1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/io.h>
26 #include <linux/uaccess.h>
27 #include <linux/export.h>
28
29 #include <asm/processor.h>
30 #include <asm/sections.h>
31 #include <asm/byteorder.h>
32 #include <asm/hv_driver.h>
33 #include <hv/drv_pcie_rc_intf.h>
34
35
36 /*
37 * Initialization flow and process
38 * -------------------------------
39 *
40 * This files contains the routines to search for PCI buses,
41 * enumerate the buses, and configure any attached devices.
42 *
43 * There are two entry points here:
44 * 1) tile_pci_init
45 * This sets up the pci_controller structs, and opens the
46 * FDs to the hypervisor. This is called from setup_arch() early
47 * in the boot process.
48 * 2) pcibios_init
49 * This probes the PCI bus(es) for any attached hardware. It's
50 * called by subsys_initcall. All of the real work is done by the
51 * generic Linux PCI layer.
52 *
53 */
54
55 /*
56 * This flag tells if the platform is TILEmpower that needs
57 * special configuration for the PLX switch chip.
58 */
59 int __write_once tile_plx_gen1;
60
61 static struct pci_controller controllers[TILE_NUM_PCIE];
62 static int num_controllers;
63 static int pci_scan_flags[TILE_NUM_PCIE];
64
65 static struct pci_ops tile_cfg_ops;
66
67
68 /*
69 * We don't need to worry about the alignment of resources.
70 */
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)71 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
72 resource_size_t size, resource_size_t align)
73 {
74 return res->start;
75 }
76 EXPORT_SYMBOL(pcibios_align_resource);
77
78 /*
79 * Open a FD to the hypervisor PCI device.
80 *
81 * controller_id is the controller number, config type is 0 or 1 for
82 * config0 or config1 operations.
83 */
tile_pcie_open(int controller_id,int config_type)84 static int __devinit tile_pcie_open(int controller_id, int config_type)
85 {
86 char filename[32];
87 int fd;
88
89 sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
90
91 fd = hv_dev_open((HV_VirtAddr)filename, 0);
92
93 return fd;
94 }
95
96
97 /*
98 * Get the IRQ numbers from the HV and set up the handlers for them.
99 */
tile_init_irqs(int controller_id,struct pci_controller * controller)100 static int __devinit tile_init_irqs(int controller_id,
101 struct pci_controller *controller)
102 {
103 char filename[32];
104 int fd;
105 int ret;
106 int x;
107 struct pcie_rc_config rc_config;
108
109 sprintf(filename, "pcie/%d/ctl", controller_id);
110 fd = hv_dev_open((HV_VirtAddr)filename, 0);
111 if (fd < 0) {
112 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
113 return -1;
114 }
115 ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
116 sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
117 hv_dev_close(fd);
118 if (ret != sizeof(rc_config)) {
119 pr_err("PCI: wanted %zd bytes, got %d\n",
120 sizeof(rc_config), ret);
121 return -1;
122 }
123 /* Record irq_base so that we can map INTx to IRQ # later. */
124 controller->irq_base = rc_config.intr;
125
126 for (x = 0; x < 4; x++)
127 tile_irq_activate(rc_config.intr + x,
128 TILE_IRQ_HW_CLEAR);
129
130 if (rc_config.plx_gen1)
131 controller->plx_gen1 = 1;
132
133 return 0;
134 }
135
136 /*
137 * First initialization entry point, called from setup_arch().
138 *
139 * Find valid controllers and fill in pci_controller structs for each
140 * of them.
141 *
142 * Returns the number of controllers discovered.
143 */
tile_pci_init(void)144 int __init tile_pci_init(void)
145 {
146 int i;
147
148 pr_info("PCI: Searching for controllers...\n");
149
150 /* Re-init number of PCIe controllers to support hot-plug feature. */
151 num_controllers = 0;
152
153 /* Do any configuration we need before using the PCIe */
154
155 for (i = 0; i < TILE_NUM_PCIE; i++) {
156 /*
157 * To see whether we need a real config op based on
158 * the results of pcibios_init(), to support PCIe hot-plug.
159 */
160 if (pci_scan_flags[i] == 0) {
161 int hv_cfg_fd0 = -1;
162 int hv_cfg_fd1 = -1;
163 int hv_mem_fd = -1;
164 char name[32];
165 struct pci_controller *controller;
166
167 /*
168 * Open the fd to the HV. If it fails then this
169 * device doesn't exist.
170 */
171 hv_cfg_fd0 = tile_pcie_open(i, 0);
172 if (hv_cfg_fd0 < 0)
173 continue;
174 hv_cfg_fd1 = tile_pcie_open(i, 1);
175 if (hv_cfg_fd1 < 0) {
176 pr_err("PCI: Couldn't open config fd to HV "
177 "for controller %d\n", i);
178 goto err_cont;
179 }
180
181 sprintf(name, "pcie/%d/mem", i);
182 hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
183 if (hv_mem_fd < 0) {
184 pr_err("PCI: Could not open mem fd to HV!\n");
185 goto err_cont;
186 }
187
188 pr_info("PCI: Found PCI controller #%d\n", i);
189
190 controller = &controllers[i];
191
192 controller->index = i;
193 controller->hv_cfg_fd[0] = hv_cfg_fd0;
194 controller->hv_cfg_fd[1] = hv_cfg_fd1;
195 controller->hv_mem_fd = hv_mem_fd;
196 controller->first_busno = 0;
197 controller->last_busno = 0xff;
198 controller->ops = &tile_cfg_ops;
199
200 num_controllers++;
201 continue;
202
203 err_cont:
204 if (hv_cfg_fd0 >= 0)
205 hv_dev_close(hv_cfg_fd0);
206 if (hv_cfg_fd1 >= 0)
207 hv_dev_close(hv_cfg_fd1);
208 if (hv_mem_fd >= 0)
209 hv_dev_close(hv_mem_fd);
210 continue;
211 }
212 }
213
214 /*
215 * Before using the PCIe, see if we need to do any platform-specific
216 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
217 */
218 for (i = 0; i < num_controllers; i++) {
219 struct pci_controller *controller = &controllers[i];
220
221 if (controller->plx_gen1)
222 tile_plx_gen1 = 1;
223 }
224
225 return num_controllers;
226 }
227
228 /*
229 * (pin - 1) converts from the PCI standard's [1:4] convention to
230 * a normal [0:3] range.
231 */
tile_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)232 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
233 {
234 struct pci_controller *controller =
235 (struct pci_controller *)dev->sysdata;
236 return (pin - 1) + controller->irq_base;
237 }
238
239
fixup_read_and_payload_sizes(void)240 static void __devinit fixup_read_and_payload_sizes(void)
241 {
242 struct pci_dev *dev = NULL;
243 int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
244 int max_read_size = 0x2; /* Limit to 512 byte reads. */
245 u16 new_values;
246
247 /* Scan for the smallest maximum payload size. */
248 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
249 int pcie_caps_offset;
250 u32 devcap;
251 int max_payload;
252
253 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
254 if (pcie_caps_offset == 0)
255 continue;
256
257 pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
258 &devcap);
259 max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
260 if (max_payload < smallest_max_payload)
261 smallest_max_payload = max_payload;
262 }
263
264 /* Now, set the max_payload_size for all devices to that value. */
265 new_values = (max_read_size << 12) | (smallest_max_payload << 5);
266 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
267 int pcie_caps_offset;
268 u16 devctl;
269
270 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
271 if (pcie_caps_offset == 0)
272 continue;
273
274 pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
275 &devctl);
276 devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
277 devctl |= new_values;
278 pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
279 devctl);
280 }
281 }
282
283
284 /*
285 * Second PCI initialization entry point, called by subsys_initcall.
286 *
287 * The controllers have been set up by the time we get here, by a call to
288 * tile_pci_init.
289 */
pcibios_init(void)290 int __init pcibios_init(void)
291 {
292 int i;
293
294 pr_info("PCI: Probing PCI hardware\n");
295
296 /*
297 * Delay a bit in case devices aren't ready. Some devices are
298 * known to require at least 20ms here, but we use a more
299 * conservative value.
300 */
301 mdelay(250);
302
303 /* Scan all of the recorded PCI controllers. */
304 for (i = 0; i < TILE_NUM_PCIE; i++) {
305 /*
306 * Do real pcibios init ops if the controller is initialized
307 * by tile_pci_init() successfully and not initialized by
308 * pcibios_init() yet to support PCIe hot-plug.
309 */
310 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
311 struct pci_controller *controller = &controllers[i];
312 struct pci_bus *bus;
313
314 if (tile_init_irqs(i, controller)) {
315 pr_err("PCI: Could not initialize IRQs\n");
316 continue;
317 }
318
319 pr_info("PCI: initializing controller #%d\n", i);
320
321 /*
322 * This comes from the generic Linux PCI driver.
323 *
324 * It reads the PCI tree for this bus into the Linux
325 * data structures.
326 *
327 * This is inlined in linux/pci.h and calls into
328 * pci_scan_bus_parented() in probe.c.
329 */
330 bus = pci_scan_bus(0, controller->ops, controller);
331 controller->root_bus = bus;
332 controller->last_busno = bus->subordinate;
333 }
334 }
335
336 /* Do machine dependent PCI interrupt routing */
337 pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
338
339 /*
340 * This comes from the generic Linux PCI driver.
341 *
342 * It allocates all of the resources (I/O memory, etc)
343 * associated with the devices read in above.
344 */
345 pci_assign_unassigned_resources();
346
347 /* Configure the max_read_size and max_payload_size values. */
348 fixup_read_and_payload_sizes();
349
350 /* Record the I/O resources in the PCI controller structure. */
351 for (i = 0; i < TILE_NUM_PCIE; i++) {
352 /*
353 * Do real pcibios init ops if the controller is initialized
354 * by tile_pci_init() successfully and not initialized by
355 * pcibios_init() yet to support PCIe hot-plug.
356 */
357 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
358 struct pci_bus *root_bus = controllers[i].root_bus;
359 struct pci_bus *next_bus;
360 struct pci_dev *dev;
361
362 list_for_each_entry(dev, &root_bus->devices, bus_list) {
363 /*
364 * Find the PCI host controller, ie. the 1st
365 * bridge.
366 */
367 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
368 (PCI_SLOT(dev->devfn) == 0)) {
369 next_bus = dev->subordinate;
370 controllers[i].mem_resources[0] =
371 *next_bus->resource[0];
372 controllers[i].mem_resources[1] =
373 *next_bus->resource[1];
374 controllers[i].mem_resources[2] =
375 *next_bus->resource[2];
376
377 /* Setup flags. */
378 pci_scan_flags[i] = 1;
379
380 break;
381 }
382 }
383 }
384 }
385
386 return 0;
387 }
388 subsys_initcall(pcibios_init);
389
390 /*
391 * No bus fixups needed.
392 */
pcibios_fixup_bus(struct pci_bus * bus)393 void __devinit pcibios_fixup_bus(struct pci_bus *bus)
394 {
395 /* Nothing needs to be done. */
396 }
397
pcibios_set_master(struct pci_dev * dev)398 void pcibios_set_master(struct pci_dev *dev)
399 {
400 /* No special bus mastering setup handling. */
401 }
402
403 /*
404 * This can be called from the generic PCI layer, but doesn't need to
405 * do anything.
406 */
pcibios_setup(char * str)407 char __devinit *pcibios_setup(char *str)
408 {
409 /* Nothing needs to be done. */
410 return str;
411 }
412
413 /*
414 * This is called from the generic Linux layer.
415 */
pcibios_update_irq(struct pci_dev * dev,int irq)416 void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
417 {
418 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
419 }
420
421 /*
422 * Enable memory and/or address decoding, as appropriate, for the
423 * device described by the 'dev' struct.
424 *
425 * This is called from the generic PCI layer, and can be called
426 * for bridges or endpoints.
427 */
pcibios_enable_device(struct pci_dev * dev,int mask)428 int pcibios_enable_device(struct pci_dev *dev, int mask)
429 {
430 u16 cmd, old_cmd;
431 u8 header_type;
432 int i;
433 struct resource *r;
434
435 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
436
437 pci_read_config_word(dev, PCI_COMMAND, &cmd);
438 old_cmd = cmd;
439 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
440 /*
441 * For bridges, we enable both memory and I/O decoding
442 * in call cases.
443 */
444 cmd |= PCI_COMMAND_IO;
445 cmd |= PCI_COMMAND_MEMORY;
446 } else {
447 /*
448 * For endpoints, we enable memory and/or I/O decoding
449 * only if they have a memory resource of that type.
450 */
451 for (i = 0; i < 6; i++) {
452 r = &dev->resource[i];
453 if (r->flags & IORESOURCE_UNSET) {
454 pr_err("PCI: Device %s not available "
455 "because of resource collisions\n",
456 pci_name(dev));
457 return -EINVAL;
458 }
459 if (r->flags & IORESOURCE_IO)
460 cmd |= PCI_COMMAND_IO;
461 if (r->flags & IORESOURCE_MEM)
462 cmd |= PCI_COMMAND_MEMORY;
463 }
464 }
465
466 /*
467 * We only write the command if it changed.
468 */
469 if (cmd != old_cmd)
470 pci_write_config_word(dev, PCI_COMMAND, cmd);
471 return 0;
472 }
473
474 /****************************************************************
475 *
476 * Tile PCI config space read/write routines
477 *
478 ****************************************************************/
479
480 /*
481 * These are the normal read and write ops
482 * These are expanded with macros from pci_bus_read_config_byte() etc.
483 *
484 * devfn is the combined PCI slot & function.
485 *
486 * offset is in bytes, from the start of config space for the
487 * specified bus & slot.
488 */
489
tile_cfg_read(struct pci_bus * bus,unsigned int devfn,int offset,int size,u32 * val)490 static int __devinit tile_cfg_read(struct pci_bus *bus,
491 unsigned int devfn,
492 int offset,
493 int size,
494 u32 *val)
495 {
496 struct pci_controller *controller = bus->sysdata;
497 int busnum = bus->number & 0xff;
498 int slot = (devfn >> 3) & 0x1f;
499 int function = devfn & 0x7;
500 u32 addr;
501 int config_mode = 1;
502
503 /*
504 * There is no bridge between the Tile and bus 0, so we
505 * use config0 to talk to bus 0.
506 *
507 * If we're talking to a bus other than zero then we
508 * must have found a bridge.
509 */
510 if (busnum == 0) {
511 /*
512 * We fake an empty slot for (busnum == 0) && (slot > 0),
513 * since there is only one slot on bus 0.
514 */
515 if (slot) {
516 *val = 0xFFFFFFFF;
517 return 0;
518 }
519 config_mode = 0;
520 }
521
522 addr = busnum << 20; /* Bus in 27:20 */
523 addr |= slot << 15; /* Slot (device) in 19:15 */
524 addr |= function << 12; /* Function is in 14:12 */
525 addr |= (offset & 0xFFF); /* byte address in 0:11 */
526
527 return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
528 (HV_VirtAddr)(val), size, addr);
529 }
530
531
532 /*
533 * See tile_cfg_read() for relevant comments.
534 * Note that "val" is the value to write, not a pointer to that value.
535 */
tile_cfg_write(struct pci_bus * bus,unsigned int devfn,int offset,int size,u32 val)536 static int __devinit tile_cfg_write(struct pci_bus *bus,
537 unsigned int devfn,
538 int offset,
539 int size,
540 u32 val)
541 {
542 struct pci_controller *controller = bus->sysdata;
543 int busnum = bus->number & 0xff;
544 int slot = (devfn >> 3) & 0x1f;
545 int function = devfn & 0x7;
546 u32 addr;
547 int config_mode = 1;
548 HV_VirtAddr valp = (HV_VirtAddr)&val;
549
550 /*
551 * For bus 0 slot 0 we use config 0 accesses.
552 */
553 if (busnum == 0) {
554 /*
555 * We fake an empty slot for (busnum == 0) && (slot > 0),
556 * since there is only one slot on bus 0.
557 */
558 if (slot)
559 return 0;
560 config_mode = 0;
561 }
562
563 addr = busnum << 20; /* Bus in 27:20 */
564 addr |= slot << 15; /* Slot (device) in 19:15 */
565 addr |= function << 12; /* Function is in 14:12 */
566 addr |= (offset & 0xFFF); /* byte address in 0:11 */
567
568 #ifdef __BIG_ENDIAN
569 /* Point to the correct part of the 32-bit "val". */
570 valp += 4 - size;
571 #endif
572
573 return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
574 valp, size, addr);
575 }
576
577
578 static struct pci_ops tile_cfg_ops = {
579 .read = tile_cfg_read,
580 .write = tile_cfg_write,
581 };
582
583
584 /*
585 * In the following, each PCI controller's mem_resources[1]
586 * represents its (non-prefetchable) PCI memory resource.
587 * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
588 * prefetchable PCI memory resources, respectively.
589 * For more details, see pci_setup_bridge() in setup-bus.c.
590 * By comparing the target PCI memory address against the
591 * end address of controller 0, we can determine the controller
592 * that should accept the PCI memory access.
593 */
594 #define TILE_READ(size, type) \
595 type _tile_read##size(unsigned long addr) \
596 { \
597 type val; \
598 int idx = 0; \
599 if (addr > controllers[0].mem_resources[1].end && \
600 addr > controllers[0].mem_resources[2].end) \
601 idx = 1; \
602 if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
603 (HV_VirtAddr)(&val), sizeof(type), addr)) \
604 pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
605 sizeof(type), addr); \
606 return val; \
607 } \
608 EXPORT_SYMBOL(_tile_read##size)
609
610 TILE_READ(b, u8);
611 TILE_READ(w, u16);
612 TILE_READ(l, u32);
613 TILE_READ(q, u64);
614
615 #define TILE_WRITE(size, type) \
616 void _tile_write##size(type val, unsigned long addr) \
617 { \
618 int idx = 0; \
619 if (addr > controllers[0].mem_resources[1].end && \
620 addr > controllers[0].mem_resources[2].end) \
621 idx = 1; \
622 if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
623 (HV_VirtAddr)(&val), sizeof(type), addr)) \
624 pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
625 sizeof(type), addr); \
626 } \
627 EXPORT_SYMBOL(_tile_write##size)
628
629 TILE_WRITE(b, u8);
630 TILE_WRITE(w, u16);
631 TILE_WRITE(l, u32);
632 TILE_WRITE(q, u64);
633