD *qp;
1644 struct sym_ccb *cp;
1645
1646 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1647 struct scsi_cmnd *cmd;
1648 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1649 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1650 /* Leave quiet CCBs waiting for resources */
1651 if (cp->host_status == HS_WAIT)
1652 continue;
1653 cmd = cp->cmd;
1654 if (cam_status)
1655 sym_set_cam_status(cmd, cam_status);
1656 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1657 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1658 struct sym_tcb *tp = &np->target[cp->target];
1659 struct sym_lcb *lp = sym_lp(tp, cp->lun);
1660 if (lp) {
1661 sym_remque(&cp->link2_ccbq);
1662 sym_insque_tail(&cp->link2_ccbq,
1663 &lp->waiting_ccbq);
1664 if (cp->started) {
1665 if (cp->tag != NO_TAG)
1666 --lp->started_tags;
1667 else
1668 --lp->started_no_tag;
1669 }
1670 }
1671 cp->started = 0;
1672 continue;
1673 }
1674 #endif
1675 sym_free_ccb(np, cp);
1676 sym_xpt_done(np, cmd);
1677 }
1678 }
1679
1680 /*
1681 * Complete all active CCBs with error.
1682 * Used on CHIP/SCSI RESET.
1683 */
1684 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1685 {
1686 /*
1687 * Move all active CCBs to the COMP queue
1688 * and flush this queue.
1689 */
1690 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1691 sym_que_init(&np->busy_ccbq);
1692 sym_flush_comp_queue(np, cam_status);
1693 }
1694
1695 /*
1696 * Start chip.
1697 *
1698 * 'reason' means:
1699 * 0: initialisation.
1700 * 1: SCSI BUS RESET delivered or received.
1701 * 2: SCSI BUS MODE changed.
1702 */
1703 void sym_start_up(struct Scsi_Host *shost, int reason)
1704 {
1705 struct sym_data *sym_data = shost_priv(shost);
1706 struct pci_dev *pdev = sym_data->pdev;
1707 struct sym_hcb *np = sym_data->ncb;
1708 int i;
1709 u32 phys;
1710
1711 /*
1712 * Reset chip if asked, otherwise just clear fifos.
1713 */
1714 if (reason == 1)
1715 sym_soft_reset(np);
1716 else {
1717 OUTB(np, nc_stest3, TE|CSF);
1718 OUTONB(np, nc_ctest3, CLF);
1719 }
1720
1721 /*
1722 * Clear Start Queue
1723 */
1724 phys = np->squeue_ba;
1725 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1726 np->squeue[i] = cpu_to_scr(np->idletask_ba);
1727 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1728 }
1729 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1730
1731 /*
1732 * Start at first entry.
1733 */
1734 np->squeueput = 0;
1735
1736 /*
1737 * Clear Done Queue
1738 */
1739 phys = np->dqueue_ba;
1740 for (i = 0; i < MAX_QUEUE*2; i += 2) {
1741 np->dqueue[i] = 0;
1742 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1743 }
1744 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1745
1746 /*
1747 * Start at first entry.
1748 */
1749 np->dqueueget = 0;
1750
1751 /*
1752 * Install patches in scripts.
1753 * This also let point to first position the start
1754 * and done queue pointers used from SCRIPTS.
1755 */
1756 np->fw_patch(shost);
1757
1758 /*
1759 * Wakeup all pending jobs.
1760 */
1761 sym_flush_busy_queue(np, DID_RESET);
1762
1763 /*
1764 * Init chip.
1765 */
1766 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
1767 INB(np, nc_mbox1);
1768 udelay(2000); /* The 895 needs time for the bus mode to settle */
1769
1770 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1771 /* full arb., ena parity, par->ATN */
1772 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
1773
1774 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
1775
1776 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
1777 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
1778 OUTB(np, nc_istat , SIGP ); /* Signal Process */
1779 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
1780 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
1781
1782 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
1783 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
1784 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
1785
1786 /* Extended Sreq/Sack filtering not supported on the C10 */
1787 if (np->features & FE_C10)
1788 OUTB(np, nc_stest2, np->rv_stest2);
1789 else
1790 OUTB(np, nc_stest2, EXT|np->rv_stest2);
1791
1792 OUTB(np, nc_stest3, TE); /* TolerANT enable */
1793 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
1794
1795 /*
1796 * For now, disable AIP generation on C1010-66.
1797 */
1798 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1799 OUTB(np, nc_aipcntl1, DISAIP);
1800
1801 /*
1802 * C10101 rev. 0 errata.
1803 * Errant SGE's when in narrow. Write bits 4 & 5 of
1804 * STEST1 register to disable SGE. We probably should do
1805 * that from SCRIPTS for each selection/reselection, but
1806 * I just don't want. :)
1807 */
1808 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1809 pdev->revision < 1)
1810 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1811
1812 /*
1813 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1814 * Disable overlapped arbitration for some dual function devices,
1815 * regardless revision id (kind of post-chip-design feature. ;-))
1816 */
1817 if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1818 OUTB(np, nc_ctest0, (1<<5));
1819 else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1820 np->rv_ccntl0 |= DPR;
1821
1822 /*
1823 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1824 * and/or hardware phase mismatch, since only such chips
1825 * seem to support those IO registers.
1826 */
1827 if (np->features & (FE_DAC|FE_NOPM)) {
1828 OUTB(np, nc_ccntl0, np->rv_ccntl0);
1829 OUTB(np, nc_ccntl1, np->rv_ccntl1);
1830 }
1831
1832 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1833 /*
1834 * Set up scratch C and DRS IO registers to map the 32 bit
1835 * DMA address range our data structures are located in.
1836 */
1837 if (use_dac(np)) {
1838 np->dmap_bah[0] = 0; /* ??? */
1839 OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1840 OUTL(np, nc_drs, np->dmap_bah[0]);
1841 }
1842 #endif
1843
1844 /*
1845 * If phase mismatch handled by scripts (895A/896/1010),
1846 * set PM jump addresses.
1847 */
1848 if (np->features & FE_NOPM) {
1849 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1850 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1851 }
1852
1853 /*
1854 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1855 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1856 */
1857 if (np->features & FE_LED0)
1858 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1859 else if (np->features & FE_LEDC)
1860 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1861
1862 /*
1863 * enable ints
1864 */
1865 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1866 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1867
1868 /*
1869 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1870 * Try to eat the spurious SBMC interrupt that may occur when
1871 * we reset the chip but not the SCSI BUS (at initialization).
1872 */
1873 if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1874 OUTONW(np, nc_sien, SBMC);
1875 if (reason == 0) {
1876 INB(np, nc_mbox1);
1877 mdelay(100);
1878 INW(np, nc_sist);
1879 }
1880 np->scsi_mode = INB(np, nc_stest4) & SMODE;
1881 }
1882
1883 /*
1884 * Fill in target structure.
1885 * Reinitialize usrsync.
1886 * Reinitialize usrwide.
1887 * Prepare sync negotiation according to actual SCSI bus mode.
1888 */
1889 for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1890 struct sym_tcb *tp = &np->target[i];
1891
1892 tp->to_reset = 0;
1893 tp->head.sval = 0;
1894 tp->head.wval = np->rv_scntl3;
1895 tp->head.uval = 0;
1896 if (tp->lun0p)
1897 tp->lun0p->to_clear = 0;
1898 if (tp->lunmp) {
1899 int ln;
1900
1901 for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1902 if (tp->lunmp[ln])
1903 tp->lunmp[ln]->to_clear = 0;
1904 }
1905 }
1906
1907 /*
1908 * Download SCSI SCRIPTS to on-chip RAM if present,
1909 * and start script processor.
1910 * We do the download preferently from the CPU.
1911 * For platforms that may not support PCI memory mapping,
1912 * we use simple SCRIPTS that performs MEMORY MOVEs.
1913 */
1914 phys = SCRIPTA_BA(np, init);
1915 if (np->ram_ba) {
1916 if (sym_verbose >= 2)
1917 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1918 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1919 if (np->features & FE_RAM8K) {
1920 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1921 phys = scr_to_cpu(np->scr_ram_seg);
1922 OUTL(np, nc_mmws, phys);
1923 OUTL(np, nc_mmrs, phys);
1924 OUTL(np, nc_sfs, phys);
1925 phys = SCRIPTB_BA(np, start64);
1926 }
1927 }
1928
1929 np->istat_sem = 0;
1930
1931 OUTL(np, nc_dsa, np->hcb_ba);
1932 OUTL_DSP(np, phys);
1933
1934 /*
1935 * Notify the XPT about the RESET condition.
1936 */
1937 if (reason != 0)
1938 sym_xpt_async_bus_reset(np);
1939 }
1940
1941 /*
1942 * Switch trans mode for current job and its target.
1943 */
1944 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1945 u_char per, u_char wide, u_char div, u_char fak)
1946 {
1947 SYM_QUEHEAD *qp;
1948 u_char sval, wval, uval;
1949 struct sym_tcb *tp = &np->target[target];
1950
1951 assert(target == (INB(np, nc_sdid) & 0x0f));
1952
1953 sval = tp->head.sval;
1954 wval = tp->head.wval;
1955 uval = tp->head.uval;
1956
1957 #if 0
1958 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1959 sval, wval, uval, np->rv_scntl3);
1960 #endif
1961 /*
1962 * Set the offset.
1963 */
1964 if (!(np->features & FE_C10))
1965 sval = (sval & ~0x1f) | ofs;
1966 else
1967 sval = (sval & ~0x3f) | ofs;
1968
1969 /*
1970 * Set the sync divisor and extra clock factor.
1971 */
1972 if (ofs != 0) {
1973 wval = (wval & ~0x70) | ((div+1) << 4);
1974 if (!(np->features & FE_C10))
1975 sval = (sval & ~0xe0) | (fak << 5);
1976 else {
1977 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1978 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1979 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1980 }
1981 }
1982
1983 /*
1984 * Set the bus width.
1985 */
1986 wval = wval & ~EWS;
1987 if (wide != 0)
1988 wval |= EWS;
1989
1990 /*
1991 * Set misc. ultra enable bits.
1992 */
1993 if (np->features & FE_C10) {
1994 uval = uval & ~(U3EN|AIPCKEN);
1995 if (opts) {
1996 assert(np->features & FE_U3EN);
1997 uval |= U3EN;
1998 }
1999 } else {
2000 wval = wval & ~ULTRA;
2001 if (per <= 12) wval |= ULTRA;
2002 }
2003
2004 /*
2005 * Stop there if sync parameters are unchanged.
2006 */
2007 if (tp->head.sval == sval &&
2008 tp->head.wval == wval &&
2009 tp->head.uval == uval)
2010 return;
2011 tp->head.sval = sval;
2012 tp->head.wval = wval;
2013 tp->head.uval = uval;
2014
2015 /*
2016 * Disable extended Sreq/Sack filtering if per < 50.
2017 * Not supported on the C1010.
2018 */
2019 if (per < 50 && !(np->features & FE_C10))
2020 OUTOFFB(np, nc_stest2, EXT);
2021
2022 /*
2023 * set actual value and sync_status
2024 */
2025 OUTB(np, nc_sxfer, tp->head.sval);
2026 OUTB(np, nc_scntl3, tp->head.wval);
2027
2028 if (np->features & FE_C10) {
2029 OUTB(np, nc_scntl4, tp->head.uval);
2030 }
2031
2032 /*
2033 * patch ALL busy ccbs of this target.
2034 */
2035 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2036 struct sym_ccb *cp;
2037 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2038 if (cp->target != target)
2039 continue;
2040 cp->phys.select.sel_scntl3 = tp->head.wval;
2041 cp->phys.select.sel_sxfer = tp->head.sval;
2042 if (np->features & FE_C10) {
2043 cp->phys.select.sel_scntl4 = tp->head.uval;
2044 }
2045 }
2046 }
2047
2048 static void sym_announce_transfer_rate(struct sym_tcb *tp)
2049 {
2050 struct scsi_target *starget = tp->starget;
2051
2052 if (tp->tprint.period != spi_period(starget) ||
2053 tp->tprint.offset != spi_offset(starget) ||
2054 tp->tprint.width != spi_width(starget) ||
2055 tp->tprint.iu != spi_iu(starget) ||
2056 tp->tprint.dt != spi_dt(starget) ||
2057 tp->tprint.qas != spi_qas(starget) ||
2058 !tp->tprint.check_nego) {
2059 tp->tprint.period = spi_period(starget);
2060 tp->tprint.offset = spi_offset(starget);
2061 tp->tprint.width = spi_width(starget);
2062 tp->tprint.iu = spi_iu(starget);
2063 tp->tprint.dt = spi_dt(starget);
2064 tp->tprint.qas = spi_qas(starget);
2065 tp->tprint.check_nego = 1;
2066
2067 spi_display_xfer_agreement(starget);
2068 }
2069 }
2070
2071 /*
2072 * We received a WDTR.
2073 * Let everything be aware of the changes.
2074 */
2075 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2076 {
2077 struct sym_tcb *tp = &np->target[target];
2078 struct scsi_target *starget = tp->starget;
2079
2080 sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2081
2082 if (wide)
2083 tp->tgoal.renego = NS_WIDE;
2084 else
2085 tp->tgoal.renego = 0;
2086 tp->tgoal.check_nego = 0;
2087 tp->tgoal.width = wide;
2088 spi_offset(starget) = 0;
2089 spi_period(starget) = 0;
2090 spi_width(starget) = wide;
2091 spi_iu(starget) = 0;
2092 spi_dt(starget) = 0;
2093 spi_qas(starget) = 0;
2094
2095 if (sym_verbose >= 3)
2096 sym_announce_transfer_rate(tp);
2097 }
2098
2099 /*
2100 * We received a SDTR.
2101 * Let everything be aware of the changes.
2102 */
2103 static void
2104 sym_setsync(struct sym_hcb *np, int target,
2105 u_char ofs, u_char per, u_char div, u_char fak)
2106 {
2107 struct sym_tcb *tp = &np->target[target];
2108 struct scsi_target *starget = tp->starget;
2109 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2110
2111 sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2112
2113 if (wide)
2114 tp->tgoal.renego = NS_WIDE;
2115 else if (ofs)
2116 tp->tgoal.renego = NS_SYNC;
2117 else
2118 tp->tgoal.renego = 0;
2119 spi_period(starget) = per;
2120 spi_offset(starget) = ofs;
2121 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2122
2123 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2124 tp->tgoal.period = per;
2125 tp->tgoal.offset = ofs;
2126 tp->tgoal.check_nego = 0;
2127 }
2128
2129 sym_announce_transfer_rate(tp);
2130 }
2131
2132 /*
2133 * We received a PPR.
2134 * Let everything be aware of the changes.
2135 */
2136 static void
2137 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2138 u_char per, u_char wide, u_char div, u_char fak)
2139 {
2140 struct sym_tcb *tp = &np->target[target];
2141 struct scsi_target *starget = tp->starget;
2142
2143 sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2144
2145 if (wide || ofs)
2146 tp->tgoal.renego = NS_PPR;
2147 else
2148 tp->tgoal.renego = 0;
2149 spi_width(starget) = tp->tgoal.width = wide;
2150 spi_period(starget) = tp->tgoal.period = per;
2151 spi_offset(starget) = tp->tgoal.offset = ofs;
2152 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2153 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2154 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2155 tp->tgoal.check_nego = 0;
2156
2157 sym_announce_transfer_rate(tp);
2158 }
2159
2160 /*
2161 * generic recovery from scsi interrupt
2162 *
2163 * The doc says that when the chip gets an SCSI interrupt,
2164 * it tries to stop in an orderly fashion, by completing
2165 * an instruction fetch that had started or by flushing
2166 * the DMA fifo for a write to memory that was executing.
2167 * Such a fashion is not enough to know if the instruction
2168 * that was just before the current DSP value has been
2169 * executed or not.
2170 *
2171 * There are some small SCRIPTS sections that deal with
2172 * the start queue and the done queue that may break any
2173 * assomption from the C code if we are interrupted
2174 * inside, so we reset if this happens. Btw, since these
2175 * SCRIPTS sections are executed while the SCRIPTS hasn't
2176 * started SCSI operations, it is very unlikely to happen.
2177 *
2178 * All the driver data structures are supposed to be
2179 * allocated from the same 4 GB memory window, so there
2180 * is a 1 to 1 relationship between DSA and driver data
2181 * structures. Since we are careful :) to invalidate the
2182 * DSA when we complete a command or when the SCRIPTS
2183 * pushes a DSA into a queue, we can trust it when it
2184 * points to a CCB.
2185 */
2186 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2187 {
2188 u32 dsp = INL(np, nc_dsp);
2189 u32 dsa = INL(np, nc_dsa);
2190 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2191
2192 /*
2193 * If we haven't been interrupted inside the SCRIPTS
2194 * critical pathes, we can safely restart the SCRIPTS
2195 * and trust the DSA value if it matches a CCB.
2196 */
2197 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2198 dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2199 (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2200 dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2201 (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2202 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2203 (!(dsp > SCRIPTA_BA(np, done) &&
2204 dsp < SCRIPTA_BA(np, done_end) + 1))) {
2205 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2206 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2207 /*
2208 * If we have a CCB, let the SCRIPTS call us back for
2209 * the handling of the error with SCRATCHA filled with
2210 * STARTPOS. This way, we will be able to freeze the
2211 * device queue and requeue awaiting IOs.
2212 */
2213 if (cp) {
2214 cp->host_status = hsts;
2215 OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2216 }
2217 /*
2218 * Otherwise just restart the SCRIPTS.
2219 */
2220 else {
2221 OUTL(np, nc_dsa, 0xffffff);
2222 OUTL_DSP(np, SCRIPTA_BA(np, start));
2223 }
2224 }
2225 else
2226 goto reset_all;
2227
2228 return;
2229
2230 reset_all:
2231 sym_start_reset(np);
2232 }
2233
2234 /*
2235 * chip exception handler for selection timeout
2236 */
2237 static void sym_int_sto (struct sym_hcb *np)
2238 {
2239 u32 dsp = INL(np, nc_dsp);
2240
2241 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2242
2243 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2244 sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2245 else
2246 sym_start_reset(np);
2247 }
2248
2249 /*
2250 * chip exception handler for unexpected disconnect
2251 */
2252 static void sym_int_udc (struct sym_hcb *np)
2253 {
2254 printf ("%s: unexpected disconnect\n", sym_name(np));
2255 sym_recover_scsi_int(np, HS_UNEXPECTED);
2256 }
2257
2258 /*
2259 * chip exception handler for SCSI bus mode change
2260 *
2261 * spi2-r12 11.2.3 says a transceiver mode change must
2262 * generate a reset event and a device that detects a reset
2263 * event shall initiate a hard reset. It says also that a
2264 * device that detects a mode change shall set data transfer
2265 * mode to eight bit asynchronous, etc...
2266 * So, just reinitializing all except chip should be enough.
2267 */
2268 static void sym_int_sbmc(struct Scsi_Host *shost)
2269 {
2270 struct sym_hcb *np = sym_get_hcb(shost);
2271 u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2272
2273 /*
2274 * Notify user.
2275 */
2276 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2277 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2278
2279 /*
2280 * Should suspend command processing for a few seconds and
2281 * reinitialize all except the chip.
2282 */
2283 sym_start_up(shost, 2);
2284 }
2285
2286 /*
2287 * chip exception handler for SCSI parity error.
2288 *
2289 * When the chip detects a SCSI parity error and is
2290 * currently executing a (CH)MOV instruction, it does
2291 * not interrupt immediately, but tries to finish the
2292 * transfer of the current scatter entry before
2293 * interrupting. The following situations may occur:
2294 *
2295 * - The complete scatter entry has been transferred
2296 * without the device having changed phase.
2297 * The chip will then interrupt with the DSP pointing
2298 * to the instruction that follows the MOV.
2299 *
2300 * - A phase mismatch occurs before the MOV finished
2301 * and phase errors are to be handled by the C code.
2302 * The chip will then interrupt with both PAR and MA
2303 * conditions set.
2304 *
2305 * - A phase mismatch occurs before the MOV finished and
2306 * phase errors are to be handled by SCRIPTS.
2307 * The chip will load the DSP with the phase mismatch
2308 * JUMP address and interrupt the host processor.
2309 */
2310 static void sym_int_par (struct sym_hcb *np, u_short sist)
2311 {
2312 u_char hsts = INB(np, HS_PRT);
2313 u32 dsp = INL(np, nc_dsp);
2314 u32 dbc = INL(np, nc_dbc);
2315 u32 dsa = INL(np, nc_dsa);
2316 u_char sbcl = INB(np, nc_sbcl);
2317 u_char cmd = dbc >> 24;
2318 int phase = cmd & 7;
2319 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
2320
2321 if (printk_ratelimit())
2322 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2323 sym_name(np), hsts, dbc, sbcl);
2324
2325 /*
2326 * Check that the chip is connected to the SCSI BUS.
2327 */
2328 if (!(INB(np, nc_scntl1) & ISCON)) {
2329 sym_recover_scsi_int(np, HS_UNEXPECTED);
2330 return;
2331 }
2332
2333 /*
2334 * If the nexus is not clearly identified, reset the bus.
2335 * We will try to do better later.
2336 */
2337 if (!cp)
2338 goto reset_all;
2339
2340 /*
2341 * Check instruction was a MOV, direction was INPUT and
2342 * ATN is asserted.
2343 */
2344 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2345 goto reset_all;
2346
2347 /*
2348 * Keep track of the parity error.
2349 */
2350 OUTONB(np, HF_PRT, HF_EXT_ERR);
2351 cp->xerr_status |= XE_PARITY_ERR;
2352
2353 /*
2354 * Prepare the message to send to the device.
2355 */
2356 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2357
2358 /*
2359 * If the old phase was DATA IN phase, we have to deal with
2360 * the 3 situations described above.
2361 * For other input phases (MSG IN and STATUS), the device
2362 * must resend the whole thing that failed parity checking
2363 * or signal error. So, jumping to dispatcher should be OK.
2364 */
2365 if (phase == 1 || phase == 5) {
2366 /* Phase mismatch handled by SCRIPTS */
2367 if (dsp == SCRIPTB_BA(np, pm_handle))
2368 OUTL_DSP(np, dsp);
2369 /* Phase mismatch handled by the C code */
2370 else if (sist & MA)
2371 sym_int_ma (np);
2372 /* No phase mismatch occurred */
2373 else {
2374 sym_set_script_dp (np, cp, dsp);
2375 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2376 }
2377 }
2378 else if (phase == 7) /* We definitely cannot handle parity errors */
2379 #if 1 /* in message-in phase due to the relection */
2380 goto reset_all; /* path and various message anticipations. */
2381 #else
2382 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2383 #endif
2384 else
2385 OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2386 return;
2387
2388 reset_all:
2389 sym_start_reset(np);
2390 return;
2391 }
2392
2393 /*
2394 * chip exception handler for phase errors.
2395 *
2396 * We have to construct a new transfer descriptor,
2397 * to transfer the rest of the current block.
2398 */
2399 static void sym_int_ma (struct sym_hcb *np)
2400 {
2401 u32 dbc;
2402 u32 rest;
2403 u32 dsp;
2404 u32 dsa;
2405 u32 nxtdsp;
2406 u32 *vdsp;
2407 u32 oadr, olen;
2408 u32 *tblp;
2409 u32 newcmd;
2410 u_int delta;
2411 u_char cmd;
2412 u_char hflags, hflags0;
2413 struct sym_pmc *pm;
2414 struct sym_ccb *cp;
2415
2416 dsp = INL(np, nc_dsp);
2417 dbc = INL(np, nc_dbc);
2418 dsa = INL(np, nc_dsa);
2419
2420 cmd = dbc >> 24;
2421 rest = dbc & 0xffffff;
2422 delta = 0;
2423
2424 /*
2425 * locate matching cp if any.
2426 */
2427 cp = sym_ccb_from_dsa(np, dsa);
2428
2429 /*
2430 * Donnot take into account dma fifo and various buffers in
2431 * INPUT phase since the chip flushes everything before
2432 * raising the MA interrupt for interrupted INPUT phases.
2433 * For DATA IN phase, we will check for the SWIDE later.
2434 */
2435 if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2436 u_char ss0, ss2;
2437
2438 if (np->features & FE_DFBC)
2439 delta = INW(np, nc_dfbc);
2440 else {
2441 u32 dfifo;
2442
2443 /*
2444 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2445 */
2446 dfifo = INL(np, nc_dfifo);
2447
2448 /*
2449 * Calculate remaining bytes in DMA fifo.
2450 * (CTEST5 = dfifo >> 16)
2451 */
2452 if (dfifo & (DFS << 16))
2453 delta = ((((dfifo >> 8) & 0x300) |
2454 (dfifo & 0xff)) - rest) & 0x3ff;
2455 else
2456 delta = ((dfifo & 0xff) - rest) & 0x7f;
2457 }
2458
2459 /*
2460 * The data in the dma fifo has not been transferred to
2461 * the target -> add the amount to the rest
2462 * and clear the data.
2463 * Check the sstat2 register in case of wide transfer.
2464 */
2465 rest += delta;
2466 ss0 = INB(np, nc_sstat0);
2467 if (ss0 & OLF) rest++;
2468 if (!(np->features & FE_C10))
2469 if (ss0 & ORF) rest++;
2470 if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2471 ss2 = INB(np, nc_sstat2);
2472 if (ss2 & OLF1) rest++;
2473 if (!(np->features & FE_C10))
2474 if (ss2 & ORF1) rest++;
2475 }
2476
2477 /*
2478 * Clear fifos.
2479 */
2480 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
2481 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
2482 }
2483
2484 /*
2485 * log the information
2486 */
2487 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2488 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2489 (unsigned) rest, (unsigned) delta);
2490
2491 /*
2492 * try to find the interrupted script command,
2493 * and the address at which to continue.
2494 */
2495 vdsp = NULL;
2496 nxtdsp = 0;
2497 if (dsp > np->scripta_ba &&
2498 dsp <= np->scripta_ba + np->scripta_sz) {
2499 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2500 nxtdsp = dsp;
2501 }
2502 else if (dsp > np->scriptb_ba &&
2503 dsp <= np->scriptb_ba + np->scriptb_sz) {
2504 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2505 nxtdsp = dsp;
2506 }
2507
2508 /*
2509 * log the information
2510 */
2511 if (DEBUG_FLAGS & DEBUG_PHASE) {
2512 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2513 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2514 }
2515
2516 if (!vdsp) {
2517 printf ("%s: interrupted SCRIPT address not found.\n",
2518 sym_name (np));
2519 goto reset_all;
2520 }
2521
2522 if (!cp) {
2523 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2524 sym_name (np));
2525 goto reset_all;
2526 }
2527
2528 /*
2529 * get old startaddress and old length.
2530 */
2531 oadr = scr_to_cpu(vdsp[1]);
2532
2533 if (cmd & 0x10) { /* Table indirect */
2534 tblp = (u32 *) ((char*) &cp->phys + oadr);
2535 olen = scr_to_cpu(tblp[0]);
2536 oadr = scr_to_cpu(tblp[1]);
2537 } else {
2538 tblp = (u32 *) 0;
2539 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2540 }
2541
2542 if (DEBUG_FLAGS & DEBUG_PHASE) {
2543 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2544 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2545 tblp,
2546 (unsigned) olen,
2547 (unsigned) oadr);
2548 }
2549
2550 /*
2551 * check cmd against assumed interrupted script command.
2552 * If dt data phase, the MOVE instruction hasn't bit 4 of
2553 * the phase.
2554 */
2555 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2556 sym_print_addr(cp->cmd,
2557 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2558 cmd, scr_to_cpu(vdsp[0]) >> 24);
2559
2560 goto reset_all;
2561 }
2562
2563 /*
2564 * if old phase not dataphase, leave here.
2565 */
2566 if (cmd & 2) {
2567 sym_print_addr(cp->cmd,
2568 "phase change %x-%x %d@%08x resid=%d.\n",
2569 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2570 (unsigned)oadr, (unsigned)rest);
2571 goto unexpected_phase;
2572 }
2573
2574 /*
2575 * Choose the correct PM save area.
2576 *
2577 * Look at the PM_SAVE SCRIPT if you want to understand
2578 * this stuff. The equivalent code is implemented in
2579 * SCRIPTS for the 895A, 896 and 1010 that are able to
2580 * handle PM from the SCRIPTS processor.
2581 */
2582 hflags0 = INB(np, HF_PRT);
2583 hflags = hflags0;
2584
2585 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2586 if (hflags & HF_IN_PM0)
2587 nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2588 else if (hflags & HF_IN_PM1)
2589 nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2590
2591 if (hflags & HF_DP_SAVED)
2592 hflags ^= HF_ACT_PM;
2593 }
2594
2595 if (!(hflags & HF_ACT_PM)) {
2596 pm = &cp->phys.pm0;
2597 newcmd = SCRIPTA_BA(np, pm0_data);
2598 }
2599 else {
2600 pm = &cp->phys.pm1;
2601 newcmd = SCRIPTA_BA(np, pm1_data);
2602 }
2603
2604 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2605 if (hflags != hflags0)
2606 OUTB(np, HF_PRT, hflags);
2607
2608 /*
2609 * fillin the phase mismatch context
2610 */
2611 pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2612 pm->sg.size = cpu_to_scr(rest);
2613 pm->ret = cpu_to_scr(nxtdsp);
2614
2615 /*
2616 * If we have a SWIDE,
2617 * - prepare the address to write the SWIDE from SCRIPTS,
2618 * - compute the SCRIPTS address to restart from,
2619 * - move current data pointer context by one byte.
2620 */
2621 nxtdsp = SCRIPTA_BA(np, dispatch);
2622 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2623 (INB(np, nc_scntl2) & WSR)) {
2624 u32 tmp;
2625
2626 /*
2627 * Set up the table indirect for the MOVE
2628 * of the residual byte and adjust the data
2629 * pointer context.
2630 */
2631 tmp = scr_to_cpu(pm->sg.addr);
2632 cp->phys.wresid.addr = cpu_to_scr(tmp);
2633 pm->sg.addr = cpu_to_scr(tmp + 1);
2634 tmp = scr_to_cpu(pm->sg.size);
2635 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2636 pm->sg.size = cpu_to_scr(tmp - 1);
2637
2638 /*
2639 * If only the residual byte is to be moved,
2640 * no PM context is needed.
2641 */
2642 if ((tmp&0xffffff) == 1)
2643 newcmd = pm->ret;
2644
2645 /*
2646 * Prepare the address of SCRIPTS that will
2647 * move the residual byte to memory.
2648 */
2649 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2650 }
2651
2652 if (DEBUG_FLAGS & DEBUG_PHASE) {
2653 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2654 hflags0, hflags, newcmd,
2655 (unsigned)scr_to_cpu(pm->sg.addr),
2656 (unsigned)scr_to_cpu(pm->sg.size),
2657 (unsigned)scr_to_cpu(pm->ret));
2658 }
2659
2660 /*
2661 * Restart the SCRIPTS processor.
2662 */
2663 sym_set_script_dp (np, cp, newcmd);
2664 OUTL_DSP(np, nxtdsp);
2665 return;
2666
2667 /*
2668 * Unexpected phase changes that occurs when the current phase
2669 * is not a DATA IN or DATA OUT phase are due to error conditions.
2670 * Such event may only happen when the SCRIPTS is using a
2671 * multibyte SCSI MOVE.
2672 *
2673 * Phase change Some possible cause
2674 *
2675 * COMMAND --> MSG IN SCSI parity error detected by target.
2676 * COMMAND --> STATUS Bad command or refused by target.
2677 * MSG OUT --> MSG IN Message rejected by target.
2678 * MSG OUT --> COMMAND Bogus target that discards extended
2679 * negotiation messages.
2680 *
2681 * The code below does not care of the new phase and so
2682 * trusts the target. Why to annoy it ?
2683 * If the interrupted phase is COMMAND phase, we restart at
2684 * dispatcher.
2685 * If a target does not get all the messages after selection,
2686 * the code assumes blindly that the target discards extended
2687 * messages and clears the negotiation status.
2688 * If the target does not want all our response to negotiation,
2689 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2690 * bloat for such a should_not_happen situation).
2691 * In all other situation, we reset the BUS.
2692 * Are these assumptions reasonable ? (Wait and see ...)
2693 */
2694 unexpected_phase:
2695 dsp -= 8;
2696 nxtdsp = 0;
2697
2698 switch (cmd & 7) {
2699 case 2: /* COMMAND phase */
2700 nxtdsp = SCRIPTA_BA(np, dispatch);
2701 break;
2702 #if 0
2703 case 3: /* STATUS phase */
2704 nxtdsp = SCRIPTA_BA(np, dispatch);
2705 break;
2706 #endif
2707 case 6: /* MSG OUT phase */
2708 /*
2709 * If the device may want to use untagged when we want
2710 * tagged, we prepare an IDENTIFY without disc. granted,
2711 * since we will not be able to handle reselect.
2712 * Otherwise, we just don't care.
2713 */
2714 if (dsp == SCRIPTA_BA(np, send_ident)) {
2715 if (cp->tag != NO_TAG && olen - rest <= 3) {
2716 cp->host_status = HS_BUSY;
2717 np->msgout[0] = IDENTIFY(0, cp->lun);
2718 nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2719 }
2720 else
2721 nxtdsp = SCRIPTB_BA(np, ident_break);
2722 }
2723 else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
2724 dsp == SCRIPTB_BA(np, send_sdtr) ||
2725 dsp == SCRIPTB_BA(np, send_ppr)) {
2726 nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2727 if (dsp == SCRIPTB_BA(np, send_ppr)) {
2728 struct scsi_device *dev = cp->cmd->device;
2729 dev->ppr = 0;
2730 }
2731 }
2732 break;
2733 #if 0
2734 case 7: /* MSG IN phase */
2735 nxtdsp = SCRIPTA_BA(np, clrack);
2736 break;
2737 #endif
2738 }
2739
2740 if (nxtdsp) {
2741 OUTL_DSP(np, nxtdsp);
2742 return;
2743 }
2744
2745 reset_all:
2746 sym_start_reset(np);
2747 }
2748
2749 /*
2750 * chip interrupt handler
2751 *
2752 * In normal situations, interrupt conditions occur one at
2753 * a time. But when something bad happens on the SCSI BUS,
2754 * the chip may raise several interrupt flags before
2755 * stopping and interrupting the CPU. The additionnal
2756 * interrupt flags are stacked in some extra registers
2757 * after the SIP and/or DIP flag has been raised in the
2758 * ISTAT. After the CPU has read the interrupt condition
2759 * flag from SIST or DSTAT, the chip unstacks the other
2760 * interrupt flags and sets the corresponding bits in
2761 * SIST or DSTAT. Since the chip starts stacking once the
2762 * SIP or DIP flag is set, there is a small window of time
2763 * where the stacking does not occur.
2764 *
2765 * Typically, multiple interrupt conditions may happen in
2766 * the following situations:
2767 *
2768 * - SCSI parity error + Phase mismatch (PAR|MA)
2769 * When an parity error is detected in input phase
2770 * and the device switches to msg-in phase inside a
2771 * block MOV.
2772 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2773 * When a stupid device does not want to handle the
2774 * recovery of an SCSI parity error.
2775 * - Some combinations of STO, PAR, UDC, ...
2776 * When using non compliant SCSI stuff, when user is
2777 * doing non compliant hot tampering on the BUS, when
2778 * something really bad happens to a device, etc ...
2779 *
2780 * The heuristic suggested by SYMBIOS to handle
2781 * multiple interrupts is to try unstacking all
2782 * interrupts conditions and to handle them on some
2783 * priority based on error severity.
2784 * This will work when the unstacking has been
2785 * successful, but we cannot be 100 % sure of that,
2786 * since the CPU may have been faster to unstack than
2787 * the chip is able to stack. Hmmm ... But it seems that
2788 * such a situation is very unlikely to happen.
2789 *
2790 * If this happen, for example STO caught by the CPU
2791 * then UDC happenning before the CPU have restarted
2792 * the SCRIPTS, the driver may wrongly complete the
2793 * same command on UDC, since the SCRIPTS didn't restart
2794 * and the DSA still points to the same command.
2795 * We avoid this situation by setting the DSA to an
2796 * invalid value when the CCB is completed and before
2797 * restarting the SCRIPTS.
2798 *
2799 * Another issue is that we need some section of our
2800 * recovery procedures to be somehow uninterruptible but
2801 * the SCRIPTS processor does not provides such a
2802 * feature. For this reason, we handle recovery preferently
2803 * from the C code and check against some SCRIPTS critical
2804 * sections from the C code.
2805 *
2806 * Hopefully, the interrupt handling of the driver is now
2807 * able to resist to weird BUS error conditions, but donnot
2808 * ask me for any guarantee that it will never fail. :-)
2809 * Use at your own decision and risk.
2810 */
2811
2812 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2813 {
2814 struct sym_data *sym_data = shost_priv(shost);
2815 struct sym_hcb *np = sym_data->ncb;
2816 struct pci_dev *pdev = sym_data->pdev;
2817 u_char istat, istatc;
2818 u_char dstat;
2819 u_short sist;
2820
2821 /*
2822 * interrupt on the fly ?
2823 * (SCRIPTS may still be running)
2824 *
2825 * A `dummy read' is needed to ensure that the
2826 * clear of the INTF flag reaches the device
2827 * and that posted writes are flushed to memory
2828 * before the scanning of the DONE queue.
2829 * Note that SCRIPTS also (dummy) read to memory
2830 * prior to deliver the INTF interrupt condition.
2831 */
2832 istat = INB(np, nc_istat);
2833 if (istat & INTF) {
2834 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2835 istat |= INB(np, nc_istat); /* DUMMY READ */
2836 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2837 sym_wakeup_done(np);
2838 }
2839
2840 if (!(istat & (SIP|DIP)))
2841 return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2842
2843 #if 0 /* We should never get this one */
2844 if (istat & CABRT)
2845 OUTB(np, nc_istat, CABRT);
2846 #endif
2847
2848 /*
2849 * PAR and MA interrupts may occur at the same time,
2850 * and we need to know of both in order to handle
2851 * this situation properly. We try to unstack SCSI
2852 * interrupts for that reason. BTW, I dislike a LOT
2853 * such a loop inside the interrupt routine.
2854 * Even if DMA interrupt stacking is very unlikely to
2855 * happen, we also try unstacking these ones, since
2856 * this has no performance impact.
2857 */
2858 sist = 0;
2859 dstat = 0;
2860 istatc = istat;
2861 do {
2862 if (istatc & SIP)
2863 sist |= INW(np, nc_sist);
2864 if (istatc & DIP)
2865 dstat |= INB(np, nc_dstat);
2866 istatc = INB(np, nc_istat);
2867 istat |= istatc;
2868
2869 /* Prevent deadlock waiting on a condition that may
2870 * never clear. */
2871 if (unlikely(sist == 0xffff && dstat == 0xff)) {
2872 if (pci_channel_offline(pdev))
2873 return IRQ_NONE;
2874 }
2875 } while (istatc & (SIP|DIP));
2876
2877 if (DEBUG_FLAGS & DEBUG_TINY)
2878 printf ("<%d|%x:%x|%x:%x>",
2879 (int)INB(np, nc_scr0),
2880 dstat,sist,
2881 (unsigned)INL(np, nc_dsp),
2882 (unsigned)INL(np, nc_dbc));
2883 /*
2884 * On paper, a memory read barrier may be needed here to
2885 * prevent out of order LOADs by the CPU from having
2886 * prefetched stale data prior to DMA having occurred.
2887 * And since we are paranoid ... :)
2888 */
2889 MEMORY_READ_BARRIER();
2890
2891 /*
2892 * First, interrupts we want to service cleanly.
2893 *
2894 * Phase mismatch (MA) is the most frequent interrupt
2895 * for chip earlier than the 896 and so we have to service
2896 * it as quickly as possible.
2897 * A SCSI parity error (PAR) may be combined with a phase
2898 * mismatch condition (MA).
2899 * Programmed interrupts (SIR) are used to call the C code
2900 * from SCRIPTS.
2901 * The single step interrupt (SSI) is not used in this
2902 * driver.
2903 */
2904 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2905 !(dstat & (MDPE|BF|ABRT|IID))) {
2906 if (sist & PAR) sym_int_par (np, sist);
2907 else if (sist & MA) sym_int_ma (np);
2908 else if (dstat & SIR) sym_int_sir(np);
2909 else if (dstat & SSI) OUTONB_STD();
2910 else goto unknown_int;
2911 return IRQ_HANDLED;
2912 }
2913
2914 /*
2915 * Now, interrupts that donnot happen in normal
2916 * situations and that we may need to recover from.
2917 *
2918 * On SCSI RESET (RST), we reset everything.
2919 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2920 * active CCBs with RESET status, prepare all devices
2921 * for negotiating again and restart the SCRIPTS.
2922 * On STO and UDC, we complete the CCB with the corres-
2923 * ponding status and restart the SCRIPTS.
2924 */
2925 if (sist & RST) {
2926 printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2927 sym_start_up(shost, 1);
2928 return IRQ_HANDLED;
2929 }
2930
2931 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
2932 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
2933
2934 if (!(sist & (GEN|HTH|SGE)) &&
2935 !(dstat & (MDPE|BF|ABRT|IID))) {
2936 if (sist & SBMC) sym_int_sbmc(shost);
2937 else if (sist & STO) sym_int_sto (np);
2938 else if (sist & UDC) sym_int_udc (np);
2939 else goto unknown_int;
2940 return IRQ_HANDLED;
2941 }
2942
2943 /*
2944 * Now, interrupts we are not able to recover cleanly.
2945 *
2946 * Log message for hard errors.
2947 * Reset everything.
2948 */
2949
2950 sym_log_hard_error(shost, sist, dstat);
2951
2952 if ((sist & (GEN|HTH|SGE)) ||
2953 (dstat & (MDPE|BF|ABRT|IID))) {
2954 sym_start_reset(np);
2955 return IRQ_HANDLED;
2956 }
2957
2958 unknown_int:
2959 /*
2960 * We just miss the cause of the interrupt. :(
2961 * Print a message. The timeout will do the real work.
2962 */
2963 printf( "%s: unknown interrupt(s) ignored, "
2964 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2965 sym_name(np), istat, dstat, sist);
2966 return IRQ_NONE;
2967 }
2968
2969 /*
2970 * Dequeue from the START queue all CCBs that match
2971 * a given target/lun/task condition (-1 means all),
2972 * and move them from the BUSY queue to the COMP queue
2973 * with DID_SOFT_ERROR status condition.
2974 * This function is used during error handling/recovery.
2975 * It is called with SCRIPTS not running.
2976 */
2977 static int
2978 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2979 {
2980 int j;
2981 struct sym_ccb *cp;
2982
2983 /*
2984 * Make sure the starting index is within range.
2985 */
2986 assert((i >= 0) && (i < 2*MAX_QUEUE));
2987
2988 /*
2989 * Walk until end of START queue and dequeue every job
2990 * that matches the target/lun/task condition.
2991 */
2992 j = i;
2993 while (i != np->squeueput) {
2994 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2995 assert(cp);
2996 #ifdef SYM_CONF_IARB_SUPPORT
2997 /* Forget hints for IARB, they may be no longer relevant */
2998 cp->host_flags &= ~HF_HINT_IARB;
2999 #endif
3000 if ((target == -1 || cp->target == target) &&
3001 (lun == -1 || cp->lun == lun) &&
3002 (task == -1 || cp->tag == task)) {
3003 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
3004 sym_remque(&cp->link_ccbq);
3005 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3006 }
3007 else {
3008 if (i != j)
3009 np->squeue[j] = np->squeue[i];
3010 if ((j += 2) >= MAX_QUEUE*2) j = 0;
3011 }
3012 if ((i += 2) >= MAX_QUEUE*2) i = 0;
3013 }
3014 if (i != j) /* Copy back the idle task if needed */
3015 np->squeue[j] = np->squeue[i];
3016 np->squeueput = j; /* Update our current start queue pointer */
3017
3018 return (i - j) / 2;
3019 }
3020
3021 /*
3022 * chip handler for bad SCSI status condition
3023 *
3024 * In case of bad SCSI status, we unqueue all the tasks
3025 * currently queued to the controller but not yet started
3026 * and then restart the SCRIPTS processor immediately.
3027 *
3028 * QUEUE FULL and BUSY conditions are handled the same way.
3029 * Basically all the not yet started tasks are requeued in
3030 * device queue and the queue is frozen until a completion.
3031 *
3032 * For CHECK CONDITION and COMMAND TERMINATED status, we use
3033 * the CCB of the failed command to prepare a REQUEST SENSE
3034 * SCSI command and queue it to the controller queue.
3035 *
3036 * SCRATCHA is assumed to have been loaded with STARTPOS
3037 * before the SCRIPTS called the C code.
3038 */
3039 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3040 {
3041 u32 startp;
3042 u_char s_status = cp->ssss_status;
3043 u_char h_flags = cp->host_flags;
3044 int msglen;
3045 int i;
3046
3047 /*
3048 * Compute the index of the next job to start from SCRIPTS.
3049 */
3050 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3051
3052 /*
3053 * The last CCB queued used for IARB hint may be
3054 * no longer relevant. Forget it.
3055 */
3056 #ifdef SYM_CONF_IARB_SUPPORT
3057 if (np->last_cp)
3058 np->last_cp = 0;
3059 #endif
3060
3061 /*
3062 * Now deal with the SCSI status.
3063 */
3064 switch(s_status) {
3065 case S_BUSY:
3066 case S_QUEUE_FULL:
3067 if (sym_verbose >= 2) {
3068 sym_print_addr(cp->cmd, "%s\n",
3069 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3070 }
3071 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3072 sym_complete_error (np, cp);
3073 break;
3074 case S_TERMINATED:
3075 case S_CHECK_COND:
3076 /*
3077 * If we get an SCSI error when requesting sense, give up.
3078 */
3079 if (h_flags & HF_SENSE) {
3080 sym_complete_error (np, cp);
3081 break;
3082 }
3083
3084 /*
3085 * Dequeue all queued CCBs for that device not yet started,
3086 * and restart the SCRIPTS processor immediately.
3087 */
3088 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3089 OUTL_DSP(np, SCRIPTA_BA(np, start));
3090
3091 /*
3092 * Save some info of the actual IO.
3093 * Compute the data residual.
3094 */
3095 cp->sv_scsi_status = cp->ssss_status;
3096 cp->sv_xerr_status = cp->xerr_status;
3097 cp->sv_resid = sym_compute_residual(np, cp);
3098
3099 /*
3100 * Prepare all needed data structures for
3101 * requesting sense data.
3102 */
3103
3104 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3105 msglen = 1;
3106
3107 /*
3108 * If we are currently using anything different from
3109 * async. 8 bit data transfers with that target,
3110 * start a negotiation, since the device may want
3111 * to report us a UNIT ATTENTION condition due to
3112 * a cause we currently ignore, and we donnot want
3113 * to be stuck with WIDE and/or SYNC data transfer.
3114 *
3115 * cp->nego_status is filled by sym_prepare_nego().
3116 */
3117 cp->nego_status = 0;
3118 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3119 /*
3120 * Message table indirect structure.
3121 */
3122 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
3123 cp->phys.smsg.size = cpu_to_scr(msglen);
3124
3125 /*
3126 * sense command
3127 */
3128 cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
3129 cp->phys.cmd.size = cpu_to_scr(6);
3130
3131 /*
3132 * patch requested size into sense command
3133 */
3134 cp->sensecmd[0] = REQUEST_SENSE;
3135 cp->sensecmd[1] = 0;
3136 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3137 cp->sensecmd[1] = cp->lun << 5;
3138 cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
3139 cp->data_len = SYM_SNS_BBUF_LEN;
3140
3141 /*
3142 * sense data
3143 */
3144 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3145 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
3146 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
3147
3148 /*
3149 * requeue the command.
3150 */
3151 startp = SCRIPTB_BA(np, sdata_in);
3152
3153 cp->phys.head.savep = cpu_to_scr(startp);
3154 cp->phys.head.lastp = cpu_to_scr(startp);
3155 cp->startp = cpu_to_scr(startp);
3156 cp->goalp = cpu_to_scr(startp + 16);
3157
3158 cp->host_xflags = 0;
3159 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3160 cp->ssss_status = S_ILLEGAL;
3161 cp->host_flags = (HF_SENSE|HF_DATA_IN);
3162 cp->xerr_status = 0;
3163 cp->extra_bytes = 0;
3164
3165 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3166
3167 /*
3168 * Requeue the command.
3169 */
3170 sym_put_start_queue(np, cp);
3171
3172 /*
3173 * Give back to upper layer everything we have dequeued.
3174 */
3175 sym_flush_comp_queue(np, 0);
3176 break;
3177 }
3178 }
3179
3180 /*
3181 * After a device has accepted some management message
3182 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3183 * a device signals a UNIT ATTENTION condition, some
3184 * tasks are thrown away by the device. We are required
3185 * to reflect that on our tasks list since the device
3186 * will never complete these tasks.
3187 *
3188 * This function move from the BUSY queue to the COMP
3189 * queue all disconnected CCBs for a given target that
3190 * match the following criteria:
3191 * - lun=-1 means any logical UNIT otherwise a given one.
3192 * - task=-1 means any task, otherwise a given one.
3193 */
3194 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3195 {
3196 SYM_QUEHEAD qtmp, *qp;
3197 int i = 0;
3198 struct sym_ccb *cp;
3199
3200 /*
3201 * Move the entire BUSY queue to our temporary queue.
3202 */
3203 sym_que_init(&qtmp);
3204 sym_que_splice(&np->busy_ccbq, &qtmp);
3205 sym_que_init(&np->busy_ccbq);
3206
3207 /*
3208 * Put all CCBs that matches our criteria into
3209 * the COMP queue and put back other ones into
3210 * the BUSY queue.
3211 */
3212 while ((qp = sym_remque_head(&qtmp)) != NULL) {
3213 struct scsi_cmnd *cmd;
3214 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3215 cmd = cp->cmd;
3216 if (cp->host_status != HS_DISCONNECT ||
3217 cp->target != target ||
3218 (lun != -1 && cp->lun != lun) ||
3219 (task != -1 &&
3220 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3221 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3222 continue;
3223 }
3224 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3225
3226 /* Preserve the software timeout condition */
3227 if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3228 sym_set_cam_status(cmd, cam_status);
3229 ++i;
3230 #if 0
3231 printf("XXXX TASK @%p CLEARED\n", cp);
3232 #endif
3233 }
3234 return i;
3235 }
3236
3237 /*
3238 * chip handler for TASKS recovery
3239 *
3240 * We cannot safely abort a command, while the SCRIPTS
3241 * processor is running, since we just would be in race
3242 * with it.
3243 *
3244 * As long as we have tasks to abort, we keep the SEM
3245 * bit set in the ISTAT. When this bit is set, the
3246 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3247 * each time it enters the scheduler.
3248 *
3249 * If we have to reset a target, clear tasks of a unit,
3250 * or to perform the abort of a disconnected job, we
3251 * restart the SCRIPTS for selecting the target. Once
3252 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3253 * If it loses arbitration, the SCRIPTS will interrupt again
3254 * the next time it will enter its scheduler, and so on ...
3255 *
3256 * On SIR_TARGET_SELECTED, we scan for the more
3257 * appropriate thing to do:
3258 *
3259 * - If nothing, we just sent a M_ABORT message to the
3260 * target to get rid of the useless SCSI bus ownership.
3261 * According to the specs, no tasks shall be affected.
3262 * - If the target is to be reset, we send it a M_RESET
3263 * message.
3264 * - If a logical UNIT is to be cleared , we send the
3265 * IDENTIFY(lun) + M_ABORT.
3266 * - If an untagged task is to be aborted, we send the
3267 * IDENTIFY(lun) + M_ABORT.
3268 * - If a tagged task is to be aborted, we send the
3269 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3270 *
3271 * Once our 'kiss of death' :) message has been accepted
3272 * by the target, the SCRIPTS interrupts again
3273 * (SIR_ABORT_SENT). On this interrupt, we complete
3274 * all the CCBs that should have been aborted by the
3275 * target according to our message.
3276 */
3277 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3278 {
3279 SYM_QUEHEAD *qp;
3280 struct sym_ccb *cp;
3281 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3282 struct scsi_target *starget;
3283 int target=-1, lun=-1, task;
3284 int i, k;
3285
3286 switch(num) {
3287 /*
3288 * The SCRIPTS processor stopped before starting
3289 * the next command in order to allow us to perform
3290 * some task recovery.
3291 */
3292 case SIR_SCRIPT_STOPPED:
3293 /*
3294 * Do we have any target to reset or unit to clear ?
3295 */
3296 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3297 tp = &np->target[i];
3298 if (tp->to_reset ||
3299 (tp->lun0p && tp->lun0p->to_clear)) {
3300 target = i;
3301 break;
3302 }
3303 if (!tp->lunmp)
3304 continue;
3305 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3306 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3307 target = i;
3308 break;
3309 }
3310 }
3311 if (target != -1)
3312 break;
3313 }
3314
3315 /*
3316 * If not, walk the busy queue for any
3317 * disconnected CCB to be aborted.
3318 */
3319 if (target == -1) {
3320 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3321 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3322 if (cp->host_status != HS_DISCONNECT)
3323 continue;
3324 if (cp->to_abort) {
3325 target = cp->target;
3326 break;
3327 }
3328 }
3329 }
3330
3331 /*
3332 * If some target is to be selected,
3333 * prepare and start the selection.
3334 */
3335 if (target != -1) {
3336 tp = &np->target[target];
3337 np->abrt_sel.sel_id = target;
3338 np->abrt_sel.sel_scntl3 = tp->head.wval;
3339 np->abrt_sel.sel_sxfer = tp->head.sval;
3340 OUTL(np, nc_dsa, np->hcb_ba);
3341 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3342 return;
3343 }
3344
3345 /*
3346 * Now look for a CCB to abort that haven't started yet.
3347 * Btw, the SCRIPTS processor is still stopped, so
3348 * we are not in race.
3349 */
3350 i = 0;
3351 cp = NULL;
3352 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3353 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3354 if (cp->host_status != HS_BUSY &&
3355 cp->host_status != HS_NEGOTIATE)
3356 continue;
3357 if (!cp->to_abort)
3358 continue;
3359 #ifdef SYM_CONF_IARB_SUPPORT
3360 /*
3361 * If we are using IMMEDIATE ARBITRATION, we donnot
3362 * want to cancel the last queued CCB, since the
3363 * SCRIPTS may have anticipated the selection.
3364 */
3365 if (cp == np->last_cp) {
3366 cp->to_abort = 0;
3367 continue;
3368 }
3369 #endif
3370 i = 1; /* Means we have found some */
3371 break;
3372 }
3373 if (!i) {
3374 /*
3375 * We are done, so we donnot need
3376 * to synchronize with the SCRIPTS anylonger.
3377 * Remove the SEM flag from the ISTAT.
3378 */
3379 np->istat_sem = 0;
3380 OUTB(np, nc_istat, SIGP);
3381 break;
3382 }
3383 /*
3384 * Compute index of next position in the start
3385 * queue the SCRIPTS intends to start and dequeue
3386 * all CCBs for that device that haven't been started.
3387 */
3388 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3389 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3390
3391 /*
3392 * Make sure at least our IO to abort has been dequeued.
3393 */
3394 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3395 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3396 #else
3397 sym_remque(&cp->link_ccbq);
3398 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3399 #endif
3400 /*
3401 * Keep track in cam status of the reason of the abort.
3402 */
3403 if (cp->to_abort == 2)
3404 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3405 else
3406 sym_set_cam_status(cp->cmd, DID_ABORT);
3407
3408 /*
3409 * Complete with error everything that we have dequeued.
3410 */
3411 sym_flush_comp_queue(np, 0);
3412 break;
3413 /*
3414 * The SCRIPTS processor has selected a target
3415 * we may have some manual recovery to perform for.
3416 */
3417 case SIR_TARGET_SELECTED:
3418 target = INB(np, nc_sdid) & 0xf;
3419 tp = &np->target[target];
3420
3421 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3422
3423 /*
3424 * If the target is to be reset, prepare a
3425 * M_RESET message and clear the to_reset flag
3426 * since we donnot expect this operation to fail.
3427 */
3428 if (tp->to_reset) {
3429 np->abrt_msg[0] = M_RESET;
3430 np->abrt_tbl.size = 1;
3431 tp->to_reset = 0;
3432 break;
3433 }
3434
3435 /*
3436 * Otherwise, look for some logical unit to be cleared.
3437 */
3438 if (tp->lun0p && tp->lun0p->to_clear)
3439 lun = 0;
3440 else if (tp->lunmp) {
3441 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3442 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3443 lun = k;
3444 break;
3445 }
3446 }
3447 }
3448
3449 /*
3450 * If a logical unit is to be cleared, prepare
3451 * an IDENTIFY(lun) + ABORT MESSAGE.
3452 */
3453 if (lun != -1) {
3454 struct sym_lcb *lp = sym_lp(tp, lun);
3455 lp->to_clear = 0; /* We don't expect to fail here */
3456 np->abrt_msg[0] = IDENTIFY(0, lun);
3457 np->abrt_msg[1] = M_ABORT;
3458 np->abrt_tbl.size = 2;
3459 break;
3460 }
3461
3462 /*
3463 * Otherwise, look for some disconnected job to
3464 * abort for this target.
3465 */
3466 i = 0;
3467 cp = NULL;
3468 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3469 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3470 if (cp->host_status != HS_DISCONNECT)
3471 continue;
3472 if (cp->target != target)
3473 continue;
3474 if (!cp->to_abort)
3475 continue;
3476 i = 1; /* Means we have some */
3477 break;
3478 }
3479
3480 /*
3481 * If we have none, probably since the device has
3482 * completed the command before we won abitration,
3483 * send a M_ABORT message without IDENTIFY.
3484 * According to the specs, the device must just
3485 * disconnect the BUS and not abort any task.
3486 */
3487 if (!i) {
3488 np->abrt_msg[0] = M_ABORT;
3489 np->abrt_tbl.size = 1;
3490 break;
3491 }
3492
3493 /*
3494 * We have some task to abort.
3495 * Set the IDENTIFY(lun)
3496 */
3497 np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3498
3499 /*
3500 * If we want to abort an untagged command, we
3501 * will send a IDENTIFY + M_ABORT.
3502 * Otherwise (tagged command), we will send
3503 * a IDENTITFY + task attributes + ABORT TAG.
3504 */
3505 if (cp->tag == NO_TAG) {
3506 np->abrt_msg[1] = M_ABORT;
3507 np->abrt_tbl.size = 2;
3508 } else {
3509 np->abrt_msg[1] = cp->scsi_smsg[1];
3510 np->abrt_msg[2] = cp->scsi_smsg[2];
3511 np->abrt_msg[3] = M_ABORT_TAG;
3512 np->abrt_tbl.size = 4;
3513 }
3514 /*
3515 * Keep track of software timeout condition, since the
3516 * peripheral driver may not count retries on abort
3517 * conditions not due to timeout.
3518 */
3519 if (cp->to_abort == 2)
3520 sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3521 cp->to_abort = 0; /* We donnot expect to fail here */
3522 break;
3523
3524 /*
3525 * The target has accepted our message and switched
3526 * to BUS FREE phase as we expected.
3527 */
3528 case SIR_ABORT_SENT:
3529 target = INB(np, nc_sdid) & 0xf;
3530 tp = &np->target[target];
3531 starget = tp->starget;
3532
3533 /*
3534 ** If we didn't abort anything, leave here.
3535 */
3536 if (np->abrt_msg[0] == M_ABORT)
3537 break;
3538
3539 /*
3540 * If we sent a M_RESET, then a hardware reset has
3541 * been performed by the target.
3542 * - Reset everything to async 8 bit
3543 * - Tell ourself to negotiate next time :-)
3544 * - Prepare to clear all disconnected CCBs for
3545 * this target from our task list (lun=task=-1)
3546 */
3547 lun = -1;
3548 task = -1;
3549 if (np->abrt_msg[0] == M_RESET) {
3550 tp->head.sval = 0;
3551 tp->head.wval = np->rv_scntl3;
3552 tp->head.uval = 0;
3553 spi_period(starget) = 0;
3554 spi_offset(starget) = 0;
3555 spi_width(starget) = 0;
3556 spi_iu(starget) = 0;
3557 spi_dt(starget) = 0;
3558 spi_qas(starget) = 0;
3559 tp->tgoal.check_nego = 1;
3560 tp->tgoal.renego = 0;
3561 }
3562
3563 /*
3564 * Otherwise, check for the LUN and TASK(s)
3565 * concerned by the cancelation.
3566 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3567 * or an ABORT message :-)
3568 */
3569 else {
3570 lun = np->abrt_msg[0] & 0x3f;
3571 if (np->abrt_msg[1] == M_ABORT_TAG)
3572 task = np->abrt_msg[2];
3573 }
3574
3575 /*
3576 * Complete all the CCBs the device should have
3577 * aborted due to our 'kiss of death' message.
3578 */
3579 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3580 sym_dequeue_from_squeue(np, i, target, lun, -1);
3581 sym_clear_tasks(np, DID_ABORT, target, lun, task);
3582 sym_flush_comp_queue(np, 0);
3583
3584 /*
3585 * If we sent a BDR, make upper layer aware of that.
3586 */
3587 if (np->abrt_msg[0] == M_RESET)
3588 starget_printk(KERN_NOTICE, starget,
3589 "has been reset\n");
3590 break;
3591 }
3592
3593 /*
3594 * Print to the log the message we intend to send.
3595 */
3596 if (num == SIR_TARGET_SELECTED) {
3597 dev_info(&tp->starget->dev, "control msgout:");
3598 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3599 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3600 }
3601
3602 /*
3603 * Let the SCRIPTS processor continue.
3604 */
3605 OUTONB_STD();
3606 }
3607
3608 /*
3609 * Gerard's alchemy:) that deals with with the data
3610 * pointer for both MDP and the residual calculation.
3611 *
3612 * I didn't want to bloat the code by more than 200
3613 * lines for the handling of both MDP and the residual.
3614 * This has been achieved by using a data pointer
3615 * representation consisting in an index in the data
3616 * array (dp_sg) and a negative offset (dp_ofs) that
3617 * have the following meaning:
3618 *
3619 * - dp_sg = SYM_CONF_MAX_SG
3620 * we are at the end of the data script.
3621 * - dp_sg < SYM_CONF_MAX_SG
3622 * dp_sg points to the next entry of the scatter array
3623 * we want to transfer.
3624 * - dp_ofs < 0
3625 * dp_ofs represents the residual of bytes of the
3626 * previous entry scatter entry we will send first.
3627 * - dp_ofs = 0
3628 * no residual to send first.
3629 *
3630 * The function sym_evaluate_dp() accepts an arbitray
3631 * offset (basically from the MDP message) and returns
3632 * the corresponding values of dp_sg and dp_ofs.
3633 */
3634
3635 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3636 {
3637 u32 dp_scr;
3638 int dp_ofs, dp_sg, dp_sgmin;
3639 int tmp;
3640 struct sym_pmc *pm;
3641
3642 /*
3643 * Compute the resulted data pointer in term of a script
3644 * address within some DATA script and a signed byte offset.
3645 */
3646 dp_scr = scr;
3647 dp_ofs = *ofs;
3648 if (dp_scr == SCRIPTA_BA(np, pm0_data))
3649 pm = &cp->phys.pm0;
3650 else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3651 pm = &cp->phys.pm1;
3652 else
3653 pm = NULL;
3654
3655 if (pm) {
3656 dp_scr = scr_to_cpu(pm->ret);
3657 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3658 }
3659
3660 /*
3661 * If we are auto-sensing, then we are done.
3662 */
3663 if (cp->host_flags & HF_SENSE) {
3664 *ofs = dp_ofs;
3665 return 0;
3666 }
3667
3668 /*
3669 * Deduce the index of the sg entry.
3670 * Keep track of the index of the first valid entry.
3671 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3672 * end of the data.
3673 */
3674 tmp = scr_to_cpu(cp->goalp);
3675 dp_sg = SYM_CONF_MAX_SG;
3676 if (dp_scr != tmp)
3677 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3678 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3679
3680 /*
3681 * Move to the sg entry the data pointer belongs to.
3682 *
3683 * If we are inside the data area, we expect result to be:
3684 *
3685 * Either,
3686 * dp_ofs = 0 and dp_sg is the index of the sg entry
3687 * the data pointer belongs to (or the end of the data)
3688 * Or,
3689 * dp_ofs < 0 and dp_sg is the index of the sg entry
3690 * the data pointer belongs to + 1.
3691 */
3692 if (dp_ofs < 0) {
3693 int n;
3694 while (dp_sg > dp_sgmin) {
3695 --dp_sg;
3696 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3697 n = dp_ofs + (tmp & 0xffffff);
3698 if (n > 0) {
3699 ++dp_sg;
3700 break;
3701 }
3702 dp_ofs = n;
3703 }
3704 }
3705 else if (dp_ofs > 0) {
3706 while (dp_sg < SYM_CONF_MAX_SG) {
3707 tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3708 dp_ofs -= (tmp & 0xffffff);
3709 ++dp_sg;
3710 if (dp_ofs <= 0)
3711 break;
3712 }
3713 }
3714
3715 /*
3716 * Make sure the data pointer is inside the data area.
3717 * If not, return some error.
3718 */
3719 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3720 goto out_err;
3721 else if (dp_sg > SYM_CONF_MAX_SG ||
3722 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3723 goto out_err;
3724
3725 /*
3726 * Save the extreme pointer if needed.
3727 */
3728 if (dp_sg > cp->ext_sg ||
3729 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3730 cp->ext_sg = dp_sg;
3731 cp->ext_ofs = dp_ofs;
3732 }
3733
3734 /*
3735 * Return data.
3736 */
3737 *ofs = dp_ofs;
3738 return dp_sg;
3739
3740 out_err:
3741 return -1;
3742 }
3743
3744 /*
3745 * chip handler for MODIFY DATA POINTER MESSAGE
3746 *
3747 * We also call this function on IGNORE WIDE RESIDUE
3748 * messages that do not match a SWIDE full condition.
3749 * Btw, we assume in that situation that such a message
3750 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3751 */
3752
3753 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3754 {
3755 int dp_ofs = ofs;
3756 u32 dp_scr = sym_get_script_dp (np, cp);
3757 u32 dp_ret;
3758 u32 tmp;
3759 u_char hflags;
3760 int dp_sg;
3761 struct sym_pmc *pm;
3762
3763 /*
3764 * Not supported for auto-sense.
3765 */
3766 if (cp->host_flags & HF_SENSE)
3767 goto out_reject;
3768
3769 /*
3770 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3771 * to the resulted data pointer.
3772 */
3773 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3774 if (dp_sg < 0)
3775 goto out_reject;
3776
3777 /*
3778 * And our alchemy:) allows to easily calculate the data
3779 * script address we want to return for the next data phase.
3780 */
3781 dp_ret = cpu_to_scr(cp->goalp);
3782 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3783
3784 /*
3785 * If offset / scatter entry is zero we donnot need
3786 * a context for the new current data pointer.
3787 */
3788 if (dp_ofs == 0) {
3789 dp_scr = dp_ret;
3790 goto out_ok;
3791 }
3792
3793 /*
3794 * Get a context for the new current data pointer.
3795 */
3796 hflags = INB(np, HF_PRT);
3797
3798 if (hflags & HF_DP_SAVED)
3799 hflags ^= HF_ACT_PM;
3800
3801 if (!(hflags & HF_ACT_PM)) {
3802 pm = &cp->phys.pm0;
3803 dp_scr = SCRIPTA_BA(np, pm0_data);
3804 }
3805 else {
3806 pm = &cp->phys.pm1;
3807 dp_scr = SCRIPTA_BA(np, pm1_data);
3808 }
3809
3810 hflags &= ~(HF_DP_SAVED);
3811
3812 OUTB(np, HF_PRT, hflags);
3813
3814 /*
3815 * Set up the new current data pointer.
3816 * ofs < 0 there, and for the next data phase, we
3817 * want to transfer part of the data of the sg entry
3818 * corresponding to index dp_sg-1 prior to returning
3819 * to the main data script.
3820 */
3821 pm->ret = cpu_to_scr(dp_ret);
3822 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3823 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3824 pm->sg.addr = cpu_to_scr(tmp);
3825 pm->sg.size = cpu_to_scr(-dp_ofs);
3826
3827 out_ok:
3828 sym_set_script_dp (np, cp, dp_scr);
3829 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3830 return;
3831
3832 out_reject:
3833 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3834 }
3835
3836
3837 /*
3838 * chip calculation of the data residual.
3839 *
3840 * As I used to say, the requirement of data residual
3841 * in SCSI is broken, useless and cannot be achieved
3842 * without huge complexity.
3843 * But most OSes and even the official CAM require it.
3844 * When stupidity happens to be so widely spread inside
3845 * a community, it gets hard to convince.
3846 *
3847 * Anyway, I don't care, since I am not going to use
3848 * any software that considers this data residual as
3849 * a relevant information. :)
3850 */
3851
3852 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3853 {
3854 int dp_sg, dp_sgmin, resid = 0;
3855 int dp_ofs = 0;
3856
3857 /*
3858 * Check for some data lost or just thrown away.
3859 * We are not required to be quite accurate in this
3860 * situation. Btw, if we are odd for output and the
3861 * device claims some more data, it may well happen
3862 * than our residual be zero. :-)
3863 */
3864 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3865 if (cp->xerr_status & XE_EXTRA_DATA)
3866 resid -= cp->extra_bytes;
3867 if (cp->xerr_status & XE_SODL_UNRUN)
3868 ++resid;
3869 if (cp->xerr_status & XE_SWIDE_OVRUN)
3870 --resid;
3871 }
3872
3873 /*
3874 * If all data has been transferred,
3875 * there is no residual.
3876 */
3877 if (cp->phys.head.lastp == cp->goalp)
3878 return resid;
3879
3880 /*
3881 * If no data transfer occurs, or if the data
3882 * pointer is weird, return full residual.
3883 */
3884 if (cp->startp == cp->phys.head.lastp ||
3885 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3886 &dp_ofs) < 0) {
3887 return cp->data_len - cp->odd_byte_adjustment;
3888 }
3889
3890 /*
3891 * If we were auto-sensing, then we are done.
3892 */
3893 if (cp->host_flags & HF_SENSE) {
3894 return -dp_ofs;
3895 }
3896
3897 /*
3898 * We are now full comfortable in the computation
3899 * of the data residual (2's complement).
3900 */
3901 dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3902 resid = -cp->ext_ofs;
3903 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3904 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3905 resid += (tmp & 0xffffff);
3906 }
3907
3908 resid -= cp->odd_byte_adjustment;
3909
3910 /*
3911 * Hopefully, the result is not too wrong.
3912 */
3913 return resid;
3914 }
3915
3916 /*
3917 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3918 *
3919 * When we try to negotiate, we append the negotiation message
3920 * to the identify and (maybe) simple tag message.
3921 * The host status field is set to HS_NEGOTIATE to mark this
3922 * situation.
3923 *
3924 * If the target doesn't answer this message immediately
3925 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3926 * will be raised eventually.
3927 * The handler removes the HS_NEGOTIATE status, and sets the
3928 * negotiated value to the default (async / nowide).
3929 *
3930 * If we receive a matching answer immediately, we check it
3931 * for validity, and set the values.
3932 *
3933 * If we receive a Reject message immediately, we assume the
3934 * negotiation has failed, and fall back to standard values.
3935 *
3936 * If we receive a negotiation message while not in HS_NEGOTIATE
3937 * state, it's a target initiated negotiation. We prepare a
3938 * (hopefully) valid answer, set our parameters, and send back
3939 * this answer to the target.
3940 *
3941 * If the target doesn't fetch the answer (no message out phase),
3942 * we assume the negotiation has failed, and fall back to default
3943 * settings (SIR_NEGO_PROTO interrupt).
3944 *
3945 * When we set the values, we adjust them in all ccbs belonging
3946 * to this target, in the controller's register, and in the "phys"
3947 * field of the controller's struct sym_hcb.
3948 */
3949
3950 /*
3951 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3952 */
3953 static int
3954 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3955 {
3956 int target = cp->target;
3957 u_char chg, ofs, per, fak, div;
3958
3959 if (DEBUG_FLAGS & DEBUG_NEGO) {
3960 sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3961 }
3962
3963 /*
3964 * Get requested values.
3965 */
3966 chg = 0;
3967 per = np->msgin[3];
3968 ofs = np->msgin[4];
3969
3970 /*
3971 * Check values against our limits.
3972 */
3973 if (ofs) {
3974 if (ofs > np->maxoffs)
3975 {chg = 1; ofs = np->maxoffs;}
3976 }
3977
3978 if (ofs) {
3979 if (per < np->minsync)
3980 {chg = 1; per = np->minsync;}
3981 }
3982
3983 /*
3984 * Get new chip synchronous parameters value.
3985 */
3986 div = fak = 0;
3987 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3988 goto reject_it;
3989
3990 if (DEBUG_FLAGS & DEBUG_NEGO) {
3991 sym_print_addr(cp->cmd,
3992 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3993 ofs, per, div, fak, chg);
3994 }
3995
3996 /*
3997 * If it was an answer we want to change,
3998 * then it isn't acceptable. Reject it.
3999 */
4000 if (!req && chg)
4001 goto reject_it;
4002
4003 /*
4004 * Apply new values.
4005 */
4006 sym_setsync (np, target, ofs, per, div, fak);
4007
4008 /*
4009 * It was an answer. We are done.
4010 */
4011 if (!req)
4012 return 0;
4013
4014 /*
4015 * It was a request. Prepare an answer message.
4016 */
4017 spi_populate_sync_msg(np->msgout, per, ofs);
4018
4019 if (DEBUG_FLAGS & DEBUG_NEGO) {
4020 sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4021 }
4022
4023 np->msgin [0] = M_NOOP;
4024
4025 return 0;
4026
4027 reject_it:
4028 sym_setsync (np, target, 0, 0, 0, 0);
4029 return -1;
4030 }
4031
4032 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4033 {
4034 int req = 1;
4035 int result;
4036
4037 /*
4038 * Request or answer ?
4039 */
4040 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4041 OUTB(np, HS_PRT, HS_BUSY);
4042 if (cp->nego_status && cp->nego_status != NS_SYNC)
4043 goto reject_it;
4044 req = 0;
4045 }
4046
4047 /*
4048 * Check and apply new values.
4049 */
4050 result = sym_sync_nego_check(np, req, cp);
4051 if (result) /* Not acceptable, reject it */
4052 goto reject_it;
4053 if (req) { /* Was a request, send response. */
4054 cp->nego_status = NS_SYNC;
4055 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4056 }
4057 else /* Was a response, we are done. */
4058 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4059 return;
4060
4061 reject_it:
4062 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4063 }
4064
4065 /*
4066 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4067 */
4068 static int
4069 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4070 {
4071 struct sym_tcb *tp = &np->target[target];
4072 unsigned char fak, div;
4073 int dt, chg = 0;
4074
4075 unsigned char per = np->msgin[3];
4076 unsigned char ofs = np->msgin[5];
4077 unsigned char wide = np->msgin[6];
4078 unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4079
4080 if (DEBUG_FLAGS & DEBUG_NEGO) {
4081 sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4082 }
4083
4084 /*
4085 * Check values against our limits.
4086 */
4087 if (wide > np->maxwide) {
4088 chg = 1;
4089 wide = np->maxwide;
4090 }
4091 if (!wide || !(np->features & FE_U3EN))
4092 opts = 0;
4093
4094 if (opts != (np->msgin[7] & PPR_OPT_MASK))
4095 chg = 1;
4096
4097 dt = opts & PPR_OPT_DT;
4098
4099 if (ofs) {
4100 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4101 if (ofs > maxoffs) {
4102 chg = 1;
4103 ofs = maxoffs;
4104 }
4105 }
4106
4107 if (ofs) {
4108 unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4109 if (per < minsync) {
4110 chg = 1;
4111 per = minsync;
4112 }
4113 }
4114
4115 /*
4116 * Get new chip synchronous parameters value.
4117 */
4118 div = fak = 0;
4119 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4120 goto reject_it;
4121
4122 /*
4123 * If it was an answer we want to change,
4124 * then it isn't acceptable. Reject it.
4125 */
4126 if (!req && chg)
4127 goto reject_it;
4128
4129 /*
4130 * Apply new values.
4131 */
4132 sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4133
4134 /*
4135 * It was an answer. We are done.
4136 */
4137 if (!req)
4138 return 0;
4139
4140 /*
4141 * It was a request. Prepare an answer message.
4142 */
4143 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4144
4145 if (DEBUG_FLAGS & DEBUG_NEGO) {
4146 sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4147 }
4148
4149 np->msgin [0] = M_NOOP;
4150
4151 return 0;
4152
4153 reject_it:
4154 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4155 /*
4156 * If it is a device response that should result in
4157 * ST, we may want to try a legacy negotiation later.
4158 */
4159 if (!req && !opts) {
4160 tp->tgoal.period = per;
4161 tp->tgoal.offset = ofs;
4162 tp->tgoal.width = wide;
4163 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4164 tp->tgoal.check_nego = 1;
4165 }
4166 return -1;
4167 }
4168
4169 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4170 {
4171 int req = 1;
4172 int result;
4173
4174 /*
4175 * Request or answer ?
4176 */
4177 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4178 OUTB(np, HS_PRT, HS_BUSY);
4179 if (cp->nego_status && cp->nego_status != NS_PPR)
4180 goto reject_it;
4181 req = 0;
4182 }
4183
4184 /*
4185 * Check and apply new values.
4186 */
4187 result = sym_ppr_nego_check(np, req, cp->target);
4188 if (result) /* Not acceptable, reject it */
4189 goto reject_it;
4190 if (req) { /* Was a request, send response. */
4191 cp->nego_status = NS_PPR;
4192 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4193 }
4194 else /* Was a response, we are done. */
4195 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4196 return;
4197
4198 reject_it:
4199 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4200 }
4201
4202 /*
4203 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4204 */
4205 static int
4206 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4207 {
4208 int target = cp->target;
4209 u_char chg, wide;
4210
4211 if (DEBUG_FLAGS & DEBUG_NEGO) {
4212 sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4213 }
4214
4215 /*
4216 * Get requested values.
4217 */
4218 chg = 0;
4219 wide = np->msgin[3];
4220
4221 /*
4222 * Check values against our limits.
4223 */
4224 if (wide > np->maxwide) {
4225 chg = 1;
4226 wide = np->maxwide;
4227 }
4228
4229 if (DEBUG_FLAGS & DEBUG_NEGO) {
4230 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4231 wide, chg);
4232 }
4233
4234 /*
4235 * If it was an answer we want to change,
4236 * then it isn't acceptable. Reject it.
4237 */
4238 if (!req && chg)
4239 goto reject_it;
4240
4241 /*
4242 * Apply new values.
4243 */
4244 sym_setwide (np, target, wide);
4245
4246 /*
4247 * It was an answer. We are done.
4248 */
4249 if (!req)
4250 return 0;
4251
4252 /*
4253 * It was a request. Prepare an answer message.
4254 */
4255 spi_populate_width_msg(np->msgout, wide);
4256
4257 np->msgin [0] = M_NOOP;
4258
4259 if (DEBUG_FLAGS & DEBUG_NEGO) {
4260 sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4261 }
4262
4263 return 0;
4264
4265 reject_it:
4266 return -1;
4267 }
4268
4269 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4270 {
4271 int req = 1;
4272 int result;
4273
4274 /*
4275 * Request or answer ?
4276 */
4277 if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4278 OUTB(np, HS_PRT, HS_BUSY);
4279 if (cp->nego_status && cp->nego_status != NS_WIDE)
4280 goto reject_it;
4281 req = 0;
4282 }
4283
4284 /*
4285 * Check and apply new values.
4286 */
4287 result = sym_wide_nego_check(np, req, cp);
4288 if (result) /* Not acceptable, reject it */
4289 goto reject_it;
4290 if (req) { /* Was a request, send response. */
4291 cp->nego_status = NS_WIDE;
4292 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4293 } else { /* Was a response. */
4294 /*
4295 * Negotiate for SYNC immediately after WIDE response.
4296 * This allows to negotiate for both WIDE and SYNC on
4297 * a single SCSI command (Suggested by Justin Gibbs).
4298 */
4299 if (tp->tgoal.offset) {
4300 spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4301 tp->tgoal.offset);
4302
4303 if (DEBUG_FLAGS & DEBUG_NEGO) {
4304 sym_print_nego_msg(np, cp->target,
4305 "sync msgout", np->msgout);
4306 }
4307
4308 cp->nego_status = NS_SYNC;
4309 OUTB(np, HS_PRT, HS_NEGOTIATE);
4310 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4311 return;
4312 } else
4313 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4314 }
4315
4316 return;
4317
4318 reject_it:
4319 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4320 }
4321
4322 /*
4323 * Reset DT, SYNC or WIDE to default settings.
4324 *
4325 * Called when a negotiation does not succeed either
4326 * on rejection or on protocol error.
4327 *
4328 * A target that understands a PPR message should never
4329 * reject it, and messing with it is very unlikely.
4330 * So, if a PPR makes problems, we may just want to
4331 * try a legacy negotiation later.
4332 */
4333 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4334 {
4335 switch (cp->nego_status) {
4336 case NS_PPR:
4337 #if 0
4338 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4339 #else
4340 if (tp->tgoal.period < np->minsync)
4341 tp->tgoal.period = np->minsync;
4342 if (tp->tgoal.offset > np->maxoffs)
4343 tp->tgoal.offset = np->maxoffs;
4344 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4345 tp->tgoal.check_nego = 1;
4346 #endif
4347 break;
4348 case NS_SYNC:
4349 sym_setsync (np, cp->target, 0, 0, 0, 0);
4350 break;
4351 case NS_WIDE:
4352 sym_setwide (np, cp->target, 0);
4353 break;
4354 }
4355 np->msgin [0] = M_NOOP;
4356 np->msgout[0] = M_NOOP;
4357 cp->nego_status = 0;
4358 }
4359
4360 /*
4361 * chip handler for MESSAGE REJECT received in response to
4362 * PPR, WIDE or SYNCHRONOUS negotiation.
4363 */
4364 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4365 {
4366 sym_nego_default(np, tp, cp);
4367 OUTB(np, HS_PRT, HS_BUSY);
4368 }
4369
4370 /*
4371 * chip exception handler for programmed interrupts.
4372 */
4373 static void sym_int_sir(struct sym_hcb *np)
4374 {
4375 u_char num = INB(np, nc_dsps);
4376 u32 dsa = INL(np, nc_dsa);
4377 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
4378 u_char target = INB(np, nc_sdid) & 0x0f;
4379 struct sym_tcb *tp = &np->target[target];
4380 int tmp;
4381
4382 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4383
4384 switch (num) {
4385 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4386 /*
4387 * SCRIPTS tell us that we may have to update
4388 * 64 bit DMA segment registers.
4389 */
4390 case SIR_DMAP_DIRTY:
4391 sym_update_dmap_regs(np);
4392 goto out;
4393 #endif
4394 /*
4395 * Command has been completed with error condition
4396 * or has been auto-sensed.
4397 */
4398 case SIR_COMPLETE_ERROR:
4399 sym_complete_error(np, cp);
4400 return;
4401 /*
4402 * The C code is currently trying to recover from something.
4403 * Typically, user want to abort some command.
4404 */
4405 case SIR_SCRIPT_STOPPED:
4406 case SIR_TARGET_SELECTED:
4407 case SIR_ABORT_SENT:
4408 sym_sir_task_recovery(np, num);
4409 return;
4410 /*
4411 * The device didn't go to MSG OUT phase after having
4412 * been selected with ATN. We do not want to handle that.
4413 */
4414 case SIR_SEL_ATN_NO_MSG_OUT:
4415 scmd_printk(KERN_WARNING, cp->cmd,
4416 "No MSG OUT phase after selection with ATN\n");
4417 goto out_stuck;
4418 /*
4419 * The device didn't switch to MSG IN phase after
4420 * having reselected the initiator.
4421 */
4422 case SIR_RESEL_NO_MSG_IN:
4423 scmd_printk(KERN_WARNING, cp->cmd,
4424 "No MSG IN phase after reselection\n");
4425 goto out_stuck;
4426 /*
4427 * After reselection, the device sent a message that wasn't
4428 * an IDENTIFY.
4429 */
4430 case SIR_RESEL_NO_IDENTIFY:
4431 scmd_printk(KERN_WARNING, cp->cmd,
4432 "No IDENTIFY after reselection\n");
4433 goto out_stuck;
4434 /*
4435 * The device reselected a LUN we do not know about.
4436 */
4437 case SIR_RESEL_BAD_LUN:
4438 np->msgout[0] = M_RESET;
4439 goto out;
4440 /*
4441 * The device reselected for an untagged nexus and we
4442 * haven't any.
4443 */
4444 case SIR_RESEL_BAD_I_T_L:
4445 np->msgout[0] = M_ABORT;
4446 goto out;
4447 /*
4448 * The device reselected for a tagged nexus that we do not have.
4449 */
4450 case SIR_RESEL_BAD_I_T_L_Q:
4451 np->msgout[0] = M_ABORT_TAG;
4452 goto out;
4453 /*
4454 * The SCRIPTS let us know that the device has grabbed
4455 * our message and will abort the job.
4456 */
4457 case SIR_RESEL_ABORTED:
4458 np->lastmsg = np->msgout[0];
4459 np->msgout[0] = M_NOOP;
4460 scmd_printk(KERN_WARNING, cp->cmd,
4461 "message %x sent on bad reselection\n", np->lastmsg);
4462 goto out;
4463 /*
4464 * The SCRIPTS let us know that a message has been
4465 * successfully sent to the device.
4466 */
4467 case SIR_MSG_OUT_DONE:
4468 np->lastmsg = np->msgout[0];
4469 np->msgout[0] = M_NOOP;
4470 /* Should we really care of that */
4471 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4472 if (cp) {
4473 cp->xerr_status &= ~XE_PARITY_ERR;
4474 if (!cp->xerr_status)
4475 OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4476 }
4477 }
4478 goto out;
4479 /*
4480 * The device didn't send a GOOD SCSI status.
4481 * We may have some work to do prior to allow
4482 * the SCRIPTS processor to continue.
4483 */
4484 case SIR_BAD_SCSI_STATUS:
4485 if (!cp)
4486 goto out;
4487 sym_sir_bad_scsi_status(np, num, cp);
4488 return;
4489 /*
4490 * We are asked by the SCRIPTS to prepare a
4491 * REJECT message.
4492 */
4493 case SIR_REJECT_TO_SEND:
4494 sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4495 np->msgout[0] = M_REJECT;
4496 goto out;
4497 /*
4498 * We have been ODD at the end of a DATA IN
4499 * transfer and the device didn't send a
4500 * IGNORE WIDE RESIDUE message.
4501 * It is a data overrun condition.
4502 */
4503 case SIR_SWIDE_OVERRUN:
4504 if (cp) {
4505 OUTONB(np, HF_PRT, HF_EXT_ERR);
4506 cp->xerr_status |= XE_SWIDE_OVRUN;
4507 }
4508 goto out;
4509 /*
4510 * We have been ODD at the end of a DATA OUT
4511 * transfer.
4512 * It is a data underrun condition.
4513 */
4514 case SIR_SODL_UNDERRUN:
4515 if (cp) {
4516 OUTONB(np, HF_PRT, HF_EXT_ERR);
4517 cp->xerr_status |= XE_SODL_UNRUN;
4518 }
4519 goto out;
4520 /*
4521 * The device wants us to tranfer more data than
4522 * expected or in the wrong direction.
4523 * The number of extra bytes is in scratcha.
4524 * It is a data overrun condition.
4525 */
4526 case SIR_DATA_OVERRUN:
4527 if (cp) {
4528 OUTONB(np, HF_PRT, HF_EXT_ERR);
4529 cp->xerr_status |= XE_EXTRA_DATA;
4530 cp->extra_bytes += INL(np, nc_scratcha);
4531 }
4532 goto out;
4533 /*
4534 * The device switched to an illegal phase (4/5).
4535 */
4536 case SIR_BAD_PHASE:
4537 if (cp) {
4538 OUTONB(np, HF_PRT, HF_EXT_ERR);
4539 cp->xerr_status |= XE_BAD_PHASE;
4540 }
4541 goto out;
4542 /*
4543 * We received a message.
4544 */
4545 case SIR_MSG_RECEIVED:
4546 if (!cp)
4547 goto out_stuck;
4548 switch (np->msgin [0]) {
4549 /*
4550 * We received an extended message.
4551 * We handle MODIFY DATA POINTER, SDTR, WDTR
4552 * and reject all other extended messages.
4553 */
4554 case M_EXTENDED:
4555 switch (np->msgin [2]) {
4556 case M_X_MODIFY_DP:
4557 if (DEBUG_FLAGS & DEBUG_POINTER)
4558 sym_print_msg(cp, "extended msg ",
4559 np->msgin);
4560 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4561 (np->msgin[5]<<8) + (np->msgin[6]);
4562 sym_modify_dp(np, tp, cp, tmp);
4563 return;
4564 case M_X_SYNC_REQ:
4565 sym_sync_nego(np, tp, cp);
4566 return;
4567 case M_X_PPR_REQ:
4568 sym_ppr_nego(np, tp, cp);
4569 return;
4570 case M_X_WIDE_REQ:
4571 sym_wide_nego(np, tp, cp);
4572 return;
4573 default:
4574 goto out_reject;
4575 }
4576 break;
4577 /*
4578 * We received a 1/2 byte message not handled from SCRIPTS.
4579 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4580 * RESIDUE messages that haven't been anticipated by
4581 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4582 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4583 */
4584 case M_IGN_RESIDUE:
4585 if (DEBUG_FLAGS & DEBUG_POINTER)
4586 sym_print_msg(cp, "1 or 2 byte ", np->msgin);
4587 if (cp->host_flags & HF_SENSE)
4588 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4589 else
4590 sym_modify_dp(np, tp, cp, -1);
4591 return;
4592 case M_REJECT:
4593 if (INB(np, HS_PRT) == HS_NEGOTIATE)
4594 sym_nego_rejected(np, tp, cp);
4595 else {
4596 sym_print_addr(cp->cmd,
4597 "M_REJECT received (%x:%x).\n",
4598 scr_to_cpu(np->lastmsg), np->msgout[0]);
4599 }
4600 goto out_clrack;
4601 break;
4602 default:
4603 goto out_reject;
4604 }
4605 break;
4606 /*
4607 * We received an unknown message.
4608 * Ignore all MSG IN phases and reject it.
4609 */
4610 case SIR_MSG_WEIRD:
4611 sym_print_msg(cp, "WEIRD message received", np->msgin);
4612 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4613 return;
4614 /*
4615 * Negotiation failed.
4616 * Target does not send us the reply.
4617 * Remove the HS_NEGOTIATE status.
4618 */
4619 case SIR_NEGO_FAILED:
4620 OUTB(np, HS_PRT, HS_BUSY);
4621 /*
4622 * Negotiation failed.
4623 * Target does not want answer message.
4624 */
4625 case SIR_NEGO_PROTO:
4626 sym_nego_default(np, tp, cp);
4627 goto out;
4628 }
4629
4630 out:
4631 OUTONB_STD();
4632 return;
4633 out_reject:
4634 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4635 return;
4636 out_clrack:
4637 OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4638 return;
4639 out_stuck:
4640 return;
4641 }
4642
4643 /*
4644 * Acquire a control block
4645 */
4646 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4647 {
4648 u_char tn = cmd->device->id;
4649 u_char ln = cmd->device->lun;
4650 struct sym_tcb *tp = &np->target[tn];
4651 struct sym_lcb *lp = sym_lp(tp, ln);
4652 u_short tag = NO_TAG;
4653 SYM_QUEHEAD *qp;
4654 struct sym_ccb *cp = NULL;
4655
4656 /*
4657 * Look for a free CCB
4658 */
4659 if (sym_que_empty(&np->free_ccbq))
4660 sym_alloc_ccb(np);
4661 qp = sym_remque_head(&np->free_ccbq);
4662 if (!qp)
4663 goto out;
4664 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4665
4666 {
4667 /*
4668 * If we have been asked for a tagged command.
4669 */
4670 if (tag_order) {
4671 /*
4672 * Debugging purpose.
4673 */
4674 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4675 if (lp->busy_itl != 0)
4676 goto out_free;
4677 #endif
4678 /*
4679 * Allocate resources for tags if not yet.
4680 */
4681 if (!lp->cb_tags) {
4682 sym_alloc_lcb_tags(np, tn, ln);
4683 if (!lp->cb_tags)
4684 goto out_free;
4685 }
4686 /*
4687 * Get a tag for this SCSI IO and set up
4688 * the CCB bus address for reselection,
4689 * and count it for this LUN.
4690 * Toggle reselect path to tagged.
4691 */
4692 if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4693 tag = lp->cb_tags[lp->ia_tag];
4694 if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4695 lp->ia_tag = 0;
4696 ++lp->busy_itlq;
4697 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4698 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4699 lp->head.resel_sa =
4700 cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4701 #endif
4702 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4703 cp->tags_si = lp->tags_si;
4704 ++lp->tags_sum[cp->tags_si];
4705 ++lp->tags_since;
4706 #endif
4707 }
4708 else
4709 goto out_free;
4710 }
4711 /*
4712 * This command will not be tagged.
4713 * If we already have either a tagged or untagged
4714 * one, refuse to overlap this untagged one.
4715 */
4716 else {
4717 /*
4718 * Debugging purpose.
4719 */
4720 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4721 if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4722 goto out_free;
4723 #endif
4724 /*
4725 * Count this nexus for this LUN.
4726 * Set up the CCB bus address for reselection.
4727 * Toggle reselect path to untagged.
4728 */
4729 ++lp->busy_itl;
4730 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4731 if (lp->busy_itl == 1) {
4732 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4733 lp->head.resel_sa =
4734 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4735 }
4736 else
4737 goto out_free;
4738 #endif
4739 }
4740 }
4741 /*
4742 * Put the CCB into the busy queue.
4743 */
4744 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4745 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4746 if (lp) {
4747 sym_remque(&cp->link2_ccbq);
4748 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4749 }
4750
4751 #endif
4752 cp->to_abort = 0;
4753 cp->odd_byte_adjustment = 0;
4754 cp->tag = tag;
4755 cp->order = tag_order;
4756 cp->target = tn;
4757 cp->lun = ln;
4758
4759 if (DEBUG_FLAGS & DEBUG_TAGS) {
4760 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4761 }
4762
4763 out:
4764 return cp;
4765 out_free:
4766 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4767 return NULL;
4768 }
4769
4770 /*
4771 * Release one control block
4772 */
4773 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4774 {
4775 struct sym_tcb *tp = &np->target[cp->target];
4776 struct sym_lcb *lp = sym_lp(tp, cp->lun);
4777
4778 if (DEBUG_FLAGS & DEBUG_TAGS) {
4779 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4780 cp, cp->tag);
4781 }
4782
4783 /*
4784 * If LCB available,
4785 */
4786 if (lp) {
4787 /*
4788 * If tagged, release the tag, set the relect path
4789 */
4790 if (cp->tag != NO_TAG) {
4791 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4792 --lp->tags_sum[cp->tags_si];
4793 #endif
4794 /*
4795 * Free the tag value.
4796 */
4797 lp->cb_tags[lp->if_tag] = cp->tag;
4798 if (++lp->if_tag == SYM_CONF_MAX_TASK)
4799 lp->if_tag = 0;
4800 /*
4801 * Make the reselect path invalid,
4802 * and uncount this CCB.
4803 */
4804 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4805 --lp->busy_itlq;
4806 } else { /* Untagged */
4807 /*
4808 * Make the reselect path invalid,
4809 * and uncount this CCB.
4810 */
4811 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4812 --lp->busy_itl;
4813 }
4814 /*
4815 * If no JOB active, make the LUN reselect path invalid.
4816 */
4817 if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4818 lp->head.resel_sa =
4819 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4820 }
4821
4822 /*
4823 * We donnot queue more than 1 ccb per target
4824 * with negotiation at any time. If this ccb was
4825 * used for negotiation, clear this info in the tcb.
4826 */
4827 if (cp == tp->nego_cp)
4828 tp->nego_cp = NULL;
4829
4830 #ifdef SYM_CONF_IARB_SUPPORT
4831 /*
4832 * If we just complete the last queued CCB,
4833 * clear this info that is no longer relevant.
4834 */
4835 if (cp == np->last_cp)
4836 np->last_cp = 0;
4837 #endif
4838
4839 /*
4840 * Make this CCB available.
4841 */
4842 cp->cmd = NULL;
4843 cp->host_status = HS_IDLE;
4844 sym_remque(&cp->link_ccbq);
4845 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4846
4847 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4848 if (lp) {
4849 sym_remque(&cp->link2_ccbq);
4850 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4851 if (cp->started) {
4852 if (cp->tag != NO_TAG)
4853 --lp->started_tags;
4854 else
4855 --lp->started_no_tag;
4856 }
4857 }
4858 cp->started = 0;
4859 #endif
4860 }
4861
4862 /*
4863 * Allocate a CCB from memory and initialize its fixed part.
4864 */
4865 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4866 {
4867 struct sym_ccb *cp = NULL;
4868 int hcode;
4869
4870 /*
4871 * Prevent from allocating more CCBs than we can
4872 * queue to the controller.
4873 */
4874 if (np->actccbs >= SYM_CONF_MAX_START)
4875 return NULL;
4876
4877 /*
4878 * Allocate memory for this CCB.
4879 */
4880 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4881 if (!cp)
4882 goto out_free;
4883
4884 /*
4885 * Count it.
4886 */
4887 np->actccbs++;
4888
4889 /*
4890 * Compute the bus address of this ccb.
4891 */
4892 cp->ccb_ba = vtobus(cp);
4893
4894 /*
4895 * Insert this ccb into the hashed list.
4896 */
4897 hcode = CCB_HASH_CODE(cp->ccb_ba);
4898 cp->link_ccbh = np->ccbh[hcode];
4899 np->ccbh[hcode] = cp;
4900
4901 /*
4902 * Initialyze the start and restart actions.
4903 */
4904 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
4905 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4906
4907 /*
4908 * Initilialyze some other fields.
4909 */
4910 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4911
4912 /*
4913 * Chain into free ccb queue.
4914 */
4915 sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4916
4917 /*
4918 * Chain into optionnal lists.
4919 */
4920 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4921 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4922 #endif
4923 return cp;
4924 out_free:
4925 if (cp)
4926 sym_mfree_dma(cp, sizeof(*cp), "CCB");
4927 return NULL;
4928 }
4929
4930 /*
4931 * Look up a CCB from a DSA value.
4932 */
4933 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4934 {
4935 int hcode;
4936 struct sym_ccb *cp;
4937
4938 hcode = CCB_HASH_CODE(dsa);
4939 cp = np->ccbh[hcode];
4940 while (cp) {
4941 if (cp->ccb_ba == dsa)
4942 break;
4943 cp = cp->link_ccbh;
4944 }
4945
4946 return cp;
4947 }
4948
4949 /*
4950 * Target control block initialisation.
4951 * Nothing important to do at the moment.
4952 */
4953 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4954 {
4955 #if 0 /* Hmmm... this checking looks paranoid. */
4956 /*
4957 * Check some alignments required by the chip.
4958 */
4959 assert (((offsetof(struct sym_reg, nc_sxfer) ^
4960 offsetof(struct sym_tcb, head.sval)) &3) == 0);
4961 assert (((offsetof(struct sym_reg, nc_scntl3) ^
4962 offsetof(struct sym_tcb, head.wval)) &3) == 0);
4963 #endif
4964 }
4965
4966 /*
4967 * Lun control block allocation and initialization.
4968 */
4969 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4970 {
4971 struct sym_tcb *tp = &np->target[tn];
4972 struct sym_lcb *lp = NULL;
4973
4974 /*
4975 * Initialize the target control block if not yet.
4976 */
4977 sym_init_tcb (np, tn);
4978
4979 /*
4980 * Allocate the LCB bus address array.
4981 * Compute the bus address of this table.
4982 */
4983 if (ln && !tp->luntbl) {
4984 int i;
4985
4986 tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4987 if (!tp->luntbl)
4988 goto fail;
4989 for (i = 0 ; i < 64 ; i++)
4990 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4991 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4992 }
4993
4994 /*
4995 * Allocate the table of pointers for LUN(s) > 0, if needed.
4996 */
4997 if (ln && !tp->lunmp) {
4998 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4999 GFP_ATOMIC);
5000 if (!tp->lunmp)
5001 goto fail;
5002 }
5003
5004 /*
5005 * Allocate the lcb.
5006 * Make it available to the chip.
5007 */
5008 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5009 if (!lp)
5010 goto fail;
5011 if (ln) {
5012 tp->lunmp[ln] = lp;
5013 tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5014 }
5015 else {
5016 tp->lun0p = lp;
5017 tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5018 }
5019 tp->nlcb++;
5020
5021 /*
5022 * Let the itl task point to error handling.
5023 */
5024 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5025
5026 /*
5027 * Set the reselect pattern to our default. :)
5028 */
5029 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5030
5031 /*
5032 * Set user capabilities.
5033 */
5034 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5035
5036 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5037 /*
5038 * Initialize device queueing.
5039 */
5040 sym_que_init(&lp->waiting_ccbq);
5041 sym_que_init(&lp->started_ccbq);
5042 lp->started_max = SYM_CONF_MAX_TASK;
5043 lp->started_limit = SYM_CONF_MAX_TASK;
5044 #endif
5045
5046 fail:
5047 return lp;
5048 }
5049
5050 /*
5051 * Allocate LCB resources for tagged command queuing.
5052 */
5053 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5054 {
5055 struct sym_tcb *tp = &np->target[tn];
5056 struct sym_lcb *lp = sym_lp(tp, ln);
5057 int i;
5058
5059 /*
5060 * Allocate the task table and and the tag allocation
5061 * circular buffer. We want both or none.
5062 */
5063 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5064 if (!lp->itlq_tbl)
5065 goto fail;
5066 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5067 if (!lp->cb_tags) {
5068 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5069 lp->itlq_tbl = NULL;
5070 goto fail;
5071 }
5072
5073 /*
5074 * Initialize the task table with invalid entries.
5075 */
5076 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5077 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5078
5079 /*
5080 * Fill up the tag buffer with tag numbers.
5081 */
5082 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5083 lp->cb_tags[i] = i;
5084
5085 /*
5086 * Make the task table available to SCRIPTS,
5087 * And accept tagged commands now.
5088 */
5089 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5090
5091 return;
5092 fail:
5093 return;
5094 }
5095
5096 /*
5097 * Lun control block deallocation. Returns the number of valid remaining LCBs
5098 * for the target.
5099 */
5100 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5101 {
5102 struct sym_tcb *tp = &np->target[tn];
5103 struct sym_lcb *lp = sym_lp(tp, ln);
5104
5105 tp->nlcb--;
5106
5107 if (ln) {
5108 if (!tp->nlcb) {
5109 kfree(tp->lunmp);
5110 sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5111 tp->lunmp = NULL;
5112 tp->luntbl = NULL;
5113 tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5114 } else {
5115 tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5116 tp->lunmp[ln] = NULL;
5117 }
5118 } else {
5119 tp->lun0p = NULL;
5120 tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5121 }
5122
5123 if (lp->itlq_tbl) {
5124 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5125 kfree(lp->cb_tags);
5126 }
5127
5128 sym_mfree_dma(lp, sizeof(*lp), "LCB");
5129
5130 return tp->nlcb;
5131 }
5132
5133 /*
5134 * Queue a SCSI IO to the controller.
5135 */
5136 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5137 {
5138 struct scsi_device *sdev = cmd->device;
5139 struct sym_tcb *tp;
5140 struct sym_lcb *lp;
5141 u_char *msgptr;
5142 u_int msglen;
5143 int can_disconnect;
5144
5145 /*
5146 * Keep track of the IO in our CCB.
5147 */
5148 cp->cmd = cmd;
5149
5150 /*
5151 * Retrieve the target descriptor.
5152 */
5153 tp = &np->target[cp->target];
5154
5155 /*
5156 * Retrieve the lun descriptor.
5157 */
5158 lp = sym_lp(tp, sdev->lun);
5159
5160 can_disconnect = (cp->tag != NO_TAG) ||
5161 (lp && (lp->curr_flags & SYM_DISC_ENABLED));
5162
5163 msgptr = cp->scsi_smsg;
5164 msglen = 0;
5165 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5166
5167 /*
5168 * Build the tag message if present.
5169 */
5170 if (cp->tag != NO_TAG) {
5171 u_char order = cp->order;
5172
5173 switch(order) {
5174 case M_ORDERED_TAG:
5175 break;
5176 case M_HEAD_TAG:
5177 break;
5178 default:
5179 order = M_SIMPLE_TAG;
5180 }
5181 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5182 /*
5183 * Avoid too much reordering of SCSI commands.
5184 * The algorithm tries to prevent completion of any
5185 * tagged command from being delayed against more
5186 * than 3 times the max number of queued commands.
5187 */
5188 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5189 lp->tags_si = !(lp->tags_si);
5190 if (lp->tags_sum[lp->tags_si]) {
5191 order = M_ORDERED_TAG;
5192 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5193 sym_print_addr(cmd,
5194 "ordered tag forced.\n");
5195 }
5196 }
5197 lp->tags_since = 0;
5198 }
5199 #endif
5200 msgptr[msglen++] = order;
5201
5202 /*
5203 * For less than 128 tags, actual tags are numbered
5204 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5205 * with devices that have problems with #TAG 0 or too
5206 * great #TAG numbers. For more tags (up to 256),
5207 * we use directly our tag number.
5208 */
5209 #if SYM_CONF_MAX_TASK > (512/4)
5210 msgptr[msglen++] = cp->tag;
5211 #else
5212 msgptr[msglen++] = (cp->tag << 1) + 1;
5213 #endif
5214 }
5215
5216 /*
5217 * Build a negotiation message if needed.
5218 * (nego_status is filled by sym_prepare_nego())
5219 *
5220 * Always negotiate on INQUIRY and REQUEST SENSE.
5221 *
5222 */
5223 cp->nego_status = 0;
5224 if ((tp->tgoal.check_nego ||
5225 cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5226 !tp->nego_cp && lp) {
5227 msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5228 }
5229
5230 /*
5231 * Startqueue
5232 */
5233 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
5234 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5235
5236 /*
5237 * select
5238 */
5239 cp->phys.select.sel_id = cp->target;
5240 cp->phys.select.sel_scntl3 = tp->head.wval;
5241 cp->phys.select.sel_sxfer = tp->head.sval;
5242 cp->phys.select.sel_scntl4 = tp->head.uval;
5243
5244 /*
5245 * message
5246 */
5247 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
5248 cp->phys.smsg.size = cpu_to_scr(msglen);
5249
5250 /*
5251 * status
5252 */
5253 cp->host_xflags = 0;
5254 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5255 cp->ssss_status = S_ILLEGAL;
5256 cp->xerr_status = 0;
5257 cp->host_flags = 0;
5258 cp->extra_bytes = 0;
5259
5260 /*
5261 * extreme data pointer.
5262 * shall be positive, so -1 is lower than lowest.:)
5263 */
5264 cp->ext_sg = -1;
5265 cp->ext_ofs = 0;
5266
5267 /*
5268 * Build the CDB and DATA descriptor block
5269 * and start the IO.
5270 */
5271 return sym_setup_data_and_start(np, cmd, cp);
5272 }
5273
5274 /*
5275 * Reset a SCSI target (all LUNs of this target).
5276 */
5277 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5278 {
5279 struct sym_tcb *tp;
5280
5281 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5282 return -1;
5283
5284 tp = &np->target[target];
5285 tp->to_reset = 1;
5286
5287 np->istat_sem = SEM;
5288 OUTB(np, nc_istat, SIGP|SEM);
5289
5290 return 0;
5291 }
5292
5293 /*
5294 * Abort a SCSI IO.
5295 */
5296 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5297 {
5298 /*
5299 * Check that the IO is active.
5300 */
5301 if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5302 return -1;
5303
5304 /*
5305 * If a previous abort didn't succeed in time,
5306 * perform a BUS reset.
5307 */
5308 if (cp->to_abort) {
5309 sym_reset_scsi_bus(np, 1);
5310 return 0;
5311 }
5312
5313 /*
5314 * Mark the CCB for abort and allow time for.
5315 */
5316 cp->to_abort = timed_out ? 2 : 1;
5317
5318 /*
5319 * Tell the SCRIPTS processor to stop and synchronize with us.
5320 */
5321 np->istat_sem = SEM;
5322 OUTB(np, nc_istat, SIGP|SEM);
5323 return 0;
5324 }
5325
5326 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5327 {
5328 struct sym_ccb *cp;
5329 SYM_QUEHEAD *qp;
5330
5331 /*
5332 * Look up our CCB control block.
5333 */
5334 cp = NULL;
5335 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5336 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5337 if (cp2->cmd == cmd) {
5338 cp = cp2;
5339 break;
5340 }
5341 }
5342
5343 return sym_abort_ccb(np, cp, timed_out);
5344 }
5345
5346 /*
5347 * Complete execution of a SCSI command with extended
5348 * error, SCSI status error, or having been auto-sensed.
5349 *
5350 * The SCRIPTS processor is not running there, so we
5351 * can safely access IO registers and remove JOBs from
5352 * the START queue.
5353 * SCRATCHA is assumed to have been loaded with STARTPOS
5354 * before the SCRIPTS called the C code.
5355 */
5356 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5357 {
5358 struct scsi_device *sdev;
5359 struct scsi_cmnd *cmd;
5360 struct sym_tcb *tp;
5361 struct sym_lcb *lp;
5362 int resid;
5363 int i;
5364
5365 /*
5366 * Paranoid check. :)
5367 */
5368 if (!cp || !cp->cmd)
5369 return;
5370
5371 cmd = cp->cmd;
5372 sdev = cmd->device;
5373 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5374 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5375 cp->host_status, cp->ssss_status, cp->host_flags);
5376 }
5377
5378 /*
5379 * Get target and lun pointers.
5380 */
5381 tp = &np->target[cp->target];
5382 lp = sym_lp(tp, sdev->lun);
5383
5384 /*
5385 * Check for extended errors.
5386 */
5387 if (cp->xerr_status) {
5388 if (sym_verbose)
5389 sym_print_xerr(cmd, cp->xerr_status);
5390 if (cp->host_status == HS_COMPLETE)
5391 cp->host_status = HS_COMP_ERR;
5392 }
5393
5394 /*
5395 * Calculate the residual.
5396 */
5397 resid = sym_compute_residual(np, cp);
5398
5399 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5400 resid = 0; /* throw them away. :) */
5401 cp->sv_resid = 0;
5402 }
5403 #ifdef DEBUG_2_0_X
5404 if (resid)
5405 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5406 #endif
5407
5408 /*
5409 * Dequeue all queued CCBs for that device
5410 * not yet started by SCRIPTS.
5411 */
5412 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5413 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5414
5415 /*
5416 * Restart the SCRIPTS processor.
5417 */
5418 OUTL_DSP(np, SCRIPTA_BA(np, start));
5419
5420 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5421 if (cp->host_status == HS_COMPLETE &&
5422 cp->ssss_status == S_QUEUE_FULL) {
5423 if (!lp || lp->started_tags - i < 2)
5424 goto weirdness;
5425 /*
5426 * Decrease queue depth as needed.
5427 */
5428 lp->started_max = lp->started_tags - i - 1;
5429 lp->num_sgood = 0;
5430
5431 if (sym_verbose >= 2) {
5432 sym_print_addr(cmd, " queue depth is now %d\n",
5433 lp->started_max);
5434 }
5435
5436 /*
5437 * Repair the CCB.
5438 */
5439 cp->host_status = HS_BUSY;
5440 cp->ssss_status = S_ILLEGAL;
5441
5442 /*
5443 * Let's requeue it to device.
5444 */
5445 sym_set_cam_status(cmd, DID_SOFT_ERROR);
5446 goto finish;
5447 }
5448 weirdness:
5449 #endif
5450 /*
5451 * Build result in CAM ccb.
5452 */
5453 sym_set_cam_result_error(np, cp, resid);
5454
5455 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5456 finish:
5457 #endif
5458 /*
5459 * Add this one to the COMP queue.
5460 */
5461 sym_remque(&cp->link_ccbq);
5462 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5463
5464 /*
5465 * Complete all those commands with either error
5466 * or requeue condition.
5467 */
5468 sym_flush_comp_queue(np, 0);
5469
5470 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5471 /*
5472 * Donnot start more than 1 command after an error.
5473 */
5474 sym_start_next_ccbs(np, lp, 1);
5475 #endif
5476 }
5477
5478 /*
5479 * Complete execution of a successful SCSI command.
5480 *
5481 * Only successful commands go to the DONE queue,
5482 * since we need to have the SCRIPTS processor
5483 * stopped on any error condition.
5484 * The SCRIPTS processor is running while we are
5485 * completing successful commands.
5486 */
5487 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5488 {
5489 struct sym_tcb *tp;
5490 struct sym_lcb *lp;
5491 struct scsi_cmnd *cmd;
5492 int resid;
5493
5494 /*
5495 * Paranoid check. :)
5496 */
5497 if (!cp || !cp->cmd)
5498 return;
5499 assert (cp->host_status == HS_COMPLETE);
5500
5501 /*
5502 * Get user command.
5503 */
5504 cmd = cp->cmd;
5505
5506 /*
5507 * Get target and lun pointers.
5508 */
5509 tp = &np->target[cp->target];
5510 lp = sym_lp(tp, cp->lun);
5511
5512 /*
5513 * If all data have been transferred, given than no
5514 * extended error did occur, there is no residual.
5515 */
5516 resid = 0;
5517 if (cp->phys.head.lastp != cp->goalp)
5518 resid = sym_compute_residual(np, cp);
5519
5520 /*
5521 * Wrong transfer residuals may be worse than just always
5522 * returning zero. User can disable this feature in
5523 * sym53c8xx.h. Residual support is enabled by default.
5524 */
5525 if (!SYM_SETUP_RESIDUAL_SUPPORT)
5526 resid = 0;
5527 #ifdef DEBUG_2_0_X
5528 if (resid)
5529 printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5530 #endif
5531
5532 /*
5533 * Build result in CAM ccb.
5534 */
5535 sym_set_cam_result_ok(cp, cmd, resid);
5536
5537 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5538 /*
5539 * If max number of started ccbs had been reduced,
5540 * increase it if 200 good status received.
5541 */
5542 if (lp && lp->started_max < lp->started_limit) {
5543 ++lp->num_sgood;
5544 if (lp->num_sgood >= 200) {
5545 lp->num_sgood = 0;
5546 ++lp->started_max;
5547 if (sym_verbose >= 2) {
5548 sym_print_addr(cmd, " queue depth is now %d\n",
5549 lp->started_max);
5550 }
5551 }
5552 }
5553 #endif
5554
5555 /*
5556 * Free our CCB.
5557 */
5558 sym_free_ccb (np, cp);
5559
5560 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5561 /*
5562 * Requeue a couple of awaiting scsi commands.
5563 */
5564 if (!sym_que_empty(&lp->waiting_ccbq))
5565 sym_start_next_ccbs(np, lp, 2);
5566 #endif
5567 /*
5568 * Complete the command.
5569 */
5570 sym_xpt_done(np, cmd);
5571 }
5572
5573 /*
5574 * Soft-attach the controller.
5575 */
5576 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5577 {
5578 struct sym_hcb *np = sym_get_hcb(shost);
5579 int i;
5580
5581 /*
5582 * Get some info about the firmware.
5583 */
5584 np->scripta_sz = fw->a_size;
5585 np->scriptb_sz = fw->b_size;
5586 np->scriptz_sz = fw->z_size;
5587 np->fw_setup = fw->setup;
5588 np->fw_patch = fw->patch;
5589 np->fw_name = fw->name;
5590
5591 /*
5592 * Save setting of some IO registers, so we will
5593 * be able to probe specific implementations.
5594 */
5595 sym_save_initial_setting (np);
5596
5597 /*
5598 * Reset the chip now, since it has been reported
5599 * that SCSI clock calibration may not work properly
5600 * if the chip is currently active.
5601 */
5602 sym_chip_reset(np);
5603
5604 /*
5605 * Prepare controller and devices settings, according
5606 * to chip features, user set-up and driver set-up.
5607 */
5608 sym_prepare_setting(shost, np, nvram);
5609
5610 /*
5611 * Check the PCI clock frequency.
5612 * Must be performed after prepare_setting since it destroys
5613 * STEST1 that is used to probe for the clock doubler.
5614 */
5615 i = sym_getpciclock(np);
5616 if (i > 37000 && !(np->features & FE_66MHZ))
5617 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5618 sym_name(np), i);
5619
5620 /*
5621 * Allocate the start queue.
5622 */
5623 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5624 if (!np->squeue)
5625 goto attach_failed;
5626 np->squeue_ba = vtobus(np->squeue);
5627
5628 /*
5629 * Allocate the done queue.
5630 */
5631 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5632 if (!np->dqueue)
5633 goto attach_failed;
5634 np->dqueue_ba = vtobus(np->dqueue);
5635
5636 /*
5637 * Allocate the target bus address array.
5638 */
5639 np->targtbl = sym_calloc_dma(256, "TARGTBL");
5640 if (!np->targtbl)
5641 goto attach_failed;
5642 np->targtbl_ba = vtobus(np->targtbl);
5643
5644 /*
5645 * Allocate SCRIPTS areas.
5646 */
5647 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5648 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5649 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5650 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5651 goto attach_failed;
5652
5653 /*
5654 * Allocate the array of lists of CCBs hashed by DSA.
5655 */
5656 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5657 if (!np->ccbh)
5658 goto attach_failed;
5659
5660 /*
5661 * Initialyze the CCB free and busy queues.
5662 */
5663 sym_que_init(&np->free_ccbq);
5664 sym_que_init(&np->busy_ccbq);
5665 sym_que_init(&np->comp_ccbq);
5666
5667 /*
5668 * Initialization for optional handling
5669 * of device queueing.
5670 */
5671 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5672 sym_que_init(&np->dummy_ccbq);
5673 #endif
5674 /*
5675 * Allocate some CCB. We need at least ONE.
5676 */
5677 if (!sym_alloc_ccb(np))
5678 goto attach_failed;
5679
5680 /*
5681 * Calculate BUS addresses where we are going
5682 * to load the SCRIPTS.
5683 */
5684 np->scripta_ba = vtobus(np->scripta0);
5685 np->scriptb_ba = vtobus(np->scriptb0);
5686 np->scriptz_ba = vtobus(np->scriptz0);
5687
5688 if (np->ram_ba) {
5689 np->scripta_ba = np->ram_ba;
5690 if (np->features & FE_RAM8K) {
5691 np->scriptb_ba = np->scripta_ba + 4096;
5692 #if 0 /* May get useful for 64 BIT PCI addressing */
5693 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5694 #endif
5695 }
5696 }
5697
5698 /*
5699 * Copy scripts to controller instance.
5700 */
5701 memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5702 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5703 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5704
5705 /*
5706 * Setup variable parts in scripts and compute
5707 * scripts bus addresses used from the C code.
5708 */
5709 np->fw_setup(np, fw);
5710
5711 /*
5712 * Bind SCRIPTS with physical addresses usable by the
5713 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5714 */
5715 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5716 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5717 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5718
5719 #ifdef SYM_CONF_IARB_SUPPORT
5720 /*
5721 * If user wants IARB to be set when we win arbitration
5722 * and have other jobs, compute the max number of consecutive
5723 * settings of IARB hints before we leave devices a chance to
5724 * arbitrate for reselection.
5725 */
5726 #ifdef SYM_SETUP_IARB_MAX
5727 np->iarb_max = SYM_SETUP_IARB_MAX;
5728 #else
5729 np->iarb_max = 4;
5730 #endif
5731 #endif
5732
5733 /*
5734 * Prepare the idle and invalid task actions.
5735 */
5736 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5737 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5738 np->idletask_ba = vtobus(&np->idletask);
5739
5740 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5741 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5742 np->notask_ba = vtobus(&np->notask);
5743
5744 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5745 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5746 np->bad_itl_ba = vtobus(&np->bad_itl);
5747
5748 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
5749 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5750 np->bad_itlq_ba = vtobus(&np->bad_itlq);
5751
5752 /*
5753 * Allocate and prepare the lun JUMP table that is used
5754 * for a target prior the probing of devices (bad lun table).
5755 * A private table will be allocated for the target on the
5756 * first INQUIRY response received.
5757 */
5758 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5759 if (!np->badluntbl)
5760 goto attach_failed;
5761
5762 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5763 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
5764 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5765
5766 /*
5767 * Prepare the bus address array that contains the bus
5768 * address of each target control block.
5769 * For now, assume all logical units are wrong. :)
5770 */
5771 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5772 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5773 np->target[i].head.luntbl_sa =
5774 cpu_to_scr(vtobus(np->badluntbl));
5775 np->target[i].head.lun0_sa =
5776 cpu_to_scr(vtobus(&np->badlun_sa));
5777 }
5778
5779 /*
5780 * Now check the cache handling of the pci chipset.
5781 */
5782 if (sym_snooptest (np)) {
5783 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5784 goto attach_failed;
5785 }
5786
5787 /*
5788 * Sigh! we are done.
5789 */
5790 return 0;
5791
5792 attach_failed:
5793 return -ENXIO;
5794 }
5795
5796 /*
5797 * Free everything that has been allocated for this device.
5798 */
5799 void sym_hcb_free(struct sym_hcb *np)
5800 {
5801 SYM_QUEHEAD *qp;
5802 struct sym_ccb *cp;
5803 struct sym_tcb *tp;
5804 int target;
5805
5806 if (np->scriptz0)
5807 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5808 if (np->scriptb0)
5809 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5810 if (np->scripta0)
5811 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5812 if (np->squeue)
5813 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5814 if (np->dqueue)
5815 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5816
5817 if (np->actccbs) {
5818 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5819 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5820 sym_mfree_dma(cp, sizeof(*cp), "CCB");
5821 }
5822 }
5823 kfree(np->ccbh);
5824
5825 if (np->badluntbl)
5826 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5827
5828 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5829 tp = &np->target[target];
5830 if (tp->luntbl)
5831 sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5832 #if SYM_CONF_MAX_LUN > 1
5833 kfree(tp->lunmp);
5834 #endif
5835 }
5836 if (np->targtbl)
5837 sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5838 }
5839