1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
init_se_kmem_caches(void)82 int init_se_kmem_caches(void)
83 {
84 se_sess_cache = kmem_cache_create("se_sess_cache",
85 sizeof(struct se_session), __alignof__(struct se_session),
86 0, NULL);
87 if (!se_sess_cache) {
88 pr_err("kmem_cache_create() for struct se_session"
89 " failed\n");
90 goto out;
91 }
92 se_ua_cache = kmem_cache_create("se_ua_cache",
93 sizeof(struct se_ua), __alignof__(struct se_ua),
94 0, NULL);
95 if (!se_ua_cache) {
96 pr_err("kmem_cache_create() for struct se_ua failed\n");
97 goto out_free_sess_cache;
98 }
99 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100 sizeof(struct t10_pr_registration),
101 __alignof__(struct t10_pr_registration), 0, NULL);
102 if (!t10_pr_reg_cache) {
103 pr_err("kmem_cache_create() for struct t10_pr_registration"
104 " failed\n");
105 goto out_free_ua_cache;
106 }
107 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109 0, NULL);
110 if (!t10_alua_lu_gp_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112 " failed\n");
113 goto out_free_pr_reg_cache;
114 }
115 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116 sizeof(struct t10_alua_lu_gp_member),
117 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118 if (!t10_alua_lu_gp_mem_cache) {
119 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120 "cache failed\n");
121 goto out_free_lu_gp_cache;
122 }
123 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124 sizeof(struct t10_alua_tg_pt_gp),
125 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126 if (!t10_alua_tg_pt_gp_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "cache failed\n");
129 goto out_free_lu_gp_mem_cache;
130 }
131 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132 "t10_alua_tg_pt_gp_mem_cache",
133 sizeof(struct t10_alua_tg_pt_gp_member),
134 __alignof__(struct t10_alua_tg_pt_gp_member),
135 0, NULL);
136 if (!t10_alua_tg_pt_gp_mem_cache) {
137 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138 "mem_t failed\n");
139 goto out_free_tg_pt_gp_cache;
140 }
141
142 target_completion_wq = alloc_workqueue("target_completion",
143 WQ_MEM_RECLAIM, 0);
144 if (!target_completion_wq)
145 goto out_free_tg_pt_gp_mem_cache;
146
147 return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184 * Allocate a new row index for the entry type specified
185 */
scsi_get_new_index(scsi_index_t type)186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188 u32 new_index;
189
190 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192 spin_lock(&scsi_mib_index_lock);
193 new_index = ++scsi_mib_index[type];
194 spin_unlock(&scsi_mib_index_lock);
195
196 return new_index;
197 }
198
transport_init_queue_obj(struct se_queue_obj * qobj)199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201 atomic_set(&qobj->queue_cnt, 0);
202 INIT_LIST_HEAD(&qobj->qobj_list);
203 init_waitqueue_head(&qobj->thread_wq);
204 spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
transport_subsystem_check_init(void)207 void transport_subsystem_check_init(void)
208 {
209 int ret;
210
211 if (sub_api_initialized)
212 return;
213
214 ret = request_module("target_core_iblock");
215 if (ret != 0)
216 pr_err("Unable to load target_core_iblock\n");
217
218 ret = request_module("target_core_file");
219 if (ret != 0)
220 pr_err("Unable to load target_core_file\n");
221
222 ret = request_module("target_core_pscsi");
223 if (ret != 0)
224 pr_err("Unable to load target_core_pscsi\n");
225
226 ret = request_module("target_core_stgt");
227 if (ret != 0)
228 pr_err("Unable to load target_core_stgt\n");
229
230 sub_api_initialized = 1;
231 return;
232 }
233
transport_init_session(void)234 struct se_session *transport_init_session(void)
235 {
236 struct se_session *se_sess;
237
238 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239 if (!se_sess) {
240 pr_err("Unable to allocate struct se_session from"
241 " se_sess_cache\n");
242 return ERR_PTR(-ENOMEM);
243 }
244 INIT_LIST_HEAD(&se_sess->sess_list);
245 INIT_LIST_HEAD(&se_sess->sess_acl_list);
246 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247 INIT_LIST_HEAD(&se_sess->sess_wait_list);
248 spin_lock_init(&se_sess->sess_cmd_lock);
249 kref_init(&se_sess->sess_kref);
250
251 return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254
255 /*
256 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)258 void __transport_register_session(
259 struct se_portal_group *se_tpg,
260 struct se_node_acl *se_nacl,
261 struct se_session *se_sess,
262 void *fabric_sess_ptr)
263 {
264 unsigned char buf[PR_REG_ISID_LEN];
265
266 se_sess->se_tpg = se_tpg;
267 se_sess->fabric_sess_ptr = fabric_sess_ptr;
268 /*
269 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270 *
271 * Only set for struct se_session's that will actually be moving I/O.
272 * eg: *NOT* discovery sessions.
273 */
274 if (se_nacl) {
275 /*
276 * If the fabric module supports an ISID based TransportID,
277 * save this value in binary from the fabric I_T Nexus now.
278 */
279 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280 memset(&buf[0], 0, PR_REG_ISID_LEN);
281 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282 &buf[0], PR_REG_ISID_LEN);
283 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284 }
285 kref_get(&se_nacl->acl_kref);
286
287 spin_lock_irq(&se_nacl->nacl_sess_lock);
288 /*
289 * The se_nacl->nacl_sess pointer will be set to the
290 * last active I_T Nexus for each struct se_node_acl.
291 */
292 se_nacl->nacl_sess = se_sess;
293
294 list_add_tail(&se_sess->sess_acl_list,
295 &se_nacl->acl_sess_list);
296 spin_unlock_irq(&se_nacl->nacl_sess_lock);
297 }
298 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299
300 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)305 void transport_register_session(
306 struct se_portal_group *se_tpg,
307 struct se_node_acl *se_nacl,
308 struct se_session *se_sess,
309 void *fabric_sess_ptr)
310 {
311 unsigned long flags;
312
313 spin_lock_irqsave(&se_tpg->session_lock, flags);
314 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318
target_release_session(struct kref * kref)319 static void target_release_session(struct kref *kref)
320 {
321 struct se_session *se_sess = container_of(kref,
322 struct se_session, sess_kref);
323 struct se_portal_group *se_tpg = se_sess->se_tpg;
324
325 se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327
target_get_session(struct se_session * se_sess)328 void target_get_session(struct se_session *se_sess)
329 {
330 kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333
target_put_session(struct se_session * se_sess)334 int target_put_session(struct se_session *se_sess)
335 {
336 return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339
target_complete_nacl(struct kref * kref)340 static void target_complete_nacl(struct kref *kref)
341 {
342 struct se_node_acl *nacl = container_of(kref,
343 struct se_node_acl, acl_kref);
344
345 complete(&nacl->acl_free_comp);
346 }
347
target_put_nacl(struct se_node_acl * nacl)348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350 kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352
transport_deregister_session_configfs(struct se_session * se_sess)353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355 struct se_node_acl *se_nacl;
356 unsigned long flags;
357 /*
358 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359 */
360 se_nacl = se_sess->se_node_acl;
361 if (se_nacl) {
362 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363 if (se_nacl->acl_stop == 0)
364 list_del(&se_sess->sess_acl_list);
365 /*
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
369 */
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
376 }
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378 }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
transport_free_session(struct se_session * se_sess)382 void transport_free_session(struct se_session *se_sess)
383 {
384 kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
transport_deregister_session(struct se_session * se_sess)388 void transport_deregister_session(struct se_session *se_sess)
389 {
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct target_core_fabric_ops *se_tfo;
392 struct se_node_acl *se_nacl;
393 unsigned long flags;
394 bool comp_nacl = true;
395
396 if (!se_tpg) {
397 transport_free_session(se_sess);
398 return;
399 }
400 se_tfo = se_tpg->se_tpg_tfo;
401
402 spin_lock_irqsave(&se_tpg->session_lock, flags);
403 list_del(&se_sess->sess_list);
404 se_sess->se_tpg = NULL;
405 se_sess->fabric_sess_ptr = NULL;
406 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
407
408 /*
409 * Determine if we need to do extra work for this initiator node's
410 * struct se_node_acl if it had been previously dynamically generated.
411 */
412 se_nacl = se_sess->se_node_acl;
413
414 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415 if (se_nacl && se_nacl->dynamic_node_acl) {
416 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
417 list_del(&se_nacl->acl_list);
418 se_tpg->num_node_acls--;
419 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
420 core_tpg_wait_for_nacl_pr_ref(se_nacl);
421 core_free_device_list_for_node(se_nacl, se_tpg);
422 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
423
424 comp_nacl = false;
425 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 }
427 }
428 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429
430 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 se_tpg->se_tpg_tfo->get_fabric_name());
432 /*
433 * If last kref is dropping now for an explict NodeACL, awake sleeping
434 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
435 * removal context.
436 */
437 if (se_nacl && comp_nacl == true)
438 target_put_nacl(se_nacl);
439
440 transport_free_session(se_sess);
441 }
442 EXPORT_SYMBOL(transport_deregister_session);
443
444 /*
445 * Called with cmd->t_state_lock held.
446 */
transport_all_task_dev_remove_state(struct se_cmd * cmd)447 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
448 {
449 struct se_device *dev = cmd->se_dev;
450 struct se_task *task;
451 unsigned long flags;
452
453 if (!dev)
454 return;
455
456 list_for_each_entry(task, &cmd->t_task_list, t_list) {
457 if (task->task_flags & TF_ACTIVE)
458 continue;
459
460 spin_lock_irqsave(&dev->execute_task_lock, flags);
461 if (task->t_state_active) {
462 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463 cmd->se_tfo->get_task_tag(cmd), dev, task);
464
465 list_del(&task->t_state_list);
466 atomic_dec(&cmd->t_task_cdbs_ex_left);
467 task->t_state_active = false;
468 }
469 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
470 }
471
472 }
473
474 /* transport_cmd_check_stop():
475 *
476 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477 * 'transport_off = 2' determines if task_dev_state should be removed.
478 *
479 * A non-zero u8 t_state sets cmd->t_state.
480 * Returns 1 when command is stopped, else 0.
481 */
transport_cmd_check_stop(struct se_cmd * cmd,int transport_off,u8 t_state)482 static int transport_cmd_check_stop(
483 struct se_cmd *cmd,
484 int transport_off,
485 u8 t_state)
486 {
487 unsigned long flags;
488
489 spin_lock_irqsave(&cmd->t_state_lock, flags);
490 /*
491 * Determine if IOCTL context caller in requesting the stopping of this
492 * command for LUN shutdown purposes.
493 */
494 if (cmd->transport_state & CMD_T_LUN_STOP) {
495 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
497
498 cmd->transport_state &= ~CMD_T_ACTIVE;
499 if (transport_off == 2)
500 transport_all_task_dev_remove_state(cmd);
501 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
502
503 complete(&cmd->transport_lun_stop_comp);
504 return 1;
505 }
506 /*
507 * Determine if frontend context caller is requesting the stopping of
508 * this command for frontend exceptions.
509 */
510 if (cmd->transport_state & CMD_T_STOP) {
511 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
512 __func__, __LINE__,
513 cmd->se_tfo->get_task_tag(cmd));
514
515 if (transport_off == 2)
516 transport_all_task_dev_remove_state(cmd);
517
518 /*
519 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520 * to FE.
521 */
522 if (transport_off == 2)
523 cmd->se_lun = NULL;
524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526 complete(&cmd->t_transport_stop_comp);
527 return 1;
528 }
529 if (transport_off) {
530 cmd->transport_state &= ~CMD_T_ACTIVE;
531 if (transport_off == 2) {
532 transport_all_task_dev_remove_state(cmd);
533 /*
534 * Clear struct se_cmd->se_lun before the transport_off == 2
535 * handoff to fabric module.
536 */
537 cmd->se_lun = NULL;
538 /*
539 * Some fabric modules like tcm_loop can release
540 * their internally allocated I/O reference now and
541 * struct se_cmd now.
542 *
543 * Fabric modules are expected to return '1' here if the
544 * se_cmd being passed is released at this point,
545 * or zero if not being released.
546 */
547 if (cmd->se_tfo->check_stop_free != NULL) {
548 spin_unlock_irqrestore(
549 &cmd->t_state_lock, flags);
550
551 return cmd->se_tfo->check_stop_free(cmd);
552 }
553 }
554 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555
556 return 0;
557 } else if (t_state)
558 cmd->t_state = t_state;
559 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560
561 return 0;
562 }
563
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)564 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
565 {
566 return transport_cmd_check_stop(cmd, 2, 0);
567 }
568
transport_lun_remove_cmd(struct se_cmd * cmd)569 static void transport_lun_remove_cmd(struct se_cmd *cmd)
570 {
571 struct se_lun *lun = cmd->se_lun;
572 unsigned long flags;
573
574 if (!lun)
575 return;
576
577 spin_lock_irqsave(&cmd->t_state_lock, flags);
578 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
579 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
580 transport_all_task_dev_remove_state(cmd);
581 }
582 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583
584 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
585 if (!list_empty(&cmd->se_lun_node))
586 list_del_init(&cmd->se_lun_node);
587 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
593 transport_lun_remove_cmd(cmd);
594
595 if (transport_cmd_check_stop_to_fabric(cmd))
596 return;
597 if (remove) {
598 transport_remove_cmd_from_queue(cmd);
599 transport_put_cmd(cmd);
600 }
601 }
602
transport_add_cmd_to_queue(struct se_cmd * cmd,int t_state,bool at_head)603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604 bool at_head)
605 {
606 struct se_device *dev = cmd->se_dev;
607 struct se_queue_obj *qobj = &dev->dev_queue_obj;
608 unsigned long flags;
609
610 if (t_state) {
611 spin_lock_irqsave(&cmd->t_state_lock, flags);
612 cmd->t_state = t_state;
613 cmd->transport_state |= CMD_T_ACTIVE;
614 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615 }
616
617 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619 /* If the cmd is already on the list, remove it before we add it */
620 if (!list_empty(&cmd->se_queue_node))
621 list_del(&cmd->se_queue_node);
622 else
623 atomic_inc(&qobj->queue_cnt);
624
625 if (at_head)
626 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627 else
628 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629 cmd->transport_state |= CMD_T_QUEUED;
630 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632 wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
transport_get_cmd_from_queue(struct se_queue_obj * qobj)636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638 struct se_cmd *cmd;
639 unsigned long flags;
640
641 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642 if (list_empty(&qobj->qobj_list)) {
643 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644 return NULL;
645 }
646 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648 cmd->transport_state &= ~CMD_T_QUEUED;
649 list_del_init(&cmd->se_queue_node);
650 atomic_dec(&qobj->queue_cnt);
651 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
652
653 return cmd;
654 }
655
transport_remove_cmd_from_queue(struct se_cmd * cmd)656 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
657 {
658 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
659 unsigned long flags;
660
661 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
662 if (!(cmd->transport_state & CMD_T_QUEUED)) {
663 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664 return;
665 }
666 cmd->transport_state &= ~CMD_T_QUEUED;
667 atomic_dec(&qobj->queue_cnt);
668 list_del_init(&cmd->se_queue_node);
669 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 }
671
672 /*
673 * Completion function used by TCM subsystem plugins (such as FILEIO)
674 * for queueing up response from struct se_subsystem_api->do_task()
675 */
transport_complete_sync_cache(struct se_cmd * cmd,int good)676 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
677 {
678 struct se_task *task = list_entry(cmd->t_task_list.next,
679 struct se_task, t_list);
680
681 if (good) {
682 cmd->scsi_status = SAM_STAT_GOOD;
683 task->task_scsi_status = GOOD;
684 } else {
685 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
686 task->task_se_cmd->scsi_sense_reason =
687 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
688
689 }
690
691 transport_complete_task(task, good);
692 }
693 EXPORT_SYMBOL(transport_complete_sync_cache);
694
target_complete_failure_work(struct work_struct * work)695 static void target_complete_failure_work(struct work_struct *work)
696 {
697 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698
699 transport_generic_request_failure(cmd);
700 }
701
702 /* transport_complete_task():
703 *
704 * Called from interrupt and non interrupt context depending
705 * on the transport plugin.
706 */
transport_complete_task(struct se_task * task,int success)707 void transport_complete_task(struct se_task *task, int success)
708 {
709 struct se_cmd *cmd = task->task_se_cmd;
710 struct se_device *dev = cmd->se_dev;
711 unsigned long flags;
712
713 spin_lock_irqsave(&cmd->t_state_lock, flags);
714 task->task_flags &= ~TF_ACTIVE;
715
716 /*
717 * See if any sense data exists, if so set the TASK_SENSE flag.
718 * Also check for any other post completion work that needs to be
719 * done by the plugins.
720 */
721 if (dev && dev->transport->transport_complete) {
722 if (dev->transport->transport_complete(task) != 0) {
723 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
724 task->task_flags |= TF_HAS_SENSE;
725 success = 1;
726 }
727 }
728
729 /*
730 * See if we are waiting for outstanding struct se_task
731 * to complete for an exception condition
732 */
733 if (task->task_flags & TF_REQUEST_STOP) {
734 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
735 complete(&task->task_stop_comp);
736 return;
737 }
738
739 if (!success)
740 cmd->transport_state |= CMD_T_FAILED;
741
742 /*
743 * Decrement the outstanding t_task_cdbs_left count. The last
744 * struct se_task from struct se_cmd will complete itself into the
745 * device queue depending upon int success.
746 */
747 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
748 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
749 return;
750 }
751 /*
752 * Check for case where an explict ABORT_TASK has been received
753 * and transport_wait_for_tasks() will be waiting for completion..
754 */
755 if (cmd->transport_state & CMD_T_ABORTED &&
756 cmd->transport_state & CMD_T_STOP) {
757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 complete(&cmd->t_transport_stop_comp);
759 return;
760 } else if (cmd->transport_state & CMD_T_FAILED) {
761 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
762 INIT_WORK(&cmd->work, target_complete_failure_work);
763 } else {
764 INIT_WORK(&cmd->work, target_complete_ok_work);
765 }
766
767 cmd->t_state = TRANSPORT_COMPLETE;
768 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
769 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770
771 queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774
775 /*
776 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777 * struct se_task list are ready to be added to the active execution list
778 * struct se_device
779
780 * Called with se_dev_t->execute_task_lock called.
781 */
transport_add_task_check_sam_attr(struct se_task * task,struct se_task * task_prev,struct se_device * dev)782 static inline int transport_add_task_check_sam_attr(
783 struct se_task *task,
784 struct se_task *task_prev,
785 struct se_device *dev)
786 {
787 /*
788 * No SAM Task attribute emulation enabled, add to tail of
789 * execution queue
790 */
791 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 return 0;
794 }
795 /*
796 * HEAD_OF_QUEUE attribute for received CDB, which means
797 * the first task that is associated with a struct se_cmd goes to
798 * head of the struct se_device->execute_task_list, and task_prev
799 * after that for each subsequent task
800 */
801 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802 list_add(&task->t_execute_list,
803 (task_prev != NULL) ?
804 &task_prev->t_execute_list :
805 &dev->execute_task_list);
806
807 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808 " in execution queue\n",
809 task->task_se_cmd->t_task_cdb[0]);
810 return 1;
811 }
812 /*
813 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814 * transitioned from Dermant -> Active state, and are added to the end
815 * of the struct se_device->execute_task_list
816 */
817 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818 return 0;
819 }
820
821 /* __transport_add_task_to_execute_queue():
822 *
823 * Called with se_dev_t->execute_task_lock called.
824 */
__transport_add_task_to_execute_queue(struct se_task * task,struct se_task * task_prev,struct se_device * dev)825 static void __transport_add_task_to_execute_queue(
826 struct se_task *task,
827 struct se_task *task_prev,
828 struct se_device *dev)
829 {
830 int head_of_queue;
831
832 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833 atomic_inc(&dev->execute_tasks);
834
835 if (task->t_state_active)
836 return;
837 /*
838 * Determine if this task needs to go to HEAD_OF_QUEUE for the
839 * state list as well. Running with SAM Task Attribute emulation
840 * will always return head_of_queue == 0 here
841 */
842 if (head_of_queue)
843 list_add(&task->t_state_list, (task_prev) ?
844 &task_prev->t_state_list :
845 &dev->state_task_list);
846 else
847 list_add_tail(&task->t_state_list, &dev->state_task_list);
848
849 task->t_state_active = true;
850
851 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853 task, dev);
854 }
855
transport_add_tasks_to_state_queue(struct se_cmd * cmd)856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858 struct se_device *dev = cmd->se_dev;
859 struct se_task *task;
860 unsigned long flags;
861
862 spin_lock_irqsave(&cmd->t_state_lock, flags);
863 list_for_each_entry(task, &cmd->t_task_list, t_list) {
864 spin_lock(&dev->execute_task_lock);
865 if (!task->t_state_active) {
866 list_add_tail(&task->t_state_list,
867 &dev->state_task_list);
868 task->t_state_active = true;
869
870 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 task->task_se_cmd->se_tfo->get_task_tag(
872 task->task_se_cmd), task, dev);
873 }
874 spin_unlock(&dev->execute_task_lock);
875 }
876 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
__transport_add_tasks_from_cmd(struct se_cmd * cmd)879 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881 struct se_device *dev = cmd->se_dev;
882 struct se_task *task, *task_prev = NULL;
883
884 list_for_each_entry(task, &cmd->t_task_list, t_list) {
885 if (!list_empty(&task->t_execute_list))
886 continue;
887 /*
888 * __transport_add_task_to_execute_queue() handles the
889 * SAM Task Attribute emulation if enabled
890 */
891 __transport_add_task_to_execute_queue(task, task_prev, dev);
892 task_prev = task;
893 }
894 }
895
transport_add_tasks_from_cmd(struct se_cmd * cmd)896 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
897 {
898 unsigned long flags;
899 struct se_device *dev = cmd->se_dev;
900
901 spin_lock_irqsave(&dev->execute_task_lock, flags);
902 __transport_add_tasks_from_cmd(cmd);
903 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
904 }
905
__transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)906 void __transport_remove_task_from_execute_queue(struct se_task *task,
907 struct se_device *dev)
908 {
909 list_del_init(&task->t_execute_list);
910 atomic_dec(&dev->execute_tasks);
911 }
912
transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)913 static void transport_remove_task_from_execute_queue(
914 struct se_task *task,
915 struct se_device *dev)
916 {
917 unsigned long flags;
918
919 if (WARN_ON(list_empty(&task->t_execute_list)))
920 return;
921
922 spin_lock_irqsave(&dev->execute_task_lock, flags);
923 __transport_remove_task_from_execute_queue(task, dev);
924 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
925 }
926
927 /*
928 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
929 */
930
target_qf_do_work(struct work_struct * work)931 static void target_qf_do_work(struct work_struct *work)
932 {
933 struct se_device *dev = container_of(work, struct se_device,
934 qf_work_queue);
935 LIST_HEAD(qf_cmd_list);
936 struct se_cmd *cmd, *cmd_tmp;
937
938 spin_lock_irq(&dev->qf_cmd_lock);
939 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
940 spin_unlock_irq(&dev->qf_cmd_lock);
941
942 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
943 list_del(&cmd->se_qf_node);
944 atomic_dec(&dev->dev_qf_count);
945 smp_mb__after_atomic_dec();
946
947 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
949 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
950 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
951 : "UNKNOWN");
952
953 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
954 }
955 }
956
transport_dump_cmd_direction(struct se_cmd * cmd)957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959 switch (cmd->data_direction) {
960 case DMA_NONE:
961 return "NONE";
962 case DMA_FROM_DEVICE:
963 return "READ";
964 case DMA_TO_DEVICE:
965 return "WRITE";
966 case DMA_BIDIRECTIONAL:
967 return "BIDI";
968 default:
969 break;
970 }
971
972 return "UNKNOWN";
973 }
974
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)975 void transport_dump_dev_state(
976 struct se_device *dev,
977 char *b,
978 int *bl)
979 {
980 *bl += sprintf(b + *bl, "Status: ");
981 switch (dev->dev_status) {
982 case TRANSPORT_DEVICE_ACTIVATED:
983 *bl += sprintf(b + *bl, "ACTIVATED");
984 break;
985 case TRANSPORT_DEVICE_DEACTIVATED:
986 *bl += sprintf(b + *bl, "DEACTIVATED");
987 break;
988 case TRANSPORT_DEVICE_SHUTDOWN:
989 *bl += sprintf(b + *bl, "SHUTDOWN");
990 break;
991 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
992 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
993 *bl += sprintf(b + *bl, "OFFLINE");
994 break;
995 default:
996 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
997 break;
998 }
999
1000 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
1001 atomic_read(&dev->execute_tasks), dev->queue_depth);
1002 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1003 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1004 *bl += sprintf(b + *bl, " ");
1005 }
1006
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1007 void transport_dump_vpd_proto_id(
1008 struct t10_vpd *vpd,
1009 unsigned char *p_buf,
1010 int p_buf_len)
1011 {
1012 unsigned char buf[VPD_TMP_BUF_SIZE];
1013 int len;
1014
1015 memset(buf, 0, VPD_TMP_BUF_SIZE);
1016 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1017
1018 switch (vpd->protocol_identifier) {
1019 case 0x00:
1020 sprintf(buf+len, "Fibre Channel\n");
1021 break;
1022 case 0x10:
1023 sprintf(buf+len, "Parallel SCSI\n");
1024 break;
1025 case 0x20:
1026 sprintf(buf+len, "SSA\n");
1027 break;
1028 case 0x30:
1029 sprintf(buf+len, "IEEE 1394\n");
1030 break;
1031 case 0x40:
1032 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1033 " Protocol\n");
1034 break;
1035 case 0x50:
1036 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1037 break;
1038 case 0x60:
1039 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1040 break;
1041 case 0x70:
1042 sprintf(buf+len, "Automation/Drive Interface Transport"
1043 " Protocol\n");
1044 break;
1045 case 0x80:
1046 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1047 break;
1048 default:
1049 sprintf(buf+len, "Unknown 0x%02x\n",
1050 vpd->protocol_identifier);
1051 break;
1052 }
1053
1054 if (p_buf)
1055 strncpy(p_buf, buf, p_buf_len);
1056 else
1057 pr_debug("%s", buf);
1058 }
1059
1060 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1061 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063 /*
1064 * Check if the Protocol Identifier Valid (PIV) bit is set..
1065 *
1066 * from spc3r23.pdf section 7.5.1
1067 */
1068 if (page_83[1] & 0x80) {
1069 vpd->protocol_identifier = (page_83[0] & 0xf0);
1070 vpd->protocol_identifier_set = 1;
1071 transport_dump_vpd_proto_id(vpd, NULL, 0);
1072 }
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1075
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1076 int transport_dump_vpd_assoc(
1077 struct t10_vpd *vpd,
1078 unsigned char *p_buf,
1079 int p_buf_len)
1080 {
1081 unsigned char buf[VPD_TMP_BUF_SIZE];
1082 int ret = 0;
1083 int len;
1084
1085 memset(buf, 0, VPD_TMP_BUF_SIZE);
1086 len = sprintf(buf, "T10 VPD Identifier Association: ");
1087
1088 switch (vpd->association) {
1089 case 0x00:
1090 sprintf(buf+len, "addressed logical unit\n");
1091 break;
1092 case 0x10:
1093 sprintf(buf+len, "target port\n");
1094 break;
1095 case 0x20:
1096 sprintf(buf+len, "SCSI target device\n");
1097 break;
1098 default:
1099 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1100 ret = -EINVAL;
1101 break;
1102 }
1103
1104 if (p_buf)
1105 strncpy(p_buf, buf, p_buf_len);
1106 else
1107 pr_debug("%s", buf);
1108
1109 return ret;
1110 }
1111
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1112 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1113 {
1114 /*
1115 * The VPD identification association..
1116 *
1117 * from spc3r23.pdf Section 7.6.3.1 Table 297
1118 */
1119 vpd->association = (page_83[1] & 0x30);
1120 return transport_dump_vpd_assoc(vpd, NULL, 0);
1121 }
1122 EXPORT_SYMBOL(transport_set_vpd_assoc);
1123
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1124 int transport_dump_vpd_ident_type(
1125 struct t10_vpd *vpd,
1126 unsigned char *p_buf,
1127 int p_buf_len)
1128 {
1129 unsigned char buf[VPD_TMP_BUF_SIZE];
1130 int ret = 0;
1131 int len;
1132
1133 memset(buf, 0, VPD_TMP_BUF_SIZE);
1134 len = sprintf(buf, "T10 VPD Identifier Type: ");
1135
1136 switch (vpd->device_identifier_type) {
1137 case 0x00:
1138 sprintf(buf+len, "Vendor specific\n");
1139 break;
1140 case 0x01:
1141 sprintf(buf+len, "T10 Vendor ID based\n");
1142 break;
1143 case 0x02:
1144 sprintf(buf+len, "EUI-64 based\n");
1145 break;
1146 case 0x03:
1147 sprintf(buf+len, "NAA\n");
1148 break;
1149 case 0x04:
1150 sprintf(buf+len, "Relative target port identifier\n");
1151 break;
1152 case 0x08:
1153 sprintf(buf+len, "SCSI name string\n");
1154 break;
1155 default:
1156 sprintf(buf+len, "Unsupported: 0x%02x\n",
1157 vpd->device_identifier_type);
1158 ret = -EINVAL;
1159 break;
1160 }
1161
1162 if (p_buf) {
1163 if (p_buf_len < strlen(buf)+1)
1164 return -EINVAL;
1165 strncpy(p_buf, buf, p_buf_len);
1166 } else {
1167 pr_debug("%s", buf);
1168 }
1169
1170 return ret;
1171 }
1172
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1173 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1174 {
1175 /*
1176 * The VPD identifier type..
1177 *
1178 * from spc3r23.pdf Section 7.6.3.1 Table 298
1179 */
1180 vpd->device_identifier_type = (page_83[1] & 0x0f);
1181 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1182 }
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1184
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1185 int transport_dump_vpd_ident(
1186 struct t10_vpd *vpd,
1187 unsigned char *p_buf,
1188 int p_buf_len)
1189 {
1190 unsigned char buf[VPD_TMP_BUF_SIZE];
1191 int ret = 0;
1192
1193 memset(buf, 0, VPD_TMP_BUF_SIZE);
1194
1195 switch (vpd->device_identifier_code_set) {
1196 case 0x01: /* Binary */
1197 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1198 &vpd->device_identifier[0]);
1199 break;
1200 case 0x02: /* ASCII */
1201 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1202 &vpd->device_identifier[0]);
1203 break;
1204 case 0x03: /* UTF-8 */
1205 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1206 &vpd->device_identifier[0]);
1207 break;
1208 default:
1209 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1210 " 0x%02x", vpd->device_identifier_code_set);
1211 ret = -EINVAL;
1212 break;
1213 }
1214
1215 if (p_buf)
1216 strncpy(p_buf, buf, p_buf_len);
1217 else
1218 pr_debug("%s", buf);
1219
1220 return ret;
1221 }
1222
1223 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1224 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1225 {
1226 static const char hex_str[] = "0123456789abcdef";
1227 int j = 0, i = 4; /* offset to start of the identifer */
1228
1229 /*
1230 * The VPD Code Set (encoding)
1231 *
1232 * from spc3r23.pdf Section 7.6.3.1 Table 296
1233 */
1234 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1235 switch (vpd->device_identifier_code_set) {
1236 case 0x01: /* Binary */
1237 vpd->device_identifier[j++] =
1238 hex_str[vpd->device_identifier_type];
1239 while (i < (4 + page_83[3])) {
1240 vpd->device_identifier[j++] =
1241 hex_str[(page_83[i] & 0xf0) >> 4];
1242 vpd->device_identifier[j++] =
1243 hex_str[page_83[i] & 0x0f];
1244 i++;
1245 }
1246 break;
1247 case 0x02: /* ASCII */
1248 case 0x03: /* UTF-8 */
1249 while (i < (4 + page_83[3]))
1250 vpd->device_identifier[j++] = page_83[i++];
1251 break;
1252 default:
1253 break;
1254 }
1255
1256 return transport_dump_vpd_ident(vpd, NULL, 0);
1257 }
1258 EXPORT_SYMBOL(transport_set_vpd_ident);
1259
core_setup_task_attr_emulation(struct se_device * dev)1260 static void core_setup_task_attr_emulation(struct se_device *dev)
1261 {
1262 /*
1263 * If this device is from Target_Core_Mod/pSCSI, disable the
1264 * SAM Task Attribute emulation.
1265 *
1266 * This is currently not available in upsream Linux/SCSI Target
1267 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1268 */
1269 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1270 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1271 return;
1272 }
1273
1274 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1275 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276 " device\n", dev->transport->name,
1277 dev->transport->get_device_rev(dev));
1278 }
1279
scsi_dump_inquiry(struct se_device * dev)1280 static void scsi_dump_inquiry(struct se_device *dev)
1281 {
1282 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1283 char buf[17];
1284 int i, device_type;
1285 /*
1286 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1287 */
1288 for (i = 0; i < 8; i++)
1289 if (wwn->vendor[i] >= 0x20)
1290 buf[i] = wwn->vendor[i];
1291 else
1292 buf[i] = ' ';
1293 buf[i] = '\0';
1294 pr_debug(" Vendor: %s\n", buf);
1295
1296 for (i = 0; i < 16; i++)
1297 if (wwn->model[i] >= 0x20)
1298 buf[i] = wwn->model[i];
1299 else
1300 buf[i] = ' ';
1301 buf[i] = '\0';
1302 pr_debug(" Model: %s\n", buf);
1303
1304 for (i = 0; i < 4; i++)
1305 if (wwn->revision[i] >= 0x20)
1306 buf[i] = wwn->revision[i];
1307 else
1308 buf[i] = ' ';
1309 buf[i] = '\0';
1310 pr_debug(" Revision: %s\n", buf);
1311
1312 device_type = dev->transport->get_device_type(dev);
1313 pr_debug(" Type: %s ", scsi_device_type(device_type));
1314 pr_debug(" ANSI SCSI revision: %02x\n",
1315 dev->transport->get_device_rev(dev));
1316 }
1317
transport_add_device_to_core_hba(struct se_hba * hba,struct se_subsystem_api * transport,struct se_subsystem_dev * se_dev,u32 device_flags,void * transport_dev,struct se_dev_limits * dev_limits,const char * inquiry_prod,const char * inquiry_rev)1318 struct se_device *transport_add_device_to_core_hba(
1319 struct se_hba *hba,
1320 struct se_subsystem_api *transport,
1321 struct se_subsystem_dev *se_dev,
1322 u32 device_flags,
1323 void *transport_dev,
1324 struct se_dev_limits *dev_limits,
1325 const char *inquiry_prod,
1326 const char *inquiry_rev)
1327 {
1328 int force_pt;
1329 struct se_device *dev;
1330
1331 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1332 if (!dev) {
1333 pr_err("Unable to allocate memory for se_dev_t\n");
1334 return NULL;
1335 }
1336
1337 transport_init_queue_obj(&dev->dev_queue_obj);
1338 dev->dev_flags = device_flags;
1339 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1340 dev->dev_ptr = transport_dev;
1341 dev->se_hba = hba;
1342 dev->se_sub_dev = se_dev;
1343 dev->transport = transport;
1344 dev->dev_link_magic = SE_DEV_LINK_MAGIC;
1345 INIT_LIST_HEAD(&dev->dev_list);
1346 INIT_LIST_HEAD(&dev->dev_sep_list);
1347 INIT_LIST_HEAD(&dev->dev_tmr_list);
1348 INIT_LIST_HEAD(&dev->execute_task_list);
1349 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1350 INIT_LIST_HEAD(&dev->state_task_list);
1351 INIT_LIST_HEAD(&dev->qf_cmd_list);
1352 spin_lock_init(&dev->execute_task_lock);
1353 spin_lock_init(&dev->delayed_cmd_lock);
1354 spin_lock_init(&dev->dev_reservation_lock);
1355 spin_lock_init(&dev->dev_status_lock);
1356 spin_lock_init(&dev->se_port_lock);
1357 spin_lock_init(&dev->se_tmr_lock);
1358 spin_lock_init(&dev->qf_cmd_lock);
1359 atomic_set(&dev->dev_ordered_id, 0);
1360
1361 se_dev_set_default_attribs(dev, dev_limits);
1362
1363 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1364 dev->creation_time = get_jiffies_64();
1365 spin_lock_init(&dev->stats_lock);
1366
1367 spin_lock(&hba->device_lock);
1368 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1369 hba->dev_count++;
1370 spin_unlock(&hba->device_lock);
1371 /*
1372 * Setup the SAM Task Attribute emulation for struct se_device
1373 */
1374 core_setup_task_attr_emulation(dev);
1375 /*
1376 * Force PR and ALUA passthrough emulation with internal object use.
1377 */
1378 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1379 /*
1380 * Setup the Reservations infrastructure for struct se_device
1381 */
1382 core_setup_reservations(dev, force_pt);
1383 /*
1384 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1385 */
1386 if (core_setup_alua(dev, force_pt) < 0)
1387 goto out;
1388
1389 /*
1390 * Startup the struct se_device processing thread
1391 */
1392 dev->process_thread = kthread_run(transport_processing_thread, dev,
1393 "LIO_%s", dev->transport->name);
1394 if (IS_ERR(dev->process_thread)) {
1395 pr_err("Unable to create kthread: LIO_%s\n",
1396 dev->transport->name);
1397 goto out;
1398 }
1399 /*
1400 * Setup work_queue for QUEUE_FULL
1401 */
1402 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1403 /*
1404 * Preload the initial INQUIRY const values if we are doing
1405 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 * passthrough because this is being provided by the backend LLD.
1407 * This is required so that transport_get_inquiry() copies these
1408 * originals once back into DEV_T10_WWN(dev) for the virtual device
1409 * setup.
1410 */
1411 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1412 if (!inquiry_prod || !inquiry_rev) {
1413 pr_err("All non TCM/pSCSI plugins require"
1414 " INQUIRY consts\n");
1415 goto out;
1416 }
1417
1418 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1419 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1420 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1421 }
1422 scsi_dump_inquiry(dev);
1423
1424 return dev;
1425 out:
1426 kthread_stop(dev->process_thread);
1427
1428 spin_lock(&hba->device_lock);
1429 list_del(&dev->dev_list);
1430 hba->dev_count--;
1431 spin_unlock(&hba->device_lock);
1432
1433 se_release_vpd_for_dev(dev);
1434
1435 kfree(dev);
1436
1437 return NULL;
1438 }
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1440
1441 /* transport_generic_prepare_cdb():
1442 *
1443 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1444 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445 * The point of this is since we are mapping iSCSI LUNs to
1446 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447 * devices and HBAs for a loop.
1448 */
transport_generic_prepare_cdb(unsigned char * cdb)1449 static inline void transport_generic_prepare_cdb(
1450 unsigned char *cdb)
1451 {
1452 switch (cdb[0]) {
1453 case READ_10: /* SBC - RDProtect */
1454 case READ_12: /* SBC - RDProtect */
1455 case READ_16: /* SBC - RDProtect */
1456 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1457 case VERIFY: /* SBC - VRProtect */
1458 case VERIFY_16: /* SBC - VRProtect */
1459 case WRITE_VERIFY: /* SBC - VRProtect */
1460 case WRITE_VERIFY_12: /* SBC - VRProtect */
1461 break;
1462 default:
1463 cdb[1] &= 0x1f; /* clear logical unit number */
1464 break;
1465 }
1466 }
1467
1468 static struct se_task *
transport_generic_get_task(struct se_cmd * cmd,enum dma_data_direction data_direction)1469 transport_generic_get_task(struct se_cmd *cmd,
1470 enum dma_data_direction data_direction)
1471 {
1472 struct se_task *task;
1473 struct se_device *dev = cmd->se_dev;
1474
1475 task = dev->transport->alloc_task(cmd->t_task_cdb);
1476 if (!task) {
1477 pr_err("Unable to allocate struct se_task\n");
1478 return NULL;
1479 }
1480
1481 INIT_LIST_HEAD(&task->t_list);
1482 INIT_LIST_HEAD(&task->t_execute_list);
1483 INIT_LIST_HEAD(&task->t_state_list);
1484 init_completion(&task->task_stop_comp);
1485 task->task_se_cmd = cmd;
1486 task->task_data_direction = data_direction;
1487
1488 return task;
1489 }
1490
1491 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1492
1493 /*
1494 * Used by fabric modules containing a local struct se_cmd within their
1495 * fabric dependent per I/O descriptor.
1496 */
transport_init_se_cmd(struct se_cmd * cmd,struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1497 void transport_init_se_cmd(
1498 struct se_cmd *cmd,
1499 struct target_core_fabric_ops *tfo,
1500 struct se_session *se_sess,
1501 u32 data_length,
1502 int data_direction,
1503 int task_attr,
1504 unsigned char *sense_buffer)
1505 {
1506 INIT_LIST_HEAD(&cmd->se_lun_node);
1507 INIT_LIST_HEAD(&cmd->se_delayed_node);
1508 INIT_LIST_HEAD(&cmd->se_qf_node);
1509 INIT_LIST_HEAD(&cmd->se_queue_node);
1510 INIT_LIST_HEAD(&cmd->se_cmd_list);
1511 INIT_LIST_HEAD(&cmd->t_task_list);
1512 init_completion(&cmd->transport_lun_fe_stop_comp);
1513 init_completion(&cmd->transport_lun_stop_comp);
1514 init_completion(&cmd->t_transport_stop_comp);
1515 init_completion(&cmd->cmd_wait_comp);
1516 spin_lock_init(&cmd->t_state_lock);
1517 cmd->transport_state = CMD_T_DEV_ACTIVE;
1518
1519 cmd->se_tfo = tfo;
1520 cmd->se_sess = se_sess;
1521 cmd->data_length = data_length;
1522 cmd->data_direction = data_direction;
1523 cmd->sam_task_attr = task_attr;
1524 cmd->sense_buffer = sense_buffer;
1525 }
1526 EXPORT_SYMBOL(transport_init_se_cmd);
1527
transport_check_alloc_task_attr(struct se_cmd * cmd)1528 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1529 {
1530 /*
1531 * Check if SAM Task Attribute emulation is enabled for this
1532 * struct se_device storage object
1533 */
1534 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1535 return 0;
1536
1537 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1538 pr_debug("SAM Task Attribute ACA"
1539 " emulation is not supported\n");
1540 return -EINVAL;
1541 }
1542 /*
1543 * Used to determine when ORDERED commands should go from
1544 * Dormant to Active status.
1545 */
1546 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1547 smp_mb__after_atomic_inc();
1548 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1549 cmd->se_ordered_id, cmd->sam_task_attr,
1550 cmd->se_dev->transport->name);
1551 return 0;
1552 }
1553
1554 /* transport_generic_allocate_tasks():
1555 *
1556 * Called from fabric RX Thread.
1557 */
transport_generic_allocate_tasks(struct se_cmd * cmd,unsigned char * cdb)1558 int transport_generic_allocate_tasks(
1559 struct se_cmd *cmd,
1560 unsigned char *cdb)
1561 {
1562 int ret;
1563
1564 transport_generic_prepare_cdb(cdb);
1565 /*
1566 * Ensure that the received CDB is less than the max (252 + 8) bytes
1567 * for VARIABLE_LENGTH_CMD
1568 */
1569 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1570 pr_err("Received SCSI CDB with command_size: %d that"
1571 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1572 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1573 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1574 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1575 return -EINVAL;
1576 }
1577 /*
1578 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1579 * allocate the additional extended CDB buffer now.. Otherwise
1580 * setup the pointer from __t_task_cdb to t_task_cdb.
1581 */
1582 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1583 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1584 GFP_KERNEL);
1585 if (!cmd->t_task_cdb) {
1586 pr_err("Unable to allocate cmd->t_task_cdb"
1587 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1588 scsi_command_size(cdb),
1589 (unsigned long)sizeof(cmd->__t_task_cdb));
1590 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1591 cmd->scsi_sense_reason =
1592 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1593 return -ENOMEM;
1594 }
1595 } else
1596 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1597 /*
1598 * Copy the original CDB into cmd->
1599 */
1600 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1601 /*
1602 * Setup the received CDB based on SCSI defined opcodes and
1603 * perform unit attention, persistent reservations and ALUA
1604 * checks for virtual device backends. The cmd->t_task_cdb
1605 * pointer is expected to be setup before we reach this point.
1606 */
1607 ret = transport_generic_cmd_sequencer(cmd, cdb);
1608 if (ret < 0)
1609 return ret;
1610 /*
1611 * Check for SAM Task Attribute Emulation
1612 */
1613 if (transport_check_alloc_task_attr(cmd) < 0) {
1614 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1615 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1616 return -EINVAL;
1617 }
1618 spin_lock(&cmd->se_lun->lun_sep_lock);
1619 if (cmd->se_lun->lun_sep)
1620 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1621 spin_unlock(&cmd->se_lun->lun_sep_lock);
1622 return 0;
1623 }
1624 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1625
1626 /*
1627 * Used by fabric module frontends to queue tasks directly.
1628 * Many only be used from process context only
1629 */
transport_handle_cdb_direct(struct se_cmd * cmd)1630 int transport_handle_cdb_direct(
1631 struct se_cmd *cmd)
1632 {
1633 int ret;
1634
1635 if (!cmd->se_lun) {
1636 dump_stack();
1637 pr_err("cmd->se_lun is NULL\n");
1638 return -EINVAL;
1639 }
1640 if (in_interrupt()) {
1641 dump_stack();
1642 pr_err("transport_generic_handle_cdb cannot be called"
1643 " from interrupt context\n");
1644 return -EINVAL;
1645 }
1646 /*
1647 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1648 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1649 * in existing usage to ensure that outstanding descriptors are handled
1650 * correctly during shutdown via transport_wait_for_tasks()
1651 *
1652 * Also, we don't take cmd->t_state_lock here as we only expect
1653 * this to be called for initial descriptor submission.
1654 */
1655 cmd->t_state = TRANSPORT_NEW_CMD;
1656 cmd->transport_state |= CMD_T_ACTIVE;
1657
1658 /*
1659 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1660 * so follow TRANSPORT_NEW_CMD processing thread context usage
1661 * and call transport_generic_request_failure() if necessary..
1662 */
1663 ret = transport_generic_new_cmd(cmd);
1664 if (ret < 0)
1665 transport_generic_request_failure(cmd);
1666
1667 return 0;
1668 }
1669 EXPORT_SYMBOL(transport_handle_cdb_direct);
1670
1671 /**
1672 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1673 *
1674 * @se_cmd: command descriptor to submit
1675 * @se_sess: associated se_sess for endpoint
1676 * @cdb: pointer to SCSI CDB
1677 * @sense: pointer to SCSI sense buffer
1678 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1679 * @data_length: fabric expected data transfer length
1680 * @task_addr: SAM task attribute
1681 * @data_dir: DMA data direction
1682 * @flags: flags for command submission from target_sc_flags_tables
1683 *
1684 * This may only be called from process context, and also currently
1685 * assumes internal allocation of fabric payload buffer by target-core.
1686 **/
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1687 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1688 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1689 u32 data_length, int task_attr, int data_dir, int flags)
1690 {
1691 struct se_portal_group *se_tpg;
1692 int rc;
1693
1694 se_tpg = se_sess->se_tpg;
1695 BUG_ON(!se_tpg);
1696 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1697 BUG_ON(in_interrupt());
1698 /*
1699 * Initialize se_cmd for target operation. From this point
1700 * exceptions are handled by sending exception status via
1701 * target_core_fabric_ops->queue_status() callback
1702 */
1703 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1704 data_length, data_dir, task_attr, sense);
1705 /*
1706 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1707 * se_sess->sess_cmd_list. A second kref_get here is necessary
1708 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1709 * kref_put() to happen during fabric packet acknowledgement.
1710 */
1711 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1712 /*
1713 * Signal bidirectional data payloads to target-core
1714 */
1715 if (flags & TARGET_SCF_BIDI_OP)
1716 se_cmd->se_cmd_flags |= SCF_BIDI;
1717 /*
1718 * Locate se_lun pointer and attach it to struct se_cmd
1719 */
1720 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1721 transport_send_check_condition_and_sense(se_cmd,
1722 se_cmd->scsi_sense_reason, 0);
1723 target_put_sess_cmd(se_sess, se_cmd);
1724 return;
1725 }
1726 /*
1727 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1728 * allocate the necessary tasks to complete the received CDB+data
1729 */
1730 rc = transport_generic_allocate_tasks(se_cmd, cdb);
1731 if (rc != 0) {
1732 transport_generic_request_failure(se_cmd);
1733 return;
1734 }
1735 /*
1736 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1737 * for immediate execution of READs, otherwise wait for
1738 * transport_generic_handle_data() to be called for WRITEs
1739 * when fabric has filled the incoming buffer.
1740 */
1741 transport_handle_cdb_direct(se_cmd);
1742 return;
1743 }
1744 EXPORT_SYMBOL(target_submit_cmd);
1745
target_complete_tmr_failure(struct work_struct * work)1746 static void target_complete_tmr_failure(struct work_struct *work)
1747 {
1748 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1749
1750 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1751 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1752
1753 transport_cmd_check_stop_to_fabric(se_cmd);
1754 }
1755
1756 /**
1757 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1758 * for TMR CDBs
1759 *
1760 * @se_cmd: command descriptor to submit
1761 * @se_sess: associated se_sess for endpoint
1762 * @sense: pointer to SCSI sense buffer
1763 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1764 * @fabric_context: fabric context for TMR req
1765 * @tm_type: Type of TM request
1766 * @gfp: gfp type for caller
1767 * @tag: referenced task tag for TMR_ABORT_TASK
1768 * @flags: submit cmd flags
1769 *
1770 * Callable from all contexts.
1771 **/
1772
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u32 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1773 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1774 unsigned char *sense, u32 unpacked_lun,
1775 void *fabric_tmr_ptr, unsigned char tm_type,
1776 gfp_t gfp, unsigned int tag, int flags)
1777 {
1778 struct se_portal_group *se_tpg;
1779 int ret;
1780
1781 se_tpg = se_sess->se_tpg;
1782 BUG_ON(!se_tpg);
1783
1784 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1785 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1786 /*
1787 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1788 * allocation failure.
1789 */
1790 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1791 if (ret < 0)
1792 return -ENOMEM;
1793
1794 if (tm_type == TMR_ABORT_TASK)
1795 se_cmd->se_tmr_req->ref_task_tag = tag;
1796
1797 /* See target_submit_cmd for commentary */
1798 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1799
1800 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1801 if (ret) {
1802 /*
1803 * For callback during failure handling, push this work off
1804 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1805 */
1806 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1807 schedule_work(&se_cmd->work);
1808 return 0;
1809 }
1810 transport_generic_handle_tmr(se_cmd);
1811 return 0;
1812 }
1813 EXPORT_SYMBOL(target_submit_tmr);
1814
1815 /*
1816 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1817 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1818 * complete setup in TCM process context w/ TFO->new_cmd_map().
1819 */
transport_generic_handle_cdb_map(struct se_cmd * cmd)1820 int transport_generic_handle_cdb_map(
1821 struct se_cmd *cmd)
1822 {
1823 if (!cmd->se_lun) {
1824 dump_stack();
1825 pr_err("cmd->se_lun is NULL\n");
1826 return -EINVAL;
1827 }
1828
1829 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1830 return 0;
1831 }
1832 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1833
1834 /* transport_generic_handle_data():
1835 *
1836 *
1837 */
transport_generic_handle_data(struct se_cmd * cmd)1838 int transport_generic_handle_data(
1839 struct se_cmd *cmd)
1840 {
1841 /*
1842 * For the software fabric case, then we assume the nexus is being
1843 * failed/shutdown when signals are pending from the kthread context
1844 * caller, so we return a failure. For the HW target mode case running
1845 * in interrupt code, the signal_pending() check is skipped.
1846 */
1847 if (!in_interrupt() && signal_pending(current))
1848 return -EPERM;
1849 /*
1850 * If the received CDB has aleady been ABORTED by the generic
1851 * target engine, we now call transport_check_aborted_status()
1852 * to queue any delated TASK_ABORTED status for the received CDB to the
1853 * fabric module as we are expecting no further incoming DATA OUT
1854 * sequences at this point.
1855 */
1856 if (transport_check_aborted_status(cmd, 1) != 0)
1857 return 0;
1858
1859 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1860 return 0;
1861 }
1862 EXPORT_SYMBOL(transport_generic_handle_data);
1863
1864 /* transport_generic_handle_tmr():
1865 *
1866 *
1867 */
transport_generic_handle_tmr(struct se_cmd * cmd)1868 int transport_generic_handle_tmr(
1869 struct se_cmd *cmd)
1870 {
1871 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1872 return 0;
1873 }
1874 EXPORT_SYMBOL(transport_generic_handle_tmr);
1875
1876 /*
1877 * If the task is active, request it to be stopped and sleep until it
1878 * has completed.
1879 */
target_stop_task(struct se_task * task,unsigned long * flags)1880 bool target_stop_task(struct se_task *task, unsigned long *flags)
1881 {
1882 struct se_cmd *cmd = task->task_se_cmd;
1883 bool was_active = false;
1884
1885 if (task->task_flags & TF_ACTIVE) {
1886 task->task_flags |= TF_REQUEST_STOP;
1887 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1888
1889 pr_debug("Task %p waiting to complete\n", task);
1890 wait_for_completion(&task->task_stop_comp);
1891 pr_debug("Task %p stopped successfully\n", task);
1892
1893 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1894 atomic_dec(&cmd->t_task_cdbs_left);
1895 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1896 was_active = true;
1897 }
1898
1899 return was_active;
1900 }
1901
transport_stop_tasks_for_cmd(struct se_cmd * cmd)1902 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1903 {
1904 struct se_task *task, *task_tmp;
1905 unsigned long flags;
1906 int ret = 0;
1907
1908 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1909 cmd->se_tfo->get_task_tag(cmd));
1910
1911 /*
1912 * No tasks remain in the execution queue
1913 */
1914 spin_lock_irqsave(&cmd->t_state_lock, flags);
1915 list_for_each_entry_safe(task, task_tmp,
1916 &cmd->t_task_list, t_list) {
1917 pr_debug("Processing task %p\n", task);
1918 /*
1919 * If the struct se_task has not been sent and is not active,
1920 * remove the struct se_task from the execution queue.
1921 */
1922 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1923 spin_unlock_irqrestore(&cmd->t_state_lock,
1924 flags);
1925 transport_remove_task_from_execute_queue(task,
1926 cmd->se_dev);
1927
1928 pr_debug("Task %p removed from execute queue\n", task);
1929 spin_lock_irqsave(&cmd->t_state_lock, flags);
1930 continue;
1931 }
1932
1933 if (!target_stop_task(task, &flags)) {
1934 pr_debug("Task %p - did nothing\n", task);
1935 ret++;
1936 }
1937 }
1938 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1939
1940 return ret;
1941 }
1942
1943 /*
1944 * Handle SAM-esque emulation for generic transport request failures.
1945 */
transport_generic_request_failure(struct se_cmd * cmd)1946 void transport_generic_request_failure(struct se_cmd *cmd)
1947 {
1948 int ret = 0;
1949
1950 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1952 cmd->t_task_cdb[0]);
1953 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1954 cmd->se_tfo->get_cmd_state(cmd),
1955 cmd->t_state, cmd->scsi_sense_reason);
1956 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1957 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1958 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1959 cmd->t_task_list_num,
1960 atomic_read(&cmd->t_task_cdbs_left),
1961 atomic_read(&cmd->t_task_cdbs_sent),
1962 atomic_read(&cmd->t_task_cdbs_ex_left),
1963 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1964 (cmd->transport_state & CMD_T_STOP) != 0,
1965 (cmd->transport_state & CMD_T_SENT) != 0);
1966
1967 /*
1968 * For SAM Task Attribute emulation for failed struct se_cmd
1969 */
1970 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1971 transport_complete_task_attr(cmd);
1972
1973 switch (cmd->scsi_sense_reason) {
1974 case TCM_NON_EXISTENT_LUN:
1975 case TCM_UNSUPPORTED_SCSI_OPCODE:
1976 case TCM_INVALID_CDB_FIELD:
1977 case TCM_INVALID_PARAMETER_LIST:
1978 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1979 case TCM_UNKNOWN_MODE_PAGE:
1980 case TCM_WRITE_PROTECTED:
1981 case TCM_ADDRESS_OUT_OF_RANGE:
1982 case TCM_CHECK_CONDITION_ABORT_CMD:
1983 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1984 case TCM_CHECK_CONDITION_NOT_READY:
1985 break;
1986 case TCM_RESERVATION_CONFLICT:
1987 /*
1988 * No SENSE Data payload for this case, set SCSI Status
1989 * and queue the response to $FABRIC_MOD.
1990 *
1991 * Uses linux/include/scsi/scsi.h SAM status codes defs
1992 */
1993 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1994 /*
1995 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1996 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1997 * CONFLICT STATUS.
1998 *
1999 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2000 */
2001 if (cmd->se_sess &&
2002 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2003 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2004 cmd->orig_fe_lun, 0x2C,
2005 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2006
2007 ret = cmd->se_tfo->queue_status(cmd);
2008 if (ret == -EAGAIN || ret == -ENOMEM)
2009 goto queue_full;
2010 goto check_stop;
2011 default:
2012 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2013 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2014 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2015 break;
2016 }
2017 /*
2018 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2019 * make the call to transport_send_check_condition_and_sense()
2020 * directly. Otherwise expect the fabric to make the call to
2021 * transport_send_check_condition_and_sense() after handling
2022 * possible unsoliticied write data payloads.
2023 */
2024 ret = transport_send_check_condition_and_sense(cmd,
2025 cmd->scsi_sense_reason, 0);
2026 if (ret == -EAGAIN || ret == -ENOMEM)
2027 goto queue_full;
2028
2029 check_stop:
2030 transport_lun_remove_cmd(cmd);
2031 if (!transport_cmd_check_stop_to_fabric(cmd))
2032 ;
2033 return;
2034
2035 queue_full:
2036 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2037 transport_handle_queue_full(cmd, cmd->se_dev);
2038 }
2039 EXPORT_SYMBOL(transport_generic_request_failure);
2040
transport_lba_21(unsigned char * cdb)2041 static inline u32 transport_lba_21(unsigned char *cdb)
2042 {
2043 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2044 }
2045
transport_lba_32(unsigned char * cdb)2046 static inline u32 transport_lba_32(unsigned char *cdb)
2047 {
2048 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2049 }
2050
transport_lba_64(unsigned char * cdb)2051 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2052 {
2053 unsigned int __v1, __v2;
2054
2055 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2056 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2057
2058 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2059 }
2060
2061 /*
2062 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2063 */
transport_lba_64_ext(unsigned char * cdb)2064 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2065 {
2066 unsigned int __v1, __v2;
2067
2068 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2069 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2070
2071 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2072 }
2073
transport_set_supported_SAM_opcode(struct se_cmd * se_cmd)2074 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2075 {
2076 unsigned long flags;
2077
2078 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2079 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2080 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2081 }
2082
2083 /*
2084 * Called from Fabric Module context from transport_execute_tasks()
2085 *
2086 * The return of this function determins if the tasks from struct se_cmd
2087 * get added to the execution queue in transport_execute_tasks(),
2088 * or are added to the delayed or ordered lists here.
2089 */
transport_execute_task_attr(struct se_cmd * cmd)2090 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2091 {
2092 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2093 return 1;
2094 /*
2095 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2096 * to allow the passed struct se_cmd list of tasks to the front of the list.
2097 */
2098 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2099 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2100 " 0x%02x, se_ordered_id: %u\n",
2101 cmd->t_task_cdb[0],
2102 cmd->se_ordered_id);
2103 return 1;
2104 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2105 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2106 smp_mb__after_atomic_inc();
2107
2108 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2109 " list, se_ordered_id: %u\n",
2110 cmd->t_task_cdb[0],
2111 cmd->se_ordered_id);
2112 /*
2113 * Add ORDERED command to tail of execution queue if
2114 * no other older commands exist that need to be
2115 * completed first.
2116 */
2117 if (!atomic_read(&cmd->se_dev->simple_cmds))
2118 return 1;
2119 } else {
2120 /*
2121 * For SIMPLE and UNTAGGED Task Attribute commands
2122 */
2123 atomic_inc(&cmd->se_dev->simple_cmds);
2124 smp_mb__after_atomic_inc();
2125 }
2126 /*
2127 * Otherwise if one or more outstanding ORDERED task attribute exist,
2128 * add the dormant task(s) built for the passed struct se_cmd to the
2129 * execution queue and become in Active state for this struct se_device.
2130 */
2131 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2132 /*
2133 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2134 * will be drained upon completion of HEAD_OF_QUEUE task.
2135 */
2136 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2137 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2138 list_add_tail(&cmd->se_delayed_node,
2139 &cmd->se_dev->delayed_cmd_list);
2140 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2141
2142 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2143 " delayed CMD list, se_ordered_id: %u\n",
2144 cmd->t_task_cdb[0], cmd->sam_task_attr,
2145 cmd->se_ordered_id);
2146 /*
2147 * Return zero to let transport_execute_tasks() know
2148 * not to add the delayed tasks to the execution list.
2149 */
2150 return 0;
2151 }
2152 /*
2153 * Otherwise, no ORDERED task attributes exist..
2154 */
2155 return 1;
2156 }
2157
2158 /*
2159 * Called from fabric module context in transport_generic_new_cmd() and
2160 * transport_generic_process_write()
2161 */
transport_execute_tasks(struct se_cmd * cmd)2162 static int transport_execute_tasks(struct se_cmd *cmd)
2163 {
2164 int add_tasks;
2165 struct se_device *se_dev = cmd->se_dev;
2166 /*
2167 * Call transport_cmd_check_stop() to see if a fabric exception
2168 * has occurred that prevents execution.
2169 */
2170 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2171 /*
2172 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2173 * attribute for the tasks of the received struct se_cmd CDB
2174 */
2175 add_tasks = transport_execute_task_attr(cmd);
2176 if (!add_tasks)
2177 goto execute_tasks;
2178 /*
2179 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2180 * adds associated se_tasks while holding dev->execute_task_lock
2181 * before I/O dispath to avoid a double spinlock access.
2182 */
2183 __transport_execute_tasks(se_dev, cmd);
2184 return 0;
2185 }
2186
2187 execute_tasks:
2188 __transport_execute_tasks(se_dev, NULL);
2189 return 0;
2190 }
2191
2192 /*
2193 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2194 * from struct se_device->execute_task_list and
2195 *
2196 * Called from transport_processing_thread()
2197 */
__transport_execute_tasks(struct se_device * dev,struct se_cmd * new_cmd)2198 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2199 {
2200 int error;
2201 struct se_cmd *cmd = NULL;
2202 struct se_task *task = NULL;
2203 unsigned long flags;
2204
2205 check_depth:
2206 spin_lock_irq(&dev->execute_task_lock);
2207 if (new_cmd != NULL)
2208 __transport_add_tasks_from_cmd(new_cmd);
2209
2210 if (list_empty(&dev->execute_task_list)) {
2211 spin_unlock_irq(&dev->execute_task_lock);
2212 return 0;
2213 }
2214 task = list_first_entry(&dev->execute_task_list,
2215 struct se_task, t_execute_list);
2216 __transport_remove_task_from_execute_queue(task, dev);
2217 spin_unlock_irq(&dev->execute_task_lock);
2218
2219 cmd = task->task_se_cmd;
2220 spin_lock_irqsave(&cmd->t_state_lock, flags);
2221 task->task_flags |= (TF_ACTIVE | TF_SENT);
2222 atomic_inc(&cmd->t_task_cdbs_sent);
2223
2224 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2225 cmd->t_task_list_num)
2226 cmd->transport_state |= CMD_T_SENT;
2227
2228 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2229
2230 if (cmd->execute_task)
2231 error = cmd->execute_task(task);
2232 else
2233 error = dev->transport->do_task(task);
2234 if (error != 0) {
2235 spin_lock_irqsave(&cmd->t_state_lock, flags);
2236 task->task_flags &= ~TF_ACTIVE;
2237 cmd->transport_state &= ~CMD_T_SENT;
2238 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2239
2240 transport_stop_tasks_for_cmd(cmd);
2241 transport_generic_request_failure(cmd);
2242 }
2243
2244 new_cmd = NULL;
2245 goto check_depth;
2246
2247 return 0;
2248 }
2249
transport_get_sectors_6(unsigned char * cdb,struct se_cmd * cmd,int * ret)2250 static inline u32 transport_get_sectors_6(
2251 unsigned char *cdb,
2252 struct se_cmd *cmd,
2253 int *ret)
2254 {
2255 struct se_device *dev = cmd->se_dev;
2256
2257 /*
2258 * Assume TYPE_DISK for non struct se_device objects.
2259 * Use 8-bit sector value.
2260 */
2261 if (!dev)
2262 goto type_disk;
2263
2264 /*
2265 * Use 24-bit allocation length for TYPE_TAPE.
2266 */
2267 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2268 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2269
2270 /*
2271 * Everything else assume TYPE_DISK Sector CDB location.
2272 * Use 8-bit sector value. SBC-3 says:
2273 *
2274 * A TRANSFER LENGTH field set to zero specifies that 256
2275 * logical blocks shall be written. Any other value
2276 * specifies the number of logical blocks that shall be
2277 * written.
2278 */
2279 type_disk:
2280 return cdb[4] ? : 256;
2281 }
2282
transport_get_sectors_10(unsigned char * cdb,struct se_cmd * cmd,int * ret)2283 static inline u32 transport_get_sectors_10(
2284 unsigned char *cdb,
2285 struct se_cmd *cmd,
2286 int *ret)
2287 {
2288 struct se_device *dev = cmd->se_dev;
2289
2290 /*
2291 * Assume TYPE_DISK for non struct se_device objects.
2292 * Use 16-bit sector value.
2293 */
2294 if (!dev)
2295 goto type_disk;
2296
2297 /*
2298 * XXX_10 is not defined in SSC, throw an exception
2299 */
2300 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2301 *ret = -EINVAL;
2302 return 0;
2303 }
2304
2305 /*
2306 * Everything else assume TYPE_DISK Sector CDB location.
2307 * Use 16-bit sector value.
2308 */
2309 type_disk:
2310 return (u32)(cdb[7] << 8) + cdb[8];
2311 }
2312
transport_get_sectors_12(unsigned char * cdb,struct se_cmd * cmd,int * ret)2313 static inline u32 transport_get_sectors_12(
2314 unsigned char *cdb,
2315 struct se_cmd *cmd,
2316 int *ret)
2317 {
2318 struct se_device *dev = cmd->se_dev;
2319
2320 /*
2321 * Assume TYPE_DISK for non struct se_device objects.
2322 * Use 32-bit sector value.
2323 */
2324 if (!dev)
2325 goto type_disk;
2326
2327 /*
2328 * XXX_12 is not defined in SSC, throw an exception
2329 */
2330 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2331 *ret = -EINVAL;
2332 return 0;
2333 }
2334
2335 /*
2336 * Everything else assume TYPE_DISK Sector CDB location.
2337 * Use 32-bit sector value.
2338 */
2339 type_disk:
2340 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2341 }
2342
transport_get_sectors_16(unsigned char * cdb,struct se_cmd * cmd,int * ret)2343 static inline u32 transport_get_sectors_16(
2344 unsigned char *cdb,
2345 struct se_cmd *cmd,
2346 int *ret)
2347 {
2348 struct se_device *dev = cmd->se_dev;
2349
2350 /*
2351 * Assume TYPE_DISK for non struct se_device objects.
2352 * Use 32-bit sector value.
2353 */
2354 if (!dev)
2355 goto type_disk;
2356
2357 /*
2358 * Use 24-bit allocation length for TYPE_TAPE.
2359 */
2360 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2361 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2362
2363 type_disk:
2364 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2365 (cdb[12] << 8) + cdb[13];
2366 }
2367
2368 /*
2369 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2370 */
transport_get_sectors_32(unsigned char * cdb,struct se_cmd * cmd,int * ret)2371 static inline u32 transport_get_sectors_32(
2372 unsigned char *cdb,
2373 struct se_cmd *cmd,
2374 int *ret)
2375 {
2376 /*
2377 * Assume TYPE_DISK for non struct se_device objects.
2378 * Use 32-bit sector value.
2379 */
2380 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2381 (cdb[30] << 8) + cdb[31];
2382
2383 }
2384
transport_get_size(u32 sectors,unsigned char * cdb,struct se_cmd * cmd)2385 static inline u32 transport_get_size(
2386 u32 sectors,
2387 unsigned char *cdb,
2388 struct se_cmd *cmd)
2389 {
2390 struct se_device *dev = cmd->se_dev;
2391
2392 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2393 if (cdb[1] & 1) { /* sectors */
2394 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2395 } else /* bytes */
2396 return sectors;
2397 }
2398 #if 0
2399 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2400 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2401 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2402 dev->transport->name);
2403 #endif
2404 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2405 }
2406
transport_xor_callback(struct se_cmd * cmd)2407 static void transport_xor_callback(struct se_cmd *cmd)
2408 {
2409 unsigned char *buf, *addr;
2410 struct scatterlist *sg;
2411 unsigned int offset;
2412 int i;
2413 int count;
2414 /*
2415 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2416 *
2417 * 1) read the specified logical block(s);
2418 * 2) transfer logical blocks from the data-out buffer;
2419 * 3) XOR the logical blocks transferred from the data-out buffer with
2420 * the logical blocks read, storing the resulting XOR data in a buffer;
2421 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2422 * blocks transferred from the data-out buffer; and
2423 * 5) transfer the resulting XOR data to the data-in buffer.
2424 */
2425 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2426 if (!buf) {
2427 pr_err("Unable to allocate xor_callback buf\n");
2428 return;
2429 }
2430 /*
2431 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2432 * into the locally allocated *buf
2433 */
2434 sg_copy_to_buffer(cmd->t_data_sg,
2435 cmd->t_data_nents,
2436 buf,
2437 cmd->data_length);
2438
2439 /*
2440 * Now perform the XOR against the BIDI read memory located at
2441 * cmd->t_mem_bidi_list
2442 */
2443
2444 offset = 0;
2445 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2446 addr = kmap_atomic(sg_page(sg));
2447 if (!addr)
2448 goto out;
2449
2450 for (i = 0; i < sg->length; i++)
2451 *(addr + sg->offset + i) ^= *(buf + offset + i);
2452
2453 offset += sg->length;
2454 kunmap_atomic(addr);
2455 }
2456
2457 out:
2458 kfree(buf);
2459 }
2460
2461 /*
2462 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2463 */
transport_get_sense_data(struct se_cmd * cmd)2464 static int transport_get_sense_data(struct se_cmd *cmd)
2465 {
2466 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2467 struct se_device *dev = cmd->se_dev;
2468 struct se_task *task = NULL, *task_tmp;
2469 unsigned long flags;
2470 u32 offset = 0;
2471
2472 WARN_ON(!cmd->se_lun);
2473
2474 if (!dev)
2475 return 0;
2476
2477 spin_lock_irqsave(&cmd->t_state_lock, flags);
2478 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2479 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2480 return 0;
2481 }
2482
2483 list_for_each_entry_safe(task, task_tmp,
2484 &cmd->t_task_list, t_list) {
2485 if (!(task->task_flags & TF_HAS_SENSE))
2486 continue;
2487
2488 if (!dev->transport->get_sense_buffer) {
2489 pr_err("dev->transport->get_sense_buffer"
2490 " is NULL\n");
2491 continue;
2492 }
2493
2494 sense_buffer = dev->transport->get_sense_buffer(task);
2495 if (!sense_buffer) {
2496 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2497 " sense buffer for task with sense\n",
2498 cmd->se_tfo->get_task_tag(cmd), task);
2499 continue;
2500 }
2501 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2502
2503 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2504 TRANSPORT_SENSE_BUFFER);
2505
2506 memcpy(&buffer[offset], sense_buffer,
2507 TRANSPORT_SENSE_BUFFER);
2508 cmd->scsi_status = task->task_scsi_status;
2509 /* Automatically padded */
2510 cmd->scsi_sense_length =
2511 (TRANSPORT_SENSE_BUFFER + offset);
2512
2513 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2514 " and sense\n",
2515 dev->se_hba->hba_id, dev->transport->name,
2516 cmd->scsi_status);
2517 return 0;
2518 }
2519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2520
2521 return -1;
2522 }
2523
transport_dev_end_lba(struct se_device * dev)2524 static inline long long transport_dev_end_lba(struct se_device *dev)
2525 {
2526 return dev->transport->get_blocks(dev) + 1;
2527 }
2528
transport_cmd_get_valid_sectors(struct se_cmd * cmd)2529 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2530 {
2531 struct se_device *dev = cmd->se_dev;
2532 u32 sectors;
2533
2534 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2535 return 0;
2536
2537 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2538
2539 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2540 pr_err("LBA: %llu Sectors: %u exceeds"
2541 " transport_dev_end_lba(): %llu\n",
2542 cmd->t_task_lba, sectors,
2543 transport_dev_end_lba(dev));
2544 return -EINVAL;
2545 }
2546
2547 return 0;
2548 }
2549
target_check_write_same_discard(unsigned char * flags,struct se_device * dev)2550 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2551 {
2552 /*
2553 * Determine if the received WRITE_SAME is used to for direct
2554 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2555 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2556 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2557 */
2558 int passthrough = (dev->transport->transport_type ==
2559 TRANSPORT_PLUGIN_PHBA_PDEV);
2560
2561 if (!passthrough) {
2562 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2563 pr_err("WRITE_SAME PBDATA and LBDATA"
2564 " bits not supported for Block Discard"
2565 " Emulation\n");
2566 return -ENOSYS;
2567 }
2568 /*
2569 * Currently for the emulated case we only accept
2570 * tpws with the UNMAP=1 bit set.
2571 */
2572 if (!(flags[0] & 0x08)) {
2573 pr_err("WRITE_SAME w/o UNMAP bit not"
2574 " supported for Block Discard Emulation\n");
2575 return -ENOSYS;
2576 }
2577 }
2578
2579 return 0;
2580 }
2581
2582 /* transport_generic_cmd_sequencer():
2583 *
2584 * Generic Command Sequencer that should work for most DAS transport
2585 * drivers.
2586 *
2587 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2588 * RX Thread.
2589 *
2590 * FIXME: Need to support other SCSI OPCODES where as well.
2591 */
transport_generic_cmd_sequencer(struct se_cmd * cmd,unsigned char * cdb)2592 static int transport_generic_cmd_sequencer(
2593 struct se_cmd *cmd,
2594 unsigned char *cdb)
2595 {
2596 struct se_device *dev = cmd->se_dev;
2597 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2598 int ret = 0, sector_ret = 0, passthrough;
2599 u32 sectors = 0, size = 0, pr_reg_type = 0;
2600 u16 service_action;
2601 u8 alua_ascq = 0;
2602 /*
2603 * Check for an existing UNIT ATTENTION condition
2604 */
2605 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2606 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2607 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2608 return -EINVAL;
2609 }
2610 /*
2611 * Check status of Asymmetric Logical Unit Assignment port
2612 */
2613 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2614 if (ret != 0) {
2615 /*
2616 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2617 * The ALUA additional sense code qualifier (ASCQ) is determined
2618 * by the ALUA primary or secondary access state..
2619 */
2620 if (ret > 0) {
2621 #if 0
2622 pr_debug("[%s]: ALUA TG Port not available,"
2623 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2624 cmd->se_tfo->get_fabric_name(), alua_ascq);
2625 #endif
2626 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2627 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2628 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2629 return -EINVAL;
2630 }
2631 goto out_invalid_cdb_field;
2632 }
2633 /*
2634 * Check status for SPC-3 Persistent Reservations
2635 */
2636 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2637 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2638 cmd, cdb, pr_reg_type) != 0) {
2639 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2640 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2641 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2642 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2643 return -EBUSY;
2644 }
2645 /*
2646 * This means the CDB is allowed for the SCSI Initiator port
2647 * when said port is *NOT* holding the legacy SPC-2 or
2648 * SPC-3 Persistent Reservation.
2649 */
2650 }
2651
2652 /*
2653 * If we operate in passthrough mode we skip most CDB emulation and
2654 * instead hand the commands down to the physical SCSI device.
2655 */
2656 passthrough =
2657 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2658
2659 switch (cdb[0]) {
2660 case READ_6:
2661 sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
2662 if (sector_ret)
2663 goto out_unsupported_cdb;
2664 size = transport_get_size(sectors, cdb, cmd);
2665 cmd->t_task_lba = transport_lba_21(cdb);
2666 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2667 break;
2668 case READ_10:
2669 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2670 if (sector_ret)
2671 goto out_unsupported_cdb;
2672 size = transport_get_size(sectors, cdb, cmd);
2673 cmd->t_task_lba = transport_lba_32(cdb);
2674 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2675 break;
2676 case READ_12:
2677 sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
2678 if (sector_ret)
2679 goto out_unsupported_cdb;
2680 size = transport_get_size(sectors, cdb, cmd);
2681 cmd->t_task_lba = transport_lba_32(cdb);
2682 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2683 break;
2684 case READ_16:
2685 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2686 if (sector_ret)
2687 goto out_unsupported_cdb;
2688 size = transport_get_size(sectors, cdb, cmd);
2689 cmd->t_task_lba = transport_lba_64(cdb);
2690 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2691 break;
2692 case WRITE_6:
2693 sectors = transport_get_sectors_6(cdb, cmd, §or_ret);
2694 if (sector_ret)
2695 goto out_unsupported_cdb;
2696 size = transport_get_size(sectors, cdb, cmd);
2697 cmd->t_task_lba = transport_lba_21(cdb);
2698 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2699 break;
2700 case WRITE_10:
2701 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2702 if (sector_ret)
2703 goto out_unsupported_cdb;
2704 size = transport_get_size(sectors, cdb, cmd);
2705 cmd->t_task_lba = transport_lba_32(cdb);
2706 if (cdb[1] & 0x8)
2707 cmd->se_cmd_flags |= SCF_FUA;
2708 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2709 break;
2710 case WRITE_12:
2711 sectors = transport_get_sectors_12(cdb, cmd, §or_ret);
2712 if (sector_ret)
2713 goto out_unsupported_cdb;
2714 size = transport_get_size(sectors, cdb, cmd);
2715 cmd->t_task_lba = transport_lba_32(cdb);
2716 if (cdb[1] & 0x8)
2717 cmd->se_cmd_flags |= SCF_FUA;
2718 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2719 break;
2720 case WRITE_16:
2721 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
2722 if (sector_ret)
2723 goto out_unsupported_cdb;
2724 size = transport_get_size(sectors, cdb, cmd);
2725 cmd->t_task_lba = transport_lba_64(cdb);
2726 if (cdb[1] & 0x8)
2727 cmd->se_cmd_flags |= SCF_FUA;
2728 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2729 break;
2730 case XDWRITEREAD_10:
2731 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2732 !(cmd->se_cmd_flags & SCF_BIDI))
2733 goto out_invalid_cdb_field;
2734 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
2735 if (sector_ret)
2736 goto out_unsupported_cdb;
2737 size = transport_get_size(sectors, cdb, cmd);
2738 cmd->t_task_lba = transport_lba_32(cdb);
2739 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2740
2741 /*
2742 * Do now allow BIDI commands for passthrough mode.
2743 */
2744 if (passthrough)
2745 goto out_unsupported_cdb;
2746
2747 /*
2748 * Setup BIDI XOR callback to be run after I/O completion.
2749 */
2750 cmd->transport_complete_callback = &transport_xor_callback;
2751 if (cdb[1] & 0x8)
2752 cmd->se_cmd_flags |= SCF_FUA;
2753 break;
2754 case VARIABLE_LENGTH_CMD:
2755 service_action = get_unaligned_be16(&cdb[8]);
2756 switch (service_action) {
2757 case XDWRITEREAD_32:
2758 sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
2759 if (sector_ret)
2760 goto out_unsupported_cdb;
2761 size = transport_get_size(sectors, cdb, cmd);
2762 /*
2763 * Use WRITE_32 and READ_32 opcodes for the emulated
2764 * XDWRITE_READ_32 logic.
2765 */
2766 cmd->t_task_lba = transport_lba_64_ext(cdb);
2767 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2768
2769 /*
2770 * Do now allow BIDI commands for passthrough mode.
2771 */
2772 if (passthrough)
2773 goto out_unsupported_cdb;
2774
2775 /*
2776 * Setup BIDI XOR callback to be run during after I/O
2777 * completion.
2778 */
2779 cmd->transport_complete_callback = &transport_xor_callback;
2780 if (cdb[1] & 0x8)
2781 cmd->se_cmd_flags |= SCF_FUA;
2782 break;
2783 case WRITE_SAME_32:
2784 sectors = transport_get_sectors_32(cdb, cmd, §or_ret);
2785 if (sector_ret)
2786 goto out_unsupported_cdb;
2787
2788 if (sectors)
2789 size = transport_get_size(1, cdb, cmd);
2790 else {
2791 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2792 " supported\n");
2793 goto out_invalid_cdb_field;
2794 }
2795
2796 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2797 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2798
2799 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2800 goto out_unsupported_cdb;
2801 if (!passthrough)
2802 cmd->execute_task = target_emulate_write_same;
2803 break;
2804 default:
2805 pr_err("VARIABLE_LENGTH_CMD service action"
2806 " 0x%04x not supported\n", service_action);
2807 goto out_unsupported_cdb;
2808 }
2809 break;
2810 case MAINTENANCE_IN:
2811 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2812 /* MAINTENANCE_IN from SCC-2 */
2813 /*
2814 * Check for emulated MI_REPORT_TARGET_PGS.
2815 */
2816 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2817 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2818 cmd->execute_task =
2819 target_emulate_report_target_port_groups;
2820 }
2821 size = (cdb[6] << 24) | (cdb[7] << 16) |
2822 (cdb[8] << 8) | cdb[9];
2823 } else {
2824 /* GPCMD_SEND_KEY from multi media commands */
2825 size = (cdb[8] << 8) + cdb[9];
2826 }
2827 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2828 break;
2829 case MODE_SELECT:
2830 size = cdb[4];
2831 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832 break;
2833 case MODE_SELECT_10:
2834 size = (cdb[7] << 8) + cdb[8];
2835 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 break;
2837 case MODE_SENSE:
2838 size = cdb[4];
2839 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2840 if (!passthrough)
2841 cmd->execute_task = target_emulate_modesense;
2842 break;
2843 case MODE_SENSE_10:
2844 size = (cdb[7] << 8) + cdb[8];
2845 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2846 if (!passthrough)
2847 cmd->execute_task = target_emulate_modesense;
2848 break;
2849 case GPCMD_READ_BUFFER_CAPACITY:
2850 case GPCMD_SEND_OPC:
2851 case LOG_SELECT:
2852 case LOG_SENSE:
2853 size = (cdb[7] << 8) + cdb[8];
2854 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855 break;
2856 case READ_BLOCK_LIMITS:
2857 size = READ_BLOCK_LEN;
2858 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2859 break;
2860 case GPCMD_GET_CONFIGURATION:
2861 case GPCMD_READ_FORMAT_CAPACITIES:
2862 case GPCMD_READ_DISC_INFO:
2863 case GPCMD_READ_TRACK_RZONE_INFO:
2864 size = (cdb[7] << 8) + cdb[8];
2865 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2866 break;
2867 case PERSISTENT_RESERVE_IN:
2868 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2869 cmd->execute_task = target_scsi3_emulate_pr_in;
2870 size = (cdb[7] << 8) + cdb[8];
2871 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2872 break;
2873 case PERSISTENT_RESERVE_OUT:
2874 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2875 cmd->execute_task = target_scsi3_emulate_pr_out;
2876 size = (cdb[7] << 8) + cdb[8];
2877 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2878 break;
2879 case GPCMD_MECHANISM_STATUS:
2880 case GPCMD_READ_DVD_STRUCTURE:
2881 size = (cdb[8] << 8) + cdb[9];
2882 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2883 break;
2884 case READ_POSITION:
2885 size = READ_POSITION_LEN;
2886 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2887 break;
2888 case MAINTENANCE_OUT:
2889 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2890 /* MAINTENANCE_OUT from SCC-2
2891 *
2892 * Check for emulated MO_SET_TARGET_PGS.
2893 */
2894 if (cdb[1] == MO_SET_TARGET_PGS &&
2895 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2896 cmd->execute_task =
2897 target_emulate_set_target_port_groups;
2898 }
2899
2900 size = (cdb[6] << 24) | (cdb[7] << 16) |
2901 (cdb[8] << 8) | cdb[9];
2902 } else {
2903 /* GPCMD_REPORT_KEY from multi media commands */
2904 size = (cdb[8] << 8) + cdb[9];
2905 }
2906 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2907 break;
2908 case INQUIRY:
2909 size = (cdb[3] << 8) + cdb[4];
2910 /*
2911 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2912 * See spc4r17 section 5.3
2913 */
2914 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2915 cmd->sam_task_attr = MSG_HEAD_TAG;
2916 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2917 if (!passthrough)
2918 cmd->execute_task = target_emulate_inquiry;
2919 break;
2920 case READ_BUFFER:
2921 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2922 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2923 break;
2924 case READ_CAPACITY:
2925 size = READ_CAP_LEN;
2926 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2927 if (!passthrough)
2928 cmd->execute_task = target_emulate_readcapacity;
2929 break;
2930 case READ_MEDIA_SERIAL_NUMBER:
2931 case SECURITY_PROTOCOL_IN:
2932 case SECURITY_PROTOCOL_OUT:
2933 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2934 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2935 break;
2936 case SERVICE_ACTION_IN:
2937 switch (cmd->t_task_cdb[1] & 0x1f) {
2938 case SAI_READ_CAPACITY_16:
2939 if (!passthrough)
2940 cmd->execute_task =
2941 target_emulate_readcapacity_16;
2942 break;
2943 default:
2944 if (passthrough)
2945 break;
2946
2947 pr_err("Unsupported SA: 0x%02x\n",
2948 cmd->t_task_cdb[1] & 0x1f);
2949 goto out_invalid_cdb_field;
2950 }
2951 /*FALLTHROUGH*/
2952 case ACCESS_CONTROL_IN:
2953 case ACCESS_CONTROL_OUT:
2954 case EXTENDED_COPY:
2955 case READ_ATTRIBUTE:
2956 case RECEIVE_COPY_RESULTS:
2957 case WRITE_ATTRIBUTE:
2958 size = (cdb[10] << 24) | (cdb[11] << 16) |
2959 (cdb[12] << 8) | cdb[13];
2960 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2961 break;
2962 case RECEIVE_DIAGNOSTIC:
2963 case SEND_DIAGNOSTIC:
2964 size = (cdb[3] << 8) | cdb[4];
2965 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2966 break;
2967 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2968 #if 0
2969 case GPCMD_READ_CD:
2970 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2971 size = (2336 * sectors);
2972 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2973 break;
2974 #endif
2975 case READ_TOC:
2976 size = cdb[8];
2977 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2978 break;
2979 case REQUEST_SENSE:
2980 size = cdb[4];
2981 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2982 if (!passthrough)
2983 cmd->execute_task = target_emulate_request_sense;
2984 break;
2985 case READ_ELEMENT_STATUS:
2986 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2987 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2988 break;
2989 case WRITE_BUFFER:
2990 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2991 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2992 break;
2993 case RESERVE:
2994 case RESERVE_10:
2995 /*
2996 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2997 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2998 */
2999 if (cdb[0] == RESERVE_10)
3000 size = (cdb[7] << 8) | cdb[8];
3001 else
3002 size = cmd->data_length;
3003
3004 /*
3005 * Setup the legacy emulated handler for SPC-2 and
3006 * >= SPC-3 compatible reservation handling (CRH=1)
3007 * Otherwise, we assume the underlying SCSI logic is
3008 * is running in SPC_PASSTHROUGH, and wants reservations
3009 * emulation disabled.
3010 */
3011 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3012 cmd->execute_task = target_scsi2_reservation_reserve;
3013 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3014 break;
3015 case RELEASE:
3016 case RELEASE_10:
3017 /*
3018 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3019 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3020 */
3021 if (cdb[0] == RELEASE_10)
3022 size = (cdb[7] << 8) | cdb[8];
3023 else
3024 size = cmd->data_length;
3025
3026 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3027 cmd->execute_task = target_scsi2_reservation_release;
3028 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3029 break;
3030 case SYNCHRONIZE_CACHE:
3031 case SYNCHRONIZE_CACHE_16:
3032 /*
3033 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3034 */
3035 if (cdb[0] == SYNCHRONIZE_CACHE) {
3036 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
3037 cmd->t_task_lba = transport_lba_32(cdb);
3038 } else {
3039 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
3040 cmd->t_task_lba = transport_lba_64(cdb);
3041 }
3042 if (sector_ret)
3043 goto out_unsupported_cdb;
3044
3045 size = transport_get_size(sectors, cdb, cmd);
3046 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3047
3048 if (passthrough)
3049 break;
3050
3051 /*
3052 * Check to ensure that LBA + Range does not exceed past end of
3053 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3054 */
3055 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3056 if (transport_cmd_get_valid_sectors(cmd) < 0)
3057 goto out_invalid_cdb_field;
3058 }
3059 cmd->execute_task = target_emulate_synchronize_cache;
3060 break;
3061 case UNMAP:
3062 size = get_unaligned_be16(&cdb[7]);
3063 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3064 if (!passthrough)
3065 cmd->execute_task = target_emulate_unmap;
3066 break;
3067 case WRITE_SAME_16:
3068 sectors = transport_get_sectors_16(cdb, cmd, §or_ret);
3069 if (sector_ret)
3070 goto out_unsupported_cdb;
3071
3072 if (sectors)
3073 size = transport_get_size(1, cdb, cmd);
3074 else {
3075 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3076 goto out_invalid_cdb_field;
3077 }
3078
3079 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3080 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3081
3082 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3083 goto out_unsupported_cdb;
3084 if (!passthrough)
3085 cmd->execute_task = target_emulate_write_same;
3086 break;
3087 case WRITE_SAME:
3088 sectors = transport_get_sectors_10(cdb, cmd, §or_ret);
3089 if (sector_ret)
3090 goto out_unsupported_cdb;
3091
3092 if (sectors)
3093 size = transport_get_size(1, cdb, cmd);
3094 else {
3095 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3096 goto out_invalid_cdb_field;
3097 }
3098
3099 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3100 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3101 /*
3102 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3103 * of byte 1 bit 3 UNMAP instead of original reserved field
3104 */
3105 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3106 goto out_unsupported_cdb;
3107 if (!passthrough)
3108 cmd->execute_task = target_emulate_write_same;
3109 break;
3110 case ALLOW_MEDIUM_REMOVAL:
3111 case ERASE:
3112 case REZERO_UNIT:
3113 case SEEK_10:
3114 case SPACE:
3115 case START_STOP:
3116 case TEST_UNIT_READY:
3117 case VERIFY:
3118 case WRITE_FILEMARKS:
3119 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3120 if (!passthrough)
3121 cmd->execute_task = target_emulate_noop;
3122 break;
3123 case GPCMD_CLOSE_TRACK:
3124 case INITIALIZE_ELEMENT_STATUS:
3125 case GPCMD_LOAD_UNLOAD:
3126 case GPCMD_SET_SPEED:
3127 case MOVE_MEDIUM:
3128 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3129 break;
3130 case REPORT_LUNS:
3131 cmd->execute_task = target_report_luns;
3132 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3133 /*
3134 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3135 * See spc4r17 section 5.3
3136 */
3137 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3138 cmd->sam_task_attr = MSG_HEAD_TAG;
3139 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3140 break;
3141 default:
3142 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3143 " 0x%02x, sending CHECK_CONDITION.\n",
3144 cmd->se_tfo->get_fabric_name(), cdb[0]);
3145 goto out_unsupported_cdb;
3146 }
3147
3148 if (size != cmd->data_length) {
3149 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3150 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3151 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3152 cmd->data_length, size, cdb[0]);
3153
3154 cmd->cmd_spdtl = size;
3155
3156 if (cmd->data_direction == DMA_TO_DEVICE) {
3157 pr_err("Rejecting underflow/overflow"
3158 " WRITE data\n");
3159 goto out_invalid_cdb_field;
3160 }
3161 /*
3162 * Reject READ_* or WRITE_* with overflow/underflow for
3163 * type SCF_SCSI_DATA_SG_IO_CDB.
3164 */
3165 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3166 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3167 " CDB on non 512-byte sector setup subsystem"
3168 " plugin: %s\n", dev->transport->name);
3169 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3170 goto out_invalid_cdb_field;
3171 }
3172 /*
3173 * For the overflow case keep the existing fabric provided
3174 * ->data_length. Otherwise for the underflow case, reset
3175 * ->data_length to the smaller SCSI expected data transfer
3176 * length.
3177 */
3178 if (size > cmd->data_length) {
3179 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3180 cmd->residual_count = (size - cmd->data_length);
3181 } else {
3182 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3183 cmd->residual_count = (cmd->data_length - size);
3184 cmd->data_length = size;
3185 }
3186 }
3187
3188 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3189 sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3190 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3191 cdb[0], sectors);
3192 goto out_invalid_cdb_field;
3193 }
3194
3195 /* reject any command that we don't have a handler for */
3196 if (!(passthrough || cmd->execute_task ||
3197 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3198 goto out_unsupported_cdb;
3199
3200 transport_set_supported_SAM_opcode(cmd);
3201 return ret;
3202
3203 out_unsupported_cdb:
3204 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3205 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3206 return -EINVAL;
3207 out_invalid_cdb_field:
3208 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3209 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3210 return -EINVAL;
3211 }
3212
3213 /*
3214 * Called from I/O completion to determine which dormant/delayed
3215 * and ordered cmds need to have their tasks added to the execution queue.
3216 */
transport_complete_task_attr(struct se_cmd * cmd)3217 static void transport_complete_task_attr(struct se_cmd *cmd)
3218 {
3219 struct se_device *dev = cmd->se_dev;
3220 struct se_cmd *cmd_p, *cmd_tmp;
3221 int new_active_tasks = 0;
3222
3223 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3224 atomic_dec(&dev->simple_cmds);
3225 smp_mb__after_atomic_dec();
3226 dev->dev_cur_ordered_id++;
3227 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3228 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3229 cmd->se_ordered_id);
3230 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3231 dev->dev_cur_ordered_id++;
3232 pr_debug("Incremented dev_cur_ordered_id: %u for"
3233 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3234 cmd->se_ordered_id);
3235 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3236 atomic_dec(&dev->dev_ordered_sync);
3237 smp_mb__after_atomic_dec();
3238
3239 dev->dev_cur_ordered_id++;
3240 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3241 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3242 }
3243 /*
3244 * Process all commands up to the last received
3245 * ORDERED task attribute which requires another blocking
3246 * boundary
3247 */
3248 spin_lock(&dev->delayed_cmd_lock);
3249 list_for_each_entry_safe(cmd_p, cmd_tmp,
3250 &dev->delayed_cmd_list, se_delayed_node) {
3251
3252 list_del(&cmd_p->se_delayed_node);
3253 spin_unlock(&dev->delayed_cmd_lock);
3254
3255 pr_debug("Calling add_tasks() for"
3256 " cmd_p: 0x%02x Task Attr: 0x%02x"
3257 " Dormant -> Active, se_ordered_id: %u\n",
3258 cmd_p->t_task_cdb[0],
3259 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3260
3261 transport_add_tasks_from_cmd(cmd_p);
3262 new_active_tasks++;
3263
3264 spin_lock(&dev->delayed_cmd_lock);
3265 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3266 break;
3267 }
3268 spin_unlock(&dev->delayed_cmd_lock);
3269 /*
3270 * If new tasks have become active, wake up the transport thread
3271 * to do the processing of the Active tasks.
3272 */
3273 if (new_active_tasks != 0)
3274 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3275 }
3276
transport_complete_qf(struct se_cmd * cmd)3277 static void transport_complete_qf(struct se_cmd *cmd)
3278 {
3279 int ret = 0;
3280
3281 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3282 transport_complete_task_attr(cmd);
3283
3284 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3285 ret = cmd->se_tfo->queue_status(cmd);
3286 if (ret)
3287 goto out;
3288 }
3289
3290 switch (cmd->data_direction) {
3291 case DMA_FROM_DEVICE:
3292 ret = cmd->se_tfo->queue_data_in(cmd);
3293 break;
3294 case DMA_TO_DEVICE:
3295 if (cmd->t_bidi_data_sg) {
3296 ret = cmd->se_tfo->queue_data_in(cmd);
3297 if (ret < 0)
3298 break;
3299 }
3300 /* Fall through for DMA_TO_DEVICE */
3301 case DMA_NONE:
3302 ret = cmd->se_tfo->queue_status(cmd);
3303 break;
3304 default:
3305 break;
3306 }
3307
3308 out:
3309 if (ret < 0) {
3310 transport_handle_queue_full(cmd, cmd->se_dev);
3311 return;
3312 }
3313 transport_lun_remove_cmd(cmd);
3314 transport_cmd_check_stop_to_fabric(cmd);
3315 }
3316
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)3317 static void transport_handle_queue_full(
3318 struct se_cmd *cmd,
3319 struct se_device *dev)
3320 {
3321 spin_lock_irq(&dev->qf_cmd_lock);
3322 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3323 atomic_inc(&dev->dev_qf_count);
3324 smp_mb__after_atomic_inc();
3325 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3326
3327 schedule_work(&cmd->se_dev->qf_work_queue);
3328 }
3329
target_complete_ok_work(struct work_struct * work)3330 static void target_complete_ok_work(struct work_struct *work)
3331 {
3332 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3333 int reason = 0, ret;
3334
3335 /*
3336 * Check if we need to move delayed/dormant tasks from cmds on the
3337 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3338 * Attribute.
3339 */
3340 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3341 transport_complete_task_attr(cmd);
3342 /*
3343 * Check to schedule QUEUE_FULL work, or execute an existing
3344 * cmd->transport_qf_callback()
3345 */
3346 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3347 schedule_work(&cmd->se_dev->qf_work_queue);
3348
3349 /*
3350 * Check if we need to retrieve a sense buffer from
3351 * the struct se_cmd in question.
3352 */
3353 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3354 if (transport_get_sense_data(cmd) < 0)
3355 reason = TCM_NON_EXISTENT_LUN;
3356
3357 /*
3358 * Only set when an struct se_task->task_scsi_status returned
3359 * a non GOOD status.
3360 */
3361 if (cmd->scsi_status) {
3362 ret = transport_send_check_condition_and_sense(
3363 cmd, reason, 1);
3364 if (ret == -EAGAIN || ret == -ENOMEM)
3365 goto queue_full;
3366
3367 transport_lun_remove_cmd(cmd);
3368 transport_cmd_check_stop_to_fabric(cmd);
3369 return;
3370 }
3371 }
3372 /*
3373 * Check for a callback, used by amongst other things
3374 * XDWRITE_READ_10 emulation.
3375 */
3376 if (cmd->transport_complete_callback)
3377 cmd->transport_complete_callback(cmd);
3378
3379 switch (cmd->data_direction) {
3380 case DMA_FROM_DEVICE:
3381 spin_lock(&cmd->se_lun->lun_sep_lock);
3382 if (cmd->se_lun->lun_sep) {
3383 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3384 cmd->data_length;
3385 }
3386 spin_unlock(&cmd->se_lun->lun_sep_lock);
3387
3388 ret = cmd->se_tfo->queue_data_in(cmd);
3389 if (ret == -EAGAIN || ret == -ENOMEM)
3390 goto queue_full;
3391 break;
3392 case DMA_TO_DEVICE:
3393 spin_lock(&cmd->se_lun->lun_sep_lock);
3394 if (cmd->se_lun->lun_sep) {
3395 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3396 cmd->data_length;
3397 }
3398 spin_unlock(&cmd->se_lun->lun_sep_lock);
3399 /*
3400 * Check if we need to send READ payload for BIDI-COMMAND
3401 */
3402 if (cmd->t_bidi_data_sg) {
3403 spin_lock(&cmd->se_lun->lun_sep_lock);
3404 if (cmd->se_lun->lun_sep) {
3405 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3406 cmd->data_length;
3407 }
3408 spin_unlock(&cmd->se_lun->lun_sep_lock);
3409 ret = cmd->se_tfo->queue_data_in(cmd);
3410 if (ret == -EAGAIN || ret == -ENOMEM)
3411 goto queue_full;
3412 break;
3413 }
3414 /* Fall through for DMA_TO_DEVICE */
3415 case DMA_NONE:
3416 ret = cmd->se_tfo->queue_status(cmd);
3417 if (ret == -EAGAIN || ret == -ENOMEM)
3418 goto queue_full;
3419 break;
3420 default:
3421 break;
3422 }
3423
3424 transport_lun_remove_cmd(cmd);
3425 transport_cmd_check_stop_to_fabric(cmd);
3426 return;
3427
3428 queue_full:
3429 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3430 " data_direction: %d\n", cmd, cmd->data_direction);
3431 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3432 transport_handle_queue_full(cmd, cmd->se_dev);
3433 }
3434
transport_free_dev_tasks(struct se_cmd * cmd)3435 static void transport_free_dev_tasks(struct se_cmd *cmd)
3436 {
3437 struct se_task *task, *task_tmp;
3438 unsigned long flags;
3439 LIST_HEAD(dispose_list);
3440
3441 spin_lock_irqsave(&cmd->t_state_lock, flags);
3442 list_for_each_entry_safe(task, task_tmp,
3443 &cmd->t_task_list, t_list) {
3444 if (!(task->task_flags & TF_ACTIVE))
3445 list_move_tail(&task->t_list, &dispose_list);
3446 }
3447 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3448
3449 while (!list_empty(&dispose_list)) {
3450 task = list_first_entry(&dispose_list, struct se_task, t_list);
3451
3452 if (task->task_sg != cmd->t_data_sg &&
3453 task->task_sg != cmd->t_bidi_data_sg)
3454 kfree(task->task_sg);
3455
3456 list_del(&task->t_list);
3457
3458 cmd->se_dev->transport->free_task(task);
3459 }
3460 }
3461
transport_free_sgl(struct scatterlist * sgl,int nents)3462 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3463 {
3464 struct scatterlist *sg;
3465 int count;
3466
3467 for_each_sg(sgl, sg, nents, count)
3468 __free_page(sg_page(sg));
3469
3470 kfree(sgl);
3471 }
3472
transport_free_pages(struct se_cmd * cmd)3473 static inline void transport_free_pages(struct se_cmd *cmd)
3474 {
3475 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3476 return;
3477
3478 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3479 cmd->t_data_sg = NULL;
3480 cmd->t_data_nents = 0;
3481
3482 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3483 cmd->t_bidi_data_sg = NULL;
3484 cmd->t_bidi_data_nents = 0;
3485 }
3486
3487 /**
3488 * transport_release_cmd - free a command
3489 * @cmd: command to free
3490 *
3491 * This routine unconditionally frees a command, and reference counting
3492 * or list removal must be done in the caller.
3493 */
transport_release_cmd(struct se_cmd * cmd)3494 static void transport_release_cmd(struct se_cmd *cmd)
3495 {
3496 BUG_ON(!cmd->se_tfo);
3497
3498 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3499 core_tmr_release_req(cmd->se_tmr_req);
3500 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3501 kfree(cmd->t_task_cdb);
3502 /*
3503 * If this cmd has been setup with target_get_sess_cmd(), drop
3504 * the kref and call ->release_cmd() in kref callback.
3505 */
3506 if (cmd->check_release != 0) {
3507 target_put_sess_cmd(cmd->se_sess, cmd);
3508 return;
3509 }
3510 cmd->se_tfo->release_cmd(cmd);
3511 }
3512
3513 /**
3514 * transport_put_cmd - release a reference to a command
3515 * @cmd: command to release
3516 *
3517 * This routine releases our reference to the command and frees it if possible.
3518 */
transport_put_cmd(struct se_cmd * cmd)3519 static void transport_put_cmd(struct se_cmd *cmd)
3520 {
3521 unsigned long flags;
3522 int free_tasks = 0;
3523
3524 spin_lock_irqsave(&cmd->t_state_lock, flags);
3525 if (atomic_read(&cmd->t_fe_count)) {
3526 if (!atomic_dec_and_test(&cmd->t_fe_count))
3527 goto out_busy;
3528 }
3529
3530 if (atomic_read(&cmd->t_se_count)) {
3531 if (!atomic_dec_and_test(&cmd->t_se_count))
3532 goto out_busy;
3533 }
3534
3535 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3536 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3537 transport_all_task_dev_remove_state(cmd);
3538 free_tasks = 1;
3539 }
3540 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3541
3542 if (free_tasks != 0)
3543 transport_free_dev_tasks(cmd);
3544
3545 transport_free_pages(cmd);
3546 transport_release_cmd(cmd);
3547 return;
3548 out_busy:
3549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3550 }
3551
3552 /*
3553 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3554 * allocating in the core.
3555 * @cmd: Associated se_cmd descriptor
3556 * @mem: SGL style memory for TCM WRITE / READ
3557 * @sg_mem_num: Number of SGL elements
3558 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3559 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3560 *
3561 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3562 * of parameters.
3563 */
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)3564 int transport_generic_map_mem_to_cmd(
3565 struct se_cmd *cmd,
3566 struct scatterlist *sgl,
3567 u32 sgl_count,
3568 struct scatterlist *sgl_bidi,
3569 u32 sgl_bidi_count)
3570 {
3571 if (!sgl || !sgl_count)
3572 return 0;
3573
3574 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3575 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3576 /*
3577 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3578 * scatterlists already have been set to follow what the fabric
3579 * passes for the original expected data transfer length.
3580 */
3581 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3582 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3583 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3584 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3585 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3586 return -EINVAL;
3587 }
3588
3589 cmd->t_data_sg = sgl;
3590 cmd->t_data_nents = sgl_count;
3591
3592 if (sgl_bidi && sgl_bidi_count) {
3593 cmd->t_bidi_data_sg = sgl_bidi;
3594 cmd->t_bidi_data_nents = sgl_bidi_count;
3595 }
3596 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3597 }
3598
3599 return 0;
3600 }
3601 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3602
transport_kmap_data_sg(struct se_cmd * cmd)3603 void *transport_kmap_data_sg(struct se_cmd *cmd)
3604 {
3605 struct scatterlist *sg = cmd->t_data_sg;
3606 struct page **pages;
3607 int i;
3608
3609 BUG_ON(!sg);
3610 /*
3611 * We need to take into account a possible offset here for fabrics like
3612 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3613 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3614 */
3615 if (!cmd->t_data_nents)
3616 return NULL;
3617 else if (cmd->t_data_nents == 1)
3618 return kmap(sg_page(sg)) + sg->offset;
3619
3620 /* >1 page. use vmap */
3621 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3622 if (!pages)
3623 return NULL;
3624
3625 /* convert sg[] to pages[] */
3626 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3627 pages[i] = sg_page(sg);
3628 }
3629
3630 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
3631 kfree(pages);
3632 if (!cmd->t_data_vmap)
3633 return NULL;
3634
3635 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3636 }
3637 EXPORT_SYMBOL(transport_kmap_data_sg);
3638
transport_kunmap_data_sg(struct se_cmd * cmd)3639 void transport_kunmap_data_sg(struct se_cmd *cmd)
3640 {
3641 if (!cmd->t_data_nents) {
3642 return;
3643 } else if (cmd->t_data_nents == 1) {
3644 kunmap(sg_page(cmd->t_data_sg));
3645 return;
3646 }
3647
3648 vunmap(cmd->t_data_vmap);
3649 cmd->t_data_vmap = NULL;
3650 }
3651 EXPORT_SYMBOL(transport_kunmap_data_sg);
3652
3653 static int
transport_generic_get_mem(struct se_cmd * cmd)3654 transport_generic_get_mem(struct se_cmd *cmd)
3655 {
3656 u32 length = cmd->data_length;
3657 unsigned int nents;
3658 struct page *page;
3659 gfp_t zero_flag;
3660 int i = 0;
3661
3662 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3663 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3664 if (!cmd->t_data_sg)
3665 return -ENOMEM;
3666
3667 cmd->t_data_nents = nents;
3668 sg_init_table(cmd->t_data_sg, nents);
3669
3670 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3671
3672 while (length) {
3673 u32 page_len = min_t(u32, length, PAGE_SIZE);
3674 page = alloc_page(GFP_KERNEL | zero_flag);
3675 if (!page)
3676 goto out;
3677
3678 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3679 length -= page_len;
3680 i++;
3681 }
3682 return 0;
3683
3684 out:
3685 while (i > 0) {
3686 i--;
3687 __free_page(sg_page(&cmd->t_data_sg[i]));
3688 }
3689 kfree(cmd->t_data_sg);
3690 cmd->t_data_sg = NULL;
3691 return -ENOMEM;
3692 }
3693
3694 /* Reduce sectors if they are too long for the device */
transport_limit_task_sectors(struct se_device * dev,unsigned long long lba,sector_t sectors)3695 static inline sector_t transport_limit_task_sectors(
3696 struct se_device *dev,
3697 unsigned long long lba,
3698 sector_t sectors)
3699 {
3700 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3701
3702 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3703 if ((lba + sectors) > transport_dev_end_lba(dev))
3704 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3705
3706 return sectors;
3707 }
3708
3709
3710 /*
3711 * This function can be used by HW target mode drivers to create a linked
3712 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3713 * This is intended to be called during the completion path by TCM Core
3714 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3715 */
transport_do_task_sg_chain(struct se_cmd * cmd)3716 void transport_do_task_sg_chain(struct se_cmd *cmd)
3717 {
3718 struct scatterlist *sg_first = NULL;
3719 struct scatterlist *sg_prev = NULL;
3720 int sg_prev_nents = 0;
3721 struct scatterlist *sg;
3722 struct se_task *task;
3723 u32 chained_nents = 0;
3724 int i;
3725
3726 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3727
3728 /*
3729 * Walk the struct se_task list and setup scatterlist chains
3730 * for each contiguously allocated struct se_task->task_sg[].
3731 */
3732 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3733 if (!task->task_sg)
3734 continue;
3735
3736 if (!sg_first) {
3737 sg_first = task->task_sg;
3738 chained_nents = task->task_sg_nents;
3739 } else {
3740 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3741 chained_nents += task->task_sg_nents;
3742 }
3743 /*
3744 * For the padded tasks, use the extra SGL vector allocated
3745 * in transport_allocate_data_tasks() for the sg_prev_nents
3746 * offset into sg_chain() above.
3747 *
3748 * We do not need the padding for the last task (or a single
3749 * task), but in that case we will never use the sg_prev_nents
3750 * value below which would be incorrect.
3751 */
3752 sg_prev_nents = (task->task_sg_nents + 1);
3753 sg_prev = task->task_sg;
3754 }
3755 /*
3756 * Setup the starting pointer and total t_tasks_sg_linked_no including
3757 * padding SGs for linking and to mark the end.
3758 */
3759 cmd->t_tasks_sg_chained = sg_first;
3760 cmd->t_tasks_sg_chained_no = chained_nents;
3761
3762 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3763 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3764 cmd->t_tasks_sg_chained_no);
3765
3766 for_each_sg(cmd->t_tasks_sg_chained, sg,
3767 cmd->t_tasks_sg_chained_no, i) {
3768
3769 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3770 i, sg, sg_page(sg), sg->length, sg->offset);
3771 if (sg_is_chain(sg))
3772 pr_debug("SG: %p sg_is_chain=1\n", sg);
3773 if (sg_is_last(sg))
3774 pr_debug("SG: %p sg_is_last=1\n", sg);
3775 }
3776 }
3777 EXPORT_SYMBOL(transport_do_task_sg_chain);
3778
3779 /*
3780 * Break up cmd into chunks transport can handle
3781 */
3782 static int
transport_allocate_data_tasks(struct se_cmd * cmd,enum dma_data_direction data_direction,struct scatterlist * cmd_sg,unsigned int sgl_nents)3783 transport_allocate_data_tasks(struct se_cmd *cmd,
3784 enum dma_data_direction data_direction,
3785 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3786 {
3787 struct se_device *dev = cmd->se_dev;
3788 int task_count, i;
3789 unsigned long long lba;
3790 sector_t sectors, dev_max_sectors;
3791 u32 sector_size;
3792
3793 if (transport_cmd_get_valid_sectors(cmd) < 0)
3794 return -EINVAL;
3795
3796 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3797 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3798
3799 WARN_ON(cmd->data_length % sector_size);
3800
3801 lba = cmd->t_task_lba;
3802 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3803 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3804
3805 /*
3806 * If we need just a single task reuse the SG list in the command
3807 * and avoid a lot of work.
3808 */
3809 if (task_count == 1) {
3810 struct se_task *task;
3811 unsigned long flags;
3812
3813 task = transport_generic_get_task(cmd, data_direction);
3814 if (!task)
3815 return -ENOMEM;
3816
3817 task->task_sg = cmd_sg;
3818 task->task_sg_nents = sgl_nents;
3819
3820 task->task_lba = lba;
3821 task->task_sectors = sectors;
3822 task->task_size = task->task_sectors * sector_size;
3823
3824 spin_lock_irqsave(&cmd->t_state_lock, flags);
3825 list_add_tail(&task->t_list, &cmd->t_task_list);
3826 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3827
3828 return task_count;
3829 }
3830
3831 for (i = 0; i < task_count; i++) {
3832 struct se_task *task;
3833 unsigned int task_size, task_sg_nents_padded;
3834 struct scatterlist *sg;
3835 unsigned long flags;
3836 int count;
3837
3838 task = transport_generic_get_task(cmd, data_direction);
3839 if (!task)
3840 return -ENOMEM;
3841
3842 task->task_lba = lba;
3843 task->task_sectors = min(sectors, dev_max_sectors);
3844 task->task_size = task->task_sectors * sector_size;
3845
3846 /*
3847 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3848 * in order to calculate the number per task SGL entries
3849 */
3850 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3851 /*
3852 * Check if the fabric module driver is requesting that all
3853 * struct se_task->task_sg[] be chained together.. If so,
3854 * then allocate an extra padding SG entry for linking and
3855 * marking the end of the chained SGL for every task except
3856 * the last one for (task_count > 1) operation, or skipping
3857 * the extra padding for the (task_count == 1) case.
3858 */
3859 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3860 task_sg_nents_padded = (task->task_sg_nents + 1);
3861 } else
3862 task_sg_nents_padded = task->task_sg_nents;
3863
3864 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3865 task_sg_nents_padded, GFP_KERNEL);
3866 if (!task->task_sg) {
3867 cmd->se_dev->transport->free_task(task);
3868 return -ENOMEM;
3869 }
3870
3871 sg_init_table(task->task_sg, task_sg_nents_padded);
3872
3873 task_size = task->task_size;
3874
3875 /* Build new sgl, only up to task_size */
3876 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3877 if (cmd_sg->length > task_size)
3878 break;
3879
3880 *sg = *cmd_sg;
3881 task_size -= cmd_sg->length;
3882 cmd_sg = sg_next(cmd_sg);
3883 }
3884
3885 lba += task->task_sectors;
3886 sectors -= task->task_sectors;
3887
3888 spin_lock_irqsave(&cmd->t_state_lock, flags);
3889 list_add_tail(&task->t_list, &cmd->t_task_list);
3890 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3891 }
3892
3893 return task_count;
3894 }
3895
3896 static int
transport_allocate_control_task(struct se_cmd * cmd)3897 transport_allocate_control_task(struct se_cmd *cmd)
3898 {
3899 struct se_task *task;
3900 unsigned long flags;
3901
3902 /* Workaround for handling zero-length control CDBs */
3903 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3904 !cmd->data_length)
3905 return 0;
3906
3907 task = transport_generic_get_task(cmd, cmd->data_direction);
3908 if (!task)
3909 return -ENOMEM;
3910
3911 task->task_sg = cmd->t_data_sg;
3912 task->task_size = cmd->data_length;
3913 task->task_sg_nents = cmd->t_data_nents;
3914
3915 spin_lock_irqsave(&cmd->t_state_lock, flags);
3916 list_add_tail(&task->t_list, &cmd->t_task_list);
3917 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3918
3919 /* Success! Return number of tasks allocated */
3920 return 1;
3921 }
3922
3923 /*
3924 * Allocate any required ressources to execute the command, and either place
3925 * it on the execution queue if possible. For writes we might not have the
3926 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3927 */
transport_generic_new_cmd(struct se_cmd * cmd)3928 int transport_generic_new_cmd(struct se_cmd *cmd)
3929 {
3930 struct se_device *dev = cmd->se_dev;
3931 int task_cdbs, task_cdbs_bidi = 0;
3932 int set_counts = 1;
3933 int ret = 0;
3934
3935 /*
3936 * Determine is the TCM fabric module has already allocated physical
3937 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3938 * beforehand.
3939 */
3940 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3941 cmd->data_length) {
3942 ret = transport_generic_get_mem(cmd);
3943 if (ret < 0)
3944 goto out_fail;
3945 }
3946
3947 /*
3948 * For BIDI command set up the read tasks first.
3949 */
3950 if (cmd->t_bidi_data_sg &&
3951 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3952 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3953
3954 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3955 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3956 cmd->t_bidi_data_nents);
3957 if (task_cdbs_bidi <= 0)
3958 goto out_fail;
3959
3960 atomic_inc(&cmd->t_fe_count);
3961 atomic_inc(&cmd->t_se_count);
3962 set_counts = 0;
3963 }
3964
3965 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3966 task_cdbs = transport_allocate_data_tasks(cmd,
3967 cmd->data_direction, cmd->t_data_sg,
3968 cmd->t_data_nents);
3969 } else {
3970 task_cdbs = transport_allocate_control_task(cmd);
3971 }
3972
3973 if (task_cdbs < 0)
3974 goto out_fail;
3975 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3976 spin_lock_irq(&cmd->t_state_lock);
3977 cmd->t_state = TRANSPORT_COMPLETE;
3978 cmd->transport_state |= CMD_T_ACTIVE;
3979 spin_unlock_irq(&cmd->t_state_lock);
3980
3981 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3982 u8 ua_asc = 0, ua_ascq = 0;
3983
3984 core_scsi3_ua_clear_for_request_sense(cmd,
3985 &ua_asc, &ua_ascq);
3986 }
3987
3988 INIT_WORK(&cmd->work, target_complete_ok_work);
3989 queue_work(target_completion_wq, &cmd->work);
3990 return 0;
3991 }
3992
3993 if (set_counts) {
3994 atomic_inc(&cmd->t_fe_count);
3995 atomic_inc(&cmd->t_se_count);
3996 }
3997
3998 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3999 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
4000 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
4001
4002 /*
4003 * For WRITEs, let the fabric know its buffer is ready..
4004 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4005 * will be added to the struct se_device execution queue after its WRITE
4006 * data has arrived. (ie: It gets handled by the transport processing
4007 * thread a second time)
4008 */
4009 if (cmd->data_direction == DMA_TO_DEVICE) {
4010 transport_add_tasks_to_state_queue(cmd);
4011 return transport_generic_write_pending(cmd);
4012 }
4013 /*
4014 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4015 * to the execution queue.
4016 */
4017 transport_execute_tasks(cmd);
4018 return 0;
4019
4020 out_fail:
4021 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4022 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4023 return -EINVAL;
4024 }
4025 EXPORT_SYMBOL(transport_generic_new_cmd);
4026
4027 /* transport_generic_process_write():
4028 *
4029 *
4030 */
transport_generic_process_write(struct se_cmd * cmd)4031 void transport_generic_process_write(struct se_cmd *cmd)
4032 {
4033 transport_execute_tasks(cmd);
4034 }
4035 EXPORT_SYMBOL(transport_generic_process_write);
4036
transport_write_pending_qf(struct se_cmd * cmd)4037 static void transport_write_pending_qf(struct se_cmd *cmd)
4038 {
4039 int ret;
4040
4041 ret = cmd->se_tfo->write_pending(cmd);
4042 if (ret == -EAGAIN || ret == -ENOMEM) {
4043 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4044 cmd);
4045 transport_handle_queue_full(cmd, cmd->se_dev);
4046 }
4047 }
4048
transport_generic_write_pending(struct se_cmd * cmd)4049 static int transport_generic_write_pending(struct se_cmd *cmd)
4050 {
4051 unsigned long flags;
4052 int ret;
4053
4054 spin_lock_irqsave(&cmd->t_state_lock, flags);
4055 cmd->t_state = TRANSPORT_WRITE_PENDING;
4056 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4057
4058 /*
4059 * Clear the se_cmd for WRITE_PENDING status in order to set
4060 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4061 * from HW target mode interrupt code. This is safe to be called
4062 * with transport_off=1 before the cmd->se_tfo->write_pending
4063 * because the se_cmd->se_lun pointer is not being cleared.
4064 */
4065 transport_cmd_check_stop(cmd, 1, 0);
4066
4067 /*
4068 * Call the fabric write_pending function here to let the
4069 * frontend know that WRITE buffers are ready.
4070 */
4071 ret = cmd->se_tfo->write_pending(cmd);
4072 if (ret == -EAGAIN || ret == -ENOMEM)
4073 goto queue_full;
4074 else if (ret < 0)
4075 return ret;
4076
4077 return 1;
4078
4079 queue_full:
4080 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4081 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4082 transport_handle_queue_full(cmd, cmd->se_dev);
4083 return 0;
4084 }
4085
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)4086 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4087 {
4088 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4089 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4090 transport_wait_for_tasks(cmd);
4091
4092 transport_release_cmd(cmd);
4093 } else {
4094 if (wait_for_tasks)
4095 transport_wait_for_tasks(cmd);
4096
4097 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4098
4099 if (cmd->se_lun)
4100 transport_lun_remove_cmd(cmd);
4101
4102 transport_free_dev_tasks(cmd);
4103
4104 transport_put_cmd(cmd);
4105 }
4106 }
4107 EXPORT_SYMBOL(transport_generic_free_cmd);
4108
4109 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4110 * @se_sess: session to reference
4111 * @se_cmd: command descriptor to add
4112 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
4113 */
target_get_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd,bool ack_kref)4114 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4115 bool ack_kref)
4116 {
4117 unsigned long flags;
4118
4119 kref_init(&se_cmd->cmd_kref);
4120 /*
4121 * Add a second kref if the fabric caller is expecting to handle
4122 * fabric acknowledgement that requires two target_put_sess_cmd()
4123 * invocations before se_cmd descriptor release.
4124 */
4125 if (ack_kref == true) {
4126 kref_get(&se_cmd->cmd_kref);
4127 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4128 }
4129
4130 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4131 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4132 se_cmd->check_release = 1;
4133 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4134 }
4135 EXPORT_SYMBOL(target_get_sess_cmd);
4136
target_release_cmd_kref(struct kref * kref)4137 static void target_release_cmd_kref(struct kref *kref)
4138 {
4139 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4140 struct se_session *se_sess = se_cmd->se_sess;
4141 unsigned long flags;
4142
4143 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4144 if (list_empty(&se_cmd->se_cmd_list)) {
4145 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4146 se_cmd->se_tfo->release_cmd(se_cmd);
4147 return;
4148 }
4149 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4150 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4151 complete(&se_cmd->cmd_wait_comp);
4152 return;
4153 }
4154 list_del(&se_cmd->se_cmd_list);
4155 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4156
4157 se_cmd->se_tfo->release_cmd(se_cmd);
4158 }
4159
4160 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4161 * @se_sess: session to reference
4162 * @se_cmd: command descriptor to drop
4163 */
target_put_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd)4164 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4165 {
4166 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4167 }
4168 EXPORT_SYMBOL(target_put_sess_cmd);
4169
4170 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4171 * @se_sess: session to split
4172 */
target_splice_sess_cmd_list(struct se_session * se_sess)4173 void target_splice_sess_cmd_list(struct se_session *se_sess)
4174 {
4175 struct se_cmd *se_cmd;
4176 unsigned long flags;
4177
4178 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4179 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4180
4181 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4182 se_sess->sess_tearing_down = 1;
4183
4184 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4185
4186 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4187 se_cmd->cmd_wait_set = 1;
4188
4189 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4190 }
4191 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4192
4193 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4194 * @se_sess: session to wait for active I/O
4195 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4196 */
target_wait_for_sess_cmds(struct se_session * se_sess,int wait_for_tasks)4197 void target_wait_for_sess_cmds(
4198 struct se_session *se_sess,
4199 int wait_for_tasks)
4200 {
4201 struct se_cmd *se_cmd, *tmp_cmd;
4202 bool rc = false;
4203
4204 list_for_each_entry_safe(se_cmd, tmp_cmd,
4205 &se_sess->sess_wait_list, se_cmd_list) {
4206 list_del(&se_cmd->se_cmd_list);
4207
4208 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4209 " %d\n", se_cmd, se_cmd->t_state,
4210 se_cmd->se_tfo->get_cmd_state(se_cmd));
4211
4212 if (wait_for_tasks) {
4213 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4214 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4215 se_cmd->se_tfo->get_cmd_state(se_cmd));
4216
4217 rc = transport_wait_for_tasks(se_cmd);
4218
4219 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4220 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4221 se_cmd->se_tfo->get_cmd_state(se_cmd));
4222 }
4223
4224 if (!rc) {
4225 wait_for_completion(&se_cmd->cmd_wait_comp);
4226 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4227 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4228 se_cmd->se_tfo->get_cmd_state(se_cmd));
4229 }
4230
4231 se_cmd->se_tfo->release_cmd(se_cmd);
4232 }
4233 }
4234 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4235
4236 /* transport_lun_wait_for_tasks():
4237 *
4238 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4239 * an struct se_lun to be successfully shutdown.
4240 */
transport_lun_wait_for_tasks(struct se_cmd * cmd,struct se_lun * lun)4241 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4242 {
4243 unsigned long flags;
4244 int ret;
4245 /*
4246 * If the frontend has already requested this struct se_cmd to
4247 * be stopped, we can safely ignore this struct se_cmd.
4248 */
4249 spin_lock_irqsave(&cmd->t_state_lock, flags);
4250 if (cmd->transport_state & CMD_T_STOP) {
4251 cmd->transport_state &= ~CMD_T_LUN_STOP;
4252
4253 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4254 cmd->se_tfo->get_task_tag(cmd));
4255 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4256 transport_cmd_check_stop(cmd, 1, 0);
4257 return -EPERM;
4258 }
4259 cmd->transport_state |= CMD_T_LUN_FE_STOP;
4260 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4261
4262 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4263
4264 ret = transport_stop_tasks_for_cmd(cmd);
4265
4266 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4267 " %d\n", cmd, cmd->t_task_list_num, ret);
4268 if (!ret) {
4269 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4270 cmd->se_tfo->get_task_tag(cmd));
4271 wait_for_completion(&cmd->transport_lun_stop_comp);
4272 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4273 cmd->se_tfo->get_task_tag(cmd));
4274 }
4275 transport_remove_cmd_from_queue(cmd);
4276
4277 return 0;
4278 }
4279
__transport_clear_lun_from_sessions(struct se_lun * lun)4280 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4281 {
4282 struct se_cmd *cmd = NULL;
4283 unsigned long lun_flags, cmd_flags;
4284 /*
4285 * Do exception processing and return CHECK_CONDITION status to the
4286 * Initiator Port.
4287 */
4288 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4289 while (!list_empty(&lun->lun_cmd_list)) {
4290 cmd = list_first_entry(&lun->lun_cmd_list,
4291 struct se_cmd, se_lun_node);
4292 list_del_init(&cmd->se_lun_node);
4293
4294 /*
4295 * This will notify iscsi_target_transport.c:
4296 * transport_cmd_check_stop() that a LUN shutdown is in
4297 * progress for the iscsi_cmd_t.
4298 */
4299 spin_lock(&cmd->t_state_lock);
4300 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4301 "_lun_stop for ITT: 0x%08x\n",
4302 cmd->se_lun->unpacked_lun,
4303 cmd->se_tfo->get_task_tag(cmd));
4304 cmd->transport_state |= CMD_T_LUN_STOP;
4305 spin_unlock(&cmd->t_state_lock);
4306
4307 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4308
4309 if (!cmd->se_lun) {
4310 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4311 cmd->se_tfo->get_task_tag(cmd),
4312 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4313 BUG();
4314 }
4315 /*
4316 * If the Storage engine still owns the iscsi_cmd_t, determine
4317 * and/or stop its context.
4318 */
4319 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4320 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4321 cmd->se_tfo->get_task_tag(cmd));
4322
4323 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4324 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4325 continue;
4326 }
4327
4328 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4329 "_wait_for_tasks(): SUCCESS\n",
4330 cmd->se_lun->unpacked_lun,
4331 cmd->se_tfo->get_task_tag(cmd));
4332
4333 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4334 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4335 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4336 goto check_cond;
4337 }
4338 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4339 transport_all_task_dev_remove_state(cmd);
4340 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4341
4342 transport_free_dev_tasks(cmd);
4343 /*
4344 * The Storage engine stopped this struct se_cmd before it was
4345 * send to the fabric frontend for delivery back to the
4346 * Initiator Node. Return this SCSI CDB back with an
4347 * CHECK_CONDITION status.
4348 */
4349 check_cond:
4350 transport_send_check_condition_and_sense(cmd,
4351 TCM_NON_EXISTENT_LUN, 0);
4352 /*
4353 * If the fabric frontend is waiting for this iscsi_cmd_t to
4354 * be released, notify the waiting thread now that LU has
4355 * finished accessing it.
4356 */
4357 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4358 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4359 pr_debug("SE_LUN[%d] - Detected FE stop for"
4360 " struct se_cmd: %p ITT: 0x%08x\n",
4361 lun->unpacked_lun,
4362 cmd, cmd->se_tfo->get_task_tag(cmd));
4363
4364 spin_unlock_irqrestore(&cmd->t_state_lock,
4365 cmd_flags);
4366 transport_cmd_check_stop(cmd, 1, 0);
4367 complete(&cmd->transport_lun_fe_stop_comp);
4368 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4369 continue;
4370 }
4371 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4372 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4373
4374 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4375 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4376 }
4377 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4378 }
4379
transport_clear_lun_thread(void * p)4380 static int transport_clear_lun_thread(void *p)
4381 {
4382 struct se_lun *lun = p;
4383
4384 __transport_clear_lun_from_sessions(lun);
4385 complete(&lun->lun_shutdown_comp);
4386
4387 return 0;
4388 }
4389
transport_clear_lun_from_sessions(struct se_lun * lun)4390 int transport_clear_lun_from_sessions(struct se_lun *lun)
4391 {
4392 struct task_struct *kt;
4393
4394 kt = kthread_run(transport_clear_lun_thread, lun,
4395 "tcm_cl_%u", lun->unpacked_lun);
4396 if (IS_ERR(kt)) {
4397 pr_err("Unable to start clear_lun thread\n");
4398 return PTR_ERR(kt);
4399 }
4400 wait_for_completion(&lun->lun_shutdown_comp);
4401
4402 return 0;
4403 }
4404
4405 /**
4406 * transport_wait_for_tasks - wait for completion to occur
4407 * @cmd: command to wait
4408 *
4409 * Called from frontend fabric context to wait for storage engine
4410 * to pause and/or release frontend generated struct se_cmd.
4411 */
transport_wait_for_tasks(struct se_cmd * cmd)4412 bool transport_wait_for_tasks(struct se_cmd *cmd)
4413 {
4414 unsigned long flags;
4415
4416 spin_lock_irqsave(&cmd->t_state_lock, flags);
4417 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4418 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4419 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4420 return false;
4421 }
4422 /*
4423 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4424 * has been set in transport_set_supported_SAM_opcode().
4425 */
4426 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4427 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4428 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4429 return false;
4430 }
4431 /*
4432 * If we are already stopped due to an external event (ie: LUN shutdown)
4433 * sleep until the connection can have the passed struct se_cmd back.
4434 * The cmd->transport_lun_stopped_sem will be upped by
4435 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4436 * has completed its operation on the struct se_cmd.
4437 */
4438 if (cmd->transport_state & CMD_T_LUN_STOP) {
4439 pr_debug("wait_for_tasks: Stopping"
4440 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4441 "_stop_comp); for ITT: 0x%08x\n",
4442 cmd->se_tfo->get_task_tag(cmd));
4443 /*
4444 * There is a special case for WRITES where a FE exception +
4445 * LUN shutdown means ConfigFS context is still sleeping on
4446 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4447 * We go ahead and up transport_lun_stop_comp just to be sure
4448 * here.
4449 */
4450 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4451 complete(&cmd->transport_lun_stop_comp);
4452 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4453 spin_lock_irqsave(&cmd->t_state_lock, flags);
4454
4455 transport_all_task_dev_remove_state(cmd);
4456 /*
4457 * At this point, the frontend who was the originator of this
4458 * struct se_cmd, now owns the structure and can be released through
4459 * normal means below.
4460 */
4461 pr_debug("wait_for_tasks: Stopped"
4462 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4463 "stop_comp); for ITT: 0x%08x\n",
4464 cmd->se_tfo->get_task_tag(cmd));
4465
4466 cmd->transport_state &= ~CMD_T_LUN_STOP;
4467 }
4468
4469 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4470 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4471 return false;
4472 }
4473
4474 cmd->transport_state |= CMD_T_STOP;
4475
4476 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4477 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4478 cmd, cmd->se_tfo->get_task_tag(cmd),
4479 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4480
4481 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4482
4483 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4484
4485 wait_for_completion(&cmd->t_transport_stop_comp);
4486
4487 spin_lock_irqsave(&cmd->t_state_lock, flags);
4488 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4489
4490 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4491 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4492 cmd->se_tfo->get_task_tag(cmd));
4493
4494 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4495
4496 return true;
4497 }
4498 EXPORT_SYMBOL(transport_wait_for_tasks);
4499
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)4500 static int transport_get_sense_codes(
4501 struct se_cmd *cmd,
4502 u8 *asc,
4503 u8 *ascq)
4504 {
4505 *asc = cmd->scsi_asc;
4506 *ascq = cmd->scsi_ascq;
4507
4508 return 0;
4509 }
4510
transport_set_sense_codes(struct se_cmd * cmd,u8 asc,u8 ascq)4511 static int transport_set_sense_codes(
4512 struct se_cmd *cmd,
4513 u8 asc,
4514 u8 ascq)
4515 {
4516 cmd->scsi_asc = asc;
4517 cmd->scsi_ascq = ascq;
4518
4519 return 0;
4520 }
4521
transport_send_check_condition_and_sense(struct se_cmd * cmd,u8 reason,int from_transport)4522 int transport_send_check_condition_and_sense(
4523 struct se_cmd *cmd,
4524 u8 reason,
4525 int from_transport)
4526 {
4527 unsigned char *buffer = cmd->sense_buffer;
4528 unsigned long flags;
4529 int offset;
4530 u8 asc = 0, ascq = 0;
4531
4532 spin_lock_irqsave(&cmd->t_state_lock, flags);
4533 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4534 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4535 return 0;
4536 }
4537 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4538 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4539
4540 if (!reason && from_transport)
4541 goto after_reason;
4542
4543 if (!from_transport)
4544 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4545 /*
4546 * Data Segment and SenseLength of the fabric response PDU.
4547 *
4548 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4549 * from include/scsi/scsi_cmnd.h
4550 */
4551 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4552 TRANSPORT_SENSE_BUFFER);
4553 /*
4554 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4555 * SENSE KEY values from include/scsi/scsi.h
4556 */
4557 switch (reason) {
4558 case TCM_NON_EXISTENT_LUN:
4559 /* CURRENT ERROR */
4560 buffer[offset] = 0x70;
4561 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4562 /* ILLEGAL REQUEST */
4563 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4564 /* LOGICAL UNIT NOT SUPPORTED */
4565 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4566 break;
4567 case TCM_UNSUPPORTED_SCSI_OPCODE:
4568 case TCM_SECTOR_COUNT_TOO_MANY:
4569 /* CURRENT ERROR */
4570 buffer[offset] = 0x70;
4571 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4572 /* ILLEGAL REQUEST */
4573 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4574 /* INVALID COMMAND OPERATION CODE */
4575 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4576 break;
4577 case TCM_UNKNOWN_MODE_PAGE:
4578 /* CURRENT ERROR */
4579 buffer[offset] = 0x70;
4580 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4581 /* ILLEGAL REQUEST */
4582 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4583 /* INVALID FIELD IN CDB */
4584 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4585 break;
4586 case TCM_CHECK_CONDITION_ABORT_CMD:
4587 /* CURRENT ERROR */
4588 buffer[offset] = 0x70;
4589 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4590 /* ABORTED COMMAND */
4591 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4592 /* BUS DEVICE RESET FUNCTION OCCURRED */
4593 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4594 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4595 break;
4596 case TCM_INCORRECT_AMOUNT_OF_DATA:
4597 /* CURRENT ERROR */
4598 buffer[offset] = 0x70;
4599 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4600 /* ABORTED COMMAND */
4601 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4602 /* WRITE ERROR */
4603 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4604 /* NOT ENOUGH UNSOLICITED DATA */
4605 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4606 break;
4607 case TCM_INVALID_CDB_FIELD:
4608 /* CURRENT ERROR */
4609 buffer[offset] = 0x70;
4610 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4611 /* ILLEGAL REQUEST */
4612 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4613 /* INVALID FIELD IN CDB */
4614 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4615 break;
4616 case TCM_INVALID_PARAMETER_LIST:
4617 /* CURRENT ERROR */
4618 buffer[offset] = 0x70;
4619 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4620 /* ILLEGAL REQUEST */
4621 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4622 /* INVALID FIELD IN PARAMETER LIST */
4623 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4624 break;
4625 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4626 /* CURRENT ERROR */
4627 buffer[offset] = 0x70;
4628 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4629 /* ABORTED COMMAND */
4630 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4631 /* WRITE ERROR */
4632 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4633 /* UNEXPECTED_UNSOLICITED_DATA */
4634 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4635 break;
4636 case TCM_SERVICE_CRC_ERROR:
4637 /* CURRENT ERROR */
4638 buffer[offset] = 0x70;
4639 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4640 /* ABORTED COMMAND */
4641 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4642 /* PROTOCOL SERVICE CRC ERROR */
4643 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4644 /* N/A */
4645 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4646 break;
4647 case TCM_SNACK_REJECTED:
4648 /* CURRENT ERROR */
4649 buffer[offset] = 0x70;
4650 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4651 /* ABORTED COMMAND */
4652 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4653 /* READ ERROR */
4654 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4655 /* FAILED RETRANSMISSION REQUEST */
4656 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4657 break;
4658 case TCM_WRITE_PROTECTED:
4659 /* CURRENT ERROR */
4660 buffer[offset] = 0x70;
4661 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4662 /* DATA PROTECT */
4663 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4664 /* WRITE PROTECTED */
4665 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4666 break;
4667 case TCM_ADDRESS_OUT_OF_RANGE:
4668 /* CURRENT ERROR */
4669 buffer[offset] = 0x70;
4670 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4671 /* ILLEGAL REQUEST */
4672 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4673 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4674 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4675 break;
4676 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4677 /* CURRENT ERROR */
4678 buffer[offset] = 0x70;
4679 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4680 /* UNIT ATTENTION */
4681 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4682 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4683 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4684 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4685 break;
4686 case TCM_CHECK_CONDITION_NOT_READY:
4687 /* CURRENT ERROR */
4688 buffer[offset] = 0x70;
4689 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4690 /* Not Ready */
4691 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4692 transport_get_sense_codes(cmd, &asc, &ascq);
4693 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4694 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4695 break;
4696 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4697 default:
4698 /* CURRENT ERROR */
4699 buffer[offset] = 0x70;
4700 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4701 /* ILLEGAL REQUEST */
4702 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4703 /* LOGICAL UNIT COMMUNICATION FAILURE */
4704 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4705 break;
4706 }
4707 /*
4708 * This code uses linux/include/scsi/scsi.h SAM status codes!
4709 */
4710 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4711 /*
4712 * Automatically padded, this value is encoded in the fabric's
4713 * data_length response PDU containing the SCSI defined sense data.
4714 */
4715 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4716
4717 after_reason:
4718 return cmd->se_tfo->queue_status(cmd);
4719 }
4720 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4721
transport_check_aborted_status(struct se_cmd * cmd,int send_status)4722 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4723 {
4724 int ret = 0;
4725
4726 if (cmd->transport_state & CMD_T_ABORTED) {
4727 if (!send_status ||
4728 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4729 return 1;
4730 #if 0
4731 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4732 " status for CDB: 0x%02x ITT: 0x%08x\n",
4733 cmd->t_task_cdb[0],
4734 cmd->se_tfo->get_task_tag(cmd));
4735 #endif
4736 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4737 cmd->se_tfo->queue_status(cmd);
4738 ret = 1;
4739 }
4740 return ret;
4741 }
4742 EXPORT_SYMBOL(transport_check_aborted_status);
4743
transport_send_task_abort(struct se_cmd * cmd)4744 void transport_send_task_abort(struct se_cmd *cmd)
4745 {
4746 unsigned long flags;
4747
4748 spin_lock_irqsave(&cmd->t_state_lock, flags);
4749 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4750 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4751 return;
4752 }
4753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4754
4755 /*
4756 * If there are still expected incoming fabric WRITEs, we wait
4757 * until until they have completed before sending a TASK_ABORTED
4758 * response. This response with TASK_ABORTED status will be
4759 * queued back to fabric module by transport_check_aborted_status().
4760 */
4761 if (cmd->data_direction == DMA_TO_DEVICE) {
4762 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4763 cmd->transport_state |= CMD_T_ABORTED;
4764 smp_mb__after_atomic_inc();
4765 }
4766 }
4767 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4768 #if 0
4769 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4770 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4771 cmd->se_tfo->get_task_tag(cmd));
4772 #endif
4773 cmd->se_tfo->queue_status(cmd);
4774 }
4775
transport_generic_do_tmr(struct se_cmd * cmd)4776 static int transport_generic_do_tmr(struct se_cmd *cmd)
4777 {
4778 struct se_device *dev = cmd->se_dev;
4779 struct se_tmr_req *tmr = cmd->se_tmr_req;
4780 int ret;
4781
4782 switch (tmr->function) {
4783 case TMR_ABORT_TASK:
4784 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4785 break;
4786 case TMR_ABORT_TASK_SET:
4787 case TMR_CLEAR_ACA:
4788 case TMR_CLEAR_TASK_SET:
4789 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4790 break;
4791 case TMR_LUN_RESET:
4792 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4793 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4794 TMR_FUNCTION_REJECTED;
4795 break;
4796 case TMR_TARGET_WARM_RESET:
4797 tmr->response = TMR_FUNCTION_REJECTED;
4798 break;
4799 case TMR_TARGET_COLD_RESET:
4800 tmr->response = TMR_FUNCTION_REJECTED;
4801 break;
4802 default:
4803 pr_err("Uknown TMR function: 0x%02x.\n",
4804 tmr->function);
4805 tmr->response = TMR_FUNCTION_REJECTED;
4806 break;
4807 }
4808
4809 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4810 cmd->se_tfo->queue_tm_rsp(cmd);
4811
4812 transport_cmd_check_stop_to_fabric(cmd);
4813 return 0;
4814 }
4815
4816 /* transport_processing_thread():
4817 *
4818 *
4819 */
transport_processing_thread(void * param)4820 static int transport_processing_thread(void *param)
4821 {
4822 int ret;
4823 struct se_cmd *cmd;
4824 struct se_device *dev = param;
4825
4826 while (!kthread_should_stop()) {
4827 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4828 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4829 kthread_should_stop());
4830 if (ret < 0)
4831 goto out;
4832
4833 get_cmd:
4834 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4835 if (!cmd)
4836 continue;
4837
4838 switch (cmd->t_state) {
4839 case TRANSPORT_NEW_CMD:
4840 BUG();
4841 break;
4842 case TRANSPORT_NEW_CMD_MAP:
4843 if (!cmd->se_tfo->new_cmd_map) {
4844 pr_err("cmd->se_tfo->new_cmd_map is"
4845 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4846 BUG();
4847 }
4848 ret = cmd->se_tfo->new_cmd_map(cmd);
4849 if (ret < 0) {
4850 transport_generic_request_failure(cmd);
4851 break;
4852 }
4853 ret = transport_generic_new_cmd(cmd);
4854 if (ret < 0) {
4855 transport_generic_request_failure(cmd);
4856 break;
4857 }
4858 break;
4859 case TRANSPORT_PROCESS_WRITE:
4860 transport_generic_process_write(cmd);
4861 break;
4862 case TRANSPORT_PROCESS_TMR:
4863 transport_generic_do_tmr(cmd);
4864 break;
4865 case TRANSPORT_COMPLETE_QF_WP:
4866 transport_write_pending_qf(cmd);
4867 break;
4868 case TRANSPORT_COMPLETE_QF_OK:
4869 transport_complete_qf(cmd);
4870 break;
4871 default:
4872 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4873 "i_state: %d on SE LUN: %u\n",
4874 cmd->t_state,
4875 cmd->se_tfo->get_task_tag(cmd),
4876 cmd->se_tfo->get_cmd_state(cmd),
4877 cmd->se_lun->unpacked_lun);
4878 BUG();
4879 }
4880
4881 goto get_cmd;
4882 }
4883
4884 out:
4885 WARN_ON(!list_empty(&dev->state_task_list));
4886 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4887 dev->process_thread = NULL;
4888 return 0;
4889 }
4890