1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include "ttm/ttm_module.h"
34 #include "ttm/ttm_bo_driver.h"
35 #include "ttm/ttm_placement.h"
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53 .name = "bo_count",
54 .mode = S_IRUGO
55 };
56
ttm_mem_type_from_flags(uint32_t flags,uint32_t * mem_type)57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 int i;
60
61 for (i = 0; i <= TTM_PL_PRIV5; i++)
62 if (flags & (1 << i)) {
63 *mem_type = i;
64 return 0;
65 }
66 return -EINVAL;
67 }
68
ttm_mem_type_debug(struct ttm_bo_device * bdev,int mem_type)69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73 pr_err(" has_type: %d\n", man->has_type);
74 pr_err(" use_type: %d\n", man->use_type);
75 pr_err(" flags: 0x%08X\n", man->flags);
76 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset);
77 pr_err(" size: %llu\n", man->size);
78 pr_err(" available_caching: 0x%08X\n", man->available_caching);
79 pr_err(" default_caching: 0x%08X\n", man->default_caching);
80 if (mem_type != TTM_PL_SYSTEM)
81 (*man->func->debug)(man, TTM_PFX);
82 }
83
ttm_bo_mem_space_debug(struct ttm_buffer_object * bo,struct ttm_placement * placement)84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 struct ttm_placement *placement)
86 {
87 int i, ret, mem_type;
88
89 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 bo, bo->mem.num_pages, bo->mem.size >> 10,
91 bo->mem.size >> 20);
92 for (i = 0; i < placement->num_placement; i++) {
93 ret = ttm_mem_type_from_flags(placement->placement[i],
94 &mem_type);
95 if (ret)
96 return;
97 pr_err(" placement[%d]=0x%08X (%d)\n",
98 i, placement->placement[i], mem_type);
99 ttm_mem_type_debug(bo->bdev, mem_type);
100 }
101 }
102
ttm_bo_global_show(struct kobject * kobj,struct attribute * attr,char * buffer)103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 struct attribute *attr,
105 char *buffer)
106 {
107 struct ttm_bo_global *glob =
108 container_of(kobj, struct ttm_bo_global, kobj);
109
110 return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115 &ttm_bo_count,
116 NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type = {
124 .release = &ttm_bo_global_kobj_release,
125 .sysfs_ops = &ttm_bo_global_ops,
126 .default_attrs = ttm_bo_global_attrs
127 };
128
129
ttm_bo_type_flags(unsigned type)130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 return 1 << (type);
133 }
134
ttm_bo_release_list(struct kref * list_kref)135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 struct ttm_buffer_object *bo =
138 container_of(list_kref, struct ttm_buffer_object, list_kref);
139 struct ttm_bo_device *bdev = bo->bdev;
140 size_t acc_size = bo->acc_size;
141
142 BUG_ON(atomic_read(&bo->list_kref.refcount));
143 BUG_ON(atomic_read(&bo->kref.refcount));
144 BUG_ON(atomic_read(&bo->cpu_writers));
145 BUG_ON(bo->sync_obj != NULL);
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
149
150 if (bo->ttm)
151 ttm_tt_destroy(bo->ttm);
152 atomic_dec(&bo->glob->bo_count);
153 if (bo->destroy)
154 bo->destroy(bo);
155 else {
156 kfree(bo);
157 }
158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160
ttm_bo_wait_unreserved(struct ttm_buffer_object * bo,bool interruptible)161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 if (interruptible) {
164 return wait_event_interruptible(bo->event_queue,
165 atomic_read(&bo->reserved) == 0);
166 } else {
167 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 return 0;
169 }
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
ttm_bo_add_to_lru(struct ttm_buffer_object * bo)173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 struct ttm_bo_device *bdev = bo->bdev;
176 struct ttm_mem_type_manager *man;
177
178 BUG_ON(!atomic_read(&bo->reserved));
179
180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182 BUG_ON(!list_empty(&bo->lru));
183
184 man = &bdev->man[bo->mem.mem_type];
185 list_add_tail(&bo->lru, &man->lru);
186 kref_get(&bo->list_kref);
187
188 if (bo->ttm != NULL) {
189 list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 kref_get(&bo->list_kref);
191 }
192 }
193 }
194
ttm_bo_del_from_lru(struct ttm_buffer_object * bo)195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 int put_count = 0;
198
199 if (!list_empty(&bo->swap)) {
200 list_del_init(&bo->swap);
201 ++put_count;
202 }
203 if (!list_empty(&bo->lru)) {
204 list_del_init(&bo->lru);
205 ++put_count;
206 }
207
208 /*
209 * TODO: Add a driver hook to delete from
210 * driver-specific LRU's here.
211 */
212
213 return put_count;
214 }
215
ttm_bo_reserve_locked(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 bool interruptible,
218 bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 struct ttm_bo_global *glob = bo->glob;
221 int ret;
222
223 while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224 /**
225 * Deadlock avoidance for multi-bo reserving.
226 */
227 if (use_sequence && bo->seq_valid) {
228 /**
229 * We've already reserved this one.
230 */
231 if (unlikely(sequence == bo->val_seq))
232 return -EDEADLK;
233 /**
234 * Already reserved by a thread that will not back
235 * off for us. We need to back off.
236 */
237 if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 return -EAGAIN;
239 }
240
241 if (no_wait)
242 return -EBUSY;
243
244 spin_unlock(&glob->lru_lock);
245 ret = ttm_bo_wait_unreserved(bo, interruptible);
246 spin_lock(&glob->lru_lock);
247
248 if (unlikely(ret))
249 return ret;
250 }
251
252 if (use_sequence) {
253 /**
254 * Wake up waiters that may need to recheck for deadlock,
255 * if we decreased the sequence number.
256 */
257 if (unlikely((bo->val_seq - sequence < (1 << 31))
258 || !bo->seq_valid))
259 wake_up_all(&bo->event_queue);
260
261 bo->val_seq = sequence;
262 bo->seq_valid = true;
263 } else {
264 bo->seq_valid = false;
265 }
266
267 return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270
ttm_bo_ref_bug(struct kref * list_kref)271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273 BUG();
274 }
275
ttm_bo_list_ref_sub(struct ttm_buffer_object * bo,int count,bool never_free)276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 bool never_free)
278 {
279 kref_sub(&bo->list_kref, count,
280 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282
ttm_bo_reserve(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 bool interruptible,
285 bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287 struct ttm_bo_global *glob = bo->glob;
288 int put_count = 0;
289 int ret;
290
291 spin_lock(&glob->lru_lock);
292 ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 sequence);
294 if (likely(ret == 0))
295 put_count = ttm_bo_del_from_lru(bo);
296 spin_unlock(&glob->lru_lock);
297
298 ttm_bo_list_ref_sub(bo, put_count, true);
299
300 return ret;
301 }
302
ttm_bo_unreserve_locked(struct ttm_buffer_object * bo)303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305 ttm_bo_add_to_lru(bo);
306 atomic_set(&bo->reserved, 0);
307 wake_up_all(&bo->event_queue);
308 }
309
ttm_bo_unreserve(struct ttm_buffer_object * bo)310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312 struct ttm_bo_global *glob = bo->glob;
313
314 spin_lock(&glob->lru_lock);
315 ttm_bo_unreserve_locked(bo);
316 spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319
320 /*
321 * Call bo->mutex locked.
322 */
ttm_bo_add_ttm(struct ttm_buffer_object * bo,bool zero_alloc)323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325 struct ttm_bo_device *bdev = bo->bdev;
326 struct ttm_bo_global *glob = bo->glob;
327 int ret = 0;
328 uint32_t page_flags = 0;
329
330 TTM_ASSERT_LOCKED(&bo->mutex);
331 bo->ttm = NULL;
332
333 if (bdev->need_dma32)
334 page_flags |= TTM_PAGE_FLAG_DMA32;
335
336 switch (bo->type) {
337 case ttm_bo_type_device:
338 if (zero_alloc)
339 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 case ttm_bo_type_kernel:
341 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 page_flags, glob->dummy_read_page);
343 if (unlikely(bo->ttm == NULL))
344 ret = -ENOMEM;
345 break;
346 default:
347 pr_err("Illegal buffer object type\n");
348 ret = -EINVAL;
349 break;
350 }
351
352 return ret;
353 }
354
ttm_bo_handle_move_mem(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,bool evict,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)355 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
356 struct ttm_mem_reg *mem,
357 bool evict, bool interruptible,
358 bool no_wait_reserve, bool no_wait_gpu)
359 {
360 struct ttm_bo_device *bdev = bo->bdev;
361 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
362 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
363 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
364 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
365 int ret = 0;
366
367 if (old_is_pci || new_is_pci ||
368 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
369 ret = ttm_mem_io_lock(old_man, true);
370 if (unlikely(ret != 0))
371 goto out_err;
372 ttm_bo_unmap_virtual_locked(bo);
373 ttm_mem_io_unlock(old_man);
374 }
375
376 /*
377 * Create and bind a ttm if required.
378 */
379
380 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
381 if (bo->ttm == NULL) {
382 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
383 ret = ttm_bo_add_ttm(bo, zero);
384 if (ret)
385 goto out_err;
386 }
387
388 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
389 if (ret)
390 goto out_err;
391
392 if (mem->mem_type != TTM_PL_SYSTEM) {
393 ret = ttm_tt_bind(bo->ttm, mem);
394 if (ret)
395 goto out_err;
396 }
397
398 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
399 if (bdev->driver->move_notify)
400 bdev->driver->move_notify(bo, mem);
401 bo->mem = *mem;
402 mem->mm_node = NULL;
403 goto moved;
404 }
405 }
406
407 if (bdev->driver->move_notify)
408 bdev->driver->move_notify(bo, mem);
409
410 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
411 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
412 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
413 else if (bdev->driver->move)
414 ret = bdev->driver->move(bo, evict, interruptible,
415 no_wait_reserve, no_wait_gpu, mem);
416 else
417 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
418
419 if (ret) {
420 if (bdev->driver->move_notify) {
421 struct ttm_mem_reg tmp_mem = *mem;
422 *mem = bo->mem;
423 bo->mem = tmp_mem;
424 bdev->driver->move_notify(bo, mem);
425 bo->mem = *mem;
426 }
427
428 goto out_err;
429 }
430
431 moved:
432 if (bo->evicted) {
433 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
434 if (ret)
435 pr_err("Can not flush read caches\n");
436 bo->evicted = false;
437 }
438
439 if (bo->mem.mm_node) {
440 bo->offset = (bo->mem.start << PAGE_SHIFT) +
441 bdev->man[bo->mem.mem_type].gpu_offset;
442 bo->cur_placement = bo->mem.placement;
443 } else
444 bo->offset = 0;
445
446 return 0;
447
448 out_err:
449 new_man = &bdev->man[bo->mem.mem_type];
450 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
451 ttm_tt_unbind(bo->ttm);
452 ttm_tt_destroy(bo->ttm);
453 bo->ttm = NULL;
454 }
455
456 return ret;
457 }
458
459 /**
460 * Call bo::reserved.
461 * Will release GPU memory type usage on destruction.
462 * This is the place to put in driver specific hooks to release
463 * driver private resources.
464 * Will release the bo::reserved lock.
465 */
466
ttm_bo_cleanup_memtype_use(struct ttm_buffer_object * bo)467 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
468 {
469 if (bo->bdev->driver->move_notify)
470 bo->bdev->driver->move_notify(bo, NULL);
471
472 if (bo->ttm) {
473 ttm_tt_unbind(bo->ttm);
474 ttm_tt_destroy(bo->ttm);
475 bo->ttm = NULL;
476 }
477 ttm_bo_mem_put(bo, &bo->mem);
478
479 atomic_set(&bo->reserved, 0);
480
481 /*
482 * Make processes trying to reserve really pick it up.
483 */
484 smp_mb__after_atomic_dec();
485 wake_up_all(&bo->event_queue);
486 }
487
ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object * bo)488 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
489 {
490 struct ttm_bo_device *bdev = bo->bdev;
491 struct ttm_bo_global *glob = bo->glob;
492 struct ttm_bo_driver *driver;
493 void *sync_obj = NULL;
494 void *sync_obj_arg;
495 int put_count;
496 int ret;
497
498 spin_lock(&bdev->fence_lock);
499 (void) ttm_bo_wait(bo, false, false, true);
500 if (!bo->sync_obj) {
501
502 spin_lock(&glob->lru_lock);
503
504 /**
505 * Lock inversion between bo:reserve and bdev::fence_lock here,
506 * but that's OK, since we're only trylocking.
507 */
508
509 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
510
511 if (unlikely(ret == -EBUSY))
512 goto queue;
513
514 spin_unlock(&bdev->fence_lock);
515 put_count = ttm_bo_del_from_lru(bo);
516
517 spin_unlock(&glob->lru_lock);
518 ttm_bo_cleanup_memtype_use(bo);
519
520 ttm_bo_list_ref_sub(bo, put_count, true);
521
522 return;
523 } else {
524 spin_lock(&glob->lru_lock);
525 }
526 queue:
527 driver = bdev->driver;
528 if (bo->sync_obj)
529 sync_obj = driver->sync_obj_ref(bo->sync_obj);
530 sync_obj_arg = bo->sync_obj_arg;
531
532 kref_get(&bo->list_kref);
533 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
534 spin_unlock(&glob->lru_lock);
535 spin_unlock(&bdev->fence_lock);
536
537 if (sync_obj) {
538 driver->sync_obj_flush(sync_obj, sync_obj_arg);
539 driver->sync_obj_unref(&sync_obj);
540 }
541 schedule_delayed_work(&bdev->wq,
542 ((HZ / 100) < 1) ? 1 : HZ / 100);
543 }
544
545 /**
546 * function ttm_bo_cleanup_refs
547 * If bo idle, remove from delayed- and lru lists, and unref.
548 * If not idle, do nothing.
549 *
550 * @interruptible Any sleeps should occur interruptibly.
551 * @no_wait_reserve Never wait for reserve. Return -EBUSY instead.
552 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
553 */
554
ttm_bo_cleanup_refs(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)555 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
556 bool interruptible,
557 bool no_wait_reserve,
558 bool no_wait_gpu)
559 {
560 struct ttm_bo_device *bdev = bo->bdev;
561 struct ttm_bo_global *glob = bo->glob;
562 int put_count;
563 int ret = 0;
564
565 retry:
566 spin_lock(&bdev->fence_lock);
567 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
568 spin_unlock(&bdev->fence_lock);
569
570 if (unlikely(ret != 0))
571 return ret;
572
573 spin_lock(&glob->lru_lock);
574
575 if (unlikely(list_empty(&bo->ddestroy))) {
576 spin_unlock(&glob->lru_lock);
577 return 0;
578 }
579
580 ret = ttm_bo_reserve_locked(bo, interruptible,
581 no_wait_reserve, false, 0);
582
583 if (unlikely(ret != 0)) {
584 spin_unlock(&glob->lru_lock);
585 return ret;
586 }
587
588 /**
589 * We can re-check for sync object without taking
590 * the bo::lock since setting the sync object requires
591 * also bo::reserved. A busy object at this point may
592 * be caused by another thread recently starting an accelerated
593 * eviction.
594 */
595
596 if (unlikely(bo->sync_obj)) {
597 atomic_set(&bo->reserved, 0);
598 wake_up_all(&bo->event_queue);
599 spin_unlock(&glob->lru_lock);
600 goto retry;
601 }
602
603 put_count = ttm_bo_del_from_lru(bo);
604 list_del_init(&bo->ddestroy);
605 ++put_count;
606
607 spin_unlock(&glob->lru_lock);
608 ttm_bo_cleanup_memtype_use(bo);
609
610 ttm_bo_list_ref_sub(bo, put_count, true);
611
612 return 0;
613 }
614
615 /**
616 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617 * encountered buffers.
618 */
619
ttm_bo_delayed_delete(struct ttm_bo_device * bdev,bool remove_all)620 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
621 {
622 struct ttm_bo_global *glob = bdev->glob;
623 struct ttm_buffer_object *entry = NULL;
624 int ret = 0;
625
626 spin_lock(&glob->lru_lock);
627 if (list_empty(&bdev->ddestroy))
628 goto out_unlock;
629
630 entry = list_first_entry(&bdev->ddestroy,
631 struct ttm_buffer_object, ddestroy);
632 kref_get(&entry->list_kref);
633
634 for (;;) {
635 struct ttm_buffer_object *nentry = NULL;
636
637 if (entry->ddestroy.next != &bdev->ddestroy) {
638 nentry = list_first_entry(&entry->ddestroy,
639 struct ttm_buffer_object, ddestroy);
640 kref_get(&nentry->list_kref);
641 }
642
643 spin_unlock(&glob->lru_lock);
644 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
645 !remove_all);
646 kref_put(&entry->list_kref, ttm_bo_release_list);
647 entry = nentry;
648
649 if (ret || !entry)
650 goto out;
651
652 spin_lock(&glob->lru_lock);
653 if (list_empty(&entry->ddestroy))
654 break;
655 }
656
657 out_unlock:
658 spin_unlock(&glob->lru_lock);
659 out:
660 if (entry)
661 kref_put(&entry->list_kref, ttm_bo_release_list);
662 return ret;
663 }
664
ttm_bo_delayed_workqueue(struct work_struct * work)665 static void ttm_bo_delayed_workqueue(struct work_struct *work)
666 {
667 struct ttm_bo_device *bdev =
668 container_of(work, struct ttm_bo_device, wq.work);
669
670 if (ttm_bo_delayed_delete(bdev, false)) {
671 schedule_delayed_work(&bdev->wq,
672 ((HZ / 100) < 1) ? 1 : HZ / 100);
673 }
674 }
675
ttm_bo_release(struct kref * kref)676 static void ttm_bo_release(struct kref *kref)
677 {
678 struct ttm_buffer_object *bo =
679 container_of(kref, struct ttm_buffer_object, kref);
680 struct ttm_bo_device *bdev = bo->bdev;
681 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
682
683 if (likely(bo->vm_node != NULL)) {
684 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
685 drm_mm_put_block(bo->vm_node);
686 bo->vm_node = NULL;
687 }
688 write_unlock(&bdev->vm_lock);
689 ttm_mem_io_lock(man, false);
690 ttm_mem_io_free_vm(bo);
691 ttm_mem_io_unlock(man);
692 ttm_bo_cleanup_refs_or_queue(bo);
693 kref_put(&bo->list_kref, ttm_bo_release_list);
694 write_lock(&bdev->vm_lock);
695 }
696
ttm_bo_unref(struct ttm_buffer_object ** p_bo)697 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
698 {
699 struct ttm_buffer_object *bo = *p_bo;
700 struct ttm_bo_device *bdev = bo->bdev;
701
702 *p_bo = NULL;
703 write_lock(&bdev->vm_lock);
704 kref_put(&bo->kref, ttm_bo_release);
705 write_unlock(&bdev->vm_lock);
706 }
707 EXPORT_SYMBOL(ttm_bo_unref);
708
ttm_bo_lock_delayed_workqueue(struct ttm_bo_device * bdev)709 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
710 {
711 return cancel_delayed_work_sync(&bdev->wq);
712 }
713 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
714
ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device * bdev,int resched)715 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
716 {
717 if (resched)
718 schedule_delayed_work(&bdev->wq,
719 ((HZ / 100) < 1) ? 1 : HZ / 100);
720 }
721 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
722
ttm_bo_evict(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)723 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
724 bool no_wait_reserve, bool no_wait_gpu)
725 {
726 struct ttm_bo_device *bdev = bo->bdev;
727 struct ttm_mem_reg evict_mem;
728 struct ttm_placement placement;
729 int ret = 0;
730
731 spin_lock(&bdev->fence_lock);
732 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
733 spin_unlock(&bdev->fence_lock);
734
735 if (unlikely(ret != 0)) {
736 if (ret != -ERESTARTSYS) {
737 pr_err("Failed to expire sync object before buffer eviction\n");
738 }
739 goto out;
740 }
741
742 BUG_ON(!atomic_read(&bo->reserved));
743
744 evict_mem = bo->mem;
745 evict_mem.mm_node = NULL;
746 evict_mem.bus.io_reserved_vm = false;
747 evict_mem.bus.io_reserved_count = 0;
748
749 placement.fpfn = 0;
750 placement.lpfn = 0;
751 placement.num_placement = 0;
752 placement.num_busy_placement = 0;
753 bdev->driver->evict_flags(bo, &placement);
754 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
755 no_wait_reserve, no_wait_gpu);
756 if (ret) {
757 if (ret != -ERESTARTSYS) {
758 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
759 bo);
760 ttm_bo_mem_space_debug(bo, &placement);
761 }
762 goto out;
763 }
764
765 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
766 no_wait_reserve, no_wait_gpu);
767 if (ret) {
768 if (ret != -ERESTARTSYS)
769 pr_err("Buffer eviction failed\n");
770 ttm_bo_mem_put(bo, &evict_mem);
771 goto out;
772 }
773 bo->evicted = true;
774 out:
775 return ret;
776 }
777
ttm_mem_evict_first(struct ttm_bo_device * bdev,uint32_t mem_type,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)778 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
779 uint32_t mem_type,
780 bool interruptible, bool no_wait_reserve,
781 bool no_wait_gpu)
782 {
783 struct ttm_bo_global *glob = bdev->glob;
784 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
785 struct ttm_buffer_object *bo;
786 int ret, put_count = 0;
787
788 retry:
789 spin_lock(&glob->lru_lock);
790 if (list_empty(&man->lru)) {
791 spin_unlock(&glob->lru_lock);
792 return -EBUSY;
793 }
794
795 bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
796 kref_get(&bo->list_kref);
797
798 if (!list_empty(&bo->ddestroy)) {
799 spin_unlock(&glob->lru_lock);
800 ret = ttm_bo_cleanup_refs(bo, interruptible,
801 no_wait_reserve, no_wait_gpu);
802 kref_put(&bo->list_kref, ttm_bo_release_list);
803
804 if (likely(ret == 0 || ret == -ERESTARTSYS))
805 return ret;
806
807 goto retry;
808 }
809
810 ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
811
812 if (unlikely(ret == -EBUSY)) {
813 spin_unlock(&glob->lru_lock);
814 if (likely(!no_wait_gpu))
815 ret = ttm_bo_wait_unreserved(bo, interruptible);
816
817 kref_put(&bo->list_kref, ttm_bo_release_list);
818
819 /**
820 * We *need* to retry after releasing the lru lock.
821 */
822
823 if (unlikely(ret != 0))
824 return ret;
825 goto retry;
826 }
827
828 put_count = ttm_bo_del_from_lru(bo);
829 spin_unlock(&glob->lru_lock);
830
831 BUG_ON(ret != 0);
832
833 ttm_bo_list_ref_sub(bo, put_count, true);
834
835 ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
836 ttm_bo_unreserve(bo);
837
838 kref_put(&bo->list_kref, ttm_bo_release_list);
839 return ret;
840 }
841
ttm_bo_mem_put(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)842 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
843 {
844 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
845
846 if (mem->mm_node)
847 (*man->func->put_node)(man, mem);
848 }
849 EXPORT_SYMBOL(ttm_bo_mem_put);
850
851 /**
852 * Repeatedly evict memory from the LRU for @mem_type until we create enough
853 * space, or we've evicted everything and there isn't enough space.
854 */
ttm_bo_mem_force_space(struct ttm_buffer_object * bo,uint32_t mem_type,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)855 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
856 uint32_t mem_type,
857 struct ttm_placement *placement,
858 struct ttm_mem_reg *mem,
859 bool interruptible,
860 bool no_wait_reserve,
861 bool no_wait_gpu)
862 {
863 struct ttm_bo_device *bdev = bo->bdev;
864 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
865 int ret;
866
867 do {
868 ret = (*man->func->get_node)(man, bo, placement, mem);
869 if (unlikely(ret != 0))
870 return ret;
871 if (mem->mm_node)
872 break;
873 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
874 no_wait_reserve, no_wait_gpu);
875 if (unlikely(ret != 0))
876 return ret;
877 } while (1);
878 if (mem->mm_node == NULL)
879 return -ENOMEM;
880 mem->mem_type = mem_type;
881 return 0;
882 }
883
ttm_bo_select_caching(struct ttm_mem_type_manager * man,uint32_t cur_placement,uint32_t proposed_placement)884 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
885 uint32_t cur_placement,
886 uint32_t proposed_placement)
887 {
888 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
889 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
890
891 /**
892 * Keep current caching if possible.
893 */
894
895 if ((cur_placement & caching) != 0)
896 result |= (cur_placement & caching);
897 else if ((man->default_caching & caching) != 0)
898 result |= man->default_caching;
899 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
900 result |= TTM_PL_FLAG_CACHED;
901 else if ((TTM_PL_FLAG_WC & caching) != 0)
902 result |= TTM_PL_FLAG_WC;
903 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
904 result |= TTM_PL_FLAG_UNCACHED;
905
906 return result;
907 }
908
ttm_bo_mt_compatible(struct ttm_mem_type_manager * man,uint32_t mem_type,uint32_t proposed_placement,uint32_t * masked_placement)909 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
910 uint32_t mem_type,
911 uint32_t proposed_placement,
912 uint32_t *masked_placement)
913 {
914 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
915
916 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
917 return false;
918
919 if ((proposed_placement & man->available_caching) == 0)
920 return false;
921
922 cur_flags |= (proposed_placement & man->available_caching);
923
924 *masked_placement = cur_flags;
925 return true;
926 }
927
928 /**
929 * Creates space for memory region @mem according to its type.
930 *
931 * This function first searches for free space in compatible memory types in
932 * the priority order defined by the driver. If free space isn't found, then
933 * ttm_bo_mem_force_space is attempted in priority order to evict and find
934 * space.
935 */
ttm_bo_mem_space(struct ttm_buffer_object * bo,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)936 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
937 struct ttm_placement *placement,
938 struct ttm_mem_reg *mem,
939 bool interruptible, bool no_wait_reserve,
940 bool no_wait_gpu)
941 {
942 struct ttm_bo_device *bdev = bo->bdev;
943 struct ttm_mem_type_manager *man;
944 uint32_t mem_type = TTM_PL_SYSTEM;
945 uint32_t cur_flags = 0;
946 bool type_found = false;
947 bool type_ok = false;
948 bool has_erestartsys = false;
949 int i, ret;
950
951 mem->mm_node = NULL;
952 for (i = 0; i < placement->num_placement; ++i) {
953 ret = ttm_mem_type_from_flags(placement->placement[i],
954 &mem_type);
955 if (ret)
956 return ret;
957 man = &bdev->man[mem_type];
958
959 type_ok = ttm_bo_mt_compatible(man,
960 mem_type,
961 placement->placement[i],
962 &cur_flags);
963
964 if (!type_ok)
965 continue;
966
967 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
968 cur_flags);
969 /*
970 * Use the access and other non-mapping-related flag bits from
971 * the memory placement flags to the current flags
972 */
973 ttm_flag_masked(&cur_flags, placement->placement[i],
974 ~TTM_PL_MASK_MEMTYPE);
975
976 if (mem_type == TTM_PL_SYSTEM)
977 break;
978
979 if (man->has_type && man->use_type) {
980 type_found = true;
981 ret = (*man->func->get_node)(man, bo, placement, mem);
982 if (unlikely(ret))
983 return ret;
984 }
985 if (mem->mm_node)
986 break;
987 }
988
989 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
990 mem->mem_type = mem_type;
991 mem->placement = cur_flags;
992 return 0;
993 }
994
995 if (!type_found)
996 return -EINVAL;
997
998 for (i = 0; i < placement->num_busy_placement; ++i) {
999 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1000 &mem_type);
1001 if (ret)
1002 return ret;
1003 man = &bdev->man[mem_type];
1004 if (!man->has_type)
1005 continue;
1006 if (!ttm_bo_mt_compatible(man,
1007 mem_type,
1008 placement->busy_placement[i],
1009 &cur_flags))
1010 continue;
1011
1012 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1013 cur_flags);
1014 /*
1015 * Use the access and other non-mapping-related flag bits from
1016 * the memory placement flags to the current flags
1017 */
1018 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1019 ~TTM_PL_MASK_MEMTYPE);
1020
1021
1022 if (mem_type == TTM_PL_SYSTEM) {
1023 mem->mem_type = mem_type;
1024 mem->placement = cur_flags;
1025 mem->mm_node = NULL;
1026 return 0;
1027 }
1028
1029 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1030 interruptible, no_wait_reserve, no_wait_gpu);
1031 if (ret == 0 && mem->mm_node) {
1032 mem->placement = cur_flags;
1033 return 0;
1034 }
1035 if (ret == -ERESTARTSYS)
1036 has_erestartsys = true;
1037 }
1038 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(ttm_bo_mem_space);
1042
ttm_bo_wait_cpu(struct ttm_buffer_object * bo,bool no_wait)1043 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1044 {
1045 if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1046 return -EBUSY;
1047
1048 return wait_event_interruptible(bo->event_queue,
1049 atomic_read(&bo->cpu_writers) == 0);
1050 }
1051 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1052
ttm_bo_move_buffer(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1053 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1054 struct ttm_placement *placement,
1055 bool interruptible, bool no_wait_reserve,
1056 bool no_wait_gpu)
1057 {
1058 int ret = 0;
1059 struct ttm_mem_reg mem;
1060 struct ttm_bo_device *bdev = bo->bdev;
1061
1062 BUG_ON(!atomic_read(&bo->reserved));
1063
1064 /*
1065 * FIXME: It's possible to pipeline buffer moves.
1066 * Have the driver move function wait for idle when necessary,
1067 * instead of doing it here.
1068 */
1069 spin_lock(&bdev->fence_lock);
1070 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1071 spin_unlock(&bdev->fence_lock);
1072 if (ret)
1073 return ret;
1074 mem.num_pages = bo->num_pages;
1075 mem.size = mem.num_pages << PAGE_SHIFT;
1076 mem.page_alignment = bo->mem.page_alignment;
1077 mem.bus.io_reserved_vm = false;
1078 mem.bus.io_reserved_count = 0;
1079 /*
1080 * Determine where to move the buffer.
1081 */
1082 ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1083 if (ret)
1084 goto out_unlock;
1085 ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1086 out_unlock:
1087 if (ret && mem.mm_node)
1088 ttm_bo_mem_put(bo, &mem);
1089 return ret;
1090 }
1091
ttm_bo_mem_compat(struct ttm_placement * placement,struct ttm_mem_reg * mem)1092 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1093 struct ttm_mem_reg *mem)
1094 {
1095 int i;
1096
1097 if (mem->mm_node && placement->lpfn != 0 &&
1098 (mem->start < placement->fpfn ||
1099 mem->start + mem->num_pages > placement->lpfn))
1100 return -1;
1101
1102 for (i = 0; i < placement->num_placement; i++) {
1103 if ((placement->placement[i] & mem->placement &
1104 TTM_PL_MASK_CACHING) &&
1105 (placement->placement[i] & mem->placement &
1106 TTM_PL_MASK_MEM))
1107 return i;
1108 }
1109 return -1;
1110 }
1111
ttm_bo_validate(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1112 int ttm_bo_validate(struct ttm_buffer_object *bo,
1113 struct ttm_placement *placement,
1114 bool interruptible, bool no_wait_reserve,
1115 bool no_wait_gpu)
1116 {
1117 int ret;
1118
1119 BUG_ON(!atomic_read(&bo->reserved));
1120 /* Check that range is valid */
1121 if (placement->lpfn || placement->fpfn)
1122 if (placement->fpfn > placement->lpfn ||
1123 (placement->lpfn - placement->fpfn) < bo->num_pages)
1124 return -EINVAL;
1125 /*
1126 * Check whether we need to move buffer.
1127 */
1128 ret = ttm_bo_mem_compat(placement, &bo->mem);
1129 if (ret < 0) {
1130 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1131 if (ret)
1132 return ret;
1133 } else {
1134 /*
1135 * Use the access and other non-mapping-related flag bits from
1136 * the compatible memory placement flags to the active flags
1137 */
1138 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1139 ~TTM_PL_MASK_MEMTYPE);
1140 }
1141 /*
1142 * We might need to add a TTM.
1143 */
1144 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1145 ret = ttm_bo_add_ttm(bo, true);
1146 if (ret)
1147 return ret;
1148 }
1149 return 0;
1150 }
1151 EXPORT_SYMBOL(ttm_bo_validate);
1152
ttm_bo_check_placement(struct ttm_buffer_object * bo,struct ttm_placement * placement)1153 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1154 struct ttm_placement *placement)
1155 {
1156 BUG_ON((placement->fpfn || placement->lpfn) &&
1157 (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1158
1159 return 0;
1160 }
1161
ttm_bo_init(struct ttm_bo_device * bdev,struct ttm_buffer_object * bo,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,size_t acc_size,void (* destroy)(struct ttm_buffer_object *))1162 int ttm_bo_init(struct ttm_bo_device *bdev,
1163 struct ttm_buffer_object *bo,
1164 unsigned long size,
1165 enum ttm_bo_type type,
1166 struct ttm_placement *placement,
1167 uint32_t page_alignment,
1168 unsigned long buffer_start,
1169 bool interruptible,
1170 struct file *persistent_swap_storage,
1171 size_t acc_size,
1172 void (*destroy) (struct ttm_buffer_object *))
1173 {
1174 int ret = 0;
1175 unsigned long num_pages;
1176 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1177
1178 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1179 if (ret) {
1180 pr_err("Out of kernel memory\n");
1181 if (destroy)
1182 (*destroy)(bo);
1183 else
1184 kfree(bo);
1185 return -ENOMEM;
1186 }
1187
1188 size += buffer_start & ~PAGE_MASK;
1189 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 if (num_pages == 0) {
1191 pr_err("Illegal buffer object size\n");
1192 if (destroy)
1193 (*destroy)(bo);
1194 else
1195 kfree(bo);
1196 ttm_mem_global_free(mem_glob, acc_size);
1197 return -EINVAL;
1198 }
1199 bo->destroy = destroy;
1200
1201 kref_init(&bo->kref);
1202 kref_init(&bo->list_kref);
1203 atomic_set(&bo->cpu_writers, 0);
1204 atomic_set(&bo->reserved, 1);
1205 init_waitqueue_head(&bo->event_queue);
1206 INIT_LIST_HEAD(&bo->lru);
1207 INIT_LIST_HEAD(&bo->ddestroy);
1208 INIT_LIST_HEAD(&bo->swap);
1209 INIT_LIST_HEAD(&bo->io_reserve_lru);
1210 bo->bdev = bdev;
1211 bo->glob = bdev->glob;
1212 bo->type = type;
1213 bo->num_pages = num_pages;
1214 bo->mem.size = num_pages << PAGE_SHIFT;
1215 bo->mem.mem_type = TTM_PL_SYSTEM;
1216 bo->mem.num_pages = bo->num_pages;
1217 bo->mem.mm_node = NULL;
1218 bo->mem.page_alignment = page_alignment;
1219 bo->mem.bus.io_reserved_vm = false;
1220 bo->mem.bus.io_reserved_count = 0;
1221 bo->buffer_start = buffer_start & PAGE_MASK;
1222 bo->priv_flags = 0;
1223 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1224 bo->seq_valid = false;
1225 bo->persistent_swap_storage = persistent_swap_storage;
1226 bo->acc_size = acc_size;
1227 atomic_inc(&bo->glob->bo_count);
1228
1229 ret = ttm_bo_check_placement(bo, placement);
1230 if (unlikely(ret != 0))
1231 goto out_err;
1232
1233 /*
1234 * For ttm_bo_type_device buffers, allocate
1235 * address space from the device.
1236 */
1237 if (bo->type == ttm_bo_type_device) {
1238 ret = ttm_bo_setup_vm(bo);
1239 if (ret)
1240 goto out_err;
1241 }
1242
1243 ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1244 if (ret)
1245 goto out_err;
1246
1247 ttm_bo_unreserve(bo);
1248 return 0;
1249
1250 out_err:
1251 ttm_bo_unreserve(bo);
1252 ttm_bo_unref(&bo);
1253
1254 return ret;
1255 }
1256 EXPORT_SYMBOL(ttm_bo_init);
1257
ttm_bo_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1258 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1259 unsigned long bo_size,
1260 unsigned struct_size)
1261 {
1262 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1263 size_t size = 0;
1264
1265 size += ttm_round_pot(struct_size);
1266 size += PAGE_ALIGN(npages * sizeof(void *));
1267 size += ttm_round_pot(sizeof(struct ttm_tt));
1268 return size;
1269 }
1270 EXPORT_SYMBOL(ttm_bo_acc_size);
1271
ttm_bo_dma_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1272 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1273 unsigned long bo_size,
1274 unsigned struct_size)
1275 {
1276 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1277 size_t size = 0;
1278
1279 size += ttm_round_pot(struct_size);
1280 size += PAGE_ALIGN(npages * sizeof(void *));
1281 size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1282 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1283 return size;
1284 }
1285 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1286
ttm_bo_create(struct ttm_bo_device * bdev,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,struct ttm_buffer_object ** p_bo)1287 int ttm_bo_create(struct ttm_bo_device *bdev,
1288 unsigned long size,
1289 enum ttm_bo_type type,
1290 struct ttm_placement *placement,
1291 uint32_t page_alignment,
1292 unsigned long buffer_start,
1293 bool interruptible,
1294 struct file *persistent_swap_storage,
1295 struct ttm_buffer_object **p_bo)
1296 {
1297 struct ttm_buffer_object *bo;
1298 size_t acc_size;
1299 int ret;
1300
1301 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1302 if (unlikely(bo == NULL))
1303 return -ENOMEM;
1304
1305 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1306 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1307 buffer_start, interruptible,
1308 persistent_swap_storage, acc_size, NULL);
1309 if (likely(ret == 0))
1310 *p_bo = bo;
1311
1312 return ret;
1313 }
1314 EXPORT_SYMBOL(ttm_bo_create);
1315
ttm_bo_force_list_clean(struct ttm_bo_device * bdev,unsigned mem_type,bool allow_errors)1316 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1317 unsigned mem_type, bool allow_errors)
1318 {
1319 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1320 struct ttm_bo_global *glob = bdev->glob;
1321 int ret;
1322
1323 /*
1324 * Can't use standard list traversal since we're unlocking.
1325 */
1326
1327 spin_lock(&glob->lru_lock);
1328 while (!list_empty(&man->lru)) {
1329 spin_unlock(&glob->lru_lock);
1330 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1331 if (ret) {
1332 if (allow_errors) {
1333 return ret;
1334 } else {
1335 pr_err("Cleanup eviction failed\n");
1336 }
1337 }
1338 spin_lock(&glob->lru_lock);
1339 }
1340 spin_unlock(&glob->lru_lock);
1341 return 0;
1342 }
1343
ttm_bo_clean_mm(struct ttm_bo_device * bdev,unsigned mem_type)1344 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1345 {
1346 struct ttm_mem_type_manager *man;
1347 int ret = -EINVAL;
1348
1349 if (mem_type >= TTM_NUM_MEM_TYPES) {
1350 pr_err("Illegal memory type %d\n", mem_type);
1351 return ret;
1352 }
1353 man = &bdev->man[mem_type];
1354
1355 if (!man->has_type) {
1356 pr_err("Trying to take down uninitialized memory manager type %u\n",
1357 mem_type);
1358 return ret;
1359 }
1360
1361 man->use_type = false;
1362 man->has_type = false;
1363
1364 ret = 0;
1365 if (mem_type > 0) {
1366 ttm_bo_force_list_clean(bdev, mem_type, false);
1367
1368 ret = (*man->func->takedown)(man);
1369 }
1370
1371 return ret;
1372 }
1373 EXPORT_SYMBOL(ttm_bo_clean_mm);
1374
ttm_bo_evict_mm(struct ttm_bo_device * bdev,unsigned mem_type)1375 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1376 {
1377 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1378
1379 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1380 pr_err("Illegal memory manager memory type %u\n", mem_type);
1381 return -EINVAL;
1382 }
1383
1384 if (!man->has_type) {
1385 pr_err("Memory type %u has not been initialized\n", mem_type);
1386 return 0;
1387 }
1388
1389 return ttm_bo_force_list_clean(bdev, mem_type, true);
1390 }
1391 EXPORT_SYMBOL(ttm_bo_evict_mm);
1392
ttm_bo_init_mm(struct ttm_bo_device * bdev,unsigned type,unsigned long p_size)1393 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1394 unsigned long p_size)
1395 {
1396 int ret = -EINVAL;
1397 struct ttm_mem_type_manager *man;
1398
1399 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1400 man = &bdev->man[type];
1401 BUG_ON(man->has_type);
1402 man->io_reserve_fastpath = true;
1403 man->use_io_reserve_lru = false;
1404 mutex_init(&man->io_reserve_mutex);
1405 INIT_LIST_HEAD(&man->io_reserve_lru);
1406
1407 ret = bdev->driver->init_mem_type(bdev, type, man);
1408 if (ret)
1409 return ret;
1410 man->bdev = bdev;
1411
1412 ret = 0;
1413 if (type != TTM_PL_SYSTEM) {
1414 ret = (*man->func->init)(man, p_size);
1415 if (ret)
1416 return ret;
1417 }
1418 man->has_type = true;
1419 man->use_type = true;
1420 man->size = p_size;
1421
1422 INIT_LIST_HEAD(&man->lru);
1423
1424 return 0;
1425 }
1426 EXPORT_SYMBOL(ttm_bo_init_mm);
1427
ttm_bo_global_kobj_release(struct kobject * kobj)1428 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1429 {
1430 struct ttm_bo_global *glob =
1431 container_of(kobj, struct ttm_bo_global, kobj);
1432
1433 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1434 __free_page(glob->dummy_read_page);
1435 kfree(glob);
1436 }
1437
ttm_bo_global_release(struct drm_global_reference * ref)1438 void ttm_bo_global_release(struct drm_global_reference *ref)
1439 {
1440 struct ttm_bo_global *glob = ref->object;
1441
1442 kobject_del(&glob->kobj);
1443 kobject_put(&glob->kobj);
1444 }
1445 EXPORT_SYMBOL(ttm_bo_global_release);
1446
ttm_bo_global_init(struct drm_global_reference * ref)1447 int ttm_bo_global_init(struct drm_global_reference *ref)
1448 {
1449 struct ttm_bo_global_ref *bo_ref =
1450 container_of(ref, struct ttm_bo_global_ref, ref);
1451 struct ttm_bo_global *glob = ref->object;
1452 int ret;
1453
1454 mutex_init(&glob->device_list_mutex);
1455 spin_lock_init(&glob->lru_lock);
1456 glob->mem_glob = bo_ref->mem_glob;
1457 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1458
1459 if (unlikely(glob->dummy_read_page == NULL)) {
1460 ret = -ENOMEM;
1461 goto out_no_drp;
1462 }
1463
1464 INIT_LIST_HEAD(&glob->swap_lru);
1465 INIT_LIST_HEAD(&glob->device_list);
1466
1467 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1468 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1469 if (unlikely(ret != 0)) {
1470 pr_err("Could not register buffer object swapout\n");
1471 goto out_no_shrink;
1472 }
1473
1474 atomic_set(&glob->bo_count, 0);
1475
1476 ret = kobject_init_and_add(
1477 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1478 if (unlikely(ret != 0))
1479 kobject_put(&glob->kobj);
1480 return ret;
1481 out_no_shrink:
1482 __free_page(glob->dummy_read_page);
1483 out_no_drp:
1484 kfree(glob);
1485 return ret;
1486 }
1487 EXPORT_SYMBOL(ttm_bo_global_init);
1488
1489
ttm_bo_device_release(struct ttm_bo_device * bdev)1490 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1491 {
1492 int ret = 0;
1493 unsigned i = TTM_NUM_MEM_TYPES;
1494 struct ttm_mem_type_manager *man;
1495 struct ttm_bo_global *glob = bdev->glob;
1496
1497 while (i--) {
1498 man = &bdev->man[i];
1499 if (man->has_type) {
1500 man->use_type = false;
1501 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1502 ret = -EBUSY;
1503 pr_err("DRM memory manager type %d is not clean\n",
1504 i);
1505 }
1506 man->has_type = false;
1507 }
1508 }
1509
1510 mutex_lock(&glob->device_list_mutex);
1511 list_del(&bdev->device_list);
1512 mutex_unlock(&glob->device_list_mutex);
1513
1514 cancel_delayed_work_sync(&bdev->wq);
1515
1516 while (ttm_bo_delayed_delete(bdev, true))
1517 ;
1518
1519 spin_lock(&glob->lru_lock);
1520 if (list_empty(&bdev->ddestroy))
1521 TTM_DEBUG("Delayed destroy list was clean\n");
1522
1523 if (list_empty(&bdev->man[0].lru))
1524 TTM_DEBUG("Swap list was clean\n");
1525 spin_unlock(&glob->lru_lock);
1526
1527 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1528 write_lock(&bdev->vm_lock);
1529 drm_mm_takedown(&bdev->addr_space_mm);
1530 write_unlock(&bdev->vm_lock);
1531
1532 return ret;
1533 }
1534 EXPORT_SYMBOL(ttm_bo_device_release);
1535
ttm_bo_device_init(struct ttm_bo_device * bdev,struct ttm_bo_global * glob,struct ttm_bo_driver * driver,uint64_t file_page_offset,bool need_dma32)1536 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1537 struct ttm_bo_global *glob,
1538 struct ttm_bo_driver *driver,
1539 uint64_t file_page_offset,
1540 bool need_dma32)
1541 {
1542 int ret = -EINVAL;
1543
1544 rwlock_init(&bdev->vm_lock);
1545 bdev->driver = driver;
1546
1547 memset(bdev->man, 0, sizeof(bdev->man));
1548
1549 /*
1550 * Initialize the system memory buffer type.
1551 * Other types need to be driver / IOCTL initialized.
1552 */
1553 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1554 if (unlikely(ret != 0))
1555 goto out_no_sys;
1556
1557 bdev->addr_space_rb = RB_ROOT;
1558 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1559 if (unlikely(ret != 0))
1560 goto out_no_addr_mm;
1561
1562 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1563 bdev->nice_mode = true;
1564 INIT_LIST_HEAD(&bdev->ddestroy);
1565 bdev->dev_mapping = NULL;
1566 bdev->glob = glob;
1567 bdev->need_dma32 = need_dma32;
1568 bdev->val_seq = 0;
1569 spin_lock_init(&bdev->fence_lock);
1570 mutex_lock(&glob->device_list_mutex);
1571 list_add_tail(&bdev->device_list, &glob->device_list);
1572 mutex_unlock(&glob->device_list_mutex);
1573
1574 return 0;
1575 out_no_addr_mm:
1576 ttm_bo_clean_mm(bdev, 0);
1577 out_no_sys:
1578 return ret;
1579 }
1580 EXPORT_SYMBOL(ttm_bo_device_init);
1581
1582 /*
1583 * buffer object vm functions.
1584 */
1585
ttm_mem_reg_is_pci(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)1586 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1587 {
1588 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1589
1590 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1591 if (mem->mem_type == TTM_PL_SYSTEM)
1592 return false;
1593
1594 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1595 return false;
1596
1597 if (mem->placement & TTM_PL_FLAG_CACHED)
1598 return false;
1599 }
1600 return true;
1601 }
1602
ttm_bo_unmap_virtual_locked(struct ttm_buffer_object * bo)1603 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1604 {
1605 struct ttm_bo_device *bdev = bo->bdev;
1606 loff_t offset = (loff_t) bo->addr_space_offset;
1607 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1608
1609 if (!bdev->dev_mapping)
1610 return;
1611 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1612 ttm_mem_io_free_vm(bo);
1613 }
1614
ttm_bo_unmap_virtual(struct ttm_buffer_object * bo)1615 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1616 {
1617 struct ttm_bo_device *bdev = bo->bdev;
1618 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1619
1620 ttm_mem_io_lock(man, false);
1621 ttm_bo_unmap_virtual_locked(bo);
1622 ttm_mem_io_unlock(man);
1623 }
1624
1625
1626 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1627
ttm_bo_vm_insert_rb(struct ttm_buffer_object * bo)1628 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1629 {
1630 struct ttm_bo_device *bdev = bo->bdev;
1631 struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1632 struct rb_node *parent = NULL;
1633 struct ttm_buffer_object *cur_bo;
1634 unsigned long offset = bo->vm_node->start;
1635 unsigned long cur_offset;
1636
1637 while (*cur) {
1638 parent = *cur;
1639 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1640 cur_offset = cur_bo->vm_node->start;
1641 if (offset < cur_offset)
1642 cur = &parent->rb_left;
1643 else if (offset > cur_offset)
1644 cur = &parent->rb_right;
1645 else
1646 BUG();
1647 }
1648
1649 rb_link_node(&bo->vm_rb, parent, cur);
1650 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1651 }
1652
1653 /**
1654 * ttm_bo_setup_vm:
1655 *
1656 * @bo: the buffer to allocate address space for
1657 *
1658 * Allocate address space in the drm device so that applications
1659 * can mmap the buffer and access the contents. This only
1660 * applies to ttm_bo_type_device objects as others are not
1661 * placed in the drm device address space.
1662 */
1663
ttm_bo_setup_vm(struct ttm_buffer_object * bo)1664 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1665 {
1666 struct ttm_bo_device *bdev = bo->bdev;
1667 int ret;
1668
1669 retry_pre_get:
1670 ret = drm_mm_pre_get(&bdev->addr_space_mm);
1671 if (unlikely(ret != 0))
1672 return ret;
1673
1674 write_lock(&bdev->vm_lock);
1675 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1676 bo->mem.num_pages, 0, 0);
1677
1678 if (unlikely(bo->vm_node == NULL)) {
1679 ret = -ENOMEM;
1680 goto out_unlock;
1681 }
1682
1683 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1684 bo->mem.num_pages, 0);
1685
1686 if (unlikely(bo->vm_node == NULL)) {
1687 write_unlock(&bdev->vm_lock);
1688 goto retry_pre_get;
1689 }
1690
1691 ttm_bo_vm_insert_rb(bo);
1692 write_unlock(&bdev->vm_lock);
1693 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1694
1695 return 0;
1696 out_unlock:
1697 write_unlock(&bdev->vm_lock);
1698 return ret;
1699 }
1700
ttm_bo_wait(struct ttm_buffer_object * bo,bool lazy,bool interruptible,bool no_wait)1701 int ttm_bo_wait(struct ttm_buffer_object *bo,
1702 bool lazy, bool interruptible, bool no_wait)
1703 {
1704 struct ttm_bo_driver *driver = bo->bdev->driver;
1705 struct ttm_bo_device *bdev = bo->bdev;
1706 void *sync_obj;
1707 void *sync_obj_arg;
1708 int ret = 0;
1709
1710 if (likely(bo->sync_obj == NULL))
1711 return 0;
1712
1713 while (bo->sync_obj) {
1714
1715 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1716 void *tmp_obj = bo->sync_obj;
1717 bo->sync_obj = NULL;
1718 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1719 spin_unlock(&bdev->fence_lock);
1720 driver->sync_obj_unref(&tmp_obj);
1721 spin_lock(&bdev->fence_lock);
1722 continue;
1723 }
1724
1725 if (no_wait)
1726 return -EBUSY;
1727
1728 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1729 sync_obj_arg = bo->sync_obj_arg;
1730 spin_unlock(&bdev->fence_lock);
1731 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1732 lazy, interruptible);
1733 if (unlikely(ret != 0)) {
1734 driver->sync_obj_unref(&sync_obj);
1735 spin_lock(&bdev->fence_lock);
1736 return ret;
1737 }
1738 spin_lock(&bdev->fence_lock);
1739 if (likely(bo->sync_obj == sync_obj &&
1740 bo->sync_obj_arg == sync_obj_arg)) {
1741 void *tmp_obj = bo->sync_obj;
1742 bo->sync_obj = NULL;
1743 clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1744 &bo->priv_flags);
1745 spin_unlock(&bdev->fence_lock);
1746 driver->sync_obj_unref(&sync_obj);
1747 driver->sync_obj_unref(&tmp_obj);
1748 spin_lock(&bdev->fence_lock);
1749 } else {
1750 spin_unlock(&bdev->fence_lock);
1751 driver->sync_obj_unref(&sync_obj);
1752 spin_lock(&bdev->fence_lock);
1753 }
1754 }
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(ttm_bo_wait);
1758
ttm_bo_synccpu_write_grab(struct ttm_buffer_object * bo,bool no_wait)1759 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1760 {
1761 struct ttm_bo_device *bdev = bo->bdev;
1762 int ret = 0;
1763
1764 /*
1765 * Using ttm_bo_reserve makes sure the lru lists are updated.
1766 */
1767
1768 ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1769 if (unlikely(ret != 0))
1770 return ret;
1771 spin_lock(&bdev->fence_lock);
1772 ret = ttm_bo_wait(bo, false, true, no_wait);
1773 spin_unlock(&bdev->fence_lock);
1774 if (likely(ret == 0))
1775 atomic_inc(&bo->cpu_writers);
1776 ttm_bo_unreserve(bo);
1777 return ret;
1778 }
1779 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1780
ttm_bo_synccpu_write_release(struct ttm_buffer_object * bo)1781 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1782 {
1783 if (atomic_dec_and_test(&bo->cpu_writers))
1784 wake_up_all(&bo->event_queue);
1785 }
1786 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1787
1788 /**
1789 * A buffer object shrink method that tries to swap out the first
1790 * buffer object on the bo_global::swap_lru list.
1791 */
1792
ttm_bo_swapout(struct ttm_mem_shrink * shrink)1793 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1794 {
1795 struct ttm_bo_global *glob =
1796 container_of(shrink, struct ttm_bo_global, shrink);
1797 struct ttm_buffer_object *bo;
1798 int ret = -EBUSY;
1799 int put_count;
1800 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1801
1802 spin_lock(&glob->lru_lock);
1803 while (ret == -EBUSY) {
1804 if (unlikely(list_empty(&glob->swap_lru))) {
1805 spin_unlock(&glob->lru_lock);
1806 return -EBUSY;
1807 }
1808
1809 bo = list_first_entry(&glob->swap_lru,
1810 struct ttm_buffer_object, swap);
1811 kref_get(&bo->list_kref);
1812
1813 if (!list_empty(&bo->ddestroy)) {
1814 spin_unlock(&glob->lru_lock);
1815 (void) ttm_bo_cleanup_refs(bo, false, false, false);
1816 kref_put(&bo->list_kref, ttm_bo_release_list);
1817 spin_lock(&glob->lru_lock);
1818 continue;
1819 }
1820
1821 /**
1822 * Reserve buffer. Since we unlock while sleeping, we need
1823 * to re-check that nobody removed us from the swap-list while
1824 * we slept.
1825 */
1826
1827 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1828 if (unlikely(ret == -EBUSY)) {
1829 spin_unlock(&glob->lru_lock);
1830 ttm_bo_wait_unreserved(bo, false);
1831 kref_put(&bo->list_kref, ttm_bo_release_list);
1832 spin_lock(&glob->lru_lock);
1833 }
1834 }
1835
1836 BUG_ON(ret != 0);
1837 put_count = ttm_bo_del_from_lru(bo);
1838 spin_unlock(&glob->lru_lock);
1839
1840 ttm_bo_list_ref_sub(bo, put_count, true);
1841
1842 /**
1843 * Wait for GPU, then move to system cached.
1844 */
1845
1846 spin_lock(&bo->bdev->fence_lock);
1847 ret = ttm_bo_wait(bo, false, false, false);
1848 spin_unlock(&bo->bdev->fence_lock);
1849
1850 if (unlikely(ret != 0))
1851 goto out;
1852
1853 if ((bo->mem.placement & swap_placement) != swap_placement) {
1854 struct ttm_mem_reg evict_mem;
1855
1856 evict_mem = bo->mem;
1857 evict_mem.mm_node = NULL;
1858 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1859 evict_mem.mem_type = TTM_PL_SYSTEM;
1860
1861 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1862 false, false, false);
1863 if (unlikely(ret != 0))
1864 goto out;
1865 }
1866
1867 ttm_bo_unmap_virtual(bo);
1868
1869 /**
1870 * Swap out. Buffer will be swapped in again as soon as
1871 * anyone tries to access a ttm page.
1872 */
1873
1874 if (bo->bdev->driver->swap_notify)
1875 bo->bdev->driver->swap_notify(bo);
1876
1877 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1878 out:
1879
1880 /**
1881 *
1882 * Unreserve without putting on LRU to avoid swapping out an
1883 * already swapped buffer.
1884 */
1885
1886 atomic_set(&bo->reserved, 0);
1887 wake_up_all(&bo->event_queue);
1888 kref_put(&bo->list_kref, ttm_bo_release_list);
1889 return ret;
1890 }
1891
ttm_bo_swapout_all(struct ttm_bo_device * bdev)1892 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1893 {
1894 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1895 ;
1896 }
1897 EXPORT_SYMBOL(ttm_bo_swapout_all);
1898