• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/io.h>
26 #include <linux/uaccess.h>
27 #include <linux/export.h>
28 
29 #include <asm/processor.h>
30 #include <asm/sections.h>
31 #include <asm/byteorder.h>
32 #include <asm/hv_driver.h>
33 #include <hv/drv_pcie_rc_intf.h>
34 
35 
36 /*
37  * Initialization flow and process
38  * -------------------------------
39  *
40  * This files contains the routines to search for PCI buses,
41  * enumerate the buses, and configure any attached devices.
42  *
43  * There are two entry points here:
44  * 1) tile_pci_init
45  *    This sets up the pci_controller structs, and opens the
46  *    FDs to the hypervisor.  This is called from setup_arch() early
47  *    in the boot process.
48  * 2) pcibios_init
49  *    This probes the PCI bus(es) for any attached hardware.  It's
50  *    called by subsys_initcall.  All of the real work is done by the
51  *    generic Linux PCI layer.
52  *
53  */
54 
55 /*
56  * This flag tells if the platform is TILEmpower that needs
57  * special configuration for the PLX switch chip.
58  */
59 int __write_once tile_plx_gen1;
60 
61 static struct pci_controller controllers[TILE_NUM_PCIE];
62 static int num_controllers;
63 static int pci_scan_flags[TILE_NUM_PCIE];
64 
65 static struct pci_ops tile_cfg_ops;
66 
67 
68 /*
69  * We don't need to worry about the alignment of resources.
70  */
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)71 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
72 			    resource_size_t size, resource_size_t align)
73 {
74 	return res->start;
75 }
76 EXPORT_SYMBOL(pcibios_align_resource);
77 
78 /*
79  * Open a FD to the hypervisor PCI device.
80  *
81  * controller_id is the controller number, config type is 0 or 1 for
82  * config0 or config1 operations.
83  */
tile_pcie_open(int controller_id,int config_type)84 static int __devinit tile_pcie_open(int controller_id, int config_type)
85 {
86 	char filename[32];
87 	int fd;
88 
89 	sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
90 
91 	fd = hv_dev_open((HV_VirtAddr)filename, 0);
92 
93 	return fd;
94 }
95 
96 
97 /*
98  * Get the IRQ numbers from the HV and set up the handlers for them.
99  */
tile_init_irqs(int controller_id,struct pci_controller * controller)100 static int __devinit tile_init_irqs(int controller_id,
101 				 struct pci_controller *controller)
102 {
103 	char filename[32];
104 	int fd;
105 	int ret;
106 	int x;
107 	struct pcie_rc_config rc_config;
108 
109 	sprintf(filename, "pcie/%d/ctl", controller_id);
110 	fd = hv_dev_open((HV_VirtAddr)filename, 0);
111 	if (fd < 0) {
112 		pr_err("PCI: hv_dev_open(%s) failed\n", filename);
113 		return -1;
114 	}
115 	ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
116 			   sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
117 	hv_dev_close(fd);
118 	if (ret != sizeof(rc_config)) {
119 		pr_err("PCI: wanted %zd bytes, got %d\n",
120 		       sizeof(rc_config), ret);
121 		return -1;
122 	}
123 	/* Record irq_base so that we can map INTx to IRQ # later. */
124 	controller->irq_base = rc_config.intr;
125 
126 	for (x = 0; x < 4; x++)
127 		tile_irq_activate(rc_config.intr + x,
128 				  TILE_IRQ_HW_CLEAR);
129 
130 	if (rc_config.plx_gen1)
131 		controller->plx_gen1 = 1;
132 
133 	return 0;
134 }
135 
136 /*
137  * First initialization entry point, called from setup_arch().
138  *
139  * Find valid controllers and fill in pci_controller structs for each
140  * of them.
141  *
142  * Returns the number of controllers discovered.
143  */
tile_pci_init(void)144 int __init tile_pci_init(void)
145 {
146 	int i;
147 
148 	pr_info("PCI: Searching for controllers...\n");
149 
150 	/* Re-init number of PCIe controllers to support hot-plug feature. */
151 	num_controllers = 0;
152 
153 	/* Do any configuration we need before using the PCIe */
154 
155 	for (i = 0; i < TILE_NUM_PCIE; i++) {
156 		/*
157 		 * To see whether we need a real config op based on
158 		 * the results of pcibios_init(), to support PCIe hot-plug.
159 		 */
160 		if (pci_scan_flags[i] == 0) {
161 			int hv_cfg_fd0 = -1;
162 			int hv_cfg_fd1 = -1;
163 			int hv_mem_fd = -1;
164 			char name[32];
165 			struct pci_controller *controller;
166 
167 			/*
168 			 * Open the fd to the HV.  If it fails then this
169 			 * device doesn't exist.
170 			 */
171 			hv_cfg_fd0 = tile_pcie_open(i, 0);
172 			if (hv_cfg_fd0 < 0)
173 				continue;
174 			hv_cfg_fd1 = tile_pcie_open(i, 1);
175 			if (hv_cfg_fd1 < 0) {
176 				pr_err("PCI: Couldn't open config fd to HV "
177 				    "for controller %d\n", i);
178 				goto err_cont;
179 			}
180 
181 			sprintf(name, "pcie/%d/mem", i);
182 			hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
183 			if (hv_mem_fd < 0) {
184 				pr_err("PCI: Could not open mem fd to HV!\n");
185 				goto err_cont;
186 			}
187 
188 			pr_info("PCI: Found PCI controller #%d\n", i);
189 
190 			controller = &controllers[i];
191 
192 			controller->index = i;
193 			controller->hv_cfg_fd[0] = hv_cfg_fd0;
194 			controller->hv_cfg_fd[1] = hv_cfg_fd1;
195 			controller->hv_mem_fd = hv_mem_fd;
196 			controller->first_busno = 0;
197 			controller->last_busno = 0xff;
198 			controller->ops = &tile_cfg_ops;
199 
200 			num_controllers++;
201 			continue;
202 
203 err_cont:
204 			if (hv_cfg_fd0 >= 0)
205 				hv_dev_close(hv_cfg_fd0);
206 			if (hv_cfg_fd1 >= 0)
207 				hv_dev_close(hv_cfg_fd1);
208 			if (hv_mem_fd >= 0)
209 				hv_dev_close(hv_mem_fd);
210 			continue;
211 		}
212 	}
213 
214 	/*
215 	 * Before using the PCIe, see if we need to do any platform-specific
216 	 * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
217 	 */
218 	for (i = 0; i < num_controllers; i++) {
219 		struct pci_controller *controller = &controllers[i];
220 
221 		if (controller->plx_gen1)
222 			tile_plx_gen1 = 1;
223 	}
224 
225 	return num_controllers;
226 }
227 
228 /*
229  * (pin - 1) converts from the PCI standard's [1:4] convention to
230  * a normal [0:3] range.
231  */
tile_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)232 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
233 {
234 	struct pci_controller *controller =
235 		(struct pci_controller *)dev->sysdata;
236 	return (pin - 1) + controller->irq_base;
237 }
238 
239 
fixup_read_and_payload_sizes(void)240 static void __devinit fixup_read_and_payload_sizes(void)
241 {
242 	struct pci_dev *dev = NULL;
243 	int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
244 	int max_read_size = 0x2; /* Limit to 512 byte reads. */
245 	u16 new_values;
246 
247 	/* Scan for the smallest maximum payload size. */
248 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
249 		int pcie_caps_offset;
250 		u32 devcap;
251 		int max_payload;
252 
253 		pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
254 		if (pcie_caps_offset == 0)
255 			continue;
256 
257 		pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
258 				      &devcap);
259 		max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
260 		if (max_payload < smallest_max_payload)
261 			smallest_max_payload = max_payload;
262 	}
263 
264 	/* Now, set the max_payload_size for all devices to that value. */
265 	new_values = (max_read_size << 12) | (smallest_max_payload << 5);
266 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
267 		int pcie_caps_offset;
268 		u16 devctl;
269 
270 		pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
271 		if (pcie_caps_offset == 0)
272 			continue;
273 
274 		pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
275 				     &devctl);
276 		devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
277 		devctl |= new_values;
278 		pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
279 				      devctl);
280 	}
281 }
282 
283 
284 /*
285  * Second PCI initialization entry point, called by subsys_initcall.
286  *
287  * The controllers have been set up by the time we get here, by a call to
288  * tile_pci_init.
289  */
pcibios_init(void)290 int __init pcibios_init(void)
291 {
292 	int i;
293 
294 	pr_info("PCI: Probing PCI hardware\n");
295 
296 	/*
297 	 * Delay a bit in case devices aren't ready.  Some devices are
298 	 * known to require at least 20ms here, but we use a more
299 	 * conservative value.
300 	 */
301 	mdelay(250);
302 
303 	/* Scan all of the recorded PCI controllers.  */
304 	for (i = 0; i < TILE_NUM_PCIE; i++) {
305 		/*
306 		 * Do real pcibios init ops if the controller is initialized
307 		 * by tile_pci_init() successfully and not initialized by
308 		 * pcibios_init() yet to support PCIe hot-plug.
309 		 */
310 		if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
311 			struct pci_controller *controller = &controllers[i];
312 			struct pci_bus *bus;
313 
314 			if (tile_init_irqs(i, controller)) {
315 				pr_err("PCI: Could not initialize IRQs\n");
316 				continue;
317 			}
318 
319 			pr_info("PCI: initializing controller #%d\n", i);
320 
321 			/*
322 			 * This comes from the generic Linux PCI driver.
323 			 *
324 			 * It reads the PCI tree for this bus into the Linux
325 			 * data structures.
326 			 *
327 			 * This is inlined in linux/pci.h and calls into
328 			 * pci_scan_bus_parented() in probe.c.
329 			 */
330 			bus = pci_scan_bus(0, controller->ops, controller);
331 			controller->root_bus = bus;
332 			controller->last_busno = bus->subordinate;
333 		}
334 	}
335 
336 	/* Do machine dependent PCI interrupt routing */
337 	pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
338 
339 	/*
340 	 * This comes from the generic Linux PCI driver.
341 	 *
342 	 * It allocates all of the resources (I/O memory, etc)
343 	 * associated with the devices read in above.
344 	 */
345 	pci_assign_unassigned_resources();
346 
347 	/* Configure the max_read_size and max_payload_size values. */
348 	fixup_read_and_payload_sizes();
349 
350 	/* Record the I/O resources in the PCI controller structure. */
351 	for (i = 0; i < TILE_NUM_PCIE; i++) {
352 		/*
353 		 * Do real pcibios init ops if the controller is initialized
354 		 * by tile_pci_init() successfully and not initialized by
355 		 * pcibios_init() yet to support PCIe hot-plug.
356 		 */
357 		if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
358 			struct pci_bus *root_bus = controllers[i].root_bus;
359 			struct pci_bus *next_bus;
360 			struct pci_dev *dev;
361 
362 			list_for_each_entry(dev, &root_bus->devices, bus_list) {
363 				/*
364 				 * Find the PCI host controller, ie. the 1st
365 				 * bridge.
366 				 */
367 				if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
368 					(PCI_SLOT(dev->devfn) == 0)) {
369 					next_bus = dev->subordinate;
370 					controllers[i].mem_resources[0] =
371 						*next_bus->resource[0];
372 					controllers[i].mem_resources[1] =
373 						 *next_bus->resource[1];
374 					controllers[i].mem_resources[2] =
375 						 *next_bus->resource[2];
376 
377 					/* Setup flags. */
378 					pci_scan_flags[i] = 1;
379 
380 					break;
381 				}
382 			}
383 		}
384 	}
385 
386 	return 0;
387 }
388 subsys_initcall(pcibios_init);
389 
390 /*
391  * No bus fixups needed.
392  */
pcibios_fixup_bus(struct pci_bus * bus)393 void __devinit pcibios_fixup_bus(struct pci_bus *bus)
394 {
395 	/* Nothing needs to be done. */
396 }
397 
pcibios_set_master(struct pci_dev * dev)398 void pcibios_set_master(struct pci_dev *dev)
399 {
400 	/* No special bus mastering setup handling. */
401 }
402 
403 /*
404  * This can be called from the generic PCI layer, but doesn't need to
405  * do anything.
406  */
pcibios_setup(char * str)407 char __devinit *pcibios_setup(char *str)
408 {
409 	/* Nothing needs to be done. */
410 	return str;
411 }
412 
413 /*
414  * This is called from the generic Linux layer.
415  */
pcibios_update_irq(struct pci_dev * dev,int irq)416 void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
417 {
418 	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
419 }
420 
421 /*
422  * Enable memory and/or address decoding, as appropriate, for the
423  * device described by the 'dev' struct.
424  *
425  * This is called from the generic PCI layer, and can be called
426  * for bridges or endpoints.
427  */
pcibios_enable_device(struct pci_dev * dev,int mask)428 int pcibios_enable_device(struct pci_dev *dev, int mask)
429 {
430 	u16 cmd, old_cmd;
431 	u8 header_type;
432 	int i;
433 	struct resource *r;
434 
435 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
436 
437 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
438 	old_cmd = cmd;
439 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
440 		/*
441 		 * For bridges, we enable both memory and I/O decoding
442 		 * in call cases.
443 		 */
444 		cmd |= PCI_COMMAND_IO;
445 		cmd |= PCI_COMMAND_MEMORY;
446 	} else {
447 		/*
448 		 * For endpoints, we enable memory and/or I/O decoding
449 		 * only if they have a memory resource of that type.
450 		 */
451 		for (i = 0; i < 6; i++) {
452 			r = &dev->resource[i];
453 			if (r->flags & IORESOURCE_UNSET) {
454 				pr_err("PCI: Device %s not available "
455 				       "because of resource collisions\n",
456 				       pci_name(dev));
457 				return -EINVAL;
458 			}
459 			if (r->flags & IORESOURCE_IO)
460 				cmd |= PCI_COMMAND_IO;
461 			if (r->flags & IORESOURCE_MEM)
462 				cmd |= PCI_COMMAND_MEMORY;
463 		}
464 	}
465 
466 	/*
467 	 * We only write the command if it changed.
468 	 */
469 	if (cmd != old_cmd)
470 		pci_write_config_word(dev, PCI_COMMAND, cmd);
471 	return 0;
472 }
473 
474 /****************************************************************
475  *
476  * Tile PCI config space read/write routines
477  *
478  ****************************************************************/
479 
480 /*
481  * These are the normal read and write ops
482  * These are expanded with macros from  pci_bus_read_config_byte() etc.
483  *
484  * devfn is the combined PCI slot & function.
485  *
486  * offset is in bytes, from the start of config space for the
487  * specified bus & slot.
488  */
489 
tile_cfg_read(struct pci_bus * bus,unsigned int devfn,int offset,int size,u32 * val)490 static int __devinit tile_cfg_read(struct pci_bus *bus,
491 				   unsigned int devfn,
492 				   int offset,
493 				   int size,
494 				   u32 *val)
495 {
496 	struct pci_controller *controller = bus->sysdata;
497 	int busnum = bus->number & 0xff;
498 	int slot = (devfn >> 3) & 0x1f;
499 	int function = devfn & 0x7;
500 	u32 addr;
501 	int config_mode = 1;
502 
503 	/*
504 	 * There is no bridge between the Tile and bus 0, so we
505 	 * use config0 to talk to bus 0.
506 	 *
507 	 * If we're talking to a bus other than zero then we
508 	 * must have found a bridge.
509 	 */
510 	if (busnum == 0) {
511 		/*
512 		 * We fake an empty slot for (busnum == 0) && (slot > 0),
513 		 * since there is only one slot on bus 0.
514 		 */
515 		if (slot) {
516 			*val = 0xFFFFFFFF;
517 			return 0;
518 		}
519 		config_mode = 0;
520 	}
521 
522 	addr = busnum << 20;		/* Bus in 27:20 */
523 	addr |= slot << 15;		/* Slot (device) in 19:15 */
524 	addr |= function << 12;		/* Function is in 14:12 */
525 	addr |= (offset & 0xFFF);	/* byte address in 0:11 */
526 
527 	return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
528 			    (HV_VirtAddr)(val), size, addr);
529 }
530 
531 
532 /*
533  * See tile_cfg_read() for relevant comments.
534  * Note that "val" is the value to write, not a pointer to that value.
535  */
tile_cfg_write(struct pci_bus * bus,unsigned int devfn,int offset,int size,u32 val)536 static int __devinit tile_cfg_write(struct pci_bus *bus,
537 				    unsigned int devfn,
538 				    int offset,
539 				    int size,
540 				    u32 val)
541 {
542 	struct pci_controller *controller = bus->sysdata;
543 	int busnum = bus->number & 0xff;
544 	int slot = (devfn >> 3) & 0x1f;
545 	int function = devfn & 0x7;
546 	u32 addr;
547 	int config_mode = 1;
548 	HV_VirtAddr valp = (HV_VirtAddr)&val;
549 
550 	/*
551 	 * For bus 0 slot 0 we use config 0 accesses.
552 	 */
553 	if (busnum == 0) {
554 		/*
555 		 * We fake an empty slot for (busnum == 0) && (slot > 0),
556 		 * since there is only one slot on bus 0.
557 		 */
558 		if (slot)
559 			return 0;
560 		config_mode = 0;
561 	}
562 
563 	addr = busnum << 20;		/* Bus in 27:20 */
564 	addr |= slot << 15;		/* Slot (device) in 19:15 */
565 	addr |= function << 12;		/* Function is in 14:12 */
566 	addr |= (offset & 0xFFF);	/* byte address in 0:11 */
567 
568 #ifdef __BIG_ENDIAN
569 	/* Point to the correct part of the 32-bit "val". */
570 	valp += 4 - size;
571 #endif
572 
573 	return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
574 			     valp, size, addr);
575 }
576 
577 
578 static struct pci_ops tile_cfg_ops = {
579 	.read =         tile_cfg_read,
580 	.write =        tile_cfg_write,
581 };
582 
583 
584 /*
585  * In the following, each PCI controller's mem_resources[1]
586  * represents its (non-prefetchable) PCI memory resource.
587  * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
588  * prefetchable PCI memory resources, respectively.
589  * For more details, see pci_setup_bridge() in setup-bus.c.
590  * By comparing the target PCI memory address against the
591  * end address of controller 0, we can determine the controller
592  * that should accept the PCI memory access.
593  */
594 #define TILE_READ(size, type)						\
595 type _tile_read##size(unsigned long addr)				\
596 {									\
597 	type val;							\
598 	int idx = 0;							\
599 	if (addr > controllers[0].mem_resources[1].end &&		\
600 	    addr > controllers[0].mem_resources[2].end)			\
601 		idx = 1;                                                \
602 	if (hv_dev_pread(controllers[idx].hv_mem_fd, 0,			\
603 			 (HV_VirtAddr)(&val), sizeof(type), addr))	\
604 		pr_err("PCI: read %zd bytes at 0x%lX failed\n",		\
605 		       sizeof(type), addr);				\
606 	return val;							\
607 }									\
608 EXPORT_SYMBOL(_tile_read##size)
609 
610 TILE_READ(b, u8);
611 TILE_READ(w, u16);
612 TILE_READ(l, u32);
613 TILE_READ(q, u64);
614 
615 #define TILE_WRITE(size, type)						\
616 void _tile_write##size(type val, unsigned long addr)			\
617 {									\
618 	int idx = 0;							\
619 	if (addr > controllers[0].mem_resources[1].end &&		\
620 	    addr > controllers[0].mem_resources[2].end)			\
621 		idx = 1;                                                \
622 	if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0,		\
623 			  (HV_VirtAddr)(&val), sizeof(type), addr))	\
624 		pr_err("PCI: write %zd bytes at 0x%lX failed\n",	\
625 		       sizeof(type), addr);				\
626 }									\
627 EXPORT_SYMBOL(_tile_write##size)
628 
629 TILE_WRITE(b, u8);
630 TILE_WRITE(w, u16);
631 TILE_WRITE(l, u32);
632 TILE_WRITE(q, u64);
633