• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28 
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47 
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52 
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57 
58 static int sub_api_initialized;
59 
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68 
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 		struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81 
init_se_kmem_caches(void)82 int init_se_kmem_caches(void)
83 {
84 	se_sess_cache = kmem_cache_create("se_sess_cache",
85 			sizeof(struct se_session), __alignof__(struct se_session),
86 			0, NULL);
87 	if (!se_sess_cache) {
88 		pr_err("kmem_cache_create() for struct se_session"
89 				" failed\n");
90 		goto out;
91 	}
92 	se_ua_cache = kmem_cache_create("se_ua_cache",
93 			sizeof(struct se_ua), __alignof__(struct se_ua),
94 			0, NULL);
95 	if (!se_ua_cache) {
96 		pr_err("kmem_cache_create() for struct se_ua failed\n");
97 		goto out_free_sess_cache;
98 	}
99 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100 			sizeof(struct t10_pr_registration),
101 			__alignof__(struct t10_pr_registration), 0, NULL);
102 	if (!t10_pr_reg_cache) {
103 		pr_err("kmem_cache_create() for struct t10_pr_registration"
104 				" failed\n");
105 		goto out_free_ua_cache;
106 	}
107 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109 			0, NULL);
110 	if (!t10_alua_lu_gp_cache) {
111 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112 				" failed\n");
113 		goto out_free_pr_reg_cache;
114 	}
115 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116 			sizeof(struct t10_alua_lu_gp_member),
117 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118 	if (!t10_alua_lu_gp_mem_cache) {
119 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120 				"cache failed\n");
121 		goto out_free_lu_gp_cache;
122 	}
123 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124 			sizeof(struct t10_alua_tg_pt_gp),
125 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126 	if (!t10_alua_tg_pt_gp_cache) {
127 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 				"cache failed\n");
129 		goto out_free_lu_gp_mem_cache;
130 	}
131 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132 			"t10_alua_tg_pt_gp_mem_cache",
133 			sizeof(struct t10_alua_tg_pt_gp_member),
134 			__alignof__(struct t10_alua_tg_pt_gp_member),
135 			0, NULL);
136 	if (!t10_alua_tg_pt_gp_mem_cache) {
137 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138 				"mem_t failed\n");
139 		goto out_free_tg_pt_gp_cache;
140 	}
141 
142 	target_completion_wq = alloc_workqueue("target_completion",
143 					       WQ_MEM_RECLAIM, 0);
144 	if (!target_completion_wq)
145 		goto out_free_tg_pt_gp_mem_cache;
146 
147 	return 0;
148 
149 out_free_tg_pt_gp_mem_cache:
150 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178 
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182 
183 /*
184  * Allocate a new row index for the entry type specified
185  */
scsi_get_new_index(scsi_index_t type)186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188 	u32 new_index;
189 
190 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191 
192 	spin_lock(&scsi_mib_index_lock);
193 	new_index = ++scsi_mib_index[type];
194 	spin_unlock(&scsi_mib_index_lock);
195 
196 	return new_index;
197 }
198 
transport_init_queue_obj(struct se_queue_obj * qobj)199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201 	atomic_set(&qobj->queue_cnt, 0);
202 	INIT_LIST_HEAD(&qobj->qobj_list);
203 	init_waitqueue_head(&qobj->thread_wq);
204 	spin_lock_init(&qobj->cmd_queue_lock);
205 }
206 
transport_subsystem_check_init(void)207 void transport_subsystem_check_init(void)
208 {
209 	int ret;
210 
211 	if (sub_api_initialized)
212 		return;
213 
214 	ret = request_module("target_core_iblock");
215 	if (ret != 0)
216 		pr_err("Unable to load target_core_iblock\n");
217 
218 	ret = request_module("target_core_file");
219 	if (ret != 0)
220 		pr_err("Unable to load target_core_file\n");
221 
222 	ret = request_module("target_core_pscsi");
223 	if (ret != 0)
224 		pr_err("Unable to load target_core_pscsi\n");
225 
226 	ret = request_module("target_core_stgt");
227 	if (ret != 0)
228 		pr_err("Unable to load target_core_stgt\n");
229 
230 	sub_api_initialized = 1;
231 	return;
232 }
233 
transport_init_session(void)234 struct se_session *transport_init_session(void)
235 {
236 	struct se_session *se_sess;
237 
238 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239 	if (!se_sess) {
240 		pr_err("Unable to allocate struct se_session from"
241 				" se_sess_cache\n");
242 		return ERR_PTR(-ENOMEM);
243 	}
244 	INIT_LIST_HEAD(&se_sess->sess_list);
245 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
246 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
248 	spin_lock_init(&se_sess->sess_cmd_lock);
249 	kref_init(&se_sess->sess_kref);
250 
251 	return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254 
255 /*
256  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)258 void __transport_register_session(
259 	struct se_portal_group *se_tpg,
260 	struct se_node_acl *se_nacl,
261 	struct se_session *se_sess,
262 	void *fabric_sess_ptr)
263 {
264 	unsigned char buf[PR_REG_ISID_LEN];
265 
266 	se_sess->se_tpg = se_tpg;
267 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
268 	/*
269 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270 	 *
271 	 * Only set for struct se_session's that will actually be moving I/O.
272 	 * eg: *NOT* discovery sessions.
273 	 */
274 	if (se_nacl) {
275 		/*
276 		 * If the fabric module supports an ISID based TransportID,
277 		 * save this value in binary from the fabric I_T Nexus now.
278 		 */
279 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280 			memset(&buf[0], 0, PR_REG_ISID_LEN);
281 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282 					&buf[0], PR_REG_ISID_LEN);
283 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284 		}
285 		kref_get(&se_nacl->acl_kref);
286 
287 		spin_lock_irq(&se_nacl->nacl_sess_lock);
288 		/*
289 		 * The se_nacl->nacl_sess pointer will be set to the
290 		 * last active I_T Nexus for each struct se_node_acl.
291 		 */
292 		se_nacl->nacl_sess = se_sess;
293 
294 		list_add_tail(&se_sess->sess_acl_list,
295 			      &se_nacl->acl_sess_list);
296 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
297 	}
298 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299 
300 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)305 void transport_register_session(
306 	struct se_portal_group *se_tpg,
307 	struct se_node_acl *se_nacl,
308 	struct se_session *se_sess,
309 	void *fabric_sess_ptr)
310 {
311 	unsigned long flags;
312 
313 	spin_lock_irqsave(&se_tpg->session_lock, flags);
314 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318 
target_release_session(struct kref * kref)319 static void target_release_session(struct kref *kref)
320 {
321 	struct se_session *se_sess = container_of(kref,
322 			struct se_session, sess_kref);
323 	struct se_portal_group *se_tpg = se_sess->se_tpg;
324 
325 	se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327 
target_get_session(struct se_session * se_sess)328 void target_get_session(struct se_session *se_sess)
329 {
330 	kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333 
target_put_session(struct se_session * se_sess)334 int target_put_session(struct se_session *se_sess)
335 {
336 	return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339 
target_complete_nacl(struct kref * kref)340 static void target_complete_nacl(struct kref *kref)
341 {
342 	struct se_node_acl *nacl = container_of(kref,
343 				struct se_node_acl, acl_kref);
344 
345 	complete(&nacl->acl_free_comp);
346 }
347 
target_put_nacl(struct se_node_acl * nacl)348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350 	kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352 
transport_deregister_session_configfs(struct se_session * se_sess)353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355 	struct se_node_acl *se_nacl;
356 	unsigned long flags;
357 	/*
358 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359 	 */
360 	se_nacl = se_sess->se_node_acl;
361 	if (se_nacl) {
362 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363 		if (se_nacl->acl_stop == 0)
364 			list_del(&se_sess->sess_acl_list);
365 		/*
366 		 * If the session list is empty, then clear the pointer.
367 		 * Otherwise, set the struct se_session pointer from the tail
368 		 * element of the per struct se_node_acl active session list.
369 		 */
370 		if (list_empty(&se_nacl->acl_sess_list))
371 			se_nacl->nacl_sess = NULL;
372 		else {
373 			se_nacl->nacl_sess = container_of(
374 					se_nacl->acl_sess_list.prev,
375 					struct se_session, sess_acl_list);
376 		}
377 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378 	}
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381 
transport_free_session(struct se_session * se_sess)382 void transport_free_session(struct se_session *se_sess)
383 {
384 	kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387 
transport_deregister_session(struct se_session * se_sess)388 void transport_deregister_session(struct se_session *se_sess)
389 {
390 	struct se_portal_group *se_tpg = se_sess->se_tpg;
391 	struct target_core_fabric_ops *se_tfo;
392 	struct se_node_acl *se_nacl;
393 	unsigned long flags;
394 	bool comp_nacl = true;
395 
396 	if (!se_tpg) {
397 		transport_free_session(se_sess);
398 		return;
399 	}
400 	se_tfo = se_tpg->se_tpg_tfo;
401 
402 	spin_lock_irqsave(&se_tpg->session_lock, flags);
403 	list_del(&se_sess->sess_list);
404 	se_sess->se_tpg = NULL;
405 	se_sess->fabric_sess_ptr = NULL;
406 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
407 
408 	/*
409 	 * Determine if we need to do extra work for this initiator node's
410 	 * struct se_node_acl if it had been previously dynamically generated.
411 	 */
412 	se_nacl = se_sess->se_node_acl;
413 
414 	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415 	if (se_nacl && se_nacl->dynamic_node_acl) {
416 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
417 			list_del(&se_nacl->acl_list);
418 			se_tpg->num_node_acls--;
419 			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
420 			core_tpg_wait_for_nacl_pr_ref(se_nacl);
421 			core_free_device_list_for_node(se_nacl, se_tpg);
422 			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
423 
424 			comp_nacl = false;
425 			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 		}
427 	}
428 	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429 
430 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 		se_tpg->se_tpg_tfo->get_fabric_name());
432 	/*
433 	 * If last kref is dropping now for an explict NodeACL, awake sleeping
434 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
435 	 * removal context.
436 	 */
437 	if (se_nacl && comp_nacl == true)
438 		target_put_nacl(se_nacl);
439 
440 	transport_free_session(se_sess);
441 }
442 EXPORT_SYMBOL(transport_deregister_session);
443 
444 /*
445  * Called with cmd->t_state_lock held.
446  */
transport_all_task_dev_remove_state(struct se_cmd * cmd)447 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
448 {
449 	struct se_device *dev = cmd->se_dev;
450 	struct se_task *task;
451 	unsigned long flags;
452 
453 	if (!dev)
454 		return;
455 
456 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
457 		if (task->task_flags & TF_ACTIVE)
458 			continue;
459 
460 		spin_lock_irqsave(&dev->execute_task_lock, flags);
461 		if (task->t_state_active) {
462 			pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463 				cmd->se_tfo->get_task_tag(cmd), dev, task);
464 
465 			list_del(&task->t_state_list);
466 			atomic_dec(&cmd->t_task_cdbs_ex_left);
467 			task->t_state_active = false;
468 		}
469 		spin_unlock_irqrestore(&dev->execute_task_lock, flags);
470 	}
471 
472 }
473 
474 /*	transport_cmd_check_stop():
475  *
476  *	'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477  *	'transport_off = 2' determines if task_dev_state should be removed.
478  *
479  *	A non-zero u8 t_state sets cmd->t_state.
480  *	Returns 1 when command is stopped, else 0.
481  */
transport_cmd_check_stop(struct se_cmd * cmd,int transport_off,u8 t_state)482 static int transport_cmd_check_stop(
483 	struct se_cmd *cmd,
484 	int transport_off,
485 	u8 t_state)
486 {
487 	unsigned long flags;
488 
489 	spin_lock_irqsave(&cmd->t_state_lock, flags);
490 	/*
491 	 * Determine if IOCTL context caller in requesting the stopping of this
492 	 * command for LUN shutdown purposes.
493 	 */
494 	if (cmd->transport_state & CMD_T_LUN_STOP) {
495 		pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496 			__func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
497 
498 		cmd->transport_state &= ~CMD_T_ACTIVE;
499 		if (transport_off == 2)
500 			transport_all_task_dev_remove_state(cmd);
501 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
502 
503 		complete(&cmd->transport_lun_stop_comp);
504 		return 1;
505 	}
506 	/*
507 	 * Determine if frontend context caller is requesting the stopping of
508 	 * this command for frontend exceptions.
509 	 */
510 	if (cmd->transport_state & CMD_T_STOP) {
511 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
512 			__func__, __LINE__,
513 			cmd->se_tfo->get_task_tag(cmd));
514 
515 		if (transport_off == 2)
516 			transport_all_task_dev_remove_state(cmd);
517 
518 		/*
519 		 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520 		 * to FE.
521 		 */
522 		if (transport_off == 2)
523 			cmd->se_lun = NULL;
524 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525 
526 		complete(&cmd->t_transport_stop_comp);
527 		return 1;
528 	}
529 	if (transport_off) {
530 		cmd->transport_state &= ~CMD_T_ACTIVE;
531 		if (transport_off == 2) {
532 			transport_all_task_dev_remove_state(cmd);
533 			/*
534 			 * Clear struct se_cmd->se_lun before the transport_off == 2
535 			 * handoff to fabric module.
536 			 */
537 			cmd->se_lun = NULL;
538 			/*
539 			 * Some fabric modules like tcm_loop can release
540 			 * their internally allocated I/O reference now and
541 			 * struct se_cmd now.
542 			 *
543 			 * Fabric modules are expected to return '1' here if the
544 			 * se_cmd being passed is released at this point,
545 			 * or zero if not being released.
546 			 */
547 			if (cmd->se_tfo->check_stop_free != NULL) {
548 				spin_unlock_irqrestore(
549 					&cmd->t_state_lock, flags);
550 
551 				return cmd->se_tfo->check_stop_free(cmd);
552 			}
553 		}
554 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555 
556 		return 0;
557 	} else if (t_state)
558 		cmd->t_state = t_state;
559 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560 
561 	return 0;
562 }
563 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)564 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
565 {
566 	return transport_cmd_check_stop(cmd, 2, 0);
567 }
568 
transport_lun_remove_cmd(struct se_cmd * cmd)569 static void transport_lun_remove_cmd(struct se_cmd *cmd)
570 {
571 	struct se_lun *lun = cmd->se_lun;
572 	unsigned long flags;
573 
574 	if (!lun)
575 		return;
576 
577 	spin_lock_irqsave(&cmd->t_state_lock, flags);
578 	if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
579 		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
580 		transport_all_task_dev_remove_state(cmd);
581 	}
582 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583 
584 	spin_lock_irqsave(&lun->lun_cmd_lock, flags);
585 	if (!list_empty(&cmd->se_lun_node))
586 		list_del_init(&cmd->se_lun_node);
587 	spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
593 		transport_lun_remove_cmd(cmd);
594 
595 	if (transport_cmd_check_stop_to_fabric(cmd))
596 		return;
597 	if (remove) {
598 		transport_remove_cmd_from_queue(cmd);
599 		transport_put_cmd(cmd);
600 	}
601 }
602 
transport_add_cmd_to_queue(struct se_cmd * cmd,int t_state,bool at_head)603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604 		bool at_head)
605 {
606 	struct se_device *dev = cmd->se_dev;
607 	struct se_queue_obj *qobj = &dev->dev_queue_obj;
608 	unsigned long flags;
609 
610 	if (t_state) {
611 		spin_lock_irqsave(&cmd->t_state_lock, flags);
612 		cmd->t_state = t_state;
613 		cmd->transport_state |= CMD_T_ACTIVE;
614 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615 	}
616 
617 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618 
619 	/* If the cmd is already on the list, remove it before we add it */
620 	if (!list_empty(&cmd->se_queue_node))
621 		list_del(&cmd->se_queue_node);
622 	else
623 		atomic_inc(&qobj->queue_cnt);
624 
625 	if (at_head)
626 		list_add(&cmd->se_queue_node, &qobj->qobj_list);
627 	else
628 		list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629 	cmd->transport_state |= CMD_T_QUEUED;
630 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631 
632 	wake_up_interruptible(&qobj->thread_wq);
633 }
634 
635 static struct se_cmd *
transport_get_cmd_from_queue(struct se_queue_obj * qobj)636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638 	struct se_cmd *cmd;
639 	unsigned long flags;
640 
641 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642 	if (list_empty(&qobj->qobj_list)) {
643 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644 		return NULL;
645 	}
646 	cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647 
648 	cmd->transport_state &= ~CMD_T_QUEUED;
649 	list_del_init(&cmd->se_queue_node);
650 	atomic_dec(&qobj->queue_cnt);
651 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
652 
653 	return cmd;
654 }
655 
transport_remove_cmd_from_queue(struct se_cmd * cmd)656 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
657 {
658 	struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
659 	unsigned long flags;
660 
661 	spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
662 	if (!(cmd->transport_state & CMD_T_QUEUED)) {
663 		spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664 		return;
665 	}
666 	cmd->transport_state &= ~CMD_T_QUEUED;
667 	atomic_dec(&qobj->queue_cnt);
668 	list_del_init(&cmd->se_queue_node);
669 	spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 }
671 
672 /*
673  * Completion function used by TCM subsystem plugins (such as FILEIO)
674  * for queueing up response from struct se_subsystem_api->do_task()
675  */
transport_complete_sync_cache(struct se_cmd * cmd,int good)676 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
677 {
678 	struct se_task *task = list_entry(cmd->t_task_list.next,
679 				struct se_task, t_list);
680 
681 	if (good) {
682 		cmd->scsi_status = SAM_STAT_GOOD;
683 		task->task_scsi_status = GOOD;
684 	} else {
685 		task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
686 		task->task_se_cmd->scsi_sense_reason =
687 				TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
688 
689 	}
690 
691 	transport_complete_task(task, good);
692 }
693 EXPORT_SYMBOL(transport_complete_sync_cache);
694 
target_complete_failure_work(struct work_struct * work)695 static void target_complete_failure_work(struct work_struct *work)
696 {
697 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698 
699 	transport_generic_request_failure(cmd);
700 }
701 
702 /*	transport_complete_task():
703  *
704  *	Called from interrupt and non interrupt context depending
705  *	on the transport plugin.
706  */
transport_complete_task(struct se_task * task,int success)707 void transport_complete_task(struct se_task *task, int success)
708 {
709 	struct se_cmd *cmd = task->task_se_cmd;
710 	struct se_device *dev = cmd->se_dev;
711 	unsigned long flags;
712 
713 	spin_lock_irqsave(&cmd->t_state_lock, flags);
714 	task->task_flags &= ~TF_ACTIVE;
715 
716 	/*
717 	 * See if any sense data exists, if so set the TASK_SENSE flag.
718 	 * Also check for any other post completion work that needs to be
719 	 * done by the plugins.
720 	 */
721 	if (dev && dev->transport->transport_complete) {
722 		if (dev->transport->transport_complete(task) != 0) {
723 			cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
724 			task->task_flags |= TF_HAS_SENSE;
725 			success = 1;
726 		}
727 	}
728 
729 	/*
730 	 * See if we are waiting for outstanding struct se_task
731 	 * to complete for an exception condition
732 	 */
733 	if (task->task_flags & TF_REQUEST_STOP) {
734 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
735 		complete(&task->task_stop_comp);
736 		return;
737 	}
738 
739 	if (!success)
740 		cmd->transport_state |= CMD_T_FAILED;
741 
742 	/*
743 	 * Decrement the outstanding t_task_cdbs_left count.  The last
744 	 * struct se_task from struct se_cmd will complete itself into the
745 	 * device queue depending upon int success.
746 	 */
747 	if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
748 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
749 		return;
750 	}
751 	/*
752 	 * Check for case where an explict ABORT_TASK has been received
753 	 * and transport_wait_for_tasks() will be waiting for completion..
754 	 */
755 	if (cmd->transport_state & CMD_T_ABORTED &&
756 	    cmd->transport_state & CMD_T_STOP) {
757 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 		complete(&cmd->t_transport_stop_comp);
759 		return;
760 	} else if (cmd->transport_state & CMD_T_FAILED) {
761 		cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
762 		INIT_WORK(&cmd->work, target_complete_failure_work);
763 	} else {
764 		INIT_WORK(&cmd->work, target_complete_ok_work);
765 	}
766 
767 	cmd->t_state = TRANSPORT_COMPLETE;
768 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
769 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770 
771 	queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774 
775 /*
776  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777  * struct se_task list are ready to be added to the active execution list
778  * struct se_device
779 
780  * Called with se_dev_t->execute_task_lock called.
781  */
transport_add_task_check_sam_attr(struct se_task * task,struct se_task * task_prev,struct se_device * dev)782 static inline int transport_add_task_check_sam_attr(
783 	struct se_task *task,
784 	struct se_task *task_prev,
785 	struct se_device *dev)
786 {
787 	/*
788 	 * No SAM Task attribute emulation enabled, add to tail of
789 	 * execution queue
790 	 */
791 	if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792 		list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 		return 0;
794 	}
795 	/*
796 	 * HEAD_OF_QUEUE attribute for received CDB, which means
797 	 * the first task that is associated with a struct se_cmd goes to
798 	 * head of the struct se_device->execute_task_list, and task_prev
799 	 * after that for each subsequent task
800 	 */
801 	if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802 		list_add(&task->t_execute_list,
803 				(task_prev != NULL) ?
804 				&task_prev->t_execute_list :
805 				&dev->execute_task_list);
806 
807 		pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808 				" in execution queue\n",
809 				task->task_se_cmd->t_task_cdb[0]);
810 		return 1;
811 	}
812 	/*
813 	 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814 	 * transitioned from Dermant -> Active state, and are added to the end
815 	 * of the struct se_device->execute_task_list
816 	 */
817 	list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818 	return 0;
819 }
820 
821 /*	__transport_add_task_to_execute_queue():
822  *
823  *	Called with se_dev_t->execute_task_lock called.
824  */
__transport_add_task_to_execute_queue(struct se_task * task,struct se_task * task_prev,struct se_device * dev)825 static void __transport_add_task_to_execute_queue(
826 	struct se_task *task,
827 	struct se_task *task_prev,
828 	struct se_device *dev)
829 {
830 	int head_of_queue;
831 
832 	head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833 	atomic_inc(&dev->execute_tasks);
834 
835 	if (task->t_state_active)
836 		return;
837 	/*
838 	 * Determine if this task needs to go to HEAD_OF_QUEUE for the
839 	 * state list as well.  Running with SAM Task Attribute emulation
840 	 * will always return head_of_queue == 0 here
841 	 */
842 	if (head_of_queue)
843 		list_add(&task->t_state_list, (task_prev) ?
844 				&task_prev->t_state_list :
845 				&dev->state_task_list);
846 	else
847 		list_add_tail(&task->t_state_list, &dev->state_task_list);
848 
849 	task->t_state_active = true;
850 
851 	pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852 		task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853 		task, dev);
854 }
855 
transport_add_tasks_to_state_queue(struct se_cmd * cmd)856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858 	struct se_device *dev = cmd->se_dev;
859 	struct se_task *task;
860 	unsigned long flags;
861 
862 	spin_lock_irqsave(&cmd->t_state_lock, flags);
863 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
864 		spin_lock(&dev->execute_task_lock);
865 		if (!task->t_state_active) {
866 			list_add_tail(&task->t_state_list,
867 				      &dev->state_task_list);
868 			task->t_state_active = true;
869 
870 			pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 				task->task_se_cmd->se_tfo->get_task_tag(
872 				task->task_se_cmd), task, dev);
873 		}
874 		spin_unlock(&dev->execute_task_lock);
875 	}
876 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878 
__transport_add_tasks_from_cmd(struct se_cmd * cmd)879 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881 	struct se_device *dev = cmd->se_dev;
882 	struct se_task *task, *task_prev = NULL;
883 
884 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
885 		if (!list_empty(&task->t_execute_list))
886 			continue;
887 		/*
888 		 * __transport_add_task_to_execute_queue() handles the
889 		 * SAM Task Attribute emulation if enabled
890 		 */
891 		__transport_add_task_to_execute_queue(task, task_prev, dev);
892 		task_prev = task;
893 	}
894 }
895 
transport_add_tasks_from_cmd(struct se_cmd * cmd)896 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
897 {
898 	unsigned long flags;
899 	struct se_device *dev = cmd->se_dev;
900 
901 	spin_lock_irqsave(&dev->execute_task_lock, flags);
902 	__transport_add_tasks_from_cmd(cmd);
903 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
904 }
905 
__transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)906 void __transport_remove_task_from_execute_queue(struct se_task *task,
907 		struct se_device *dev)
908 {
909 	list_del_init(&task->t_execute_list);
910 	atomic_dec(&dev->execute_tasks);
911 }
912 
transport_remove_task_from_execute_queue(struct se_task * task,struct se_device * dev)913 static void transport_remove_task_from_execute_queue(
914 	struct se_task *task,
915 	struct se_device *dev)
916 {
917 	unsigned long flags;
918 
919 	if (WARN_ON(list_empty(&task->t_execute_list)))
920 		return;
921 
922 	spin_lock_irqsave(&dev->execute_task_lock, flags);
923 	__transport_remove_task_from_execute_queue(task, dev);
924 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
925 }
926 
927 /*
928  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
929  */
930 
target_qf_do_work(struct work_struct * work)931 static void target_qf_do_work(struct work_struct *work)
932 {
933 	struct se_device *dev = container_of(work, struct se_device,
934 					qf_work_queue);
935 	LIST_HEAD(qf_cmd_list);
936 	struct se_cmd *cmd, *cmd_tmp;
937 
938 	spin_lock_irq(&dev->qf_cmd_lock);
939 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
940 	spin_unlock_irq(&dev->qf_cmd_lock);
941 
942 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
943 		list_del(&cmd->se_qf_node);
944 		atomic_dec(&dev->dev_qf_count);
945 		smp_mb__after_atomic_dec();
946 
947 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
949 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
950 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
951 			: "UNKNOWN");
952 
953 		transport_add_cmd_to_queue(cmd, cmd->t_state, true);
954 	}
955 }
956 
transport_dump_cmd_direction(struct se_cmd * cmd)957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959 	switch (cmd->data_direction) {
960 	case DMA_NONE:
961 		return "NONE";
962 	case DMA_FROM_DEVICE:
963 		return "READ";
964 	case DMA_TO_DEVICE:
965 		return "WRITE";
966 	case DMA_BIDIRECTIONAL:
967 		return "BIDI";
968 	default:
969 		break;
970 	}
971 
972 	return "UNKNOWN";
973 }
974 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)975 void transport_dump_dev_state(
976 	struct se_device *dev,
977 	char *b,
978 	int *bl)
979 {
980 	*bl += sprintf(b + *bl, "Status: ");
981 	switch (dev->dev_status) {
982 	case TRANSPORT_DEVICE_ACTIVATED:
983 		*bl += sprintf(b + *bl, "ACTIVATED");
984 		break;
985 	case TRANSPORT_DEVICE_DEACTIVATED:
986 		*bl += sprintf(b + *bl, "DEACTIVATED");
987 		break;
988 	case TRANSPORT_DEVICE_SHUTDOWN:
989 		*bl += sprintf(b + *bl, "SHUTDOWN");
990 		break;
991 	case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
992 	case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
993 		*bl += sprintf(b + *bl, "OFFLINE");
994 		break;
995 	default:
996 		*bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
997 		break;
998 	}
999 
1000 	*bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
1001 		atomic_read(&dev->execute_tasks), dev->queue_depth);
1002 	*bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1003 		dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1004 	*bl += sprintf(b + *bl, "        ");
1005 }
1006 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1007 void transport_dump_vpd_proto_id(
1008 	struct t10_vpd *vpd,
1009 	unsigned char *p_buf,
1010 	int p_buf_len)
1011 {
1012 	unsigned char buf[VPD_TMP_BUF_SIZE];
1013 	int len;
1014 
1015 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1016 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1017 
1018 	switch (vpd->protocol_identifier) {
1019 	case 0x00:
1020 		sprintf(buf+len, "Fibre Channel\n");
1021 		break;
1022 	case 0x10:
1023 		sprintf(buf+len, "Parallel SCSI\n");
1024 		break;
1025 	case 0x20:
1026 		sprintf(buf+len, "SSA\n");
1027 		break;
1028 	case 0x30:
1029 		sprintf(buf+len, "IEEE 1394\n");
1030 		break;
1031 	case 0x40:
1032 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
1033 				" Protocol\n");
1034 		break;
1035 	case 0x50:
1036 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1037 		break;
1038 	case 0x60:
1039 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1040 		break;
1041 	case 0x70:
1042 		sprintf(buf+len, "Automation/Drive Interface Transport"
1043 				" Protocol\n");
1044 		break;
1045 	case 0x80:
1046 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1047 		break;
1048 	default:
1049 		sprintf(buf+len, "Unknown 0x%02x\n",
1050 				vpd->protocol_identifier);
1051 		break;
1052 	}
1053 
1054 	if (p_buf)
1055 		strncpy(p_buf, buf, p_buf_len);
1056 	else
1057 		pr_debug("%s", buf);
1058 }
1059 
1060 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1061 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063 	/*
1064 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
1065 	 *
1066 	 * from spc3r23.pdf section 7.5.1
1067 	 */
1068 	 if (page_83[1] & 0x80) {
1069 		vpd->protocol_identifier = (page_83[0] & 0xf0);
1070 		vpd->protocol_identifier_set = 1;
1071 		transport_dump_vpd_proto_id(vpd, NULL, 0);
1072 	}
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1075 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1076 int transport_dump_vpd_assoc(
1077 	struct t10_vpd *vpd,
1078 	unsigned char *p_buf,
1079 	int p_buf_len)
1080 {
1081 	unsigned char buf[VPD_TMP_BUF_SIZE];
1082 	int ret = 0;
1083 	int len;
1084 
1085 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1086 	len = sprintf(buf, "T10 VPD Identifier Association: ");
1087 
1088 	switch (vpd->association) {
1089 	case 0x00:
1090 		sprintf(buf+len, "addressed logical unit\n");
1091 		break;
1092 	case 0x10:
1093 		sprintf(buf+len, "target port\n");
1094 		break;
1095 	case 0x20:
1096 		sprintf(buf+len, "SCSI target device\n");
1097 		break;
1098 	default:
1099 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1100 		ret = -EINVAL;
1101 		break;
1102 	}
1103 
1104 	if (p_buf)
1105 		strncpy(p_buf, buf, p_buf_len);
1106 	else
1107 		pr_debug("%s", buf);
1108 
1109 	return ret;
1110 }
1111 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1112 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1113 {
1114 	/*
1115 	 * The VPD identification association..
1116 	 *
1117 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
1118 	 */
1119 	vpd->association = (page_83[1] & 0x30);
1120 	return transport_dump_vpd_assoc(vpd, NULL, 0);
1121 }
1122 EXPORT_SYMBOL(transport_set_vpd_assoc);
1123 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1124 int transport_dump_vpd_ident_type(
1125 	struct t10_vpd *vpd,
1126 	unsigned char *p_buf,
1127 	int p_buf_len)
1128 {
1129 	unsigned char buf[VPD_TMP_BUF_SIZE];
1130 	int ret = 0;
1131 	int len;
1132 
1133 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1134 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1135 
1136 	switch (vpd->device_identifier_type) {
1137 	case 0x00:
1138 		sprintf(buf+len, "Vendor specific\n");
1139 		break;
1140 	case 0x01:
1141 		sprintf(buf+len, "T10 Vendor ID based\n");
1142 		break;
1143 	case 0x02:
1144 		sprintf(buf+len, "EUI-64 based\n");
1145 		break;
1146 	case 0x03:
1147 		sprintf(buf+len, "NAA\n");
1148 		break;
1149 	case 0x04:
1150 		sprintf(buf+len, "Relative target port identifier\n");
1151 		break;
1152 	case 0x08:
1153 		sprintf(buf+len, "SCSI name string\n");
1154 		break;
1155 	default:
1156 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1157 				vpd->device_identifier_type);
1158 		ret = -EINVAL;
1159 		break;
1160 	}
1161 
1162 	if (p_buf) {
1163 		if (p_buf_len < strlen(buf)+1)
1164 			return -EINVAL;
1165 		strncpy(p_buf, buf, p_buf_len);
1166 	} else {
1167 		pr_debug("%s", buf);
1168 	}
1169 
1170 	return ret;
1171 }
1172 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1173 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1174 {
1175 	/*
1176 	 * The VPD identifier type..
1177 	 *
1178 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1179 	 */
1180 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1181 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1182 }
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1184 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1185 int transport_dump_vpd_ident(
1186 	struct t10_vpd *vpd,
1187 	unsigned char *p_buf,
1188 	int p_buf_len)
1189 {
1190 	unsigned char buf[VPD_TMP_BUF_SIZE];
1191 	int ret = 0;
1192 
1193 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1194 
1195 	switch (vpd->device_identifier_code_set) {
1196 	case 0x01: /* Binary */
1197 		sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1198 			&vpd->device_identifier[0]);
1199 		break;
1200 	case 0x02: /* ASCII */
1201 		sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1202 			&vpd->device_identifier[0]);
1203 		break;
1204 	case 0x03: /* UTF-8 */
1205 		sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1206 			&vpd->device_identifier[0]);
1207 		break;
1208 	default:
1209 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1210 			" 0x%02x", vpd->device_identifier_code_set);
1211 		ret = -EINVAL;
1212 		break;
1213 	}
1214 
1215 	if (p_buf)
1216 		strncpy(p_buf, buf, p_buf_len);
1217 	else
1218 		pr_debug("%s", buf);
1219 
1220 	return ret;
1221 }
1222 
1223 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1224 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1225 {
1226 	static const char hex_str[] = "0123456789abcdef";
1227 	int j = 0, i = 4; /* offset to start of the identifer */
1228 
1229 	/*
1230 	 * The VPD Code Set (encoding)
1231 	 *
1232 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1233 	 */
1234 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1235 	switch (vpd->device_identifier_code_set) {
1236 	case 0x01: /* Binary */
1237 		vpd->device_identifier[j++] =
1238 				hex_str[vpd->device_identifier_type];
1239 		while (i < (4 + page_83[3])) {
1240 			vpd->device_identifier[j++] =
1241 				hex_str[(page_83[i] & 0xf0) >> 4];
1242 			vpd->device_identifier[j++] =
1243 				hex_str[page_83[i] & 0x0f];
1244 			i++;
1245 		}
1246 		break;
1247 	case 0x02: /* ASCII */
1248 	case 0x03: /* UTF-8 */
1249 		while (i < (4 + page_83[3]))
1250 			vpd->device_identifier[j++] = page_83[i++];
1251 		break;
1252 	default:
1253 		break;
1254 	}
1255 
1256 	return transport_dump_vpd_ident(vpd, NULL, 0);
1257 }
1258 EXPORT_SYMBOL(transport_set_vpd_ident);
1259 
core_setup_task_attr_emulation(struct se_device * dev)1260 static void core_setup_task_attr_emulation(struct se_device *dev)
1261 {
1262 	/*
1263 	 * If this device is from Target_Core_Mod/pSCSI, disable the
1264 	 * SAM Task Attribute emulation.
1265 	 *
1266 	 * This is currently not available in upsream Linux/SCSI Target
1267 	 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1268 	 */
1269 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1270 		dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1271 		return;
1272 	}
1273 
1274 	dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1275 	pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276 		" device\n", dev->transport->name,
1277 		dev->transport->get_device_rev(dev));
1278 }
1279 
scsi_dump_inquiry(struct se_device * dev)1280 static void scsi_dump_inquiry(struct se_device *dev)
1281 {
1282 	struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1283 	char buf[17];
1284 	int i, device_type;
1285 	/*
1286 	 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1287 	 */
1288 	for (i = 0; i < 8; i++)
1289 		if (wwn->vendor[i] >= 0x20)
1290 			buf[i] = wwn->vendor[i];
1291 		else
1292 			buf[i] = ' ';
1293 	buf[i] = '\0';
1294 	pr_debug("  Vendor: %s\n", buf);
1295 
1296 	for (i = 0; i < 16; i++)
1297 		if (wwn->model[i] >= 0x20)
1298 			buf[i] = wwn->model[i];
1299 		else
1300 			buf[i] = ' ';
1301 	buf[i] = '\0';
1302 	pr_debug("  Model: %s\n", buf);
1303 
1304 	for (i = 0; i < 4; i++)
1305 		if (wwn->revision[i] >= 0x20)
1306 			buf[i] = wwn->revision[i];
1307 		else
1308 			buf[i] = ' ';
1309 	buf[i] = '\0';
1310 	pr_debug("  Revision: %s\n", buf);
1311 
1312 	device_type = dev->transport->get_device_type(dev);
1313 	pr_debug("  Type:   %s ", scsi_device_type(device_type));
1314 	pr_debug("                 ANSI SCSI revision: %02x\n",
1315 				dev->transport->get_device_rev(dev));
1316 }
1317 
transport_add_device_to_core_hba(struct se_hba * hba,struct se_subsystem_api * transport,struct se_subsystem_dev * se_dev,u32 device_flags,void * transport_dev,struct se_dev_limits * dev_limits,const char * inquiry_prod,const char * inquiry_rev)1318 struct se_device *transport_add_device_to_core_hba(
1319 	struct se_hba *hba,
1320 	struct se_subsystem_api *transport,
1321 	struct se_subsystem_dev *se_dev,
1322 	u32 device_flags,
1323 	void *transport_dev,
1324 	struct se_dev_limits *dev_limits,
1325 	const char *inquiry_prod,
1326 	const char *inquiry_rev)
1327 {
1328 	int force_pt;
1329 	struct se_device  *dev;
1330 
1331 	dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1332 	if (!dev) {
1333 		pr_err("Unable to allocate memory for se_dev_t\n");
1334 		return NULL;
1335 	}
1336 
1337 	transport_init_queue_obj(&dev->dev_queue_obj);
1338 	dev->dev_flags		= device_flags;
1339 	dev->dev_status		|= TRANSPORT_DEVICE_DEACTIVATED;
1340 	dev->dev_ptr		= transport_dev;
1341 	dev->se_hba		= hba;
1342 	dev->se_sub_dev		= se_dev;
1343 	dev->transport		= transport;
1344 	dev->dev_link_magic	= SE_DEV_LINK_MAGIC;
1345 	INIT_LIST_HEAD(&dev->dev_list);
1346 	INIT_LIST_HEAD(&dev->dev_sep_list);
1347 	INIT_LIST_HEAD(&dev->dev_tmr_list);
1348 	INIT_LIST_HEAD(&dev->execute_task_list);
1349 	INIT_LIST_HEAD(&dev->delayed_cmd_list);
1350 	INIT_LIST_HEAD(&dev->state_task_list);
1351 	INIT_LIST_HEAD(&dev->qf_cmd_list);
1352 	spin_lock_init(&dev->execute_task_lock);
1353 	spin_lock_init(&dev->delayed_cmd_lock);
1354 	spin_lock_init(&dev->dev_reservation_lock);
1355 	spin_lock_init(&dev->dev_status_lock);
1356 	spin_lock_init(&dev->se_port_lock);
1357 	spin_lock_init(&dev->se_tmr_lock);
1358 	spin_lock_init(&dev->qf_cmd_lock);
1359 	atomic_set(&dev->dev_ordered_id, 0);
1360 
1361 	se_dev_set_default_attribs(dev, dev_limits);
1362 
1363 	dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1364 	dev->creation_time = get_jiffies_64();
1365 	spin_lock_init(&dev->stats_lock);
1366 
1367 	spin_lock(&hba->device_lock);
1368 	list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1369 	hba->dev_count++;
1370 	spin_unlock(&hba->device_lock);
1371 	/*
1372 	 * Setup the SAM Task Attribute emulation for struct se_device
1373 	 */
1374 	core_setup_task_attr_emulation(dev);
1375 	/*
1376 	 * Force PR and ALUA passthrough emulation with internal object use.
1377 	 */
1378 	force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1379 	/*
1380 	 * Setup the Reservations infrastructure for struct se_device
1381 	 */
1382 	core_setup_reservations(dev, force_pt);
1383 	/*
1384 	 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1385 	 */
1386 	if (core_setup_alua(dev, force_pt) < 0)
1387 		goto out;
1388 
1389 	/*
1390 	 * Startup the struct se_device processing thread
1391 	 */
1392 	dev->process_thread = kthread_run(transport_processing_thread, dev,
1393 					  "LIO_%s", dev->transport->name);
1394 	if (IS_ERR(dev->process_thread)) {
1395 		pr_err("Unable to create kthread: LIO_%s\n",
1396 			dev->transport->name);
1397 		goto out;
1398 	}
1399 	/*
1400 	 * Setup work_queue for QUEUE_FULL
1401 	 */
1402 	INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1403 	/*
1404 	 * Preload the initial INQUIRY const values if we are doing
1405 	 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 	 * passthrough because this is being provided by the backend LLD.
1407 	 * This is required so that transport_get_inquiry() copies these
1408 	 * originals once back into DEV_T10_WWN(dev) for the virtual device
1409 	 * setup.
1410 	 */
1411 	if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1412 		if (!inquiry_prod || !inquiry_rev) {
1413 			pr_err("All non TCM/pSCSI plugins require"
1414 				" INQUIRY consts\n");
1415 			goto out;
1416 		}
1417 
1418 		strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1419 		strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1420 		strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1421 	}
1422 	scsi_dump_inquiry(dev);
1423 
1424 	return dev;
1425 out:
1426 	kthread_stop(dev->process_thread);
1427 
1428 	spin_lock(&hba->device_lock);
1429 	list_del(&dev->dev_list);
1430 	hba->dev_count--;
1431 	spin_unlock(&hba->device_lock);
1432 
1433 	se_release_vpd_for_dev(dev);
1434 
1435 	kfree(dev);
1436 
1437 	return NULL;
1438 }
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1440 
1441 /*	transport_generic_prepare_cdb():
1442  *
1443  *	Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1444  *	contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445  *	The point of this is since we are mapping iSCSI LUNs to
1446  *	SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447  *	devices and HBAs for a loop.
1448  */
transport_generic_prepare_cdb(unsigned char * cdb)1449 static inline void transport_generic_prepare_cdb(
1450 	unsigned char *cdb)
1451 {
1452 	switch (cdb[0]) {
1453 	case READ_10: /* SBC - RDProtect */
1454 	case READ_12: /* SBC - RDProtect */
1455 	case READ_16: /* SBC - RDProtect */
1456 	case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1457 	case VERIFY: /* SBC - VRProtect */
1458 	case VERIFY_16: /* SBC - VRProtect */
1459 	case WRITE_VERIFY: /* SBC - VRProtect */
1460 	case WRITE_VERIFY_12: /* SBC - VRProtect */
1461 		break;
1462 	default:
1463 		cdb[1] &= 0x1f; /* clear logical unit number */
1464 		break;
1465 	}
1466 }
1467 
1468 static struct se_task *
transport_generic_get_task(struct se_cmd * cmd,enum dma_data_direction data_direction)1469 transport_generic_get_task(struct se_cmd *cmd,
1470 		enum dma_data_direction data_direction)
1471 {
1472 	struct se_task *task;
1473 	struct se_device *dev = cmd->se_dev;
1474 
1475 	task = dev->transport->alloc_task(cmd->t_task_cdb);
1476 	if (!task) {
1477 		pr_err("Unable to allocate struct se_task\n");
1478 		return NULL;
1479 	}
1480 
1481 	INIT_LIST_HEAD(&task->t_list);
1482 	INIT_LIST_HEAD(&task->t_execute_list);
1483 	INIT_LIST_HEAD(&task->t_state_list);
1484 	init_completion(&task->task_stop_comp);
1485 	task->task_se_cmd = cmd;
1486 	task->task_data_direction = data_direction;
1487 
1488 	return task;
1489 }
1490 
1491 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1492 
1493 /*
1494  * Used by fabric modules containing a local struct se_cmd within their
1495  * fabric dependent per I/O descriptor.
1496  */
transport_init_se_cmd(struct se_cmd * cmd,struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1497 void transport_init_se_cmd(
1498 	struct se_cmd *cmd,
1499 	struct target_core_fabric_ops *tfo,
1500 	struct se_session *se_sess,
1501 	u32 data_length,
1502 	int data_direction,
1503 	int task_attr,
1504 	unsigned char *sense_buffer)
1505 {
1506 	INIT_LIST_HEAD(&cmd->se_lun_node);
1507 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1508 	INIT_LIST_HEAD(&cmd->se_qf_node);
1509 	INIT_LIST_HEAD(&cmd->se_queue_node);
1510 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1511 	INIT_LIST_HEAD(&cmd->t_task_list);
1512 	init_completion(&cmd->transport_lun_fe_stop_comp);
1513 	init_completion(&cmd->transport_lun_stop_comp);
1514 	init_completion(&cmd->t_transport_stop_comp);
1515 	init_completion(&cmd->cmd_wait_comp);
1516 	spin_lock_init(&cmd->t_state_lock);
1517 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1518 
1519 	cmd->se_tfo = tfo;
1520 	cmd->se_sess = se_sess;
1521 	cmd->data_length = data_length;
1522 	cmd->data_direction = data_direction;
1523 	cmd->sam_task_attr = task_attr;
1524 	cmd->sense_buffer = sense_buffer;
1525 }
1526 EXPORT_SYMBOL(transport_init_se_cmd);
1527 
transport_check_alloc_task_attr(struct se_cmd * cmd)1528 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1529 {
1530 	/*
1531 	 * Check if SAM Task Attribute emulation is enabled for this
1532 	 * struct se_device storage object
1533 	 */
1534 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1535 		return 0;
1536 
1537 	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1538 		pr_debug("SAM Task Attribute ACA"
1539 			" emulation is not supported\n");
1540 		return -EINVAL;
1541 	}
1542 	/*
1543 	 * Used to determine when ORDERED commands should go from
1544 	 * Dormant to Active status.
1545 	 */
1546 	cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1547 	smp_mb__after_atomic_inc();
1548 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1549 			cmd->se_ordered_id, cmd->sam_task_attr,
1550 			cmd->se_dev->transport->name);
1551 	return 0;
1552 }
1553 
1554 /*	transport_generic_allocate_tasks():
1555  *
1556  *	Called from fabric RX Thread.
1557  */
transport_generic_allocate_tasks(struct se_cmd * cmd,unsigned char * cdb)1558 int transport_generic_allocate_tasks(
1559 	struct se_cmd *cmd,
1560 	unsigned char *cdb)
1561 {
1562 	int ret;
1563 
1564 	transport_generic_prepare_cdb(cdb);
1565 	/*
1566 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1567 	 * for VARIABLE_LENGTH_CMD
1568 	 */
1569 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1570 		pr_err("Received SCSI CDB with command_size: %d that"
1571 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1572 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1573 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1574 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1575 		return -EINVAL;
1576 	}
1577 	/*
1578 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1579 	 * allocate the additional extended CDB buffer now..  Otherwise
1580 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1581 	 */
1582 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1583 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1584 						GFP_KERNEL);
1585 		if (!cmd->t_task_cdb) {
1586 			pr_err("Unable to allocate cmd->t_task_cdb"
1587 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1588 				scsi_command_size(cdb),
1589 				(unsigned long)sizeof(cmd->__t_task_cdb));
1590 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1591 			cmd->scsi_sense_reason =
1592 					TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1593 			return -ENOMEM;
1594 		}
1595 	} else
1596 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1597 	/*
1598 	 * Copy the original CDB into cmd->
1599 	 */
1600 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1601 	/*
1602 	 * Setup the received CDB based on SCSI defined opcodes and
1603 	 * perform unit attention, persistent reservations and ALUA
1604 	 * checks for virtual device backends.  The cmd->t_task_cdb
1605 	 * pointer is expected to be setup before we reach this point.
1606 	 */
1607 	ret = transport_generic_cmd_sequencer(cmd, cdb);
1608 	if (ret < 0)
1609 		return ret;
1610 	/*
1611 	 * Check for SAM Task Attribute Emulation
1612 	 */
1613 	if (transport_check_alloc_task_attr(cmd) < 0) {
1614 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1615 		cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1616 		return -EINVAL;
1617 	}
1618 	spin_lock(&cmd->se_lun->lun_sep_lock);
1619 	if (cmd->se_lun->lun_sep)
1620 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1621 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1622 	return 0;
1623 }
1624 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1625 
1626 /*
1627  * Used by fabric module frontends to queue tasks directly.
1628  * Many only be used from process context only
1629  */
transport_handle_cdb_direct(struct se_cmd * cmd)1630 int transport_handle_cdb_direct(
1631 	struct se_cmd *cmd)
1632 {
1633 	int ret;
1634 
1635 	if (!cmd->se_lun) {
1636 		dump_stack();
1637 		pr_err("cmd->se_lun is NULL\n");
1638 		return -EINVAL;
1639 	}
1640 	if (in_interrupt()) {
1641 		dump_stack();
1642 		pr_err("transport_generic_handle_cdb cannot be called"
1643 				" from interrupt context\n");
1644 		return -EINVAL;
1645 	}
1646 	/*
1647 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1648 	 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1649 	 * in existing usage to ensure that outstanding descriptors are handled
1650 	 * correctly during shutdown via transport_wait_for_tasks()
1651 	 *
1652 	 * Also, we don't take cmd->t_state_lock here as we only expect
1653 	 * this to be called for initial descriptor submission.
1654 	 */
1655 	cmd->t_state = TRANSPORT_NEW_CMD;
1656 	cmd->transport_state |= CMD_T_ACTIVE;
1657 
1658 	/*
1659 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1660 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1661 	 * and call transport_generic_request_failure() if necessary..
1662 	 */
1663 	ret = transport_generic_new_cmd(cmd);
1664 	if (ret < 0)
1665 		transport_generic_request_failure(cmd);
1666 
1667 	return 0;
1668 }
1669 EXPORT_SYMBOL(transport_handle_cdb_direct);
1670 
1671 /**
1672  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1673  *
1674  * @se_cmd: command descriptor to submit
1675  * @se_sess: associated se_sess for endpoint
1676  * @cdb: pointer to SCSI CDB
1677  * @sense: pointer to SCSI sense buffer
1678  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1679  * @data_length: fabric expected data transfer length
1680  * @task_addr: SAM task attribute
1681  * @data_dir: DMA data direction
1682  * @flags: flags for command submission from target_sc_flags_tables
1683  *
1684  * This may only be called from process context, and also currently
1685  * assumes internal allocation of fabric payload buffer by target-core.
1686  **/
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1687 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1688 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1689 		u32 data_length, int task_attr, int data_dir, int flags)
1690 {
1691 	struct se_portal_group *se_tpg;
1692 	int rc;
1693 
1694 	se_tpg = se_sess->se_tpg;
1695 	BUG_ON(!se_tpg);
1696 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1697 	BUG_ON(in_interrupt());
1698 	/*
1699 	 * Initialize se_cmd for target operation.  From this point
1700 	 * exceptions are handled by sending exception status via
1701 	 * target_core_fabric_ops->queue_status() callback
1702 	 */
1703 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1704 				data_length, data_dir, task_attr, sense);
1705 	/*
1706 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1707 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1708 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1709 	 * kref_put() to happen during fabric packet acknowledgement.
1710 	 */
1711 	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1712 	/*
1713 	 * Signal bidirectional data payloads to target-core
1714 	 */
1715 	if (flags & TARGET_SCF_BIDI_OP)
1716 		se_cmd->se_cmd_flags |= SCF_BIDI;
1717 	/*
1718 	 * Locate se_lun pointer and attach it to struct se_cmd
1719 	 */
1720 	if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1721 		transport_send_check_condition_and_sense(se_cmd,
1722 				se_cmd->scsi_sense_reason, 0);
1723 		target_put_sess_cmd(se_sess, se_cmd);
1724 		return;
1725 	}
1726 	/*
1727 	 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1728 	 * allocate the necessary tasks to complete the received CDB+data
1729 	 */
1730 	rc = transport_generic_allocate_tasks(se_cmd, cdb);
1731 	if (rc != 0) {
1732 		transport_generic_request_failure(se_cmd);
1733 		return;
1734 	}
1735 	/*
1736 	 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1737 	 * for immediate execution of READs, otherwise wait for
1738 	 * transport_generic_handle_data() to be called for WRITEs
1739 	 * when fabric has filled the incoming buffer.
1740 	 */
1741 	transport_handle_cdb_direct(se_cmd);
1742 	return;
1743 }
1744 EXPORT_SYMBOL(target_submit_cmd);
1745 
target_complete_tmr_failure(struct work_struct * work)1746 static void target_complete_tmr_failure(struct work_struct *work)
1747 {
1748 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1749 
1750 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1751 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1752 
1753 	transport_cmd_check_stop_to_fabric(se_cmd);
1754 }
1755 
1756 /**
1757  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1758  *                     for TMR CDBs
1759  *
1760  * @se_cmd: command descriptor to submit
1761  * @se_sess: associated se_sess for endpoint
1762  * @sense: pointer to SCSI sense buffer
1763  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1764  * @fabric_context: fabric context for TMR req
1765  * @tm_type: Type of TM request
1766  * @gfp: gfp type for caller
1767  * @tag: referenced task tag for TMR_ABORT_TASK
1768  * @flags: submit cmd flags
1769  *
1770  * Callable from all contexts.
1771  **/
1772 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u32 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1773 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1774 		unsigned char *sense, u32 unpacked_lun,
1775 		void *fabric_tmr_ptr, unsigned char tm_type,
1776 		gfp_t gfp, unsigned int tag, int flags)
1777 {
1778 	struct se_portal_group *se_tpg;
1779 	int ret;
1780 
1781 	se_tpg = se_sess->se_tpg;
1782 	BUG_ON(!se_tpg);
1783 
1784 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1785 			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1786 	/*
1787 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1788 	 * allocation failure.
1789 	 */
1790 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1791 	if (ret < 0)
1792 		return -ENOMEM;
1793 
1794 	if (tm_type == TMR_ABORT_TASK)
1795 		se_cmd->se_tmr_req->ref_task_tag = tag;
1796 
1797 	/* See target_submit_cmd for commentary */
1798 	target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1799 
1800 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1801 	if (ret) {
1802 		/*
1803 		 * For callback during failure handling, push this work off
1804 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1805 		 */
1806 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1807 		schedule_work(&se_cmd->work);
1808 		return 0;
1809 	}
1810 	transport_generic_handle_tmr(se_cmd);
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL(target_submit_tmr);
1814 
1815 /*
1816  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1817  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1818  * complete setup in TCM process context w/ TFO->new_cmd_map().
1819  */
transport_generic_handle_cdb_map(struct se_cmd * cmd)1820 int transport_generic_handle_cdb_map(
1821 	struct se_cmd *cmd)
1822 {
1823 	if (!cmd->se_lun) {
1824 		dump_stack();
1825 		pr_err("cmd->se_lun is NULL\n");
1826 		return -EINVAL;
1827 	}
1828 
1829 	transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1833 
1834 /*	transport_generic_handle_data():
1835  *
1836  *
1837  */
transport_generic_handle_data(struct se_cmd * cmd)1838 int transport_generic_handle_data(
1839 	struct se_cmd *cmd)
1840 {
1841 	/*
1842 	 * For the software fabric case, then we assume the nexus is being
1843 	 * failed/shutdown when signals are pending from the kthread context
1844 	 * caller, so we return a failure.  For the HW target mode case running
1845 	 * in interrupt code, the signal_pending() check is skipped.
1846 	 */
1847 	if (!in_interrupt() && signal_pending(current))
1848 		return -EPERM;
1849 	/*
1850 	 * If the received CDB has aleady been ABORTED by the generic
1851 	 * target engine, we now call transport_check_aborted_status()
1852 	 * to queue any delated TASK_ABORTED status for the received CDB to the
1853 	 * fabric module as we are expecting no further incoming DATA OUT
1854 	 * sequences at this point.
1855 	 */
1856 	if (transport_check_aborted_status(cmd, 1) != 0)
1857 		return 0;
1858 
1859 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1860 	return 0;
1861 }
1862 EXPORT_SYMBOL(transport_generic_handle_data);
1863 
1864 /*	transport_generic_handle_tmr():
1865  *
1866  *
1867  */
transport_generic_handle_tmr(struct se_cmd * cmd)1868 int transport_generic_handle_tmr(
1869 	struct se_cmd *cmd)
1870 {
1871 	transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1872 	return 0;
1873 }
1874 EXPORT_SYMBOL(transport_generic_handle_tmr);
1875 
1876 /*
1877  * If the task is active, request it to be stopped and sleep until it
1878  * has completed.
1879  */
target_stop_task(struct se_task * task,unsigned long * flags)1880 bool target_stop_task(struct se_task *task, unsigned long *flags)
1881 {
1882 	struct se_cmd *cmd = task->task_se_cmd;
1883 	bool was_active = false;
1884 
1885 	if (task->task_flags & TF_ACTIVE) {
1886 		task->task_flags |= TF_REQUEST_STOP;
1887 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1888 
1889 		pr_debug("Task %p waiting to complete\n", task);
1890 		wait_for_completion(&task->task_stop_comp);
1891 		pr_debug("Task %p stopped successfully\n", task);
1892 
1893 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1894 		atomic_dec(&cmd->t_task_cdbs_left);
1895 		task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1896 		was_active = true;
1897 	}
1898 
1899 	return was_active;
1900 }
1901 
transport_stop_tasks_for_cmd(struct se_cmd * cmd)1902 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1903 {
1904 	struct se_task *task, *task_tmp;
1905 	unsigned long flags;
1906 	int ret = 0;
1907 
1908 	pr_debug("ITT[0x%08x] - Stopping tasks\n",
1909 		cmd->se_tfo->get_task_tag(cmd));
1910 
1911 	/*
1912 	 * No tasks remain in the execution queue
1913 	 */
1914 	spin_lock_irqsave(&cmd->t_state_lock, flags);
1915 	list_for_each_entry_safe(task, task_tmp,
1916 				&cmd->t_task_list, t_list) {
1917 		pr_debug("Processing task %p\n", task);
1918 		/*
1919 		 * If the struct se_task has not been sent and is not active,
1920 		 * remove the struct se_task from the execution queue.
1921 		 */
1922 		if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1923 			spin_unlock_irqrestore(&cmd->t_state_lock,
1924 					flags);
1925 			transport_remove_task_from_execute_queue(task,
1926 					cmd->se_dev);
1927 
1928 			pr_debug("Task %p removed from execute queue\n", task);
1929 			spin_lock_irqsave(&cmd->t_state_lock, flags);
1930 			continue;
1931 		}
1932 
1933 		if (!target_stop_task(task, &flags)) {
1934 			pr_debug("Task %p - did nothing\n", task);
1935 			ret++;
1936 		}
1937 	}
1938 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1939 
1940 	return ret;
1941 }
1942 
1943 /*
1944  * Handle SAM-esque emulation for generic transport request failures.
1945  */
transport_generic_request_failure(struct se_cmd * cmd)1946 void transport_generic_request_failure(struct se_cmd *cmd)
1947 {
1948 	int ret = 0;
1949 
1950 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1952 		cmd->t_task_cdb[0]);
1953 	pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1954 		cmd->se_tfo->get_cmd_state(cmd),
1955 		cmd->t_state, cmd->scsi_sense_reason);
1956 	pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1957 		" t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1958 		" CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1959 		cmd->t_task_list_num,
1960 		atomic_read(&cmd->t_task_cdbs_left),
1961 		atomic_read(&cmd->t_task_cdbs_sent),
1962 		atomic_read(&cmd->t_task_cdbs_ex_left),
1963 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1964 		(cmd->transport_state & CMD_T_STOP) != 0,
1965 		(cmd->transport_state & CMD_T_SENT) != 0);
1966 
1967 	/*
1968 	 * For SAM Task Attribute emulation for failed struct se_cmd
1969 	 */
1970 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1971 		transport_complete_task_attr(cmd);
1972 
1973 	switch (cmd->scsi_sense_reason) {
1974 	case TCM_NON_EXISTENT_LUN:
1975 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1976 	case TCM_INVALID_CDB_FIELD:
1977 	case TCM_INVALID_PARAMETER_LIST:
1978 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1979 	case TCM_UNKNOWN_MODE_PAGE:
1980 	case TCM_WRITE_PROTECTED:
1981 	case TCM_ADDRESS_OUT_OF_RANGE:
1982 	case TCM_CHECK_CONDITION_ABORT_CMD:
1983 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1984 	case TCM_CHECK_CONDITION_NOT_READY:
1985 		break;
1986 	case TCM_RESERVATION_CONFLICT:
1987 		/*
1988 		 * No SENSE Data payload for this case, set SCSI Status
1989 		 * and queue the response to $FABRIC_MOD.
1990 		 *
1991 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1992 		 */
1993 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1994 		/*
1995 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1996 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1997 		 * CONFLICT STATUS.
1998 		 *
1999 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2000 		 */
2001 		if (cmd->se_sess &&
2002 		    cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2003 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2004 				cmd->orig_fe_lun, 0x2C,
2005 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2006 
2007 		ret = cmd->se_tfo->queue_status(cmd);
2008 		if (ret == -EAGAIN || ret == -ENOMEM)
2009 			goto queue_full;
2010 		goto check_stop;
2011 	default:
2012 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2013 			cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2014 		cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2015 		break;
2016 	}
2017 	/*
2018 	 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2019 	 * make the call to transport_send_check_condition_and_sense()
2020 	 * directly.  Otherwise expect the fabric to make the call to
2021 	 * transport_send_check_condition_and_sense() after handling
2022 	 * possible unsoliticied write data payloads.
2023 	 */
2024 	ret = transport_send_check_condition_and_sense(cmd,
2025 			cmd->scsi_sense_reason, 0);
2026 	if (ret == -EAGAIN || ret == -ENOMEM)
2027 		goto queue_full;
2028 
2029 check_stop:
2030 	transport_lun_remove_cmd(cmd);
2031 	if (!transport_cmd_check_stop_to_fabric(cmd))
2032 		;
2033 	return;
2034 
2035 queue_full:
2036 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2037 	transport_handle_queue_full(cmd, cmd->se_dev);
2038 }
2039 EXPORT_SYMBOL(transport_generic_request_failure);
2040 
transport_lba_21(unsigned char * cdb)2041 static inline u32 transport_lba_21(unsigned char *cdb)
2042 {
2043 	return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2044 }
2045 
transport_lba_32(unsigned char * cdb)2046 static inline u32 transport_lba_32(unsigned char *cdb)
2047 {
2048 	return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2049 }
2050 
transport_lba_64(unsigned char * cdb)2051 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2052 {
2053 	unsigned int __v1, __v2;
2054 
2055 	__v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2056 	__v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2057 
2058 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2059 }
2060 
2061 /*
2062  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2063  */
transport_lba_64_ext(unsigned char * cdb)2064 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2065 {
2066 	unsigned int __v1, __v2;
2067 
2068 	__v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2069 	__v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2070 
2071 	return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2072 }
2073 
transport_set_supported_SAM_opcode(struct se_cmd * se_cmd)2074 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2075 {
2076 	unsigned long flags;
2077 
2078 	spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2079 	se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2080 	spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2081 }
2082 
2083 /*
2084  * Called from Fabric Module context from transport_execute_tasks()
2085  *
2086  * The return of this function determins if the tasks from struct se_cmd
2087  * get added to the execution queue in transport_execute_tasks(),
2088  * or are added to the delayed or ordered lists here.
2089  */
transport_execute_task_attr(struct se_cmd * cmd)2090 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2091 {
2092 	if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2093 		return 1;
2094 	/*
2095 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2096 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
2097 	 */
2098 	 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2099 		pr_debug("Added HEAD_OF_QUEUE for CDB:"
2100 			" 0x%02x, se_ordered_id: %u\n",
2101 			cmd->t_task_cdb[0],
2102 			cmd->se_ordered_id);
2103 		return 1;
2104 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2105 		atomic_inc(&cmd->se_dev->dev_ordered_sync);
2106 		smp_mb__after_atomic_inc();
2107 
2108 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2109 				" list, se_ordered_id: %u\n",
2110 				cmd->t_task_cdb[0],
2111 				cmd->se_ordered_id);
2112 		/*
2113 		 * Add ORDERED command to tail of execution queue if
2114 		 * no other older commands exist that need to be
2115 		 * completed first.
2116 		 */
2117 		if (!atomic_read(&cmd->se_dev->simple_cmds))
2118 			return 1;
2119 	} else {
2120 		/*
2121 		 * For SIMPLE and UNTAGGED Task Attribute commands
2122 		 */
2123 		atomic_inc(&cmd->se_dev->simple_cmds);
2124 		smp_mb__after_atomic_inc();
2125 	}
2126 	/*
2127 	 * Otherwise if one or more outstanding ORDERED task attribute exist,
2128 	 * add the dormant task(s) built for the passed struct se_cmd to the
2129 	 * execution queue and become in Active state for this struct se_device.
2130 	 */
2131 	if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2132 		/*
2133 		 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2134 		 * will be drained upon completion of HEAD_OF_QUEUE task.
2135 		 */
2136 		spin_lock(&cmd->se_dev->delayed_cmd_lock);
2137 		cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2138 		list_add_tail(&cmd->se_delayed_node,
2139 				&cmd->se_dev->delayed_cmd_list);
2140 		spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2141 
2142 		pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2143 			" delayed CMD list, se_ordered_id: %u\n",
2144 			cmd->t_task_cdb[0], cmd->sam_task_attr,
2145 			cmd->se_ordered_id);
2146 		/*
2147 		 * Return zero to let transport_execute_tasks() know
2148 		 * not to add the delayed tasks to the execution list.
2149 		 */
2150 		return 0;
2151 	}
2152 	/*
2153 	 * Otherwise, no ORDERED task attributes exist..
2154 	 */
2155 	return 1;
2156 }
2157 
2158 /*
2159  * Called from fabric module context in transport_generic_new_cmd() and
2160  * transport_generic_process_write()
2161  */
transport_execute_tasks(struct se_cmd * cmd)2162 static int transport_execute_tasks(struct se_cmd *cmd)
2163 {
2164 	int add_tasks;
2165 	struct se_device *se_dev = cmd->se_dev;
2166 	/*
2167 	 * Call transport_cmd_check_stop() to see if a fabric exception
2168 	 * has occurred that prevents execution.
2169 	 */
2170 	if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2171 		/*
2172 		 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2173 		 * attribute for the tasks of the received struct se_cmd CDB
2174 		 */
2175 		add_tasks = transport_execute_task_attr(cmd);
2176 		if (!add_tasks)
2177 			goto execute_tasks;
2178 		/*
2179 		 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2180 		 * adds associated se_tasks while holding dev->execute_task_lock
2181 		 * before I/O dispath to avoid a double spinlock access.
2182 		 */
2183 		__transport_execute_tasks(se_dev, cmd);
2184 		return 0;
2185 	}
2186 
2187 execute_tasks:
2188 	__transport_execute_tasks(se_dev, NULL);
2189 	return 0;
2190 }
2191 
2192 /*
2193  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2194  * from struct se_device->execute_task_list and
2195  *
2196  * Called from transport_processing_thread()
2197  */
__transport_execute_tasks(struct se_device * dev,struct se_cmd * new_cmd)2198 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2199 {
2200 	int error;
2201 	struct se_cmd *cmd = NULL;
2202 	struct se_task *task = NULL;
2203 	unsigned long flags;
2204 
2205 check_depth:
2206 	spin_lock_irq(&dev->execute_task_lock);
2207 	if (new_cmd != NULL)
2208 		__transport_add_tasks_from_cmd(new_cmd);
2209 
2210 	if (list_empty(&dev->execute_task_list)) {
2211 		spin_unlock_irq(&dev->execute_task_lock);
2212 		return 0;
2213 	}
2214 	task = list_first_entry(&dev->execute_task_list,
2215 				struct se_task, t_execute_list);
2216 	__transport_remove_task_from_execute_queue(task, dev);
2217 	spin_unlock_irq(&dev->execute_task_lock);
2218 
2219 	cmd = task->task_se_cmd;
2220 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2221 	task->task_flags |= (TF_ACTIVE | TF_SENT);
2222 	atomic_inc(&cmd->t_task_cdbs_sent);
2223 
2224 	if (atomic_read(&cmd->t_task_cdbs_sent) ==
2225 	    cmd->t_task_list_num)
2226 		cmd->transport_state |= CMD_T_SENT;
2227 
2228 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2229 
2230 	if (cmd->execute_task)
2231 		error = cmd->execute_task(task);
2232 	else
2233 		error = dev->transport->do_task(task);
2234 	if (error != 0) {
2235 		spin_lock_irqsave(&cmd->t_state_lock, flags);
2236 		task->task_flags &= ~TF_ACTIVE;
2237 		cmd->transport_state &= ~CMD_T_SENT;
2238 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2239 
2240 		transport_stop_tasks_for_cmd(cmd);
2241 		transport_generic_request_failure(cmd);
2242 	}
2243 
2244 	new_cmd = NULL;
2245 	goto check_depth;
2246 
2247 	return 0;
2248 }
2249 
transport_get_sectors_6(unsigned char * cdb,struct se_cmd * cmd,int * ret)2250 static inline u32 transport_get_sectors_6(
2251 	unsigned char *cdb,
2252 	struct se_cmd *cmd,
2253 	int *ret)
2254 {
2255 	struct se_device *dev = cmd->se_dev;
2256 
2257 	/*
2258 	 * Assume TYPE_DISK for non struct se_device objects.
2259 	 * Use 8-bit sector value.
2260 	 */
2261 	if (!dev)
2262 		goto type_disk;
2263 
2264 	/*
2265 	 * Use 24-bit allocation length for TYPE_TAPE.
2266 	 */
2267 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2268 		return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2269 
2270 	/*
2271 	 * Everything else assume TYPE_DISK Sector CDB location.
2272 	 * Use 8-bit sector value.  SBC-3 says:
2273 	 *
2274 	 *   A TRANSFER LENGTH field set to zero specifies that 256
2275 	 *   logical blocks shall be written.  Any other value
2276 	 *   specifies the number of logical blocks that shall be
2277 	 *   written.
2278 	 */
2279 type_disk:
2280 	return cdb[4] ? : 256;
2281 }
2282 
transport_get_sectors_10(unsigned char * cdb,struct se_cmd * cmd,int * ret)2283 static inline u32 transport_get_sectors_10(
2284 	unsigned char *cdb,
2285 	struct se_cmd *cmd,
2286 	int *ret)
2287 {
2288 	struct se_device *dev = cmd->se_dev;
2289 
2290 	/*
2291 	 * Assume TYPE_DISK for non struct se_device objects.
2292 	 * Use 16-bit sector value.
2293 	 */
2294 	if (!dev)
2295 		goto type_disk;
2296 
2297 	/*
2298 	 * XXX_10 is not defined in SSC, throw an exception
2299 	 */
2300 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2301 		*ret = -EINVAL;
2302 		return 0;
2303 	}
2304 
2305 	/*
2306 	 * Everything else assume TYPE_DISK Sector CDB location.
2307 	 * Use 16-bit sector value.
2308 	 */
2309 type_disk:
2310 	return (u32)(cdb[7] << 8) + cdb[8];
2311 }
2312 
transport_get_sectors_12(unsigned char * cdb,struct se_cmd * cmd,int * ret)2313 static inline u32 transport_get_sectors_12(
2314 	unsigned char *cdb,
2315 	struct se_cmd *cmd,
2316 	int *ret)
2317 {
2318 	struct se_device *dev = cmd->se_dev;
2319 
2320 	/*
2321 	 * Assume TYPE_DISK for non struct se_device objects.
2322 	 * Use 32-bit sector value.
2323 	 */
2324 	if (!dev)
2325 		goto type_disk;
2326 
2327 	/*
2328 	 * XXX_12 is not defined in SSC, throw an exception
2329 	 */
2330 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2331 		*ret = -EINVAL;
2332 		return 0;
2333 	}
2334 
2335 	/*
2336 	 * Everything else assume TYPE_DISK Sector CDB location.
2337 	 * Use 32-bit sector value.
2338 	 */
2339 type_disk:
2340 	return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2341 }
2342 
transport_get_sectors_16(unsigned char * cdb,struct se_cmd * cmd,int * ret)2343 static inline u32 transport_get_sectors_16(
2344 	unsigned char *cdb,
2345 	struct se_cmd *cmd,
2346 	int *ret)
2347 {
2348 	struct se_device *dev = cmd->se_dev;
2349 
2350 	/*
2351 	 * Assume TYPE_DISK for non struct se_device objects.
2352 	 * Use 32-bit sector value.
2353 	 */
2354 	if (!dev)
2355 		goto type_disk;
2356 
2357 	/*
2358 	 * Use 24-bit allocation length for TYPE_TAPE.
2359 	 */
2360 	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2361 		return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2362 
2363 type_disk:
2364 	return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2365 		    (cdb[12] << 8) + cdb[13];
2366 }
2367 
2368 /*
2369  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2370  */
transport_get_sectors_32(unsigned char * cdb,struct se_cmd * cmd,int * ret)2371 static inline u32 transport_get_sectors_32(
2372 	unsigned char *cdb,
2373 	struct se_cmd *cmd,
2374 	int *ret)
2375 {
2376 	/*
2377 	 * Assume TYPE_DISK for non struct se_device objects.
2378 	 * Use 32-bit sector value.
2379 	 */
2380 	return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2381 		    (cdb[30] << 8) + cdb[31];
2382 
2383 }
2384 
transport_get_size(u32 sectors,unsigned char * cdb,struct se_cmd * cmd)2385 static inline u32 transport_get_size(
2386 	u32 sectors,
2387 	unsigned char *cdb,
2388 	struct se_cmd *cmd)
2389 {
2390 	struct se_device *dev = cmd->se_dev;
2391 
2392 	if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2393 		if (cdb[1] & 1) { /* sectors */
2394 			return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2395 		} else /* bytes */
2396 			return sectors;
2397 	}
2398 #if 0
2399 	pr_debug("Returning block_size: %u, sectors: %u == %u for"
2400 			" %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2401 			dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2402 			dev->transport->name);
2403 #endif
2404 	return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2405 }
2406 
transport_xor_callback(struct se_cmd * cmd)2407 static void transport_xor_callback(struct se_cmd *cmd)
2408 {
2409 	unsigned char *buf, *addr;
2410 	struct scatterlist *sg;
2411 	unsigned int offset;
2412 	int i;
2413 	int count;
2414 	/*
2415 	 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2416 	 *
2417 	 * 1) read the specified logical block(s);
2418 	 * 2) transfer logical blocks from the data-out buffer;
2419 	 * 3) XOR the logical blocks transferred from the data-out buffer with
2420 	 *    the logical blocks read, storing the resulting XOR data in a buffer;
2421 	 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2422 	 *    blocks transferred from the data-out buffer; and
2423 	 * 5) transfer the resulting XOR data to the data-in buffer.
2424 	 */
2425 	buf = kmalloc(cmd->data_length, GFP_KERNEL);
2426 	if (!buf) {
2427 		pr_err("Unable to allocate xor_callback buf\n");
2428 		return;
2429 	}
2430 	/*
2431 	 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2432 	 * into the locally allocated *buf
2433 	 */
2434 	sg_copy_to_buffer(cmd->t_data_sg,
2435 			  cmd->t_data_nents,
2436 			  buf,
2437 			  cmd->data_length);
2438 
2439 	/*
2440 	 * Now perform the XOR against the BIDI read memory located at
2441 	 * cmd->t_mem_bidi_list
2442 	 */
2443 
2444 	offset = 0;
2445 	for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2446 		addr = kmap_atomic(sg_page(sg));
2447 		if (!addr)
2448 			goto out;
2449 
2450 		for (i = 0; i < sg->length; i++)
2451 			*(addr + sg->offset + i) ^= *(buf + offset + i);
2452 
2453 		offset += sg->length;
2454 		kunmap_atomic(addr);
2455 	}
2456 
2457 out:
2458 	kfree(buf);
2459 }
2460 
2461 /*
2462  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2463  */
transport_get_sense_data(struct se_cmd * cmd)2464 static int transport_get_sense_data(struct se_cmd *cmd)
2465 {
2466 	unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2467 	struct se_device *dev = cmd->se_dev;
2468 	struct se_task *task = NULL, *task_tmp;
2469 	unsigned long flags;
2470 	u32 offset = 0;
2471 
2472 	WARN_ON(!cmd->se_lun);
2473 
2474 	if (!dev)
2475 		return 0;
2476 
2477 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2478 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2479 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2480 		return 0;
2481 	}
2482 
2483 	list_for_each_entry_safe(task, task_tmp,
2484 				&cmd->t_task_list, t_list) {
2485 		if (!(task->task_flags & TF_HAS_SENSE))
2486 			continue;
2487 
2488 		if (!dev->transport->get_sense_buffer) {
2489 			pr_err("dev->transport->get_sense_buffer"
2490 					" is NULL\n");
2491 			continue;
2492 		}
2493 
2494 		sense_buffer = dev->transport->get_sense_buffer(task);
2495 		if (!sense_buffer) {
2496 			pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2497 				" sense buffer for task with sense\n",
2498 				cmd->se_tfo->get_task_tag(cmd), task);
2499 			continue;
2500 		}
2501 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2502 
2503 		offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2504 				TRANSPORT_SENSE_BUFFER);
2505 
2506 		memcpy(&buffer[offset], sense_buffer,
2507 				TRANSPORT_SENSE_BUFFER);
2508 		cmd->scsi_status = task->task_scsi_status;
2509 		/* Automatically padded */
2510 		cmd->scsi_sense_length =
2511 				(TRANSPORT_SENSE_BUFFER + offset);
2512 
2513 		pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2514 				" and sense\n",
2515 			dev->se_hba->hba_id, dev->transport->name,
2516 				cmd->scsi_status);
2517 		return 0;
2518 	}
2519 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2520 
2521 	return -1;
2522 }
2523 
transport_dev_end_lba(struct se_device * dev)2524 static inline long long transport_dev_end_lba(struct se_device *dev)
2525 {
2526 	return dev->transport->get_blocks(dev) + 1;
2527 }
2528 
transport_cmd_get_valid_sectors(struct se_cmd * cmd)2529 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2530 {
2531 	struct se_device *dev = cmd->se_dev;
2532 	u32 sectors;
2533 
2534 	if (dev->transport->get_device_type(dev) != TYPE_DISK)
2535 		return 0;
2536 
2537 	sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2538 
2539 	if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2540 		pr_err("LBA: %llu Sectors: %u exceeds"
2541 			" transport_dev_end_lba(): %llu\n",
2542 			cmd->t_task_lba, sectors,
2543 			transport_dev_end_lba(dev));
2544 		return -EINVAL;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
target_check_write_same_discard(unsigned char * flags,struct se_device * dev)2550 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2551 {
2552 	/*
2553 	 * Determine if the received WRITE_SAME is used to for direct
2554 	 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2555 	 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2556 	 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2557 	 */
2558 	int passthrough = (dev->transport->transport_type ==
2559 				TRANSPORT_PLUGIN_PHBA_PDEV);
2560 
2561 	if (!passthrough) {
2562 		if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2563 			pr_err("WRITE_SAME PBDATA and LBDATA"
2564 				" bits not supported for Block Discard"
2565 				" Emulation\n");
2566 			return -ENOSYS;
2567 		}
2568 		/*
2569 		 * Currently for the emulated case we only accept
2570 		 * tpws with the UNMAP=1 bit set.
2571 		 */
2572 		if (!(flags[0] & 0x08)) {
2573 			pr_err("WRITE_SAME w/o UNMAP bit not"
2574 				" supported for Block Discard Emulation\n");
2575 			return -ENOSYS;
2576 		}
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 /*	transport_generic_cmd_sequencer():
2583  *
2584  *	Generic Command Sequencer that should work for most DAS transport
2585  *	drivers.
2586  *
2587  *	Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2588  *	RX Thread.
2589  *
2590  *	FIXME: Need to support other SCSI OPCODES where as well.
2591  */
transport_generic_cmd_sequencer(struct se_cmd * cmd,unsigned char * cdb)2592 static int transport_generic_cmd_sequencer(
2593 	struct se_cmd *cmd,
2594 	unsigned char *cdb)
2595 {
2596 	struct se_device *dev = cmd->se_dev;
2597 	struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2598 	int ret = 0, sector_ret = 0, passthrough;
2599 	u32 sectors = 0, size = 0, pr_reg_type = 0;
2600 	u16 service_action;
2601 	u8 alua_ascq = 0;
2602 	/*
2603 	 * Check for an existing UNIT ATTENTION condition
2604 	 */
2605 	if (core_scsi3_ua_check(cmd, cdb) < 0) {
2606 		cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2607 		cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2608 		return -EINVAL;
2609 	}
2610 	/*
2611 	 * Check status of Asymmetric Logical Unit Assignment port
2612 	 */
2613 	ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2614 	if (ret != 0) {
2615 		/*
2616 		 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2617 		 * The ALUA additional sense code qualifier (ASCQ) is determined
2618 		 * by the ALUA primary or secondary access state..
2619 		 */
2620 		if (ret > 0) {
2621 #if 0
2622 			pr_debug("[%s]: ALUA TG Port not available,"
2623 				" SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2624 				cmd->se_tfo->get_fabric_name(), alua_ascq);
2625 #endif
2626 			transport_set_sense_codes(cmd, 0x04, alua_ascq);
2627 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2628 			cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2629 			return -EINVAL;
2630 		}
2631 		goto out_invalid_cdb_field;
2632 	}
2633 	/*
2634 	 * Check status for SPC-3 Persistent Reservations
2635 	 */
2636 	if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2637 		if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2638 					cmd, cdb, pr_reg_type) != 0) {
2639 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2640 			cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2641 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2642 			cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2643 			return -EBUSY;
2644 		}
2645 		/*
2646 		 * This means the CDB is allowed for the SCSI Initiator port
2647 		 * when said port is *NOT* holding the legacy SPC-2 or
2648 		 * SPC-3 Persistent Reservation.
2649 		 */
2650 	}
2651 
2652 	/*
2653 	 * If we operate in passthrough mode we skip most CDB emulation and
2654 	 * instead hand the commands down to the physical SCSI device.
2655 	 */
2656 	passthrough =
2657 		(dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2658 
2659 	switch (cdb[0]) {
2660 	case READ_6:
2661 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2662 		if (sector_ret)
2663 			goto out_unsupported_cdb;
2664 		size = transport_get_size(sectors, cdb, cmd);
2665 		cmd->t_task_lba = transport_lba_21(cdb);
2666 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2667 		break;
2668 	case READ_10:
2669 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2670 		if (sector_ret)
2671 			goto out_unsupported_cdb;
2672 		size = transport_get_size(sectors, cdb, cmd);
2673 		cmd->t_task_lba = transport_lba_32(cdb);
2674 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2675 		break;
2676 	case READ_12:
2677 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2678 		if (sector_ret)
2679 			goto out_unsupported_cdb;
2680 		size = transport_get_size(sectors, cdb, cmd);
2681 		cmd->t_task_lba = transport_lba_32(cdb);
2682 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2683 		break;
2684 	case READ_16:
2685 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2686 		if (sector_ret)
2687 			goto out_unsupported_cdb;
2688 		size = transport_get_size(sectors, cdb, cmd);
2689 		cmd->t_task_lba = transport_lba_64(cdb);
2690 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2691 		break;
2692 	case WRITE_6:
2693 		sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2694 		if (sector_ret)
2695 			goto out_unsupported_cdb;
2696 		size = transport_get_size(sectors, cdb, cmd);
2697 		cmd->t_task_lba = transport_lba_21(cdb);
2698 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2699 		break;
2700 	case WRITE_10:
2701 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2702 		if (sector_ret)
2703 			goto out_unsupported_cdb;
2704 		size = transport_get_size(sectors, cdb, cmd);
2705 		cmd->t_task_lba = transport_lba_32(cdb);
2706 		if (cdb[1] & 0x8)
2707 			cmd->se_cmd_flags |= SCF_FUA;
2708 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2709 		break;
2710 	case WRITE_12:
2711 		sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2712 		if (sector_ret)
2713 			goto out_unsupported_cdb;
2714 		size = transport_get_size(sectors, cdb, cmd);
2715 		cmd->t_task_lba = transport_lba_32(cdb);
2716 		if (cdb[1] & 0x8)
2717 			cmd->se_cmd_flags |= SCF_FUA;
2718 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2719 		break;
2720 	case WRITE_16:
2721 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2722 		if (sector_ret)
2723 			goto out_unsupported_cdb;
2724 		size = transport_get_size(sectors, cdb, cmd);
2725 		cmd->t_task_lba = transport_lba_64(cdb);
2726 		if (cdb[1] & 0x8)
2727 			cmd->se_cmd_flags |= SCF_FUA;
2728 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2729 		break;
2730 	case XDWRITEREAD_10:
2731 		if ((cmd->data_direction != DMA_TO_DEVICE) ||
2732 		    !(cmd->se_cmd_flags & SCF_BIDI))
2733 			goto out_invalid_cdb_field;
2734 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2735 		if (sector_ret)
2736 			goto out_unsupported_cdb;
2737 		size = transport_get_size(sectors, cdb, cmd);
2738 		cmd->t_task_lba = transport_lba_32(cdb);
2739 		cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2740 
2741 		/*
2742 		 * Do now allow BIDI commands for passthrough mode.
2743 		 */
2744 		if (passthrough)
2745 			goto out_unsupported_cdb;
2746 
2747 		/*
2748 		 * Setup BIDI XOR callback to be run after I/O completion.
2749 		 */
2750 		cmd->transport_complete_callback = &transport_xor_callback;
2751 		if (cdb[1] & 0x8)
2752 			cmd->se_cmd_flags |= SCF_FUA;
2753 		break;
2754 	case VARIABLE_LENGTH_CMD:
2755 		service_action = get_unaligned_be16(&cdb[8]);
2756 		switch (service_action) {
2757 		case XDWRITEREAD_32:
2758 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2759 			if (sector_ret)
2760 				goto out_unsupported_cdb;
2761 			size = transport_get_size(sectors, cdb, cmd);
2762 			/*
2763 			 * Use WRITE_32 and READ_32 opcodes for the emulated
2764 			 * XDWRITE_READ_32 logic.
2765 			 */
2766 			cmd->t_task_lba = transport_lba_64_ext(cdb);
2767 			cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2768 
2769 			/*
2770 			 * Do now allow BIDI commands for passthrough mode.
2771 			 */
2772 			if (passthrough)
2773 				goto out_unsupported_cdb;
2774 
2775 			/*
2776 			 * Setup BIDI XOR callback to be run during after I/O
2777 			 * completion.
2778 			 */
2779 			cmd->transport_complete_callback = &transport_xor_callback;
2780 			if (cdb[1] & 0x8)
2781 				cmd->se_cmd_flags |= SCF_FUA;
2782 			break;
2783 		case WRITE_SAME_32:
2784 			sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2785 			if (sector_ret)
2786 				goto out_unsupported_cdb;
2787 
2788 			if (sectors)
2789 				size = transport_get_size(1, cdb, cmd);
2790 			else {
2791 				pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2792 				       " supported\n");
2793 				goto out_invalid_cdb_field;
2794 			}
2795 
2796 			cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2797 			cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2798 
2799 			if (target_check_write_same_discard(&cdb[10], dev) < 0)
2800 				goto out_unsupported_cdb;
2801 			if (!passthrough)
2802 				cmd->execute_task = target_emulate_write_same;
2803 			break;
2804 		default:
2805 			pr_err("VARIABLE_LENGTH_CMD service action"
2806 				" 0x%04x not supported\n", service_action);
2807 			goto out_unsupported_cdb;
2808 		}
2809 		break;
2810 	case MAINTENANCE_IN:
2811 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2812 			/* MAINTENANCE_IN from SCC-2 */
2813 			/*
2814 			 * Check for emulated MI_REPORT_TARGET_PGS.
2815 			 */
2816 			if (cdb[1] == MI_REPORT_TARGET_PGS &&
2817 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2818 				cmd->execute_task =
2819 					target_emulate_report_target_port_groups;
2820 			}
2821 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2822 			       (cdb[8] << 8) | cdb[9];
2823 		} else {
2824 			/* GPCMD_SEND_KEY from multi media commands */
2825 			size = (cdb[8] << 8) + cdb[9];
2826 		}
2827 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2828 		break;
2829 	case MODE_SELECT:
2830 		size = cdb[4];
2831 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2832 		break;
2833 	case MODE_SELECT_10:
2834 		size = (cdb[7] << 8) + cdb[8];
2835 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 		break;
2837 	case MODE_SENSE:
2838 		size = cdb[4];
2839 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2840 		if (!passthrough)
2841 			cmd->execute_task = target_emulate_modesense;
2842 		break;
2843 	case MODE_SENSE_10:
2844 		size = (cdb[7] << 8) + cdb[8];
2845 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2846 		if (!passthrough)
2847 			cmd->execute_task = target_emulate_modesense;
2848 		break;
2849 	case GPCMD_READ_BUFFER_CAPACITY:
2850 	case GPCMD_SEND_OPC:
2851 	case LOG_SELECT:
2852 	case LOG_SENSE:
2853 		size = (cdb[7] << 8) + cdb[8];
2854 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855 		break;
2856 	case READ_BLOCK_LIMITS:
2857 		size = READ_BLOCK_LEN;
2858 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2859 		break;
2860 	case GPCMD_GET_CONFIGURATION:
2861 	case GPCMD_READ_FORMAT_CAPACITIES:
2862 	case GPCMD_READ_DISC_INFO:
2863 	case GPCMD_READ_TRACK_RZONE_INFO:
2864 		size = (cdb[7] << 8) + cdb[8];
2865 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2866 		break;
2867 	case PERSISTENT_RESERVE_IN:
2868 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2869 			cmd->execute_task = target_scsi3_emulate_pr_in;
2870 		size = (cdb[7] << 8) + cdb[8];
2871 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2872 		break;
2873 	case PERSISTENT_RESERVE_OUT:
2874 		if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2875 			cmd->execute_task = target_scsi3_emulate_pr_out;
2876 		size = (cdb[7] << 8) + cdb[8];
2877 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2878 		break;
2879 	case GPCMD_MECHANISM_STATUS:
2880 	case GPCMD_READ_DVD_STRUCTURE:
2881 		size = (cdb[8] << 8) + cdb[9];
2882 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2883 		break;
2884 	case READ_POSITION:
2885 		size = READ_POSITION_LEN;
2886 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2887 		break;
2888 	case MAINTENANCE_OUT:
2889 		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2890 			/* MAINTENANCE_OUT from SCC-2
2891 			 *
2892 			 * Check for emulated MO_SET_TARGET_PGS.
2893 			 */
2894 			if (cdb[1] == MO_SET_TARGET_PGS &&
2895 			    su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2896 				cmd->execute_task =
2897 					target_emulate_set_target_port_groups;
2898 			}
2899 
2900 			size = (cdb[6] << 24) | (cdb[7] << 16) |
2901 			       (cdb[8] << 8) | cdb[9];
2902 		} else  {
2903 			/* GPCMD_REPORT_KEY from multi media commands */
2904 			size = (cdb[8] << 8) + cdb[9];
2905 		}
2906 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2907 		break;
2908 	case INQUIRY:
2909 		size = (cdb[3] << 8) + cdb[4];
2910 		/*
2911 		 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2912 		 * See spc4r17 section 5.3
2913 		 */
2914 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2915 			cmd->sam_task_attr = MSG_HEAD_TAG;
2916 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2917 		if (!passthrough)
2918 			cmd->execute_task = target_emulate_inquiry;
2919 		break;
2920 	case READ_BUFFER:
2921 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2922 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2923 		break;
2924 	case READ_CAPACITY:
2925 		size = READ_CAP_LEN;
2926 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2927 		if (!passthrough)
2928 			cmd->execute_task = target_emulate_readcapacity;
2929 		break;
2930 	case READ_MEDIA_SERIAL_NUMBER:
2931 	case SECURITY_PROTOCOL_IN:
2932 	case SECURITY_PROTOCOL_OUT:
2933 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2934 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2935 		break;
2936 	case SERVICE_ACTION_IN:
2937 		switch (cmd->t_task_cdb[1] & 0x1f) {
2938 		case SAI_READ_CAPACITY_16:
2939 			if (!passthrough)
2940 				cmd->execute_task =
2941 					target_emulate_readcapacity_16;
2942 			break;
2943 		default:
2944 			if (passthrough)
2945 				break;
2946 
2947 			pr_err("Unsupported SA: 0x%02x\n",
2948 				cmd->t_task_cdb[1] & 0x1f);
2949 			goto out_invalid_cdb_field;
2950 		}
2951 		/*FALLTHROUGH*/
2952 	case ACCESS_CONTROL_IN:
2953 	case ACCESS_CONTROL_OUT:
2954 	case EXTENDED_COPY:
2955 	case READ_ATTRIBUTE:
2956 	case RECEIVE_COPY_RESULTS:
2957 	case WRITE_ATTRIBUTE:
2958 		size = (cdb[10] << 24) | (cdb[11] << 16) |
2959 		       (cdb[12] << 8) | cdb[13];
2960 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2961 		break;
2962 	case RECEIVE_DIAGNOSTIC:
2963 	case SEND_DIAGNOSTIC:
2964 		size = (cdb[3] << 8) | cdb[4];
2965 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2966 		break;
2967 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2968 #if 0
2969 	case GPCMD_READ_CD:
2970 		sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2971 		size = (2336 * sectors);
2972 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2973 		break;
2974 #endif
2975 	case READ_TOC:
2976 		size = cdb[8];
2977 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2978 		break;
2979 	case REQUEST_SENSE:
2980 		size = cdb[4];
2981 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2982 		if (!passthrough)
2983 			cmd->execute_task = target_emulate_request_sense;
2984 		break;
2985 	case READ_ELEMENT_STATUS:
2986 		size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2987 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2988 		break;
2989 	case WRITE_BUFFER:
2990 		size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2991 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2992 		break;
2993 	case RESERVE:
2994 	case RESERVE_10:
2995 		/*
2996 		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2997 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2998 		 */
2999 		if (cdb[0] == RESERVE_10)
3000 			size = (cdb[7] << 8) | cdb[8];
3001 		else
3002 			size = cmd->data_length;
3003 
3004 		/*
3005 		 * Setup the legacy emulated handler for SPC-2 and
3006 		 * >= SPC-3 compatible reservation handling (CRH=1)
3007 		 * Otherwise, we assume the underlying SCSI logic is
3008 		 * is running in SPC_PASSTHROUGH, and wants reservations
3009 		 * emulation disabled.
3010 		 */
3011 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3012 			cmd->execute_task = target_scsi2_reservation_reserve;
3013 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3014 		break;
3015 	case RELEASE:
3016 	case RELEASE_10:
3017 		/*
3018 		 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3019 		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3020 		*/
3021 		if (cdb[0] == RELEASE_10)
3022 			size = (cdb[7] << 8) | cdb[8];
3023 		else
3024 			size = cmd->data_length;
3025 
3026 		if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3027 			cmd->execute_task = target_scsi2_reservation_release;
3028 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3029 		break;
3030 	case SYNCHRONIZE_CACHE:
3031 	case SYNCHRONIZE_CACHE_16:
3032 		/*
3033 		 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3034 		 */
3035 		if (cdb[0] == SYNCHRONIZE_CACHE) {
3036 			sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3037 			cmd->t_task_lba = transport_lba_32(cdb);
3038 		} else {
3039 			sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3040 			cmd->t_task_lba = transport_lba_64(cdb);
3041 		}
3042 		if (sector_ret)
3043 			goto out_unsupported_cdb;
3044 
3045 		size = transport_get_size(sectors, cdb, cmd);
3046 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3047 
3048 		if (passthrough)
3049 			break;
3050 
3051 		/*
3052 		 * Check to ensure that LBA + Range does not exceed past end of
3053 		 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3054 		 */
3055 		if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3056 			if (transport_cmd_get_valid_sectors(cmd) < 0)
3057 				goto out_invalid_cdb_field;
3058 		}
3059 		cmd->execute_task = target_emulate_synchronize_cache;
3060 		break;
3061 	case UNMAP:
3062 		size = get_unaligned_be16(&cdb[7]);
3063 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3064 		if (!passthrough)
3065 			cmd->execute_task = target_emulate_unmap;
3066 		break;
3067 	case WRITE_SAME_16:
3068 		sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3069 		if (sector_ret)
3070 			goto out_unsupported_cdb;
3071 
3072 		if (sectors)
3073 			size = transport_get_size(1, cdb, cmd);
3074 		else {
3075 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3076 			goto out_invalid_cdb_field;
3077 		}
3078 
3079 		cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3080 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3081 
3082 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3083 			goto out_unsupported_cdb;
3084 		if (!passthrough)
3085 			cmd->execute_task = target_emulate_write_same;
3086 		break;
3087 	case WRITE_SAME:
3088 		sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3089 		if (sector_ret)
3090 			goto out_unsupported_cdb;
3091 
3092 		if (sectors)
3093 			size = transport_get_size(1, cdb, cmd);
3094 		else {
3095 			pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3096 			goto out_invalid_cdb_field;
3097 		}
3098 
3099 		cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3100 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3101 		/*
3102 		 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3103 		 * of byte 1 bit 3 UNMAP instead of original reserved field
3104 		 */
3105 		if (target_check_write_same_discard(&cdb[1], dev) < 0)
3106 			goto out_unsupported_cdb;
3107 		if (!passthrough)
3108 			cmd->execute_task = target_emulate_write_same;
3109 		break;
3110 	case ALLOW_MEDIUM_REMOVAL:
3111 	case ERASE:
3112 	case REZERO_UNIT:
3113 	case SEEK_10:
3114 	case SPACE:
3115 	case START_STOP:
3116 	case TEST_UNIT_READY:
3117 	case VERIFY:
3118 	case WRITE_FILEMARKS:
3119 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3120 		if (!passthrough)
3121 			cmd->execute_task = target_emulate_noop;
3122 		break;
3123 	case GPCMD_CLOSE_TRACK:
3124 	case INITIALIZE_ELEMENT_STATUS:
3125 	case GPCMD_LOAD_UNLOAD:
3126 	case GPCMD_SET_SPEED:
3127 	case MOVE_MEDIUM:
3128 		cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3129 		break;
3130 	case REPORT_LUNS:
3131 		cmd->execute_task = target_report_luns;
3132 		size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3133 		/*
3134 		 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3135 		 * See spc4r17 section 5.3
3136 		 */
3137 		if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3138 			cmd->sam_task_attr = MSG_HEAD_TAG;
3139 		cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3140 		break;
3141 	default:
3142 		pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3143 			" 0x%02x, sending CHECK_CONDITION.\n",
3144 			cmd->se_tfo->get_fabric_name(), cdb[0]);
3145 		goto out_unsupported_cdb;
3146 	}
3147 
3148 	if (size != cmd->data_length) {
3149 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3150 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
3151 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3152 				cmd->data_length, size, cdb[0]);
3153 
3154 		cmd->cmd_spdtl = size;
3155 
3156 		if (cmd->data_direction == DMA_TO_DEVICE) {
3157 			pr_err("Rejecting underflow/overflow"
3158 					" WRITE data\n");
3159 			goto out_invalid_cdb_field;
3160 		}
3161 		/*
3162 		 * Reject READ_* or WRITE_* with overflow/underflow for
3163 		 * type SCF_SCSI_DATA_SG_IO_CDB.
3164 		 */
3165 		if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3166 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3167 				" CDB on non 512-byte sector setup subsystem"
3168 				" plugin: %s\n", dev->transport->name);
3169 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3170 			goto out_invalid_cdb_field;
3171 		}
3172 		/*
3173 		 * For the overflow case keep the existing fabric provided
3174 		 * ->data_length.  Otherwise for the underflow case, reset
3175 		 * ->data_length to the smaller SCSI expected data transfer
3176 		 * length.
3177 		 */
3178 		if (size > cmd->data_length) {
3179 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3180 			cmd->residual_count = (size - cmd->data_length);
3181 		} else {
3182 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3183 			cmd->residual_count = (cmd->data_length - size);
3184 			cmd->data_length = size;
3185 		}
3186 	}
3187 
3188 	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3189 	    sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3190 		printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3191 				   cdb[0], sectors);
3192 		goto out_invalid_cdb_field;
3193 	}
3194 
3195 	/* reject any command that we don't have a handler for */
3196 	if (!(passthrough || cmd->execute_task ||
3197 	     (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3198 		goto out_unsupported_cdb;
3199 
3200 	transport_set_supported_SAM_opcode(cmd);
3201 	return ret;
3202 
3203 out_unsupported_cdb:
3204 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3205 	cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3206 	return -EINVAL;
3207 out_invalid_cdb_field:
3208 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3209 	cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3210 	return -EINVAL;
3211 }
3212 
3213 /*
3214  * Called from I/O completion to determine which dormant/delayed
3215  * and ordered cmds need to have their tasks added to the execution queue.
3216  */
transport_complete_task_attr(struct se_cmd * cmd)3217 static void transport_complete_task_attr(struct se_cmd *cmd)
3218 {
3219 	struct se_device *dev = cmd->se_dev;
3220 	struct se_cmd *cmd_p, *cmd_tmp;
3221 	int new_active_tasks = 0;
3222 
3223 	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3224 		atomic_dec(&dev->simple_cmds);
3225 		smp_mb__after_atomic_dec();
3226 		dev->dev_cur_ordered_id++;
3227 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3228 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
3229 			cmd->se_ordered_id);
3230 	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3231 		dev->dev_cur_ordered_id++;
3232 		pr_debug("Incremented dev_cur_ordered_id: %u for"
3233 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3234 			cmd->se_ordered_id);
3235 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3236 		atomic_dec(&dev->dev_ordered_sync);
3237 		smp_mb__after_atomic_dec();
3238 
3239 		dev->dev_cur_ordered_id++;
3240 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3241 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3242 	}
3243 	/*
3244 	 * Process all commands up to the last received
3245 	 * ORDERED task attribute which requires another blocking
3246 	 * boundary
3247 	 */
3248 	spin_lock(&dev->delayed_cmd_lock);
3249 	list_for_each_entry_safe(cmd_p, cmd_tmp,
3250 			&dev->delayed_cmd_list, se_delayed_node) {
3251 
3252 		list_del(&cmd_p->se_delayed_node);
3253 		spin_unlock(&dev->delayed_cmd_lock);
3254 
3255 		pr_debug("Calling add_tasks() for"
3256 			" cmd_p: 0x%02x Task Attr: 0x%02x"
3257 			" Dormant -> Active, se_ordered_id: %u\n",
3258 			cmd_p->t_task_cdb[0],
3259 			cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3260 
3261 		transport_add_tasks_from_cmd(cmd_p);
3262 		new_active_tasks++;
3263 
3264 		spin_lock(&dev->delayed_cmd_lock);
3265 		if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3266 			break;
3267 	}
3268 	spin_unlock(&dev->delayed_cmd_lock);
3269 	/*
3270 	 * If new tasks have become active, wake up the transport thread
3271 	 * to do the processing of the Active tasks.
3272 	 */
3273 	if (new_active_tasks != 0)
3274 		wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3275 }
3276 
transport_complete_qf(struct se_cmd * cmd)3277 static void transport_complete_qf(struct se_cmd *cmd)
3278 {
3279 	int ret = 0;
3280 
3281 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3282 		transport_complete_task_attr(cmd);
3283 
3284 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3285 		ret = cmd->se_tfo->queue_status(cmd);
3286 		if (ret)
3287 			goto out;
3288 	}
3289 
3290 	switch (cmd->data_direction) {
3291 	case DMA_FROM_DEVICE:
3292 		ret = cmd->se_tfo->queue_data_in(cmd);
3293 		break;
3294 	case DMA_TO_DEVICE:
3295 		if (cmd->t_bidi_data_sg) {
3296 			ret = cmd->se_tfo->queue_data_in(cmd);
3297 			if (ret < 0)
3298 				break;
3299 		}
3300 		/* Fall through for DMA_TO_DEVICE */
3301 	case DMA_NONE:
3302 		ret = cmd->se_tfo->queue_status(cmd);
3303 		break;
3304 	default:
3305 		break;
3306 	}
3307 
3308 out:
3309 	if (ret < 0) {
3310 		transport_handle_queue_full(cmd, cmd->se_dev);
3311 		return;
3312 	}
3313 	transport_lun_remove_cmd(cmd);
3314 	transport_cmd_check_stop_to_fabric(cmd);
3315 }
3316 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)3317 static void transport_handle_queue_full(
3318 	struct se_cmd *cmd,
3319 	struct se_device *dev)
3320 {
3321 	spin_lock_irq(&dev->qf_cmd_lock);
3322 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3323 	atomic_inc(&dev->dev_qf_count);
3324 	smp_mb__after_atomic_inc();
3325 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3326 
3327 	schedule_work(&cmd->se_dev->qf_work_queue);
3328 }
3329 
target_complete_ok_work(struct work_struct * work)3330 static void target_complete_ok_work(struct work_struct *work)
3331 {
3332 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3333 	int reason = 0, ret;
3334 
3335 	/*
3336 	 * Check if we need to move delayed/dormant tasks from cmds on the
3337 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3338 	 * Attribute.
3339 	 */
3340 	if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3341 		transport_complete_task_attr(cmd);
3342 	/*
3343 	 * Check to schedule QUEUE_FULL work, or execute an existing
3344 	 * cmd->transport_qf_callback()
3345 	 */
3346 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3347 		schedule_work(&cmd->se_dev->qf_work_queue);
3348 
3349 	/*
3350 	 * Check if we need to retrieve a sense buffer from
3351 	 * the struct se_cmd in question.
3352 	 */
3353 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3354 		if (transport_get_sense_data(cmd) < 0)
3355 			reason = TCM_NON_EXISTENT_LUN;
3356 
3357 		/*
3358 		 * Only set when an struct se_task->task_scsi_status returned
3359 		 * a non GOOD status.
3360 		 */
3361 		if (cmd->scsi_status) {
3362 			ret = transport_send_check_condition_and_sense(
3363 					cmd, reason, 1);
3364 			if (ret == -EAGAIN || ret == -ENOMEM)
3365 				goto queue_full;
3366 
3367 			transport_lun_remove_cmd(cmd);
3368 			transport_cmd_check_stop_to_fabric(cmd);
3369 			return;
3370 		}
3371 	}
3372 	/*
3373 	 * Check for a callback, used by amongst other things
3374 	 * XDWRITE_READ_10 emulation.
3375 	 */
3376 	if (cmd->transport_complete_callback)
3377 		cmd->transport_complete_callback(cmd);
3378 
3379 	switch (cmd->data_direction) {
3380 	case DMA_FROM_DEVICE:
3381 		spin_lock(&cmd->se_lun->lun_sep_lock);
3382 		if (cmd->se_lun->lun_sep) {
3383 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3384 					cmd->data_length;
3385 		}
3386 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3387 
3388 		ret = cmd->se_tfo->queue_data_in(cmd);
3389 		if (ret == -EAGAIN || ret == -ENOMEM)
3390 			goto queue_full;
3391 		break;
3392 	case DMA_TO_DEVICE:
3393 		spin_lock(&cmd->se_lun->lun_sep_lock);
3394 		if (cmd->se_lun->lun_sep) {
3395 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3396 				cmd->data_length;
3397 		}
3398 		spin_unlock(&cmd->se_lun->lun_sep_lock);
3399 		/*
3400 		 * Check if we need to send READ payload for BIDI-COMMAND
3401 		 */
3402 		if (cmd->t_bidi_data_sg) {
3403 			spin_lock(&cmd->se_lun->lun_sep_lock);
3404 			if (cmd->se_lun->lun_sep) {
3405 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3406 					cmd->data_length;
3407 			}
3408 			spin_unlock(&cmd->se_lun->lun_sep_lock);
3409 			ret = cmd->se_tfo->queue_data_in(cmd);
3410 			if (ret == -EAGAIN || ret == -ENOMEM)
3411 				goto queue_full;
3412 			break;
3413 		}
3414 		/* Fall through for DMA_TO_DEVICE */
3415 	case DMA_NONE:
3416 		ret = cmd->se_tfo->queue_status(cmd);
3417 		if (ret == -EAGAIN || ret == -ENOMEM)
3418 			goto queue_full;
3419 		break;
3420 	default:
3421 		break;
3422 	}
3423 
3424 	transport_lun_remove_cmd(cmd);
3425 	transport_cmd_check_stop_to_fabric(cmd);
3426 	return;
3427 
3428 queue_full:
3429 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3430 		" data_direction: %d\n", cmd, cmd->data_direction);
3431 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3432 	transport_handle_queue_full(cmd, cmd->se_dev);
3433 }
3434 
transport_free_dev_tasks(struct se_cmd * cmd)3435 static void transport_free_dev_tasks(struct se_cmd *cmd)
3436 {
3437 	struct se_task *task, *task_tmp;
3438 	unsigned long flags;
3439 	LIST_HEAD(dispose_list);
3440 
3441 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3442 	list_for_each_entry_safe(task, task_tmp,
3443 				&cmd->t_task_list, t_list) {
3444 		if (!(task->task_flags & TF_ACTIVE))
3445 			list_move_tail(&task->t_list, &dispose_list);
3446 	}
3447 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3448 
3449 	while (!list_empty(&dispose_list)) {
3450 		task = list_first_entry(&dispose_list, struct se_task, t_list);
3451 
3452 		if (task->task_sg != cmd->t_data_sg &&
3453 		    task->task_sg != cmd->t_bidi_data_sg)
3454 			kfree(task->task_sg);
3455 
3456 		list_del(&task->t_list);
3457 
3458 		cmd->se_dev->transport->free_task(task);
3459 	}
3460 }
3461 
transport_free_sgl(struct scatterlist * sgl,int nents)3462 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3463 {
3464 	struct scatterlist *sg;
3465 	int count;
3466 
3467 	for_each_sg(sgl, sg, nents, count)
3468 		__free_page(sg_page(sg));
3469 
3470 	kfree(sgl);
3471 }
3472 
transport_free_pages(struct se_cmd * cmd)3473 static inline void transport_free_pages(struct se_cmd *cmd)
3474 {
3475 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3476 		return;
3477 
3478 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3479 	cmd->t_data_sg = NULL;
3480 	cmd->t_data_nents = 0;
3481 
3482 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3483 	cmd->t_bidi_data_sg = NULL;
3484 	cmd->t_bidi_data_nents = 0;
3485 }
3486 
3487 /**
3488  * transport_release_cmd - free a command
3489  * @cmd:       command to free
3490  *
3491  * This routine unconditionally frees a command, and reference counting
3492  * or list removal must be done in the caller.
3493  */
transport_release_cmd(struct se_cmd * cmd)3494 static void transport_release_cmd(struct se_cmd *cmd)
3495 {
3496 	BUG_ON(!cmd->se_tfo);
3497 
3498 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3499 		core_tmr_release_req(cmd->se_tmr_req);
3500 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
3501 		kfree(cmd->t_task_cdb);
3502 	/*
3503 	 * If this cmd has been setup with target_get_sess_cmd(), drop
3504 	 * the kref and call ->release_cmd() in kref callback.
3505 	 */
3506 	 if (cmd->check_release != 0) {
3507 		target_put_sess_cmd(cmd->se_sess, cmd);
3508 		return;
3509 	}
3510 	cmd->se_tfo->release_cmd(cmd);
3511 }
3512 
3513 /**
3514  * transport_put_cmd - release a reference to a command
3515  * @cmd:       command to release
3516  *
3517  * This routine releases our reference to the command and frees it if possible.
3518  */
transport_put_cmd(struct se_cmd * cmd)3519 static void transport_put_cmd(struct se_cmd *cmd)
3520 {
3521 	unsigned long flags;
3522 	int free_tasks = 0;
3523 
3524 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3525 	if (atomic_read(&cmd->t_fe_count)) {
3526 		if (!atomic_dec_and_test(&cmd->t_fe_count))
3527 			goto out_busy;
3528 	}
3529 
3530 	if (atomic_read(&cmd->t_se_count)) {
3531 		if (!atomic_dec_and_test(&cmd->t_se_count))
3532 			goto out_busy;
3533 	}
3534 
3535 	if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3536 		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3537 		transport_all_task_dev_remove_state(cmd);
3538 		free_tasks = 1;
3539 	}
3540 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3541 
3542 	if (free_tasks != 0)
3543 		transport_free_dev_tasks(cmd);
3544 
3545 	transport_free_pages(cmd);
3546 	transport_release_cmd(cmd);
3547 	return;
3548 out_busy:
3549 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3550 }
3551 
3552 /*
3553  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3554  * allocating in the core.
3555  * @cmd:  Associated se_cmd descriptor
3556  * @mem:  SGL style memory for TCM WRITE / READ
3557  * @sg_mem_num: Number of SGL elements
3558  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3559  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3560  *
3561  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3562  * of parameters.
3563  */
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)3564 int transport_generic_map_mem_to_cmd(
3565 	struct se_cmd *cmd,
3566 	struct scatterlist *sgl,
3567 	u32 sgl_count,
3568 	struct scatterlist *sgl_bidi,
3569 	u32 sgl_bidi_count)
3570 {
3571 	if (!sgl || !sgl_count)
3572 		return 0;
3573 
3574 	if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3575 	    (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3576 		/*
3577 		 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3578 		 * scatterlists already have been set to follow what the fabric
3579 		 * passes for the original expected data transfer length.
3580 		 */
3581 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3582 			pr_warn("Rejecting SCSI DATA overflow for fabric using"
3583 				" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3584 			cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3585 			cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3586 			return -EINVAL;
3587 		}
3588 
3589 		cmd->t_data_sg = sgl;
3590 		cmd->t_data_nents = sgl_count;
3591 
3592 		if (sgl_bidi && sgl_bidi_count) {
3593 			cmd->t_bidi_data_sg = sgl_bidi;
3594 			cmd->t_bidi_data_nents = sgl_bidi_count;
3595 		}
3596 		cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3597 	}
3598 
3599 	return 0;
3600 }
3601 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3602 
transport_kmap_data_sg(struct se_cmd * cmd)3603 void *transport_kmap_data_sg(struct se_cmd *cmd)
3604 {
3605 	struct scatterlist *sg = cmd->t_data_sg;
3606 	struct page **pages;
3607 	int i;
3608 
3609 	BUG_ON(!sg);
3610 	/*
3611 	 * We need to take into account a possible offset here for fabrics like
3612 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3613 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3614 	 */
3615 	if (!cmd->t_data_nents)
3616 		return NULL;
3617 	else if (cmd->t_data_nents == 1)
3618 		return kmap(sg_page(sg)) + sg->offset;
3619 
3620 	/* >1 page. use vmap */
3621 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3622 	if (!pages)
3623 		return NULL;
3624 
3625 	/* convert sg[] to pages[] */
3626 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3627 		pages[i] = sg_page(sg);
3628 	}
3629 
3630 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3631 	kfree(pages);
3632 	if (!cmd->t_data_vmap)
3633 		return NULL;
3634 
3635 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3636 }
3637 EXPORT_SYMBOL(transport_kmap_data_sg);
3638 
transport_kunmap_data_sg(struct se_cmd * cmd)3639 void transport_kunmap_data_sg(struct se_cmd *cmd)
3640 {
3641 	if (!cmd->t_data_nents) {
3642 		return;
3643 	} else if (cmd->t_data_nents == 1) {
3644 		kunmap(sg_page(cmd->t_data_sg));
3645 		return;
3646 	}
3647 
3648 	vunmap(cmd->t_data_vmap);
3649 	cmd->t_data_vmap = NULL;
3650 }
3651 EXPORT_SYMBOL(transport_kunmap_data_sg);
3652 
3653 static int
transport_generic_get_mem(struct se_cmd * cmd)3654 transport_generic_get_mem(struct se_cmd *cmd)
3655 {
3656 	u32 length = cmd->data_length;
3657 	unsigned int nents;
3658 	struct page *page;
3659 	gfp_t zero_flag;
3660 	int i = 0;
3661 
3662 	nents = DIV_ROUND_UP(length, PAGE_SIZE);
3663 	cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3664 	if (!cmd->t_data_sg)
3665 		return -ENOMEM;
3666 
3667 	cmd->t_data_nents = nents;
3668 	sg_init_table(cmd->t_data_sg, nents);
3669 
3670 	zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3671 
3672 	while (length) {
3673 		u32 page_len = min_t(u32, length, PAGE_SIZE);
3674 		page = alloc_page(GFP_KERNEL | zero_flag);
3675 		if (!page)
3676 			goto out;
3677 
3678 		sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3679 		length -= page_len;
3680 		i++;
3681 	}
3682 	return 0;
3683 
3684 out:
3685 	while (i > 0) {
3686 		i--;
3687 		__free_page(sg_page(&cmd->t_data_sg[i]));
3688 	}
3689 	kfree(cmd->t_data_sg);
3690 	cmd->t_data_sg = NULL;
3691 	return -ENOMEM;
3692 }
3693 
3694 /* Reduce sectors if they are too long for the device */
transport_limit_task_sectors(struct se_device * dev,unsigned long long lba,sector_t sectors)3695 static inline sector_t transport_limit_task_sectors(
3696 	struct se_device *dev,
3697 	unsigned long long lba,
3698 	sector_t sectors)
3699 {
3700 	sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3701 
3702 	if (dev->transport->get_device_type(dev) == TYPE_DISK)
3703 		if ((lba + sectors) > transport_dev_end_lba(dev))
3704 			sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3705 
3706 	return sectors;
3707 }
3708 
3709 
3710 /*
3711  * This function can be used by HW target mode drivers to create a linked
3712  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3713  * This is intended to be called during the completion path by TCM Core
3714  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3715  */
transport_do_task_sg_chain(struct se_cmd * cmd)3716 void transport_do_task_sg_chain(struct se_cmd *cmd)
3717 {
3718 	struct scatterlist *sg_first = NULL;
3719 	struct scatterlist *sg_prev = NULL;
3720 	int sg_prev_nents = 0;
3721 	struct scatterlist *sg;
3722 	struct se_task *task;
3723 	u32 chained_nents = 0;
3724 	int i;
3725 
3726 	BUG_ON(!cmd->se_tfo->task_sg_chaining);
3727 
3728 	/*
3729 	 * Walk the struct se_task list and setup scatterlist chains
3730 	 * for each contiguously allocated struct se_task->task_sg[].
3731 	 */
3732 	list_for_each_entry(task, &cmd->t_task_list, t_list) {
3733 		if (!task->task_sg)
3734 			continue;
3735 
3736 		if (!sg_first) {
3737 			sg_first = task->task_sg;
3738 			chained_nents = task->task_sg_nents;
3739 		} else {
3740 			sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3741 			chained_nents += task->task_sg_nents;
3742 		}
3743 		/*
3744 		 * For the padded tasks, use the extra SGL vector allocated
3745 		 * in transport_allocate_data_tasks() for the sg_prev_nents
3746 		 * offset into sg_chain() above.
3747 		 *
3748 		 * We do not need the padding for the last task (or a single
3749 		 * task), but in that case we will never use the sg_prev_nents
3750 		 * value below which would be incorrect.
3751 		 */
3752 		sg_prev_nents = (task->task_sg_nents + 1);
3753 		sg_prev = task->task_sg;
3754 	}
3755 	/*
3756 	 * Setup the starting pointer and total t_tasks_sg_linked_no including
3757 	 * padding SGs for linking and to mark the end.
3758 	 */
3759 	cmd->t_tasks_sg_chained = sg_first;
3760 	cmd->t_tasks_sg_chained_no = chained_nents;
3761 
3762 	pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3763 		" t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3764 		cmd->t_tasks_sg_chained_no);
3765 
3766 	for_each_sg(cmd->t_tasks_sg_chained, sg,
3767 			cmd->t_tasks_sg_chained_no, i) {
3768 
3769 		pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3770 			i, sg, sg_page(sg), sg->length, sg->offset);
3771 		if (sg_is_chain(sg))
3772 			pr_debug("SG: %p sg_is_chain=1\n", sg);
3773 		if (sg_is_last(sg))
3774 			pr_debug("SG: %p sg_is_last=1\n", sg);
3775 	}
3776 }
3777 EXPORT_SYMBOL(transport_do_task_sg_chain);
3778 
3779 /*
3780  * Break up cmd into chunks transport can handle
3781  */
3782 static int
transport_allocate_data_tasks(struct se_cmd * cmd,enum dma_data_direction data_direction,struct scatterlist * cmd_sg,unsigned int sgl_nents)3783 transport_allocate_data_tasks(struct se_cmd *cmd,
3784 	enum dma_data_direction data_direction,
3785 	struct scatterlist *cmd_sg, unsigned int sgl_nents)
3786 {
3787 	struct se_device *dev = cmd->se_dev;
3788 	int task_count, i;
3789 	unsigned long long lba;
3790 	sector_t sectors, dev_max_sectors;
3791 	u32 sector_size;
3792 
3793 	if (transport_cmd_get_valid_sectors(cmd) < 0)
3794 		return -EINVAL;
3795 
3796 	dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3797 	sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3798 
3799 	WARN_ON(cmd->data_length % sector_size);
3800 
3801 	lba = cmd->t_task_lba;
3802 	sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3803 	task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3804 
3805 	/*
3806 	 * If we need just a single task reuse the SG list in the command
3807 	 * and avoid a lot of work.
3808 	 */
3809 	if (task_count == 1) {
3810 		struct se_task *task;
3811 		unsigned long flags;
3812 
3813 		task = transport_generic_get_task(cmd, data_direction);
3814 		if (!task)
3815 			return -ENOMEM;
3816 
3817 		task->task_sg = cmd_sg;
3818 		task->task_sg_nents = sgl_nents;
3819 
3820 		task->task_lba = lba;
3821 		task->task_sectors = sectors;
3822 		task->task_size = task->task_sectors * sector_size;
3823 
3824 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3825 		list_add_tail(&task->t_list, &cmd->t_task_list);
3826 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3827 
3828 		return task_count;
3829 	}
3830 
3831 	for (i = 0; i < task_count; i++) {
3832 		struct se_task *task;
3833 		unsigned int task_size, task_sg_nents_padded;
3834 		struct scatterlist *sg;
3835 		unsigned long flags;
3836 		int count;
3837 
3838 		task = transport_generic_get_task(cmd, data_direction);
3839 		if (!task)
3840 			return -ENOMEM;
3841 
3842 		task->task_lba = lba;
3843 		task->task_sectors = min(sectors, dev_max_sectors);
3844 		task->task_size = task->task_sectors * sector_size;
3845 
3846 		/*
3847 		 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3848 		 * in order to calculate the number per task SGL entries
3849 		 */
3850 		task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3851 		/*
3852 		 * Check if the fabric module driver is requesting that all
3853 		 * struct se_task->task_sg[] be chained together..  If so,
3854 		 * then allocate an extra padding SG entry for linking and
3855 		 * marking the end of the chained SGL for every task except
3856 		 * the last one for (task_count > 1) operation, or skipping
3857 		 * the extra padding for the (task_count == 1) case.
3858 		 */
3859 		if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3860 			task_sg_nents_padded = (task->task_sg_nents + 1);
3861 		} else
3862 			task_sg_nents_padded = task->task_sg_nents;
3863 
3864 		task->task_sg = kmalloc(sizeof(struct scatterlist) *
3865 					task_sg_nents_padded, GFP_KERNEL);
3866 		if (!task->task_sg) {
3867 			cmd->se_dev->transport->free_task(task);
3868 			return -ENOMEM;
3869 		}
3870 
3871 		sg_init_table(task->task_sg, task_sg_nents_padded);
3872 
3873 		task_size = task->task_size;
3874 
3875 		/* Build new sgl, only up to task_size */
3876 		for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3877 			if (cmd_sg->length > task_size)
3878 				break;
3879 
3880 			*sg = *cmd_sg;
3881 			task_size -= cmd_sg->length;
3882 			cmd_sg = sg_next(cmd_sg);
3883 		}
3884 
3885 		lba += task->task_sectors;
3886 		sectors -= task->task_sectors;
3887 
3888 		spin_lock_irqsave(&cmd->t_state_lock, flags);
3889 		list_add_tail(&task->t_list, &cmd->t_task_list);
3890 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3891 	}
3892 
3893 	return task_count;
3894 }
3895 
3896 static int
transport_allocate_control_task(struct se_cmd * cmd)3897 transport_allocate_control_task(struct se_cmd *cmd)
3898 {
3899 	struct se_task *task;
3900 	unsigned long flags;
3901 
3902 	/* Workaround for handling zero-length control CDBs */
3903 	if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3904 	    !cmd->data_length)
3905 		return 0;
3906 
3907 	task = transport_generic_get_task(cmd, cmd->data_direction);
3908 	if (!task)
3909 		return -ENOMEM;
3910 
3911 	task->task_sg = cmd->t_data_sg;
3912 	task->task_size = cmd->data_length;
3913 	task->task_sg_nents = cmd->t_data_nents;
3914 
3915 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3916 	list_add_tail(&task->t_list, &cmd->t_task_list);
3917 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3918 
3919 	/* Success! Return number of tasks allocated */
3920 	return 1;
3921 }
3922 
3923 /*
3924  * Allocate any required ressources to execute the command, and either place
3925  * it on the execution queue if possible.  For writes we might not have the
3926  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3927  */
transport_generic_new_cmd(struct se_cmd * cmd)3928 int transport_generic_new_cmd(struct se_cmd *cmd)
3929 {
3930 	struct se_device *dev = cmd->se_dev;
3931 	int task_cdbs, task_cdbs_bidi = 0;
3932 	int set_counts = 1;
3933 	int ret = 0;
3934 
3935 	/*
3936 	 * Determine is the TCM fabric module has already allocated physical
3937 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3938 	 * beforehand.
3939 	 */
3940 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3941 	    cmd->data_length) {
3942 		ret = transport_generic_get_mem(cmd);
3943 		if (ret < 0)
3944 			goto out_fail;
3945 	}
3946 
3947 	/*
3948 	 * For BIDI command set up the read tasks first.
3949 	 */
3950 	if (cmd->t_bidi_data_sg &&
3951 	    dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3952 		BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3953 
3954 		task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3955 				DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3956 				cmd->t_bidi_data_nents);
3957 		if (task_cdbs_bidi <= 0)
3958 			goto out_fail;
3959 
3960 		atomic_inc(&cmd->t_fe_count);
3961 		atomic_inc(&cmd->t_se_count);
3962 		set_counts = 0;
3963 	}
3964 
3965 	if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3966 		task_cdbs = transport_allocate_data_tasks(cmd,
3967 					cmd->data_direction, cmd->t_data_sg,
3968 					cmd->t_data_nents);
3969 	} else {
3970 		task_cdbs = transport_allocate_control_task(cmd);
3971 	}
3972 
3973 	if (task_cdbs < 0)
3974 		goto out_fail;
3975 	else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3976 		spin_lock_irq(&cmd->t_state_lock);
3977 		cmd->t_state = TRANSPORT_COMPLETE;
3978 		cmd->transport_state |= CMD_T_ACTIVE;
3979 		spin_unlock_irq(&cmd->t_state_lock);
3980 
3981 		if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3982 			u8 ua_asc = 0, ua_ascq = 0;
3983 
3984 			core_scsi3_ua_clear_for_request_sense(cmd,
3985 					&ua_asc, &ua_ascq);
3986 		}
3987 
3988 		INIT_WORK(&cmd->work, target_complete_ok_work);
3989 		queue_work(target_completion_wq, &cmd->work);
3990 		return 0;
3991 	}
3992 
3993 	if (set_counts) {
3994 		atomic_inc(&cmd->t_fe_count);
3995 		atomic_inc(&cmd->t_se_count);
3996 	}
3997 
3998 	cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3999 	atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
4000 	atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
4001 
4002 	/*
4003 	 * For WRITEs, let the fabric know its buffer is ready..
4004 	 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4005 	 * will be added to the struct se_device execution queue after its WRITE
4006 	 * data has arrived. (ie: It gets handled by the transport processing
4007 	 * thread a second time)
4008 	 */
4009 	if (cmd->data_direction == DMA_TO_DEVICE) {
4010 		transport_add_tasks_to_state_queue(cmd);
4011 		return transport_generic_write_pending(cmd);
4012 	}
4013 	/*
4014 	 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4015 	 * to the execution queue.
4016 	 */
4017 	transport_execute_tasks(cmd);
4018 	return 0;
4019 
4020 out_fail:
4021 	cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4022 	cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4023 	return -EINVAL;
4024 }
4025 EXPORT_SYMBOL(transport_generic_new_cmd);
4026 
4027 /*	transport_generic_process_write():
4028  *
4029  *
4030  */
transport_generic_process_write(struct se_cmd * cmd)4031 void transport_generic_process_write(struct se_cmd *cmd)
4032 {
4033 	transport_execute_tasks(cmd);
4034 }
4035 EXPORT_SYMBOL(transport_generic_process_write);
4036 
transport_write_pending_qf(struct se_cmd * cmd)4037 static void transport_write_pending_qf(struct se_cmd *cmd)
4038 {
4039 	int ret;
4040 
4041 	ret = cmd->se_tfo->write_pending(cmd);
4042 	if (ret == -EAGAIN || ret == -ENOMEM) {
4043 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4044 			 cmd);
4045 		transport_handle_queue_full(cmd, cmd->se_dev);
4046 	}
4047 }
4048 
transport_generic_write_pending(struct se_cmd * cmd)4049 static int transport_generic_write_pending(struct se_cmd *cmd)
4050 {
4051 	unsigned long flags;
4052 	int ret;
4053 
4054 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4055 	cmd->t_state = TRANSPORT_WRITE_PENDING;
4056 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4057 
4058 	/*
4059 	 * Clear the se_cmd for WRITE_PENDING status in order to set
4060 	 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4061 	 * from HW target mode interrupt code.  This is safe to be called
4062 	 * with transport_off=1 before the cmd->se_tfo->write_pending
4063 	 * because the se_cmd->se_lun pointer is not being cleared.
4064 	 */
4065 	transport_cmd_check_stop(cmd, 1, 0);
4066 
4067 	/*
4068 	 * Call the fabric write_pending function here to let the
4069 	 * frontend know that WRITE buffers are ready.
4070 	 */
4071 	ret = cmd->se_tfo->write_pending(cmd);
4072 	if (ret == -EAGAIN || ret == -ENOMEM)
4073 		goto queue_full;
4074 	else if (ret < 0)
4075 		return ret;
4076 
4077 	return 1;
4078 
4079 queue_full:
4080 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4081 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4082 	transport_handle_queue_full(cmd, cmd->se_dev);
4083 	return 0;
4084 }
4085 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)4086 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4087 {
4088 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4089 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4090 			 transport_wait_for_tasks(cmd);
4091 
4092 		transport_release_cmd(cmd);
4093 	} else {
4094 		if (wait_for_tasks)
4095 			transport_wait_for_tasks(cmd);
4096 
4097 		core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4098 
4099 		if (cmd->se_lun)
4100 			transport_lun_remove_cmd(cmd);
4101 
4102 		transport_free_dev_tasks(cmd);
4103 
4104 		transport_put_cmd(cmd);
4105 	}
4106 }
4107 EXPORT_SYMBOL(transport_generic_free_cmd);
4108 
4109 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4110  * @se_sess:	session to reference
4111  * @se_cmd:	command descriptor to add
4112  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
4113  */
target_get_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd,bool ack_kref)4114 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4115 			bool ack_kref)
4116 {
4117 	unsigned long flags;
4118 
4119 	kref_init(&se_cmd->cmd_kref);
4120 	/*
4121 	 * Add a second kref if the fabric caller is expecting to handle
4122 	 * fabric acknowledgement that requires two target_put_sess_cmd()
4123 	 * invocations before se_cmd descriptor release.
4124 	 */
4125 	if (ack_kref == true) {
4126 		kref_get(&se_cmd->cmd_kref);
4127 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4128 	}
4129 
4130 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4131 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4132 	se_cmd->check_release = 1;
4133 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4134 }
4135 EXPORT_SYMBOL(target_get_sess_cmd);
4136 
target_release_cmd_kref(struct kref * kref)4137 static void target_release_cmd_kref(struct kref *kref)
4138 {
4139 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4140 	struct se_session *se_sess = se_cmd->se_sess;
4141 	unsigned long flags;
4142 
4143 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4144 	if (list_empty(&se_cmd->se_cmd_list)) {
4145 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4146 		se_cmd->se_tfo->release_cmd(se_cmd);
4147 		return;
4148 	}
4149 	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4150 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4151 		complete(&se_cmd->cmd_wait_comp);
4152 		return;
4153 	}
4154 	list_del(&se_cmd->se_cmd_list);
4155 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4156 
4157 	se_cmd->se_tfo->release_cmd(se_cmd);
4158 }
4159 
4160 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4161  * @se_sess:	session to reference
4162  * @se_cmd:	command descriptor to drop
4163  */
target_put_sess_cmd(struct se_session * se_sess,struct se_cmd * se_cmd)4164 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4165 {
4166 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4167 }
4168 EXPORT_SYMBOL(target_put_sess_cmd);
4169 
4170 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4171  * @se_sess:	session to split
4172  */
target_splice_sess_cmd_list(struct se_session * se_sess)4173 void target_splice_sess_cmd_list(struct se_session *se_sess)
4174 {
4175 	struct se_cmd *se_cmd;
4176 	unsigned long flags;
4177 
4178 	WARN_ON(!list_empty(&se_sess->sess_wait_list));
4179 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
4180 
4181 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4182 	se_sess->sess_tearing_down = 1;
4183 
4184 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4185 
4186 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4187 		se_cmd->cmd_wait_set = 1;
4188 
4189 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4190 }
4191 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4192 
4193 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4194  * @se_sess:    session to wait for active I/O
4195  * @wait_for_tasks:	Make extra transport_wait_for_tasks call
4196  */
target_wait_for_sess_cmds(struct se_session * se_sess,int wait_for_tasks)4197 void target_wait_for_sess_cmds(
4198 	struct se_session *se_sess,
4199 	int wait_for_tasks)
4200 {
4201 	struct se_cmd *se_cmd, *tmp_cmd;
4202 	bool rc = false;
4203 
4204 	list_for_each_entry_safe(se_cmd, tmp_cmd,
4205 				&se_sess->sess_wait_list, se_cmd_list) {
4206 		list_del(&se_cmd->se_cmd_list);
4207 
4208 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4209 			" %d\n", se_cmd, se_cmd->t_state,
4210 			se_cmd->se_tfo->get_cmd_state(se_cmd));
4211 
4212 		if (wait_for_tasks) {
4213 			pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4214 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4215 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4216 
4217 			rc = transport_wait_for_tasks(se_cmd);
4218 
4219 			pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4220 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4221 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4222 		}
4223 
4224 		if (!rc) {
4225 			wait_for_completion(&se_cmd->cmd_wait_comp);
4226 			pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4227 				" fabric state: %d\n", se_cmd, se_cmd->t_state,
4228 				se_cmd->se_tfo->get_cmd_state(se_cmd));
4229 		}
4230 
4231 		se_cmd->se_tfo->release_cmd(se_cmd);
4232 	}
4233 }
4234 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4235 
4236 /*	transport_lun_wait_for_tasks():
4237  *
4238  *	Called from ConfigFS context to stop the passed struct se_cmd to allow
4239  *	an struct se_lun to be successfully shutdown.
4240  */
transport_lun_wait_for_tasks(struct se_cmd * cmd,struct se_lun * lun)4241 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4242 {
4243 	unsigned long flags;
4244 	int ret;
4245 	/*
4246 	 * If the frontend has already requested this struct se_cmd to
4247 	 * be stopped, we can safely ignore this struct se_cmd.
4248 	 */
4249 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4250 	if (cmd->transport_state & CMD_T_STOP) {
4251 		cmd->transport_state &= ~CMD_T_LUN_STOP;
4252 
4253 		pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4254 			 cmd->se_tfo->get_task_tag(cmd));
4255 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4256 		transport_cmd_check_stop(cmd, 1, 0);
4257 		return -EPERM;
4258 	}
4259 	cmd->transport_state |= CMD_T_LUN_FE_STOP;
4260 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4261 
4262 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4263 
4264 	ret = transport_stop_tasks_for_cmd(cmd);
4265 
4266 	pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4267 			" %d\n", cmd, cmd->t_task_list_num, ret);
4268 	if (!ret) {
4269 		pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4270 				cmd->se_tfo->get_task_tag(cmd));
4271 		wait_for_completion(&cmd->transport_lun_stop_comp);
4272 		pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4273 				cmd->se_tfo->get_task_tag(cmd));
4274 	}
4275 	transport_remove_cmd_from_queue(cmd);
4276 
4277 	return 0;
4278 }
4279 
__transport_clear_lun_from_sessions(struct se_lun * lun)4280 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4281 {
4282 	struct se_cmd *cmd = NULL;
4283 	unsigned long lun_flags, cmd_flags;
4284 	/*
4285 	 * Do exception processing and return CHECK_CONDITION status to the
4286 	 * Initiator Port.
4287 	 */
4288 	spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4289 	while (!list_empty(&lun->lun_cmd_list)) {
4290 		cmd = list_first_entry(&lun->lun_cmd_list,
4291 		       struct se_cmd, se_lun_node);
4292 		list_del_init(&cmd->se_lun_node);
4293 
4294 		/*
4295 		 * This will notify iscsi_target_transport.c:
4296 		 * transport_cmd_check_stop() that a LUN shutdown is in
4297 		 * progress for the iscsi_cmd_t.
4298 		 */
4299 		spin_lock(&cmd->t_state_lock);
4300 		pr_debug("SE_LUN[%d] - Setting cmd->transport"
4301 			"_lun_stop for  ITT: 0x%08x\n",
4302 			cmd->se_lun->unpacked_lun,
4303 			cmd->se_tfo->get_task_tag(cmd));
4304 		cmd->transport_state |= CMD_T_LUN_STOP;
4305 		spin_unlock(&cmd->t_state_lock);
4306 
4307 		spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4308 
4309 		if (!cmd->se_lun) {
4310 			pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4311 				cmd->se_tfo->get_task_tag(cmd),
4312 				cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4313 			BUG();
4314 		}
4315 		/*
4316 		 * If the Storage engine still owns the iscsi_cmd_t, determine
4317 		 * and/or stop its context.
4318 		 */
4319 		pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4320 			"_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4321 			cmd->se_tfo->get_task_tag(cmd));
4322 
4323 		if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4324 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4325 			continue;
4326 		}
4327 
4328 		pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4329 			"_wait_for_tasks(): SUCCESS\n",
4330 			cmd->se_lun->unpacked_lun,
4331 			cmd->se_tfo->get_task_tag(cmd));
4332 
4333 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4334 		if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4335 			spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4336 			goto check_cond;
4337 		}
4338 		cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4339 		transport_all_task_dev_remove_state(cmd);
4340 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4341 
4342 		transport_free_dev_tasks(cmd);
4343 		/*
4344 		 * The Storage engine stopped this struct se_cmd before it was
4345 		 * send to the fabric frontend for delivery back to the
4346 		 * Initiator Node.  Return this SCSI CDB back with an
4347 		 * CHECK_CONDITION status.
4348 		 */
4349 check_cond:
4350 		transport_send_check_condition_and_sense(cmd,
4351 				TCM_NON_EXISTENT_LUN, 0);
4352 		/*
4353 		 *  If the fabric frontend is waiting for this iscsi_cmd_t to
4354 		 * be released, notify the waiting thread now that LU has
4355 		 * finished accessing it.
4356 		 */
4357 		spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4358 		if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4359 			pr_debug("SE_LUN[%d] - Detected FE stop for"
4360 				" struct se_cmd: %p ITT: 0x%08x\n",
4361 				lun->unpacked_lun,
4362 				cmd, cmd->se_tfo->get_task_tag(cmd));
4363 
4364 			spin_unlock_irqrestore(&cmd->t_state_lock,
4365 					cmd_flags);
4366 			transport_cmd_check_stop(cmd, 1, 0);
4367 			complete(&cmd->transport_lun_fe_stop_comp);
4368 			spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4369 			continue;
4370 		}
4371 		pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4372 			lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4373 
4374 		spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4375 		spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4376 	}
4377 	spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4378 }
4379 
transport_clear_lun_thread(void * p)4380 static int transport_clear_lun_thread(void *p)
4381 {
4382 	struct se_lun *lun = p;
4383 
4384 	__transport_clear_lun_from_sessions(lun);
4385 	complete(&lun->lun_shutdown_comp);
4386 
4387 	return 0;
4388 }
4389 
transport_clear_lun_from_sessions(struct se_lun * lun)4390 int transport_clear_lun_from_sessions(struct se_lun *lun)
4391 {
4392 	struct task_struct *kt;
4393 
4394 	kt = kthread_run(transport_clear_lun_thread, lun,
4395 			"tcm_cl_%u", lun->unpacked_lun);
4396 	if (IS_ERR(kt)) {
4397 		pr_err("Unable to start clear_lun thread\n");
4398 		return PTR_ERR(kt);
4399 	}
4400 	wait_for_completion(&lun->lun_shutdown_comp);
4401 
4402 	return 0;
4403 }
4404 
4405 /**
4406  * transport_wait_for_tasks - wait for completion to occur
4407  * @cmd:	command to wait
4408  *
4409  * Called from frontend fabric context to wait for storage engine
4410  * to pause and/or release frontend generated struct se_cmd.
4411  */
transport_wait_for_tasks(struct se_cmd * cmd)4412 bool transport_wait_for_tasks(struct se_cmd *cmd)
4413 {
4414 	unsigned long flags;
4415 
4416 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4417 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4418 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4419 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4420 		return false;
4421 	}
4422 	/*
4423 	 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4424 	 * has been set in transport_set_supported_SAM_opcode().
4425 	 */
4426 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4427 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4428 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4429 		return false;
4430 	}
4431 	/*
4432 	 * If we are already stopped due to an external event (ie: LUN shutdown)
4433 	 * sleep until the connection can have the passed struct se_cmd back.
4434 	 * The cmd->transport_lun_stopped_sem will be upped by
4435 	 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4436 	 * has completed its operation on the struct se_cmd.
4437 	 */
4438 	if (cmd->transport_state & CMD_T_LUN_STOP) {
4439 		pr_debug("wait_for_tasks: Stopping"
4440 			" wait_for_completion(&cmd->t_tasktransport_lun_fe"
4441 			"_stop_comp); for ITT: 0x%08x\n",
4442 			cmd->se_tfo->get_task_tag(cmd));
4443 		/*
4444 		 * There is a special case for WRITES where a FE exception +
4445 		 * LUN shutdown means ConfigFS context is still sleeping on
4446 		 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4447 		 * We go ahead and up transport_lun_stop_comp just to be sure
4448 		 * here.
4449 		 */
4450 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4451 		complete(&cmd->transport_lun_stop_comp);
4452 		wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4453 		spin_lock_irqsave(&cmd->t_state_lock, flags);
4454 
4455 		transport_all_task_dev_remove_state(cmd);
4456 		/*
4457 		 * At this point, the frontend who was the originator of this
4458 		 * struct se_cmd, now owns the structure and can be released through
4459 		 * normal means below.
4460 		 */
4461 		pr_debug("wait_for_tasks: Stopped"
4462 			" wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4463 			"stop_comp); for ITT: 0x%08x\n",
4464 			cmd->se_tfo->get_task_tag(cmd));
4465 
4466 		cmd->transport_state &= ~CMD_T_LUN_STOP;
4467 	}
4468 
4469 	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4470 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4471 		return false;
4472 	}
4473 
4474 	cmd->transport_state |= CMD_T_STOP;
4475 
4476 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4477 		" i_state: %d, t_state: %d, CMD_T_STOP\n",
4478 		cmd, cmd->se_tfo->get_task_tag(cmd),
4479 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4480 
4481 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4482 
4483 	wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4484 
4485 	wait_for_completion(&cmd->t_transport_stop_comp);
4486 
4487 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4488 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4489 
4490 	pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4491 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4492 		cmd->se_tfo->get_task_tag(cmd));
4493 
4494 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4495 
4496 	return true;
4497 }
4498 EXPORT_SYMBOL(transport_wait_for_tasks);
4499 
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)4500 static int transport_get_sense_codes(
4501 	struct se_cmd *cmd,
4502 	u8 *asc,
4503 	u8 *ascq)
4504 {
4505 	*asc = cmd->scsi_asc;
4506 	*ascq = cmd->scsi_ascq;
4507 
4508 	return 0;
4509 }
4510 
transport_set_sense_codes(struct se_cmd * cmd,u8 asc,u8 ascq)4511 static int transport_set_sense_codes(
4512 	struct se_cmd *cmd,
4513 	u8 asc,
4514 	u8 ascq)
4515 {
4516 	cmd->scsi_asc = asc;
4517 	cmd->scsi_ascq = ascq;
4518 
4519 	return 0;
4520 }
4521 
transport_send_check_condition_and_sense(struct se_cmd * cmd,u8 reason,int from_transport)4522 int transport_send_check_condition_and_sense(
4523 	struct se_cmd *cmd,
4524 	u8 reason,
4525 	int from_transport)
4526 {
4527 	unsigned char *buffer = cmd->sense_buffer;
4528 	unsigned long flags;
4529 	int offset;
4530 	u8 asc = 0, ascq = 0;
4531 
4532 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4533 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4534 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4535 		return 0;
4536 	}
4537 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4538 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4539 
4540 	if (!reason && from_transport)
4541 		goto after_reason;
4542 
4543 	if (!from_transport)
4544 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4545 	/*
4546 	 * Data Segment and SenseLength of the fabric response PDU.
4547 	 *
4548 	 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4549 	 * from include/scsi/scsi_cmnd.h
4550 	 */
4551 	offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4552 				TRANSPORT_SENSE_BUFFER);
4553 	/*
4554 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4555 	 * SENSE KEY values from include/scsi/scsi.h
4556 	 */
4557 	switch (reason) {
4558 	case TCM_NON_EXISTENT_LUN:
4559 		/* CURRENT ERROR */
4560 		buffer[offset] = 0x70;
4561 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4562 		/* ILLEGAL REQUEST */
4563 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4564 		/* LOGICAL UNIT NOT SUPPORTED */
4565 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4566 		break;
4567 	case TCM_UNSUPPORTED_SCSI_OPCODE:
4568 	case TCM_SECTOR_COUNT_TOO_MANY:
4569 		/* CURRENT ERROR */
4570 		buffer[offset] = 0x70;
4571 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4572 		/* ILLEGAL REQUEST */
4573 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4574 		/* INVALID COMMAND OPERATION CODE */
4575 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4576 		break;
4577 	case TCM_UNKNOWN_MODE_PAGE:
4578 		/* CURRENT ERROR */
4579 		buffer[offset] = 0x70;
4580 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4581 		/* ILLEGAL REQUEST */
4582 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4583 		/* INVALID FIELD IN CDB */
4584 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4585 		break;
4586 	case TCM_CHECK_CONDITION_ABORT_CMD:
4587 		/* CURRENT ERROR */
4588 		buffer[offset] = 0x70;
4589 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4590 		/* ABORTED COMMAND */
4591 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4592 		/* BUS DEVICE RESET FUNCTION OCCURRED */
4593 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4594 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4595 		break;
4596 	case TCM_INCORRECT_AMOUNT_OF_DATA:
4597 		/* CURRENT ERROR */
4598 		buffer[offset] = 0x70;
4599 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4600 		/* ABORTED COMMAND */
4601 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4602 		/* WRITE ERROR */
4603 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4604 		/* NOT ENOUGH UNSOLICITED DATA */
4605 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4606 		break;
4607 	case TCM_INVALID_CDB_FIELD:
4608 		/* CURRENT ERROR */
4609 		buffer[offset] = 0x70;
4610 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4611 		/* ILLEGAL REQUEST */
4612 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4613 		/* INVALID FIELD IN CDB */
4614 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4615 		break;
4616 	case TCM_INVALID_PARAMETER_LIST:
4617 		/* CURRENT ERROR */
4618 		buffer[offset] = 0x70;
4619 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4620 		/* ILLEGAL REQUEST */
4621 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4622 		/* INVALID FIELD IN PARAMETER LIST */
4623 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4624 		break;
4625 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
4626 		/* CURRENT ERROR */
4627 		buffer[offset] = 0x70;
4628 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4629 		/* ABORTED COMMAND */
4630 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4631 		/* WRITE ERROR */
4632 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4633 		/* UNEXPECTED_UNSOLICITED_DATA */
4634 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4635 		break;
4636 	case TCM_SERVICE_CRC_ERROR:
4637 		/* CURRENT ERROR */
4638 		buffer[offset] = 0x70;
4639 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4640 		/* ABORTED COMMAND */
4641 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4642 		/* PROTOCOL SERVICE CRC ERROR */
4643 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4644 		/* N/A */
4645 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4646 		break;
4647 	case TCM_SNACK_REJECTED:
4648 		/* CURRENT ERROR */
4649 		buffer[offset] = 0x70;
4650 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4651 		/* ABORTED COMMAND */
4652 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4653 		/* READ ERROR */
4654 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4655 		/* FAILED RETRANSMISSION REQUEST */
4656 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4657 		break;
4658 	case TCM_WRITE_PROTECTED:
4659 		/* CURRENT ERROR */
4660 		buffer[offset] = 0x70;
4661 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4662 		/* DATA PROTECT */
4663 		buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4664 		/* WRITE PROTECTED */
4665 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4666 		break;
4667 	case TCM_ADDRESS_OUT_OF_RANGE:
4668 		/* CURRENT ERROR */
4669 		buffer[offset] = 0x70;
4670 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4671 		/* ILLEGAL REQUEST */
4672 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4673 		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4674 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4675 		break;
4676 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4677 		/* CURRENT ERROR */
4678 		buffer[offset] = 0x70;
4679 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4680 		/* UNIT ATTENTION */
4681 		buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4682 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4683 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4684 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4685 		break;
4686 	case TCM_CHECK_CONDITION_NOT_READY:
4687 		/* CURRENT ERROR */
4688 		buffer[offset] = 0x70;
4689 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4690 		/* Not Ready */
4691 		buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4692 		transport_get_sense_codes(cmd, &asc, &ascq);
4693 		buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4694 		buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4695 		break;
4696 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4697 	default:
4698 		/* CURRENT ERROR */
4699 		buffer[offset] = 0x70;
4700 		buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4701 		/* ILLEGAL REQUEST */
4702 		buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4703 		/* LOGICAL UNIT COMMUNICATION FAILURE */
4704 		buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4705 		break;
4706 	}
4707 	/*
4708 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
4709 	 */
4710 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4711 	/*
4712 	 * Automatically padded, this value is encoded in the fabric's
4713 	 * data_length response PDU containing the SCSI defined sense data.
4714 	 */
4715 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4716 
4717 after_reason:
4718 	return cmd->se_tfo->queue_status(cmd);
4719 }
4720 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4721 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)4722 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4723 {
4724 	int ret = 0;
4725 
4726 	if (cmd->transport_state & CMD_T_ABORTED) {
4727 		if (!send_status ||
4728 		     (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4729 			return 1;
4730 #if 0
4731 		pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4732 			" status for CDB: 0x%02x ITT: 0x%08x\n",
4733 			cmd->t_task_cdb[0],
4734 			cmd->se_tfo->get_task_tag(cmd));
4735 #endif
4736 		cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4737 		cmd->se_tfo->queue_status(cmd);
4738 		ret = 1;
4739 	}
4740 	return ret;
4741 }
4742 EXPORT_SYMBOL(transport_check_aborted_status);
4743 
transport_send_task_abort(struct se_cmd * cmd)4744 void transport_send_task_abort(struct se_cmd *cmd)
4745 {
4746 	unsigned long flags;
4747 
4748 	spin_lock_irqsave(&cmd->t_state_lock, flags);
4749 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4750 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4751 		return;
4752 	}
4753 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4754 
4755 	/*
4756 	 * If there are still expected incoming fabric WRITEs, we wait
4757 	 * until until they have completed before sending a TASK_ABORTED
4758 	 * response.  This response with TASK_ABORTED status will be
4759 	 * queued back to fabric module by transport_check_aborted_status().
4760 	 */
4761 	if (cmd->data_direction == DMA_TO_DEVICE) {
4762 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4763 			cmd->transport_state |= CMD_T_ABORTED;
4764 			smp_mb__after_atomic_inc();
4765 		}
4766 	}
4767 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4768 #if 0
4769 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4770 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
4771 		cmd->se_tfo->get_task_tag(cmd));
4772 #endif
4773 	cmd->se_tfo->queue_status(cmd);
4774 }
4775 
transport_generic_do_tmr(struct se_cmd * cmd)4776 static int transport_generic_do_tmr(struct se_cmd *cmd)
4777 {
4778 	struct se_device *dev = cmd->se_dev;
4779 	struct se_tmr_req *tmr = cmd->se_tmr_req;
4780 	int ret;
4781 
4782 	switch (tmr->function) {
4783 	case TMR_ABORT_TASK:
4784 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
4785 		break;
4786 	case TMR_ABORT_TASK_SET:
4787 	case TMR_CLEAR_ACA:
4788 	case TMR_CLEAR_TASK_SET:
4789 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4790 		break;
4791 	case TMR_LUN_RESET:
4792 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4793 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4794 					 TMR_FUNCTION_REJECTED;
4795 		break;
4796 	case TMR_TARGET_WARM_RESET:
4797 		tmr->response = TMR_FUNCTION_REJECTED;
4798 		break;
4799 	case TMR_TARGET_COLD_RESET:
4800 		tmr->response = TMR_FUNCTION_REJECTED;
4801 		break;
4802 	default:
4803 		pr_err("Uknown TMR function: 0x%02x.\n",
4804 				tmr->function);
4805 		tmr->response = TMR_FUNCTION_REJECTED;
4806 		break;
4807 	}
4808 
4809 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4810 	cmd->se_tfo->queue_tm_rsp(cmd);
4811 
4812 	transport_cmd_check_stop_to_fabric(cmd);
4813 	return 0;
4814 }
4815 
4816 /*	transport_processing_thread():
4817  *
4818  *
4819  */
transport_processing_thread(void * param)4820 static int transport_processing_thread(void *param)
4821 {
4822 	int ret;
4823 	struct se_cmd *cmd;
4824 	struct se_device *dev = param;
4825 
4826 	while (!kthread_should_stop()) {
4827 		ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4828 				atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4829 				kthread_should_stop());
4830 		if (ret < 0)
4831 			goto out;
4832 
4833 get_cmd:
4834 		cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4835 		if (!cmd)
4836 			continue;
4837 
4838 		switch (cmd->t_state) {
4839 		case TRANSPORT_NEW_CMD:
4840 			BUG();
4841 			break;
4842 		case TRANSPORT_NEW_CMD_MAP:
4843 			if (!cmd->se_tfo->new_cmd_map) {
4844 				pr_err("cmd->se_tfo->new_cmd_map is"
4845 					" NULL for TRANSPORT_NEW_CMD_MAP\n");
4846 				BUG();
4847 			}
4848 			ret = cmd->se_tfo->new_cmd_map(cmd);
4849 			if (ret < 0) {
4850 				transport_generic_request_failure(cmd);
4851 				break;
4852 			}
4853 			ret = transport_generic_new_cmd(cmd);
4854 			if (ret < 0) {
4855 				transport_generic_request_failure(cmd);
4856 				break;
4857 			}
4858 			break;
4859 		case TRANSPORT_PROCESS_WRITE:
4860 			transport_generic_process_write(cmd);
4861 			break;
4862 		case TRANSPORT_PROCESS_TMR:
4863 			transport_generic_do_tmr(cmd);
4864 			break;
4865 		case TRANSPORT_COMPLETE_QF_WP:
4866 			transport_write_pending_qf(cmd);
4867 			break;
4868 		case TRANSPORT_COMPLETE_QF_OK:
4869 			transport_complete_qf(cmd);
4870 			break;
4871 		default:
4872 			pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4873 				"i_state: %d on SE LUN: %u\n",
4874 				cmd->t_state,
4875 				cmd->se_tfo->get_task_tag(cmd),
4876 				cmd->se_tfo->get_cmd_state(cmd),
4877 				cmd->se_lun->unpacked_lun);
4878 			BUG();
4879 		}
4880 
4881 		goto get_cmd;
4882 	}
4883 
4884 out:
4885 	WARN_ON(!list_empty(&dev->state_task_list));
4886 	WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4887 	dev->process_thread = NULL;
4888 	return 0;
4889 }
4890