• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include "ttm/ttm_module.h"
34 #include "ttm/ttm_bo_driver.h"
35 #include "ttm/ttm_placement.h"
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47 
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51 
52 static struct attribute ttm_bo_count = {
53 	.name = "bo_count",
54 	.mode = S_IRUGO
55 };
56 
ttm_mem_type_from_flags(uint32_t flags,uint32_t * mem_type)57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 	int i;
60 
61 	for (i = 0; i <= TTM_PL_PRIV5; i++)
62 		if (flags & (1 << i)) {
63 			*mem_type = i;
64 			return 0;
65 		}
66 	return -EINVAL;
67 }
68 
ttm_mem_type_debug(struct ttm_bo_device * bdev,int mem_type)69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72 
73 	pr_err("    has_type: %d\n", man->has_type);
74 	pr_err("    use_type: %d\n", man->use_type);
75 	pr_err("    flags: 0x%08X\n", man->flags);
76 	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77 	pr_err("    size: %llu\n", man->size);
78 	pr_err("    available_caching: 0x%08X\n", man->available_caching);
79 	pr_err("    default_caching: 0x%08X\n", man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
ttm_bo_mem_space_debug(struct ttm_buffer_object * bo,struct ttm_placement * placement)84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
91 	       bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		pr_err("  placement[%d]=0x%08X (%d)\n",
98 		       i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
ttm_bo_global_show(struct kobject * kobj,struct attribute * attr,char * buffer)103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
ttm_bo_type_flags(unsigned type)130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
ttm_bo_release_list(struct kref * list_kref)135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 	size_t acc_size = bo->acc_size;
141 
142 	BUG_ON(atomic_read(&bo->list_kref.refcount));
143 	BUG_ON(atomic_read(&bo->kref.refcount));
144 	BUG_ON(atomic_read(&bo->cpu_writers));
145 	BUG_ON(bo->sync_obj != NULL);
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 
150 	if (bo->ttm)
151 		ttm_tt_destroy(bo->ttm);
152 	atomic_dec(&bo->glob->bo_count);
153 	if (bo->destroy)
154 		bo->destroy(bo);
155 	else {
156 		kfree(bo);
157 	}
158 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160 
ttm_bo_wait_unreserved(struct ttm_buffer_object * bo,bool interruptible)161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 	if (interruptible) {
164 		return wait_event_interruptible(bo->event_queue,
165 					       atomic_read(&bo->reserved) == 0);
166 	} else {
167 		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 		return 0;
169 	}
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172 
ttm_bo_add_to_lru(struct ttm_buffer_object * bo)173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_bo_device *bdev = bo->bdev;
176 	struct ttm_mem_type_manager *man;
177 
178 	BUG_ON(!atomic_read(&bo->reserved));
179 
180 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 
182 		BUG_ON(!list_empty(&bo->lru));
183 
184 		man = &bdev->man[bo->mem.mem_type];
185 		list_add_tail(&bo->lru, &man->lru);
186 		kref_get(&bo->list_kref);
187 
188 		if (bo->ttm != NULL) {
189 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 			kref_get(&bo->list_kref);
191 		}
192 	}
193 }
194 
ttm_bo_del_from_lru(struct ttm_buffer_object * bo)195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 	int put_count = 0;
198 
199 	if (!list_empty(&bo->swap)) {
200 		list_del_init(&bo->swap);
201 		++put_count;
202 	}
203 	if (!list_empty(&bo->lru)) {
204 		list_del_init(&bo->lru);
205 		++put_count;
206 	}
207 
208 	/*
209 	 * TODO: Add a driver hook to delete from
210 	 * driver-specific LRU's here.
211 	 */
212 
213 	return put_count;
214 }
215 
ttm_bo_reserve_locked(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 			  bool interruptible,
218 			  bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 	struct ttm_bo_global *glob = bo->glob;
221 	int ret;
222 
223 	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224 		/**
225 		 * Deadlock avoidance for multi-bo reserving.
226 		 */
227 		if (use_sequence && bo->seq_valid) {
228 			/**
229 			 * We've already reserved this one.
230 			 */
231 			if (unlikely(sequence == bo->val_seq))
232 				return -EDEADLK;
233 			/**
234 			 * Already reserved by a thread that will not back
235 			 * off for us. We need to back off.
236 			 */
237 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 				return -EAGAIN;
239 		}
240 
241 		if (no_wait)
242 			return -EBUSY;
243 
244 		spin_unlock(&glob->lru_lock);
245 		ret = ttm_bo_wait_unreserved(bo, interruptible);
246 		spin_lock(&glob->lru_lock);
247 
248 		if (unlikely(ret))
249 			return ret;
250 	}
251 
252 	if (use_sequence) {
253 		/**
254 		 * Wake up waiters that may need to recheck for deadlock,
255 		 * if we decreased the sequence number.
256 		 */
257 		if (unlikely((bo->val_seq - sequence < (1 << 31))
258 			     || !bo->seq_valid))
259 			wake_up_all(&bo->event_queue);
260 
261 		bo->val_seq = sequence;
262 		bo->seq_valid = true;
263 	} else {
264 		bo->seq_valid = false;
265 	}
266 
267 	return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270 
ttm_bo_ref_bug(struct kref * list_kref)271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273 	BUG();
274 }
275 
ttm_bo_list_ref_sub(struct ttm_buffer_object * bo,int count,bool never_free)276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 			 bool never_free)
278 {
279 	kref_sub(&bo->list_kref, count,
280 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282 
ttm_bo_reserve(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 		   bool interruptible,
285 		   bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287 	struct ttm_bo_global *glob = bo->glob;
288 	int put_count = 0;
289 	int ret;
290 
291 	spin_lock(&glob->lru_lock);
292 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 				    sequence);
294 	if (likely(ret == 0))
295 		put_count = ttm_bo_del_from_lru(bo);
296 	spin_unlock(&glob->lru_lock);
297 
298 	ttm_bo_list_ref_sub(bo, put_count, true);
299 
300 	return ret;
301 }
302 
ttm_bo_unreserve_locked(struct ttm_buffer_object * bo)303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305 	ttm_bo_add_to_lru(bo);
306 	atomic_set(&bo->reserved, 0);
307 	wake_up_all(&bo->event_queue);
308 }
309 
ttm_bo_unreserve(struct ttm_buffer_object * bo)310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312 	struct ttm_bo_global *glob = bo->glob;
313 
314 	spin_lock(&glob->lru_lock);
315 	ttm_bo_unreserve_locked(bo);
316 	spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319 
320 /*
321  * Call bo->mutex locked.
322  */
ttm_bo_add_ttm(struct ttm_buffer_object * bo,bool zero_alloc)323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325 	struct ttm_bo_device *bdev = bo->bdev;
326 	struct ttm_bo_global *glob = bo->glob;
327 	int ret = 0;
328 	uint32_t page_flags = 0;
329 
330 	TTM_ASSERT_LOCKED(&bo->mutex);
331 	bo->ttm = NULL;
332 
333 	if (bdev->need_dma32)
334 		page_flags |= TTM_PAGE_FLAG_DMA32;
335 
336 	switch (bo->type) {
337 	case ttm_bo_type_device:
338 		if (zero_alloc)
339 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 	case ttm_bo_type_kernel:
341 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 						      page_flags, glob->dummy_read_page);
343 		if (unlikely(bo->ttm == NULL))
344 			ret = -ENOMEM;
345 		break;
346 	default:
347 		pr_err("Illegal buffer object type\n");
348 		ret = -EINVAL;
349 		break;
350 	}
351 
352 	return ret;
353 }
354 
ttm_bo_handle_move_mem(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,bool evict,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)355 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
356 				  struct ttm_mem_reg *mem,
357 				  bool evict, bool interruptible,
358 				  bool no_wait_reserve, bool no_wait_gpu)
359 {
360 	struct ttm_bo_device *bdev = bo->bdev;
361 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
362 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
363 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
364 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
365 	int ret = 0;
366 
367 	if (old_is_pci || new_is_pci ||
368 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
369 		ret = ttm_mem_io_lock(old_man, true);
370 		if (unlikely(ret != 0))
371 			goto out_err;
372 		ttm_bo_unmap_virtual_locked(bo);
373 		ttm_mem_io_unlock(old_man);
374 	}
375 
376 	/*
377 	 * Create and bind a ttm if required.
378 	 */
379 
380 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
381 		if (bo->ttm == NULL) {
382 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
383 			ret = ttm_bo_add_ttm(bo, zero);
384 			if (ret)
385 				goto out_err;
386 		}
387 
388 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
389 		if (ret)
390 			goto out_err;
391 
392 		if (mem->mem_type != TTM_PL_SYSTEM) {
393 			ret = ttm_tt_bind(bo->ttm, mem);
394 			if (ret)
395 				goto out_err;
396 		}
397 
398 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
399 			if (bdev->driver->move_notify)
400 				bdev->driver->move_notify(bo, mem);
401 			bo->mem = *mem;
402 			mem->mm_node = NULL;
403 			goto moved;
404 		}
405 	}
406 
407 	if (bdev->driver->move_notify)
408 		bdev->driver->move_notify(bo, mem);
409 
410 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
411 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
412 		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
413 	else if (bdev->driver->move)
414 		ret = bdev->driver->move(bo, evict, interruptible,
415 					 no_wait_reserve, no_wait_gpu, mem);
416 	else
417 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
418 
419 	if (ret) {
420 		if (bdev->driver->move_notify) {
421 			struct ttm_mem_reg tmp_mem = *mem;
422 			*mem = bo->mem;
423 			bo->mem = tmp_mem;
424 			bdev->driver->move_notify(bo, mem);
425 			bo->mem = *mem;
426 		}
427 
428 		goto out_err;
429 	}
430 
431 moved:
432 	if (bo->evicted) {
433 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
434 		if (ret)
435 			pr_err("Can not flush read caches\n");
436 		bo->evicted = false;
437 	}
438 
439 	if (bo->mem.mm_node) {
440 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
441 		    bdev->man[bo->mem.mem_type].gpu_offset;
442 		bo->cur_placement = bo->mem.placement;
443 	} else
444 		bo->offset = 0;
445 
446 	return 0;
447 
448 out_err:
449 	new_man = &bdev->man[bo->mem.mem_type];
450 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
451 		ttm_tt_unbind(bo->ttm);
452 		ttm_tt_destroy(bo->ttm);
453 		bo->ttm = NULL;
454 	}
455 
456 	return ret;
457 }
458 
459 /**
460  * Call bo::reserved.
461  * Will release GPU memory type usage on destruction.
462  * This is the place to put in driver specific hooks to release
463  * driver private resources.
464  * Will release the bo::reserved lock.
465  */
466 
ttm_bo_cleanup_memtype_use(struct ttm_buffer_object * bo)467 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
468 {
469 	if (bo->bdev->driver->move_notify)
470 		bo->bdev->driver->move_notify(bo, NULL);
471 
472 	if (bo->ttm) {
473 		ttm_tt_unbind(bo->ttm);
474 		ttm_tt_destroy(bo->ttm);
475 		bo->ttm = NULL;
476 	}
477 	ttm_bo_mem_put(bo, &bo->mem);
478 
479 	atomic_set(&bo->reserved, 0);
480 
481 	/*
482 	 * Make processes trying to reserve really pick it up.
483 	 */
484 	smp_mb__after_atomic_dec();
485 	wake_up_all(&bo->event_queue);
486 }
487 
ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object * bo)488 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
489 {
490 	struct ttm_bo_device *bdev = bo->bdev;
491 	struct ttm_bo_global *glob = bo->glob;
492 	struct ttm_bo_driver *driver;
493 	void *sync_obj = NULL;
494 	void *sync_obj_arg;
495 	int put_count;
496 	int ret;
497 
498 	spin_lock(&bdev->fence_lock);
499 	(void) ttm_bo_wait(bo, false, false, true);
500 	if (!bo->sync_obj) {
501 
502 		spin_lock(&glob->lru_lock);
503 
504 		/**
505 		 * Lock inversion between bo:reserve and bdev::fence_lock here,
506 		 * but that's OK, since we're only trylocking.
507 		 */
508 
509 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
510 
511 		if (unlikely(ret == -EBUSY))
512 			goto queue;
513 
514 		spin_unlock(&bdev->fence_lock);
515 		put_count = ttm_bo_del_from_lru(bo);
516 
517 		spin_unlock(&glob->lru_lock);
518 		ttm_bo_cleanup_memtype_use(bo);
519 
520 		ttm_bo_list_ref_sub(bo, put_count, true);
521 
522 		return;
523 	} else {
524 		spin_lock(&glob->lru_lock);
525 	}
526 queue:
527 	driver = bdev->driver;
528 	if (bo->sync_obj)
529 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
530 	sync_obj_arg = bo->sync_obj_arg;
531 
532 	kref_get(&bo->list_kref);
533 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
534 	spin_unlock(&glob->lru_lock);
535 	spin_unlock(&bdev->fence_lock);
536 
537 	if (sync_obj) {
538 		driver->sync_obj_flush(sync_obj, sync_obj_arg);
539 		driver->sync_obj_unref(&sync_obj);
540 	}
541 	schedule_delayed_work(&bdev->wq,
542 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
543 }
544 
545 /**
546  * function ttm_bo_cleanup_refs
547  * If bo idle, remove from delayed- and lru lists, and unref.
548  * If not idle, do nothing.
549  *
550  * @interruptible         Any sleeps should occur interruptibly.
551  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
552  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
553  */
554 
ttm_bo_cleanup_refs(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)555 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
556 			       bool interruptible,
557 			       bool no_wait_reserve,
558 			       bool no_wait_gpu)
559 {
560 	struct ttm_bo_device *bdev = bo->bdev;
561 	struct ttm_bo_global *glob = bo->glob;
562 	int put_count;
563 	int ret = 0;
564 
565 retry:
566 	spin_lock(&bdev->fence_lock);
567 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
568 	spin_unlock(&bdev->fence_lock);
569 
570 	if (unlikely(ret != 0))
571 		return ret;
572 
573 	spin_lock(&glob->lru_lock);
574 
575 	if (unlikely(list_empty(&bo->ddestroy))) {
576 		spin_unlock(&glob->lru_lock);
577 		return 0;
578 	}
579 
580 	ret = ttm_bo_reserve_locked(bo, interruptible,
581 				    no_wait_reserve, false, 0);
582 
583 	if (unlikely(ret != 0)) {
584 		spin_unlock(&glob->lru_lock);
585 		return ret;
586 	}
587 
588 	/**
589 	 * We can re-check for sync object without taking
590 	 * the bo::lock since setting the sync object requires
591 	 * also bo::reserved. A busy object at this point may
592 	 * be caused by another thread recently starting an accelerated
593 	 * eviction.
594 	 */
595 
596 	if (unlikely(bo->sync_obj)) {
597 		atomic_set(&bo->reserved, 0);
598 		wake_up_all(&bo->event_queue);
599 		spin_unlock(&glob->lru_lock);
600 		goto retry;
601 	}
602 
603 	put_count = ttm_bo_del_from_lru(bo);
604 	list_del_init(&bo->ddestroy);
605 	++put_count;
606 
607 	spin_unlock(&glob->lru_lock);
608 	ttm_bo_cleanup_memtype_use(bo);
609 
610 	ttm_bo_list_ref_sub(bo, put_count, true);
611 
612 	return 0;
613 }
614 
615 /**
616  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617  * encountered buffers.
618  */
619 
ttm_bo_delayed_delete(struct ttm_bo_device * bdev,bool remove_all)620 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
621 {
622 	struct ttm_bo_global *glob = bdev->glob;
623 	struct ttm_buffer_object *entry = NULL;
624 	int ret = 0;
625 
626 	spin_lock(&glob->lru_lock);
627 	if (list_empty(&bdev->ddestroy))
628 		goto out_unlock;
629 
630 	entry = list_first_entry(&bdev->ddestroy,
631 		struct ttm_buffer_object, ddestroy);
632 	kref_get(&entry->list_kref);
633 
634 	for (;;) {
635 		struct ttm_buffer_object *nentry = NULL;
636 
637 		if (entry->ddestroy.next != &bdev->ddestroy) {
638 			nentry = list_first_entry(&entry->ddestroy,
639 				struct ttm_buffer_object, ddestroy);
640 			kref_get(&nentry->list_kref);
641 		}
642 
643 		spin_unlock(&glob->lru_lock);
644 		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
645 					  !remove_all);
646 		kref_put(&entry->list_kref, ttm_bo_release_list);
647 		entry = nentry;
648 
649 		if (ret || !entry)
650 			goto out;
651 
652 		spin_lock(&glob->lru_lock);
653 		if (list_empty(&entry->ddestroy))
654 			break;
655 	}
656 
657 out_unlock:
658 	spin_unlock(&glob->lru_lock);
659 out:
660 	if (entry)
661 		kref_put(&entry->list_kref, ttm_bo_release_list);
662 	return ret;
663 }
664 
ttm_bo_delayed_workqueue(struct work_struct * work)665 static void ttm_bo_delayed_workqueue(struct work_struct *work)
666 {
667 	struct ttm_bo_device *bdev =
668 	    container_of(work, struct ttm_bo_device, wq.work);
669 
670 	if (ttm_bo_delayed_delete(bdev, false)) {
671 		schedule_delayed_work(&bdev->wq,
672 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
673 	}
674 }
675 
ttm_bo_release(struct kref * kref)676 static void ttm_bo_release(struct kref *kref)
677 {
678 	struct ttm_buffer_object *bo =
679 	    container_of(kref, struct ttm_buffer_object, kref);
680 	struct ttm_bo_device *bdev = bo->bdev;
681 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
682 
683 	if (likely(bo->vm_node != NULL)) {
684 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
685 		drm_mm_put_block(bo->vm_node);
686 		bo->vm_node = NULL;
687 	}
688 	write_unlock(&bdev->vm_lock);
689 	ttm_mem_io_lock(man, false);
690 	ttm_mem_io_free_vm(bo);
691 	ttm_mem_io_unlock(man);
692 	ttm_bo_cleanup_refs_or_queue(bo);
693 	kref_put(&bo->list_kref, ttm_bo_release_list);
694 	write_lock(&bdev->vm_lock);
695 }
696 
ttm_bo_unref(struct ttm_buffer_object ** p_bo)697 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
698 {
699 	struct ttm_buffer_object *bo = *p_bo;
700 	struct ttm_bo_device *bdev = bo->bdev;
701 
702 	*p_bo = NULL;
703 	write_lock(&bdev->vm_lock);
704 	kref_put(&bo->kref, ttm_bo_release);
705 	write_unlock(&bdev->vm_lock);
706 }
707 EXPORT_SYMBOL(ttm_bo_unref);
708 
ttm_bo_lock_delayed_workqueue(struct ttm_bo_device * bdev)709 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
710 {
711 	return cancel_delayed_work_sync(&bdev->wq);
712 }
713 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
714 
ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device * bdev,int resched)715 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
716 {
717 	if (resched)
718 		schedule_delayed_work(&bdev->wq,
719 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
720 }
721 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
722 
ttm_bo_evict(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)723 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
724 			bool no_wait_reserve, bool no_wait_gpu)
725 {
726 	struct ttm_bo_device *bdev = bo->bdev;
727 	struct ttm_mem_reg evict_mem;
728 	struct ttm_placement placement;
729 	int ret = 0;
730 
731 	spin_lock(&bdev->fence_lock);
732 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
733 	spin_unlock(&bdev->fence_lock);
734 
735 	if (unlikely(ret != 0)) {
736 		if (ret != -ERESTARTSYS) {
737 			pr_err("Failed to expire sync object before buffer eviction\n");
738 		}
739 		goto out;
740 	}
741 
742 	BUG_ON(!atomic_read(&bo->reserved));
743 
744 	evict_mem = bo->mem;
745 	evict_mem.mm_node = NULL;
746 	evict_mem.bus.io_reserved_vm = false;
747 	evict_mem.bus.io_reserved_count = 0;
748 
749 	placement.fpfn = 0;
750 	placement.lpfn = 0;
751 	placement.num_placement = 0;
752 	placement.num_busy_placement = 0;
753 	bdev->driver->evict_flags(bo, &placement);
754 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
755 				no_wait_reserve, no_wait_gpu);
756 	if (ret) {
757 		if (ret != -ERESTARTSYS) {
758 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
759 			       bo);
760 			ttm_bo_mem_space_debug(bo, &placement);
761 		}
762 		goto out;
763 	}
764 
765 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
766 				     no_wait_reserve, no_wait_gpu);
767 	if (ret) {
768 		if (ret != -ERESTARTSYS)
769 			pr_err("Buffer eviction failed\n");
770 		ttm_bo_mem_put(bo, &evict_mem);
771 		goto out;
772 	}
773 	bo->evicted = true;
774 out:
775 	return ret;
776 }
777 
ttm_mem_evict_first(struct ttm_bo_device * bdev,uint32_t mem_type,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)778 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
779 				uint32_t mem_type,
780 				bool interruptible, bool no_wait_reserve,
781 				bool no_wait_gpu)
782 {
783 	struct ttm_bo_global *glob = bdev->glob;
784 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
785 	struct ttm_buffer_object *bo;
786 	int ret, put_count = 0;
787 
788 retry:
789 	spin_lock(&glob->lru_lock);
790 	if (list_empty(&man->lru)) {
791 		spin_unlock(&glob->lru_lock);
792 		return -EBUSY;
793 	}
794 
795 	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
796 	kref_get(&bo->list_kref);
797 
798 	if (!list_empty(&bo->ddestroy)) {
799 		spin_unlock(&glob->lru_lock);
800 		ret = ttm_bo_cleanup_refs(bo, interruptible,
801 					  no_wait_reserve, no_wait_gpu);
802 		kref_put(&bo->list_kref, ttm_bo_release_list);
803 
804 		if (likely(ret == 0 || ret == -ERESTARTSYS))
805 			return ret;
806 
807 		goto retry;
808 	}
809 
810 	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
811 
812 	if (unlikely(ret == -EBUSY)) {
813 		spin_unlock(&glob->lru_lock);
814 		if (likely(!no_wait_gpu))
815 			ret = ttm_bo_wait_unreserved(bo, interruptible);
816 
817 		kref_put(&bo->list_kref, ttm_bo_release_list);
818 
819 		/**
820 		 * We *need* to retry after releasing the lru lock.
821 		 */
822 
823 		if (unlikely(ret != 0))
824 			return ret;
825 		goto retry;
826 	}
827 
828 	put_count = ttm_bo_del_from_lru(bo);
829 	spin_unlock(&glob->lru_lock);
830 
831 	BUG_ON(ret != 0);
832 
833 	ttm_bo_list_ref_sub(bo, put_count, true);
834 
835 	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
836 	ttm_bo_unreserve(bo);
837 
838 	kref_put(&bo->list_kref, ttm_bo_release_list);
839 	return ret;
840 }
841 
ttm_bo_mem_put(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)842 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
843 {
844 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
845 
846 	if (mem->mm_node)
847 		(*man->func->put_node)(man, mem);
848 }
849 EXPORT_SYMBOL(ttm_bo_mem_put);
850 
851 /**
852  * Repeatedly evict memory from the LRU for @mem_type until we create enough
853  * space, or we've evicted everything and there isn't enough space.
854  */
ttm_bo_mem_force_space(struct ttm_buffer_object * bo,uint32_t mem_type,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)855 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
856 					uint32_t mem_type,
857 					struct ttm_placement *placement,
858 					struct ttm_mem_reg *mem,
859 					bool interruptible,
860 					bool no_wait_reserve,
861 					bool no_wait_gpu)
862 {
863 	struct ttm_bo_device *bdev = bo->bdev;
864 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
865 	int ret;
866 
867 	do {
868 		ret = (*man->func->get_node)(man, bo, placement, mem);
869 		if (unlikely(ret != 0))
870 			return ret;
871 		if (mem->mm_node)
872 			break;
873 		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
874 						no_wait_reserve, no_wait_gpu);
875 		if (unlikely(ret != 0))
876 			return ret;
877 	} while (1);
878 	if (mem->mm_node == NULL)
879 		return -ENOMEM;
880 	mem->mem_type = mem_type;
881 	return 0;
882 }
883 
ttm_bo_select_caching(struct ttm_mem_type_manager * man,uint32_t cur_placement,uint32_t proposed_placement)884 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
885 				      uint32_t cur_placement,
886 				      uint32_t proposed_placement)
887 {
888 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
889 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
890 
891 	/**
892 	 * Keep current caching if possible.
893 	 */
894 
895 	if ((cur_placement & caching) != 0)
896 		result |= (cur_placement & caching);
897 	else if ((man->default_caching & caching) != 0)
898 		result |= man->default_caching;
899 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
900 		result |= TTM_PL_FLAG_CACHED;
901 	else if ((TTM_PL_FLAG_WC & caching) != 0)
902 		result |= TTM_PL_FLAG_WC;
903 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
904 		result |= TTM_PL_FLAG_UNCACHED;
905 
906 	return result;
907 }
908 
ttm_bo_mt_compatible(struct ttm_mem_type_manager * man,uint32_t mem_type,uint32_t proposed_placement,uint32_t * masked_placement)909 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
910 				 uint32_t mem_type,
911 				 uint32_t proposed_placement,
912 				 uint32_t *masked_placement)
913 {
914 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
915 
916 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
917 		return false;
918 
919 	if ((proposed_placement & man->available_caching) == 0)
920 		return false;
921 
922 	cur_flags |= (proposed_placement & man->available_caching);
923 
924 	*masked_placement = cur_flags;
925 	return true;
926 }
927 
928 /**
929  * Creates space for memory region @mem according to its type.
930  *
931  * This function first searches for free space in compatible memory types in
932  * the priority order defined by the driver.  If free space isn't found, then
933  * ttm_bo_mem_force_space is attempted in priority order to evict and find
934  * space.
935  */
ttm_bo_mem_space(struct ttm_buffer_object * bo,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)936 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
937 			struct ttm_placement *placement,
938 			struct ttm_mem_reg *mem,
939 			bool interruptible, bool no_wait_reserve,
940 			bool no_wait_gpu)
941 {
942 	struct ttm_bo_device *bdev = bo->bdev;
943 	struct ttm_mem_type_manager *man;
944 	uint32_t mem_type = TTM_PL_SYSTEM;
945 	uint32_t cur_flags = 0;
946 	bool type_found = false;
947 	bool type_ok = false;
948 	bool has_erestartsys = false;
949 	int i, ret;
950 
951 	mem->mm_node = NULL;
952 	for (i = 0; i < placement->num_placement; ++i) {
953 		ret = ttm_mem_type_from_flags(placement->placement[i],
954 						&mem_type);
955 		if (ret)
956 			return ret;
957 		man = &bdev->man[mem_type];
958 
959 		type_ok = ttm_bo_mt_compatible(man,
960 						mem_type,
961 						placement->placement[i],
962 						&cur_flags);
963 
964 		if (!type_ok)
965 			continue;
966 
967 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
968 						  cur_flags);
969 		/*
970 		 * Use the access and other non-mapping-related flag bits from
971 		 * the memory placement flags to the current flags
972 		 */
973 		ttm_flag_masked(&cur_flags, placement->placement[i],
974 				~TTM_PL_MASK_MEMTYPE);
975 
976 		if (mem_type == TTM_PL_SYSTEM)
977 			break;
978 
979 		if (man->has_type && man->use_type) {
980 			type_found = true;
981 			ret = (*man->func->get_node)(man, bo, placement, mem);
982 			if (unlikely(ret))
983 				return ret;
984 		}
985 		if (mem->mm_node)
986 			break;
987 	}
988 
989 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
990 		mem->mem_type = mem_type;
991 		mem->placement = cur_flags;
992 		return 0;
993 	}
994 
995 	if (!type_found)
996 		return -EINVAL;
997 
998 	for (i = 0; i < placement->num_busy_placement; ++i) {
999 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1000 						&mem_type);
1001 		if (ret)
1002 			return ret;
1003 		man = &bdev->man[mem_type];
1004 		if (!man->has_type)
1005 			continue;
1006 		if (!ttm_bo_mt_compatible(man,
1007 						mem_type,
1008 						placement->busy_placement[i],
1009 						&cur_flags))
1010 			continue;
1011 
1012 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1013 						  cur_flags);
1014 		/*
1015 		 * Use the access and other non-mapping-related flag bits from
1016 		 * the memory placement flags to the current flags
1017 		 */
1018 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1019 				~TTM_PL_MASK_MEMTYPE);
1020 
1021 
1022 		if (mem_type == TTM_PL_SYSTEM) {
1023 			mem->mem_type = mem_type;
1024 			mem->placement = cur_flags;
1025 			mem->mm_node = NULL;
1026 			return 0;
1027 		}
1028 
1029 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1030 						interruptible, no_wait_reserve, no_wait_gpu);
1031 		if (ret == 0 && mem->mm_node) {
1032 			mem->placement = cur_flags;
1033 			return 0;
1034 		}
1035 		if (ret == -ERESTARTSYS)
1036 			has_erestartsys = true;
1037 	}
1038 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(ttm_bo_mem_space);
1042 
ttm_bo_wait_cpu(struct ttm_buffer_object * bo,bool no_wait)1043 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1044 {
1045 	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1046 		return -EBUSY;
1047 
1048 	return wait_event_interruptible(bo->event_queue,
1049 					atomic_read(&bo->cpu_writers) == 0);
1050 }
1051 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1052 
ttm_bo_move_buffer(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1053 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1054 			struct ttm_placement *placement,
1055 			bool interruptible, bool no_wait_reserve,
1056 			bool no_wait_gpu)
1057 {
1058 	int ret = 0;
1059 	struct ttm_mem_reg mem;
1060 	struct ttm_bo_device *bdev = bo->bdev;
1061 
1062 	BUG_ON(!atomic_read(&bo->reserved));
1063 
1064 	/*
1065 	 * FIXME: It's possible to pipeline buffer moves.
1066 	 * Have the driver move function wait for idle when necessary,
1067 	 * instead of doing it here.
1068 	 */
1069 	spin_lock(&bdev->fence_lock);
1070 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1071 	spin_unlock(&bdev->fence_lock);
1072 	if (ret)
1073 		return ret;
1074 	mem.num_pages = bo->num_pages;
1075 	mem.size = mem.num_pages << PAGE_SHIFT;
1076 	mem.page_alignment = bo->mem.page_alignment;
1077 	mem.bus.io_reserved_vm = false;
1078 	mem.bus.io_reserved_count = 0;
1079 	/*
1080 	 * Determine where to move the buffer.
1081 	 */
1082 	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1083 	if (ret)
1084 		goto out_unlock;
1085 	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1086 out_unlock:
1087 	if (ret && mem.mm_node)
1088 		ttm_bo_mem_put(bo, &mem);
1089 	return ret;
1090 }
1091 
ttm_bo_mem_compat(struct ttm_placement * placement,struct ttm_mem_reg * mem)1092 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1093 			     struct ttm_mem_reg *mem)
1094 {
1095 	int i;
1096 
1097 	if (mem->mm_node && placement->lpfn != 0 &&
1098 	    (mem->start < placement->fpfn ||
1099 	     mem->start + mem->num_pages > placement->lpfn))
1100 		return -1;
1101 
1102 	for (i = 0; i < placement->num_placement; i++) {
1103 		if ((placement->placement[i] & mem->placement &
1104 			TTM_PL_MASK_CACHING) &&
1105 			(placement->placement[i] & mem->placement &
1106 			TTM_PL_MASK_MEM))
1107 			return i;
1108 	}
1109 	return -1;
1110 }
1111 
ttm_bo_validate(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1112 int ttm_bo_validate(struct ttm_buffer_object *bo,
1113 			struct ttm_placement *placement,
1114 			bool interruptible, bool no_wait_reserve,
1115 			bool no_wait_gpu)
1116 {
1117 	int ret;
1118 
1119 	BUG_ON(!atomic_read(&bo->reserved));
1120 	/* Check that range is valid */
1121 	if (placement->lpfn || placement->fpfn)
1122 		if (placement->fpfn > placement->lpfn ||
1123 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1124 			return -EINVAL;
1125 	/*
1126 	 * Check whether we need to move buffer.
1127 	 */
1128 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1129 	if (ret < 0) {
1130 		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1131 		if (ret)
1132 			return ret;
1133 	} else {
1134 		/*
1135 		 * Use the access and other non-mapping-related flag bits from
1136 		 * the compatible memory placement flags to the active flags
1137 		 */
1138 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1139 				~TTM_PL_MASK_MEMTYPE);
1140 	}
1141 	/*
1142 	 * We might need to add a TTM.
1143 	 */
1144 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1145 		ret = ttm_bo_add_ttm(bo, true);
1146 		if (ret)
1147 			return ret;
1148 	}
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL(ttm_bo_validate);
1152 
ttm_bo_check_placement(struct ttm_buffer_object * bo,struct ttm_placement * placement)1153 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1154 				struct ttm_placement *placement)
1155 {
1156 	BUG_ON((placement->fpfn || placement->lpfn) &&
1157 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1158 
1159 	return 0;
1160 }
1161 
ttm_bo_init(struct ttm_bo_device * bdev,struct ttm_buffer_object * bo,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,size_t acc_size,void (* destroy)(struct ttm_buffer_object *))1162 int ttm_bo_init(struct ttm_bo_device *bdev,
1163 		struct ttm_buffer_object *bo,
1164 		unsigned long size,
1165 		enum ttm_bo_type type,
1166 		struct ttm_placement *placement,
1167 		uint32_t page_alignment,
1168 		unsigned long buffer_start,
1169 		bool interruptible,
1170 		struct file *persistent_swap_storage,
1171 		size_t acc_size,
1172 		void (*destroy) (struct ttm_buffer_object *))
1173 {
1174 	int ret = 0;
1175 	unsigned long num_pages;
1176 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1177 
1178 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1179 	if (ret) {
1180 		pr_err("Out of kernel memory\n");
1181 		if (destroy)
1182 			(*destroy)(bo);
1183 		else
1184 			kfree(bo);
1185 		return -ENOMEM;
1186 	}
1187 
1188 	size += buffer_start & ~PAGE_MASK;
1189 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 	if (num_pages == 0) {
1191 		pr_err("Illegal buffer object size\n");
1192 		if (destroy)
1193 			(*destroy)(bo);
1194 		else
1195 			kfree(bo);
1196 		ttm_mem_global_free(mem_glob, acc_size);
1197 		return -EINVAL;
1198 	}
1199 	bo->destroy = destroy;
1200 
1201 	kref_init(&bo->kref);
1202 	kref_init(&bo->list_kref);
1203 	atomic_set(&bo->cpu_writers, 0);
1204 	atomic_set(&bo->reserved, 1);
1205 	init_waitqueue_head(&bo->event_queue);
1206 	INIT_LIST_HEAD(&bo->lru);
1207 	INIT_LIST_HEAD(&bo->ddestroy);
1208 	INIT_LIST_HEAD(&bo->swap);
1209 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1210 	bo->bdev = bdev;
1211 	bo->glob = bdev->glob;
1212 	bo->type = type;
1213 	bo->num_pages = num_pages;
1214 	bo->mem.size = num_pages << PAGE_SHIFT;
1215 	bo->mem.mem_type = TTM_PL_SYSTEM;
1216 	bo->mem.num_pages = bo->num_pages;
1217 	bo->mem.mm_node = NULL;
1218 	bo->mem.page_alignment = page_alignment;
1219 	bo->mem.bus.io_reserved_vm = false;
1220 	bo->mem.bus.io_reserved_count = 0;
1221 	bo->buffer_start = buffer_start & PAGE_MASK;
1222 	bo->priv_flags = 0;
1223 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1224 	bo->seq_valid = false;
1225 	bo->persistent_swap_storage = persistent_swap_storage;
1226 	bo->acc_size = acc_size;
1227 	atomic_inc(&bo->glob->bo_count);
1228 
1229 	ret = ttm_bo_check_placement(bo, placement);
1230 	if (unlikely(ret != 0))
1231 		goto out_err;
1232 
1233 	/*
1234 	 * For ttm_bo_type_device buffers, allocate
1235 	 * address space from the device.
1236 	 */
1237 	if (bo->type == ttm_bo_type_device) {
1238 		ret = ttm_bo_setup_vm(bo);
1239 		if (ret)
1240 			goto out_err;
1241 	}
1242 
1243 	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1244 	if (ret)
1245 		goto out_err;
1246 
1247 	ttm_bo_unreserve(bo);
1248 	return 0;
1249 
1250 out_err:
1251 	ttm_bo_unreserve(bo);
1252 	ttm_bo_unref(&bo);
1253 
1254 	return ret;
1255 }
1256 EXPORT_SYMBOL(ttm_bo_init);
1257 
ttm_bo_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1258 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1259 		       unsigned long bo_size,
1260 		       unsigned struct_size)
1261 {
1262 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1263 	size_t size = 0;
1264 
1265 	size += ttm_round_pot(struct_size);
1266 	size += PAGE_ALIGN(npages * sizeof(void *));
1267 	size += ttm_round_pot(sizeof(struct ttm_tt));
1268 	return size;
1269 }
1270 EXPORT_SYMBOL(ttm_bo_acc_size);
1271 
ttm_bo_dma_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1272 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1273 			   unsigned long bo_size,
1274 			   unsigned struct_size)
1275 {
1276 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1277 	size_t size = 0;
1278 
1279 	size += ttm_round_pot(struct_size);
1280 	size += PAGE_ALIGN(npages * sizeof(void *));
1281 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1282 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1283 	return size;
1284 }
1285 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1286 
ttm_bo_create(struct ttm_bo_device * bdev,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,struct ttm_buffer_object ** p_bo)1287 int ttm_bo_create(struct ttm_bo_device *bdev,
1288 			unsigned long size,
1289 			enum ttm_bo_type type,
1290 			struct ttm_placement *placement,
1291 			uint32_t page_alignment,
1292 			unsigned long buffer_start,
1293 			bool interruptible,
1294 			struct file *persistent_swap_storage,
1295 			struct ttm_buffer_object **p_bo)
1296 {
1297 	struct ttm_buffer_object *bo;
1298 	size_t acc_size;
1299 	int ret;
1300 
1301 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1302 	if (unlikely(bo == NULL))
1303 		return -ENOMEM;
1304 
1305 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1306 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1307 				buffer_start, interruptible,
1308 				persistent_swap_storage, acc_size, NULL);
1309 	if (likely(ret == 0))
1310 		*p_bo = bo;
1311 
1312 	return ret;
1313 }
1314 EXPORT_SYMBOL(ttm_bo_create);
1315 
ttm_bo_force_list_clean(struct ttm_bo_device * bdev,unsigned mem_type,bool allow_errors)1316 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1317 					unsigned mem_type, bool allow_errors)
1318 {
1319 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1320 	struct ttm_bo_global *glob = bdev->glob;
1321 	int ret;
1322 
1323 	/*
1324 	 * Can't use standard list traversal since we're unlocking.
1325 	 */
1326 
1327 	spin_lock(&glob->lru_lock);
1328 	while (!list_empty(&man->lru)) {
1329 		spin_unlock(&glob->lru_lock);
1330 		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1331 		if (ret) {
1332 			if (allow_errors) {
1333 				return ret;
1334 			} else {
1335 				pr_err("Cleanup eviction failed\n");
1336 			}
1337 		}
1338 		spin_lock(&glob->lru_lock);
1339 	}
1340 	spin_unlock(&glob->lru_lock);
1341 	return 0;
1342 }
1343 
ttm_bo_clean_mm(struct ttm_bo_device * bdev,unsigned mem_type)1344 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1345 {
1346 	struct ttm_mem_type_manager *man;
1347 	int ret = -EINVAL;
1348 
1349 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1350 		pr_err("Illegal memory type %d\n", mem_type);
1351 		return ret;
1352 	}
1353 	man = &bdev->man[mem_type];
1354 
1355 	if (!man->has_type) {
1356 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1357 		       mem_type);
1358 		return ret;
1359 	}
1360 
1361 	man->use_type = false;
1362 	man->has_type = false;
1363 
1364 	ret = 0;
1365 	if (mem_type > 0) {
1366 		ttm_bo_force_list_clean(bdev, mem_type, false);
1367 
1368 		ret = (*man->func->takedown)(man);
1369 	}
1370 
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL(ttm_bo_clean_mm);
1374 
ttm_bo_evict_mm(struct ttm_bo_device * bdev,unsigned mem_type)1375 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1376 {
1377 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1378 
1379 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1380 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1381 		return -EINVAL;
1382 	}
1383 
1384 	if (!man->has_type) {
1385 		pr_err("Memory type %u has not been initialized\n", mem_type);
1386 		return 0;
1387 	}
1388 
1389 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1390 }
1391 EXPORT_SYMBOL(ttm_bo_evict_mm);
1392 
ttm_bo_init_mm(struct ttm_bo_device * bdev,unsigned type,unsigned long p_size)1393 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1394 			unsigned long p_size)
1395 {
1396 	int ret = -EINVAL;
1397 	struct ttm_mem_type_manager *man;
1398 
1399 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1400 	man = &bdev->man[type];
1401 	BUG_ON(man->has_type);
1402 	man->io_reserve_fastpath = true;
1403 	man->use_io_reserve_lru = false;
1404 	mutex_init(&man->io_reserve_mutex);
1405 	INIT_LIST_HEAD(&man->io_reserve_lru);
1406 
1407 	ret = bdev->driver->init_mem_type(bdev, type, man);
1408 	if (ret)
1409 		return ret;
1410 	man->bdev = bdev;
1411 
1412 	ret = 0;
1413 	if (type != TTM_PL_SYSTEM) {
1414 		ret = (*man->func->init)(man, p_size);
1415 		if (ret)
1416 			return ret;
1417 	}
1418 	man->has_type = true;
1419 	man->use_type = true;
1420 	man->size = p_size;
1421 
1422 	INIT_LIST_HEAD(&man->lru);
1423 
1424 	return 0;
1425 }
1426 EXPORT_SYMBOL(ttm_bo_init_mm);
1427 
ttm_bo_global_kobj_release(struct kobject * kobj)1428 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1429 {
1430 	struct ttm_bo_global *glob =
1431 		container_of(kobj, struct ttm_bo_global, kobj);
1432 
1433 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1434 	__free_page(glob->dummy_read_page);
1435 	kfree(glob);
1436 }
1437 
ttm_bo_global_release(struct drm_global_reference * ref)1438 void ttm_bo_global_release(struct drm_global_reference *ref)
1439 {
1440 	struct ttm_bo_global *glob = ref->object;
1441 
1442 	kobject_del(&glob->kobj);
1443 	kobject_put(&glob->kobj);
1444 }
1445 EXPORT_SYMBOL(ttm_bo_global_release);
1446 
ttm_bo_global_init(struct drm_global_reference * ref)1447 int ttm_bo_global_init(struct drm_global_reference *ref)
1448 {
1449 	struct ttm_bo_global_ref *bo_ref =
1450 		container_of(ref, struct ttm_bo_global_ref, ref);
1451 	struct ttm_bo_global *glob = ref->object;
1452 	int ret;
1453 
1454 	mutex_init(&glob->device_list_mutex);
1455 	spin_lock_init(&glob->lru_lock);
1456 	glob->mem_glob = bo_ref->mem_glob;
1457 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1458 
1459 	if (unlikely(glob->dummy_read_page == NULL)) {
1460 		ret = -ENOMEM;
1461 		goto out_no_drp;
1462 	}
1463 
1464 	INIT_LIST_HEAD(&glob->swap_lru);
1465 	INIT_LIST_HEAD(&glob->device_list);
1466 
1467 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1468 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1469 	if (unlikely(ret != 0)) {
1470 		pr_err("Could not register buffer object swapout\n");
1471 		goto out_no_shrink;
1472 	}
1473 
1474 	atomic_set(&glob->bo_count, 0);
1475 
1476 	ret = kobject_init_and_add(
1477 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1478 	if (unlikely(ret != 0))
1479 		kobject_put(&glob->kobj);
1480 	return ret;
1481 out_no_shrink:
1482 	__free_page(glob->dummy_read_page);
1483 out_no_drp:
1484 	kfree(glob);
1485 	return ret;
1486 }
1487 EXPORT_SYMBOL(ttm_bo_global_init);
1488 
1489 
ttm_bo_device_release(struct ttm_bo_device * bdev)1490 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1491 {
1492 	int ret = 0;
1493 	unsigned i = TTM_NUM_MEM_TYPES;
1494 	struct ttm_mem_type_manager *man;
1495 	struct ttm_bo_global *glob = bdev->glob;
1496 
1497 	while (i--) {
1498 		man = &bdev->man[i];
1499 		if (man->has_type) {
1500 			man->use_type = false;
1501 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1502 				ret = -EBUSY;
1503 				pr_err("DRM memory manager type %d is not clean\n",
1504 				       i);
1505 			}
1506 			man->has_type = false;
1507 		}
1508 	}
1509 
1510 	mutex_lock(&glob->device_list_mutex);
1511 	list_del(&bdev->device_list);
1512 	mutex_unlock(&glob->device_list_mutex);
1513 
1514 	cancel_delayed_work_sync(&bdev->wq);
1515 
1516 	while (ttm_bo_delayed_delete(bdev, true))
1517 		;
1518 
1519 	spin_lock(&glob->lru_lock);
1520 	if (list_empty(&bdev->ddestroy))
1521 		TTM_DEBUG("Delayed destroy list was clean\n");
1522 
1523 	if (list_empty(&bdev->man[0].lru))
1524 		TTM_DEBUG("Swap list was clean\n");
1525 	spin_unlock(&glob->lru_lock);
1526 
1527 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1528 	write_lock(&bdev->vm_lock);
1529 	drm_mm_takedown(&bdev->addr_space_mm);
1530 	write_unlock(&bdev->vm_lock);
1531 
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL(ttm_bo_device_release);
1535 
ttm_bo_device_init(struct ttm_bo_device * bdev,struct ttm_bo_global * glob,struct ttm_bo_driver * driver,uint64_t file_page_offset,bool need_dma32)1536 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1537 		       struct ttm_bo_global *glob,
1538 		       struct ttm_bo_driver *driver,
1539 		       uint64_t file_page_offset,
1540 		       bool need_dma32)
1541 {
1542 	int ret = -EINVAL;
1543 
1544 	rwlock_init(&bdev->vm_lock);
1545 	bdev->driver = driver;
1546 
1547 	memset(bdev->man, 0, sizeof(bdev->man));
1548 
1549 	/*
1550 	 * Initialize the system memory buffer type.
1551 	 * Other types need to be driver / IOCTL initialized.
1552 	 */
1553 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1554 	if (unlikely(ret != 0))
1555 		goto out_no_sys;
1556 
1557 	bdev->addr_space_rb = RB_ROOT;
1558 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1559 	if (unlikely(ret != 0))
1560 		goto out_no_addr_mm;
1561 
1562 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1563 	bdev->nice_mode = true;
1564 	INIT_LIST_HEAD(&bdev->ddestroy);
1565 	bdev->dev_mapping = NULL;
1566 	bdev->glob = glob;
1567 	bdev->need_dma32 = need_dma32;
1568 	bdev->val_seq = 0;
1569 	spin_lock_init(&bdev->fence_lock);
1570 	mutex_lock(&glob->device_list_mutex);
1571 	list_add_tail(&bdev->device_list, &glob->device_list);
1572 	mutex_unlock(&glob->device_list_mutex);
1573 
1574 	return 0;
1575 out_no_addr_mm:
1576 	ttm_bo_clean_mm(bdev, 0);
1577 out_no_sys:
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(ttm_bo_device_init);
1581 
1582 /*
1583  * buffer object vm functions.
1584  */
1585 
ttm_mem_reg_is_pci(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)1586 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1587 {
1588 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1589 
1590 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1591 		if (mem->mem_type == TTM_PL_SYSTEM)
1592 			return false;
1593 
1594 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1595 			return false;
1596 
1597 		if (mem->placement & TTM_PL_FLAG_CACHED)
1598 			return false;
1599 	}
1600 	return true;
1601 }
1602 
ttm_bo_unmap_virtual_locked(struct ttm_buffer_object * bo)1603 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1604 {
1605 	struct ttm_bo_device *bdev = bo->bdev;
1606 	loff_t offset = (loff_t) bo->addr_space_offset;
1607 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1608 
1609 	if (!bdev->dev_mapping)
1610 		return;
1611 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1612 	ttm_mem_io_free_vm(bo);
1613 }
1614 
ttm_bo_unmap_virtual(struct ttm_buffer_object * bo)1615 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1616 {
1617 	struct ttm_bo_device *bdev = bo->bdev;
1618 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1619 
1620 	ttm_mem_io_lock(man, false);
1621 	ttm_bo_unmap_virtual_locked(bo);
1622 	ttm_mem_io_unlock(man);
1623 }
1624 
1625 
1626 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1627 
ttm_bo_vm_insert_rb(struct ttm_buffer_object * bo)1628 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1629 {
1630 	struct ttm_bo_device *bdev = bo->bdev;
1631 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1632 	struct rb_node *parent = NULL;
1633 	struct ttm_buffer_object *cur_bo;
1634 	unsigned long offset = bo->vm_node->start;
1635 	unsigned long cur_offset;
1636 
1637 	while (*cur) {
1638 		parent = *cur;
1639 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1640 		cur_offset = cur_bo->vm_node->start;
1641 		if (offset < cur_offset)
1642 			cur = &parent->rb_left;
1643 		else if (offset > cur_offset)
1644 			cur = &parent->rb_right;
1645 		else
1646 			BUG();
1647 	}
1648 
1649 	rb_link_node(&bo->vm_rb, parent, cur);
1650 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1651 }
1652 
1653 /**
1654  * ttm_bo_setup_vm:
1655  *
1656  * @bo: the buffer to allocate address space for
1657  *
1658  * Allocate address space in the drm device so that applications
1659  * can mmap the buffer and access the contents. This only
1660  * applies to ttm_bo_type_device objects as others are not
1661  * placed in the drm device address space.
1662  */
1663 
ttm_bo_setup_vm(struct ttm_buffer_object * bo)1664 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1665 {
1666 	struct ttm_bo_device *bdev = bo->bdev;
1667 	int ret;
1668 
1669 retry_pre_get:
1670 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1671 	if (unlikely(ret != 0))
1672 		return ret;
1673 
1674 	write_lock(&bdev->vm_lock);
1675 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1676 					 bo->mem.num_pages, 0, 0);
1677 
1678 	if (unlikely(bo->vm_node == NULL)) {
1679 		ret = -ENOMEM;
1680 		goto out_unlock;
1681 	}
1682 
1683 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1684 					      bo->mem.num_pages, 0);
1685 
1686 	if (unlikely(bo->vm_node == NULL)) {
1687 		write_unlock(&bdev->vm_lock);
1688 		goto retry_pre_get;
1689 	}
1690 
1691 	ttm_bo_vm_insert_rb(bo);
1692 	write_unlock(&bdev->vm_lock);
1693 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1694 
1695 	return 0;
1696 out_unlock:
1697 	write_unlock(&bdev->vm_lock);
1698 	return ret;
1699 }
1700 
ttm_bo_wait(struct ttm_buffer_object * bo,bool lazy,bool interruptible,bool no_wait)1701 int ttm_bo_wait(struct ttm_buffer_object *bo,
1702 		bool lazy, bool interruptible, bool no_wait)
1703 {
1704 	struct ttm_bo_driver *driver = bo->bdev->driver;
1705 	struct ttm_bo_device *bdev = bo->bdev;
1706 	void *sync_obj;
1707 	void *sync_obj_arg;
1708 	int ret = 0;
1709 
1710 	if (likely(bo->sync_obj == NULL))
1711 		return 0;
1712 
1713 	while (bo->sync_obj) {
1714 
1715 		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1716 			void *tmp_obj = bo->sync_obj;
1717 			bo->sync_obj = NULL;
1718 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1719 			spin_unlock(&bdev->fence_lock);
1720 			driver->sync_obj_unref(&tmp_obj);
1721 			spin_lock(&bdev->fence_lock);
1722 			continue;
1723 		}
1724 
1725 		if (no_wait)
1726 			return -EBUSY;
1727 
1728 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1729 		sync_obj_arg = bo->sync_obj_arg;
1730 		spin_unlock(&bdev->fence_lock);
1731 		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1732 					    lazy, interruptible);
1733 		if (unlikely(ret != 0)) {
1734 			driver->sync_obj_unref(&sync_obj);
1735 			spin_lock(&bdev->fence_lock);
1736 			return ret;
1737 		}
1738 		spin_lock(&bdev->fence_lock);
1739 		if (likely(bo->sync_obj == sync_obj &&
1740 			   bo->sync_obj_arg == sync_obj_arg)) {
1741 			void *tmp_obj = bo->sync_obj;
1742 			bo->sync_obj = NULL;
1743 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1744 				  &bo->priv_flags);
1745 			spin_unlock(&bdev->fence_lock);
1746 			driver->sync_obj_unref(&sync_obj);
1747 			driver->sync_obj_unref(&tmp_obj);
1748 			spin_lock(&bdev->fence_lock);
1749 		} else {
1750 			spin_unlock(&bdev->fence_lock);
1751 			driver->sync_obj_unref(&sync_obj);
1752 			spin_lock(&bdev->fence_lock);
1753 		}
1754 	}
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL(ttm_bo_wait);
1758 
ttm_bo_synccpu_write_grab(struct ttm_buffer_object * bo,bool no_wait)1759 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1760 {
1761 	struct ttm_bo_device *bdev = bo->bdev;
1762 	int ret = 0;
1763 
1764 	/*
1765 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1766 	 */
1767 
1768 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1769 	if (unlikely(ret != 0))
1770 		return ret;
1771 	spin_lock(&bdev->fence_lock);
1772 	ret = ttm_bo_wait(bo, false, true, no_wait);
1773 	spin_unlock(&bdev->fence_lock);
1774 	if (likely(ret == 0))
1775 		atomic_inc(&bo->cpu_writers);
1776 	ttm_bo_unreserve(bo);
1777 	return ret;
1778 }
1779 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1780 
ttm_bo_synccpu_write_release(struct ttm_buffer_object * bo)1781 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1782 {
1783 	if (atomic_dec_and_test(&bo->cpu_writers))
1784 		wake_up_all(&bo->event_queue);
1785 }
1786 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1787 
1788 /**
1789  * A buffer object shrink method that tries to swap out the first
1790  * buffer object on the bo_global::swap_lru list.
1791  */
1792 
ttm_bo_swapout(struct ttm_mem_shrink * shrink)1793 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1794 {
1795 	struct ttm_bo_global *glob =
1796 	    container_of(shrink, struct ttm_bo_global, shrink);
1797 	struct ttm_buffer_object *bo;
1798 	int ret = -EBUSY;
1799 	int put_count;
1800 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1801 
1802 	spin_lock(&glob->lru_lock);
1803 	while (ret == -EBUSY) {
1804 		if (unlikely(list_empty(&glob->swap_lru))) {
1805 			spin_unlock(&glob->lru_lock);
1806 			return -EBUSY;
1807 		}
1808 
1809 		bo = list_first_entry(&glob->swap_lru,
1810 				      struct ttm_buffer_object, swap);
1811 		kref_get(&bo->list_kref);
1812 
1813 		if (!list_empty(&bo->ddestroy)) {
1814 			spin_unlock(&glob->lru_lock);
1815 			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1816 			kref_put(&bo->list_kref, ttm_bo_release_list);
1817 			spin_lock(&glob->lru_lock);
1818 			continue;
1819 		}
1820 
1821 		/**
1822 		 * Reserve buffer. Since we unlock while sleeping, we need
1823 		 * to re-check that nobody removed us from the swap-list while
1824 		 * we slept.
1825 		 */
1826 
1827 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1828 		if (unlikely(ret == -EBUSY)) {
1829 			spin_unlock(&glob->lru_lock);
1830 			ttm_bo_wait_unreserved(bo, false);
1831 			kref_put(&bo->list_kref, ttm_bo_release_list);
1832 			spin_lock(&glob->lru_lock);
1833 		}
1834 	}
1835 
1836 	BUG_ON(ret != 0);
1837 	put_count = ttm_bo_del_from_lru(bo);
1838 	spin_unlock(&glob->lru_lock);
1839 
1840 	ttm_bo_list_ref_sub(bo, put_count, true);
1841 
1842 	/**
1843 	 * Wait for GPU, then move to system cached.
1844 	 */
1845 
1846 	spin_lock(&bo->bdev->fence_lock);
1847 	ret = ttm_bo_wait(bo, false, false, false);
1848 	spin_unlock(&bo->bdev->fence_lock);
1849 
1850 	if (unlikely(ret != 0))
1851 		goto out;
1852 
1853 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1854 		struct ttm_mem_reg evict_mem;
1855 
1856 		evict_mem = bo->mem;
1857 		evict_mem.mm_node = NULL;
1858 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1859 		evict_mem.mem_type = TTM_PL_SYSTEM;
1860 
1861 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1862 					     false, false, false);
1863 		if (unlikely(ret != 0))
1864 			goto out;
1865 	}
1866 
1867 	ttm_bo_unmap_virtual(bo);
1868 
1869 	/**
1870 	 * Swap out. Buffer will be swapped in again as soon as
1871 	 * anyone tries to access a ttm page.
1872 	 */
1873 
1874 	if (bo->bdev->driver->swap_notify)
1875 		bo->bdev->driver->swap_notify(bo);
1876 
1877 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1878 out:
1879 
1880 	/**
1881 	 *
1882 	 * Unreserve without putting on LRU to avoid swapping out an
1883 	 * already swapped buffer.
1884 	 */
1885 
1886 	atomic_set(&bo->reserved, 0);
1887 	wake_up_all(&bo->event_queue);
1888 	kref_put(&bo->list_kref, ttm_bo_release_list);
1889 	return ret;
1890 }
1891 
ttm_bo_swapout_all(struct ttm_bo_device * bdev)1892 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1893 {
1894 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1895 		;
1896 }
1897 EXPORT_SYMBOL(ttm_bo_swapout_all);
1898