• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, write to the
19 	Free Software Foundation, Inc.,
20 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22 
23 /*
24 	Module: rt2x00
25 	Abstract: rt2x00 global information.
26  */
27 
28 #ifndef RT2X00_H
29 #define RT2X00_H
30 
31 #include <linux/bitops.h>
32 #include <linux/interrupt.h>
33 #include <linux/skbuff.h>
34 #include <linux/workqueue.h>
35 #include <linux/firmware.h>
36 #include <linux/leds.h>
37 #include <linux/mutex.h>
38 #include <linux/etherdevice.h>
39 #include <linux/input-polldev.h>
40 #include <linux/kfifo.h>
41 #include <linux/hrtimer.h>
42 
43 #include <net/mac80211.h>
44 
45 #include "rt2x00debug.h"
46 #include "rt2x00dump.h"
47 #include "rt2x00leds.h"
48 #include "rt2x00reg.h"
49 #include "rt2x00queue.h"
50 
51 /*
52  * Module information.
53  */
54 #define DRV_VERSION	"2.3.0"
55 #define DRV_PROJECT	"http://rt2x00.serialmonkey.com"
56 
57 /*
58  * Debug definitions.
59  * Debug output has to be enabled during compile time.
60  */
61 #define DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, __args...)	\
62 	printk(__kernlvl "%s -> %s: %s - " __msg,			\
63 	       wiphy_name((__dev)->hw->wiphy), __func__, __lvl, ##__args)
64 
65 #define DEBUG_PRINTK_PROBE(__kernlvl, __lvl, __msg, __args...)	\
66 	printk(__kernlvl "%s -> %s: %s - " __msg,		\
67 	       KBUILD_MODNAME, __func__, __lvl, ##__args)
68 
69 #ifdef CONFIG_RT2X00_DEBUG
70 #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...)	\
71 	DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, ##__args)
72 #else
73 #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...)	\
74 	do { } while (0)
75 #endif /* CONFIG_RT2X00_DEBUG */
76 
77 /*
78  * Various debug levels.
79  * The debug levels PANIC and ERROR both indicate serious problems,
80  * for this reason they should never be ignored.
81  * The special ERROR_PROBE message is for messages that are generated
82  * when the rt2x00_dev is not yet initialized.
83  */
84 #define PANIC(__dev, __msg, __args...) \
85 	DEBUG_PRINTK_MSG(__dev, KERN_CRIT, "Panic", __msg, ##__args)
86 #define ERROR(__dev, __msg, __args...)	\
87 	DEBUG_PRINTK_MSG(__dev, KERN_ERR, "Error", __msg, ##__args)
88 #define ERROR_PROBE(__msg, __args...) \
89 	DEBUG_PRINTK_PROBE(KERN_ERR, "Error", __msg, ##__args)
90 #define WARNING(__dev, __msg, __args...) \
91 	DEBUG_PRINTK(__dev, KERN_WARNING, "Warning", __msg, ##__args)
92 #define NOTICE(__dev, __msg, __args...) \
93 	DEBUG_PRINTK(__dev, KERN_NOTICE, "Notice", __msg, ##__args)
94 #define INFO(__dev, __msg, __args...) \
95 	DEBUG_PRINTK(__dev, KERN_INFO, "Info", __msg, ##__args)
96 #define DEBUG(__dev, __msg, __args...) \
97 	DEBUG_PRINTK(__dev, KERN_DEBUG, "Debug", __msg, ##__args)
98 #define EEPROM(__dev, __msg, __args...) \
99 	DEBUG_PRINTK(__dev, KERN_DEBUG, "EEPROM recovery", __msg, ##__args)
100 
101 /*
102  * Duration calculations
103  * The rate variable passed is: 100kbs.
104  * To convert from bytes to bits we multiply size with 8,
105  * then the size is multiplied with 10 to make the
106  * real rate -> rate argument correction.
107  */
108 #define GET_DURATION(__size, __rate)	(((__size) * 8 * 10) / (__rate))
109 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
110 
111 /*
112  * Determine the number of L2 padding bytes required between the header and
113  * the payload.
114  */
115 #define L2PAD_SIZE(__hdrlen)	(-(__hdrlen) & 3)
116 
117 /*
118  * Determine the alignment requirement,
119  * to make sure the 802.11 payload is padded to a 4-byte boundrary
120  * we must determine the address of the payload and calculate the
121  * amount of bytes needed to move the data.
122  */
123 #define ALIGN_SIZE(__skb, __header) \
124 	(  ((unsigned long)((__skb)->data + (__header))) & 3 )
125 
126 /*
127  * Constants for extra TX headroom for alignment purposes.
128  */
129 #define RT2X00_ALIGN_SIZE	4 /* Only whole frame needs alignment */
130 #define RT2X00_L2PAD_SIZE	8 /* Both header & payload need alignment */
131 
132 /*
133  * Standard timing and size defines.
134  * These values should follow the ieee80211 specifications.
135  */
136 #define ACK_SIZE		14
137 #define IEEE80211_HEADER	24
138 #define PLCP			48
139 #define BEACON			100
140 #define PREAMBLE		144
141 #define SHORT_PREAMBLE		72
142 #define SLOT_TIME		20
143 #define SHORT_SLOT_TIME		9
144 #define SIFS			10
145 #define PIFS			( SIFS + SLOT_TIME )
146 #define SHORT_PIFS		( SIFS + SHORT_SLOT_TIME )
147 #define DIFS			( PIFS + SLOT_TIME )
148 #define SHORT_DIFS		( SHORT_PIFS + SHORT_SLOT_TIME )
149 #define EIFS			( SIFS + DIFS + \
150 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
151 #define SHORT_EIFS		( SIFS + SHORT_DIFS + \
152 				  GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
153 
154 /*
155  * Structure for average calculation
156  * The avg field contains the actual average value,
157  * but avg_weight is internally used during calculations
158  * to prevent rounding errors.
159  */
160 struct avg_val {
161 	int avg;
162 	int avg_weight;
163 };
164 
165 enum rt2x00_chip_intf {
166 	RT2X00_CHIP_INTF_PCI,
167 	RT2X00_CHIP_INTF_PCIE,
168 	RT2X00_CHIP_INTF_USB,
169 	RT2X00_CHIP_INTF_SOC,
170 };
171 
172 /*
173  * Chipset identification
174  * The chipset on the device is composed of a RT and RF chip.
175  * The chipset combination is important for determining device capabilities.
176  */
177 struct rt2x00_chip {
178 	u16 rt;
179 #define RT2460		0x2460
180 #define RT2560		0x2560
181 #define RT2570		0x2570
182 #define RT2661		0x2661
183 #define RT2573		0x2573
184 #define RT2860		0x2860	/* 2.4GHz */
185 #define RT2872		0x2872	/* WSOC */
186 #define RT2883		0x2883	/* WSOC */
187 #define RT3070		0x3070
188 #define RT3071		0x3071
189 #define RT3090		0x3090	/* 2.4GHz PCIe */
190 #define RT3390		0x3390
191 #define RT3572		0x3572
192 #define RT3593		0x3593
193 #define RT3883		0x3883	/* WSOC */
194 #define RT5390		0x5390  /* 2.4GHz */
195 #define RT5392		0x5392  /* 2.4GHz */
196 
197 	u16 rf;
198 	u16 rev;
199 
200 	enum rt2x00_chip_intf intf;
201 };
202 
203 /*
204  * RF register values that belong to a particular channel.
205  */
206 struct rf_channel {
207 	int channel;
208 	u32 rf1;
209 	u32 rf2;
210 	u32 rf3;
211 	u32 rf4;
212 };
213 
214 /*
215  * Channel information structure
216  */
217 struct channel_info {
218 	unsigned int flags;
219 #define GEOGRAPHY_ALLOWED	0x00000001
220 
221 	short max_power;
222 	short default_power1;
223 	short default_power2;
224 };
225 
226 /*
227  * Antenna setup values.
228  */
229 struct antenna_setup {
230 	enum antenna rx;
231 	enum antenna tx;
232 	u8 rx_chain_num;
233 	u8 tx_chain_num;
234 };
235 
236 /*
237  * Quality statistics about the currently active link.
238  */
239 struct link_qual {
240 	/*
241 	 * Statistics required for Link tuning by driver
242 	 * The rssi value is provided by rt2x00lib during the
243 	 * link_tuner() callback function.
244 	 * The false_cca field is filled during the link_stats()
245 	 * callback function and could be used during the
246 	 * link_tuner() callback function.
247 	 */
248 	int rssi;
249 	int false_cca;
250 
251 	/*
252 	 * VGC levels
253 	 * Hardware driver will tune the VGC level during each call
254 	 * to the link_tuner() callback function. This vgc_level is
255 	 * is determined based on the link quality statistics like
256 	 * average RSSI and the false CCA count.
257 	 *
258 	 * In some cases the drivers need to differentiate between
259 	 * the currently "desired" VGC level and the level configured
260 	 * in the hardware. The latter is important to reduce the
261 	 * number of BBP register reads to reduce register access
262 	 * overhead. For this reason we store both values here.
263 	 */
264 	u8 vgc_level;
265 	u8 vgc_level_reg;
266 
267 	/*
268 	 * Statistics required for Signal quality calculation.
269 	 * These fields might be changed during the link_stats()
270 	 * callback function.
271 	 */
272 	int rx_success;
273 	int rx_failed;
274 	int tx_success;
275 	int tx_failed;
276 };
277 
278 /*
279  * Antenna settings about the currently active link.
280  */
281 struct link_ant {
282 	/*
283 	 * Antenna flags
284 	 */
285 	unsigned int flags;
286 #define ANTENNA_RX_DIVERSITY	0x00000001
287 #define ANTENNA_TX_DIVERSITY	0x00000002
288 #define ANTENNA_MODE_SAMPLE	0x00000004
289 
290 	/*
291 	 * Currently active TX/RX antenna setup.
292 	 * When software diversity is used, this will indicate
293 	 * which antenna is actually used at this time.
294 	 */
295 	struct antenna_setup active;
296 
297 	/*
298 	 * RSSI history information for the antenna.
299 	 * Used to determine when to switch antenna
300 	 * when using software diversity.
301 	 */
302 	int rssi_history;
303 
304 	/*
305 	 * Current RSSI average of the currently active antenna.
306 	 * Similar to the avg_rssi in the link_qual structure
307 	 * this value is updated by using the walking average.
308 	 */
309 	struct avg_val rssi_ant;
310 };
311 
312 /*
313  * To optimize the quality of the link we need to store
314  * the quality of received frames and periodically
315  * optimize the link.
316  */
317 struct link {
318 	/*
319 	 * Link tuner counter
320 	 * The number of times the link has been tuned
321 	 * since the radio has been switched on.
322 	 */
323 	u32 count;
324 
325 	/*
326 	 * Quality measurement values.
327 	 */
328 	struct link_qual qual;
329 
330 	/*
331 	 * TX/RX antenna setup.
332 	 */
333 	struct link_ant ant;
334 
335 	/*
336 	 * Currently active average RSSI value
337 	 */
338 	struct avg_val avg_rssi;
339 
340 	/*
341 	 * Work structure for scheduling periodic link tuning.
342 	 */
343 	struct delayed_work work;
344 
345 	/*
346 	 * Work structure for scheduling periodic watchdog monitoring.
347 	 * This work must be scheduled on the kernel workqueue, while
348 	 * all other work structures must be queued on the mac80211
349 	 * workqueue. This guarantees that the watchdog can schedule
350 	 * other work structures and wait for their completion in order
351 	 * to bring the device/driver back into the desired state.
352 	 */
353 	struct delayed_work watchdog_work;
354 
355 	/*
356 	 * Work structure for scheduling periodic AGC adjustments.
357 	 */
358 	struct delayed_work agc_work;
359 
360 	/*
361 	 * Work structure for scheduling periodic VCO calibration.
362 	 */
363 	struct delayed_work vco_work;
364 };
365 
366 enum rt2x00_delayed_flags {
367 	DELAYED_UPDATE_BEACON,
368 };
369 
370 /*
371  * Interface structure
372  * Per interface configuration details, this structure
373  * is allocated as the private data for ieee80211_vif.
374  */
375 struct rt2x00_intf {
376 	/*
377 	 * beacon->skb must be protected with the mutex.
378 	 */
379 	struct mutex beacon_skb_mutex;
380 
381 	/*
382 	 * Entry in the beacon queue which belongs to
383 	 * this interface. Each interface has its own
384 	 * dedicated beacon entry.
385 	 */
386 	struct queue_entry *beacon;
387 	bool enable_beacon;
388 
389 	/*
390 	 * Actions that needed rescheduling.
391 	 */
392 	unsigned long delayed_flags;
393 
394 	/*
395 	 * Software sequence counter, this is only required
396 	 * for hardware which doesn't support hardware
397 	 * sequence counting.
398 	 */
399 	atomic_t seqno;
400 };
401 
vif_to_intf(struct ieee80211_vif * vif)402 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
403 {
404 	return (struct rt2x00_intf *)vif->drv_priv;
405 }
406 
407 /**
408  * struct hw_mode_spec: Hardware specifications structure
409  *
410  * Details about the supported modes, rates and channels
411  * of a particular chipset. This is used by rt2x00lib
412  * to build the ieee80211_hw_mode array for mac80211.
413  *
414  * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
415  * @supported_rates: Rate types which are supported (CCK, OFDM).
416  * @num_channels: Number of supported channels. This is used as array size
417  *	for @tx_power_a, @tx_power_bg and @channels.
418  * @channels: Device/chipset specific channel values (See &struct rf_channel).
419  * @channels_info: Additional information for channels (See &struct channel_info).
420  * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
421  */
422 struct hw_mode_spec {
423 	unsigned int supported_bands;
424 #define SUPPORT_BAND_2GHZ	0x00000001
425 #define SUPPORT_BAND_5GHZ	0x00000002
426 
427 	unsigned int supported_rates;
428 #define SUPPORT_RATE_CCK	0x00000001
429 #define SUPPORT_RATE_OFDM	0x00000002
430 
431 	unsigned int num_channels;
432 	const struct rf_channel *channels;
433 	const struct channel_info *channels_info;
434 
435 	struct ieee80211_sta_ht_cap ht;
436 };
437 
438 /*
439  * Configuration structure wrapper around the
440  * mac80211 configuration structure.
441  * When mac80211 configures the driver, rt2x00lib
442  * can precalculate values which are equal for all
443  * rt2x00 drivers. Those values can be stored in here.
444  */
445 struct rt2x00lib_conf {
446 	struct ieee80211_conf *conf;
447 
448 	struct rf_channel rf;
449 	struct channel_info channel;
450 };
451 
452 /*
453  * Configuration structure for erp settings.
454  */
455 struct rt2x00lib_erp {
456 	int short_preamble;
457 	int cts_protection;
458 
459 	u32 basic_rates;
460 
461 	int slot_time;
462 
463 	short sifs;
464 	short pifs;
465 	short difs;
466 	short eifs;
467 
468 	u16 beacon_int;
469 	u16 ht_opmode;
470 };
471 
472 /*
473  * Configuration structure for hardware encryption.
474  */
475 struct rt2x00lib_crypto {
476 	enum cipher cipher;
477 
478 	enum set_key_cmd cmd;
479 	const u8 *address;
480 
481 	u32 bssidx;
482 
483 	u8 key[16];
484 	u8 tx_mic[8];
485 	u8 rx_mic[8];
486 
487 	int wcid;
488 };
489 
490 /*
491  * Configuration structure wrapper around the
492  * rt2x00 interface configuration handler.
493  */
494 struct rt2x00intf_conf {
495 	/*
496 	 * Interface type
497 	 */
498 	enum nl80211_iftype type;
499 
500 	/*
501 	 * TSF sync value, this is dependent on the operation type.
502 	 */
503 	enum tsf_sync sync;
504 
505 	/*
506 	 * The MAC and BSSID addresses are simple array of bytes,
507 	 * these arrays are little endian, so when sending the addresses
508 	 * to the drivers, copy the it into a endian-signed variable.
509 	 *
510 	 * Note that all devices (except rt2500usb) have 32 bits
511 	 * register word sizes. This means that whatever variable we
512 	 * pass _must_ be a multiple of 32 bits. Otherwise the device
513 	 * might not accept what we are sending to it.
514 	 * This will also make it easier for the driver to write
515 	 * the data to the device.
516 	 */
517 	__le32 mac[2];
518 	__le32 bssid[2];
519 };
520 
521 /*
522  * Private structure for storing STA details
523  * wcid: Wireless Client ID
524  */
525 struct rt2x00_sta {
526 	int wcid;
527 };
528 
sta_to_rt2x00_sta(struct ieee80211_sta * sta)529 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
530 {
531 	return (struct rt2x00_sta *)sta->drv_priv;
532 }
533 
534 /*
535  * rt2x00lib callback functions.
536  */
537 struct rt2x00lib_ops {
538 	/*
539 	 * Interrupt handlers.
540 	 */
541 	irq_handler_t irq_handler;
542 
543 	/*
544 	 * TX status tasklet handler.
545 	 */
546 	void (*txstatus_tasklet) (unsigned long data);
547 	void (*pretbtt_tasklet) (unsigned long data);
548 	void (*tbtt_tasklet) (unsigned long data);
549 	void (*rxdone_tasklet) (unsigned long data);
550 	void (*autowake_tasklet) (unsigned long data);
551 
552 	/*
553 	 * Device init handlers.
554 	 */
555 	int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
556 	char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
557 	int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
558 			       const u8 *data, const size_t len);
559 	int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
560 			      const u8 *data, const size_t len);
561 
562 	/*
563 	 * Device initialization/deinitialization handlers.
564 	 */
565 	int (*initialize) (struct rt2x00_dev *rt2x00dev);
566 	void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
567 
568 	/*
569 	 * queue initialization handlers
570 	 */
571 	bool (*get_entry_state) (struct queue_entry *entry);
572 	void (*clear_entry) (struct queue_entry *entry);
573 
574 	/*
575 	 * Radio control handlers.
576 	 */
577 	int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
578 				 enum dev_state state);
579 	int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
580 	void (*link_stats) (struct rt2x00_dev *rt2x00dev,
581 			    struct link_qual *qual);
582 	void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
583 			     struct link_qual *qual);
584 	void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
585 			    struct link_qual *qual, const u32 count);
586 	void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
587 	void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
588 
589 	/*
590 	 * Data queue handlers.
591 	 */
592 	void (*watchdog) (struct rt2x00_dev *rt2x00dev);
593 	void (*start_queue) (struct data_queue *queue);
594 	void (*kick_queue) (struct data_queue *queue);
595 	void (*stop_queue) (struct data_queue *queue);
596 	void (*flush_queue) (struct data_queue *queue, bool drop);
597 	void (*tx_dma_done) (struct queue_entry *entry);
598 
599 	/*
600 	 * TX control handlers
601 	 */
602 	void (*write_tx_desc) (struct queue_entry *entry,
603 			       struct txentry_desc *txdesc);
604 	void (*write_tx_data) (struct queue_entry *entry,
605 			       struct txentry_desc *txdesc);
606 	void (*write_beacon) (struct queue_entry *entry,
607 			      struct txentry_desc *txdesc);
608 	void (*clear_beacon) (struct queue_entry *entry);
609 	int (*get_tx_data_len) (struct queue_entry *entry);
610 
611 	/*
612 	 * RX control handlers
613 	 */
614 	void (*fill_rxdone) (struct queue_entry *entry,
615 			     struct rxdone_entry_desc *rxdesc);
616 
617 	/*
618 	 * Configuration handlers.
619 	 */
620 	int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
621 				  struct rt2x00lib_crypto *crypto,
622 				  struct ieee80211_key_conf *key);
623 	int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
624 				    struct rt2x00lib_crypto *crypto,
625 				    struct ieee80211_key_conf *key);
626 	void (*config_filter) (struct rt2x00_dev *rt2x00dev,
627 			       const unsigned int filter_flags);
628 	void (*config_intf) (struct rt2x00_dev *rt2x00dev,
629 			     struct rt2x00_intf *intf,
630 			     struct rt2x00intf_conf *conf,
631 			     const unsigned int flags);
632 #define CONFIG_UPDATE_TYPE		( 1 << 1 )
633 #define CONFIG_UPDATE_MAC		( 1 << 2 )
634 #define CONFIG_UPDATE_BSSID		( 1 << 3 )
635 
636 	void (*config_erp) (struct rt2x00_dev *rt2x00dev,
637 			    struct rt2x00lib_erp *erp,
638 			    u32 changed);
639 	void (*config_ant) (struct rt2x00_dev *rt2x00dev,
640 			    struct antenna_setup *ant);
641 	void (*config) (struct rt2x00_dev *rt2x00dev,
642 			struct rt2x00lib_conf *libconf,
643 			const unsigned int changed_flags);
644 	int (*sta_add) (struct rt2x00_dev *rt2x00dev,
645 			struct ieee80211_vif *vif,
646 			struct ieee80211_sta *sta);
647 	int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
648 			   int wcid);
649 };
650 
651 /*
652  * rt2x00 driver callback operation structure.
653  */
654 struct rt2x00_ops {
655 	const char *name;
656 	const unsigned int drv_data_size;
657 	const unsigned int max_sta_intf;
658 	const unsigned int max_ap_intf;
659 	const unsigned int eeprom_size;
660 	const unsigned int rf_size;
661 	const unsigned int tx_queues;
662 	const unsigned int extra_tx_headroom;
663 	const struct data_queue_desc *rx;
664 	const struct data_queue_desc *tx;
665 	const struct data_queue_desc *bcn;
666 	const struct data_queue_desc *atim;
667 	const struct rt2x00lib_ops *lib;
668 	const void *drv;
669 	const struct ieee80211_ops *hw;
670 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
671 	const struct rt2x00debug *debugfs;
672 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
673 };
674 
675 /*
676  * rt2x00 state flags
677  */
678 enum rt2x00_state_flags {
679 	/*
680 	 * Device flags
681 	 */
682 	DEVICE_STATE_PRESENT,
683 	DEVICE_STATE_REGISTERED_HW,
684 	DEVICE_STATE_INITIALIZED,
685 	DEVICE_STATE_STARTED,
686 	DEVICE_STATE_ENABLED_RADIO,
687 	DEVICE_STATE_SCANNING,
688 
689 	/*
690 	 * Driver configuration
691 	 */
692 	CONFIG_CHANNEL_HT40,
693 	CONFIG_POWERSAVING,
694 
695 	/*
696 	 * Mark we currently are sequentially reading TX_STA_FIFO register
697 	 * FIXME: this is for only rt2800usb, should go to private data
698 	 */
699 	TX_STATUS_READING,
700 };
701 
702 /*
703  * rt2x00 capability flags
704  */
705 enum rt2x00_capability_flags {
706 	/*
707 	 * Requirements
708 	 */
709 	REQUIRE_FIRMWARE,
710 	REQUIRE_BEACON_GUARD,
711 	REQUIRE_ATIM_QUEUE,
712 	REQUIRE_DMA,
713 	REQUIRE_COPY_IV,
714 	REQUIRE_L2PAD,
715 	REQUIRE_TXSTATUS_FIFO,
716 	REQUIRE_TASKLET_CONTEXT,
717 	REQUIRE_SW_SEQNO,
718 	REQUIRE_HT_TX_DESC,
719 	REQUIRE_PS_AUTOWAKE,
720 
721 	/*
722 	 * Capabilities
723 	 */
724 	CAPABILITY_HW_BUTTON,
725 	CAPABILITY_HW_CRYPTO,
726 	CAPABILITY_POWER_LIMIT,
727 	CAPABILITY_CONTROL_FILTERS,
728 	CAPABILITY_CONTROL_FILTER_PSPOLL,
729 	CAPABILITY_PRE_TBTT_INTERRUPT,
730 	CAPABILITY_LINK_TUNING,
731 	CAPABILITY_FRAME_TYPE,
732 	CAPABILITY_RF_SEQUENCE,
733 	CAPABILITY_EXTERNAL_LNA_A,
734 	CAPABILITY_EXTERNAL_LNA_BG,
735 	CAPABILITY_DOUBLE_ANTENNA,
736 	CAPABILITY_BT_COEXIST,
737 	CAPABILITY_VCO_RECALIBRATION,
738 };
739 
740 /*
741  * rt2x00 device structure.
742  */
743 struct rt2x00_dev {
744 	/*
745 	 * Device structure.
746 	 * The structure stored in here depends on the
747 	 * system bus (PCI or USB).
748 	 * When accessing this variable, the rt2x00dev_{pci,usb}
749 	 * macros should be used for correct typecasting.
750 	 */
751 	struct device *dev;
752 
753 	/*
754 	 * Callback functions.
755 	 */
756 	const struct rt2x00_ops *ops;
757 
758 	/*
759 	 * Driver data.
760 	 */
761 	void *drv_data;
762 
763 	/*
764 	 * IEEE80211 control structure.
765 	 */
766 	struct ieee80211_hw *hw;
767 	struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
768 	enum ieee80211_band curr_band;
769 	int curr_freq;
770 
771 	/*
772 	 * If enabled, the debugfs interface structures
773 	 * required for deregistration of debugfs.
774 	 */
775 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
776 	struct rt2x00debug_intf *debugfs_intf;
777 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
778 
779 	/*
780 	 * LED structure for changing the LED status
781 	 * by mac8011 or the kernel.
782 	 */
783 #ifdef CONFIG_RT2X00_LIB_LEDS
784 	struct rt2x00_led led_radio;
785 	struct rt2x00_led led_assoc;
786 	struct rt2x00_led led_qual;
787 	u16 led_mcu_reg;
788 #endif /* CONFIG_RT2X00_LIB_LEDS */
789 
790 	/*
791 	 * Device state flags.
792 	 * In these flags the current status is stored.
793 	 * Access to these flags should occur atomically.
794 	 */
795 	unsigned long flags;
796 
797 	/*
798 	 * Device capabiltiy flags.
799 	 * In these flags the device/driver capabilities are stored.
800 	 * Access to these flags should occur non-atomically.
801 	 */
802 	unsigned long cap_flags;
803 
804 	/*
805 	 * Device information, Bus IRQ and name (PCI, SoC)
806 	 */
807 	int irq;
808 	const char *name;
809 
810 	/*
811 	 * Chipset identification.
812 	 */
813 	struct rt2x00_chip chip;
814 
815 	/*
816 	 * hw capability specifications.
817 	 */
818 	struct hw_mode_spec spec;
819 
820 	/*
821 	 * This is the default TX/RX antenna setup as indicated
822 	 * by the device's EEPROM.
823 	 */
824 	struct antenna_setup default_ant;
825 
826 	/*
827 	 * Register pointers
828 	 * csr.base: CSR base register address. (PCI)
829 	 * csr.cache: CSR cache for usb_control_msg. (USB)
830 	 */
831 	union csr {
832 		void __iomem *base;
833 		void *cache;
834 	} csr;
835 
836 	/*
837 	 * Mutex to protect register accesses.
838 	 * For PCI and USB devices it protects against concurrent indirect
839 	 * register access (BBP, RF, MCU) since accessing those
840 	 * registers require multiple calls to the CSR registers.
841 	 * For USB devices it also protects the csr_cache since that
842 	 * field is used for normal CSR access and it cannot support
843 	 * multiple callers simultaneously.
844 	 */
845 	struct mutex csr_mutex;
846 
847 	/*
848 	 * Current packet filter configuration for the device.
849 	 * This contains all currently active FIF_* flags send
850 	 * to us by mac80211 during configure_filter().
851 	 */
852 	unsigned int packet_filter;
853 
854 	/*
855 	 * Interface details:
856 	 *  - Open ap interface count.
857 	 *  - Open sta interface count.
858 	 *  - Association count.
859 	 *  - Beaconing enabled count.
860 	 */
861 	unsigned int intf_ap_count;
862 	unsigned int intf_sta_count;
863 	unsigned int intf_associated;
864 	unsigned int intf_beaconing;
865 
866 	/*
867 	 * Link quality
868 	 */
869 	struct link link;
870 
871 	/*
872 	 * EEPROM data.
873 	 */
874 	__le16 *eeprom;
875 
876 	/*
877 	 * Active RF register values.
878 	 * These are stored here so we don't need
879 	 * to read the rf registers and can directly
880 	 * use this value instead.
881 	 * This field should be accessed by using
882 	 * rt2x00_rf_read() and rt2x00_rf_write().
883 	 */
884 	u32 *rf;
885 
886 	/*
887 	 * LNA gain
888 	 */
889 	short lna_gain;
890 
891 	/*
892 	 * Current TX power value.
893 	 */
894 	u16 tx_power;
895 
896 	/*
897 	 * Current retry values.
898 	 */
899 	u8 short_retry;
900 	u8 long_retry;
901 
902 	/*
903 	 * Rssi <-> Dbm offset
904 	 */
905 	u8 rssi_offset;
906 
907 	/*
908 	 * Frequency offset.
909 	 */
910 	u8 freq_offset;
911 
912 	/*
913 	 * Association id.
914 	 */
915 	u16 aid;
916 
917 	/*
918 	 * Beacon interval.
919 	 */
920 	u16 beacon_int;
921 
922 	/**
923 	 * Timestamp of last received beacon
924 	 */
925 	unsigned long last_beacon;
926 
927 	/*
928 	 * Low level statistics which will have
929 	 * to be kept up to date while device is running.
930 	 */
931 	struct ieee80211_low_level_stats low_level_stats;
932 
933 	/**
934 	 * Work queue for all work which should not be placed
935 	 * on the mac80211 workqueue (because of dependencies
936 	 * between various work structures).
937 	 */
938 	struct workqueue_struct *workqueue;
939 
940 	/*
941 	 * Scheduled work.
942 	 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
943 	 * which means it cannot be placed on the hw->workqueue
944 	 * due to RTNL locking requirements.
945 	 */
946 	struct work_struct intf_work;
947 
948 	/**
949 	 * Scheduled work for TX/RX done handling (USB devices)
950 	 */
951 	struct work_struct rxdone_work;
952 	struct work_struct txdone_work;
953 
954 	/*
955 	 * Powersaving work
956 	 */
957 	struct delayed_work autowakeup_work;
958 	struct work_struct sleep_work;
959 
960 	/*
961 	 * Data queue arrays for RX, TX, Beacon and ATIM.
962 	 */
963 	unsigned int data_queues;
964 	struct data_queue *rx;
965 	struct data_queue *tx;
966 	struct data_queue *bcn;
967 	struct data_queue *atim;
968 
969 	/*
970 	 * Firmware image.
971 	 */
972 	const struct firmware *fw;
973 
974 	/*
975 	 * FIFO for storing tx status reports between isr and tasklet.
976 	 */
977 	DECLARE_KFIFO_PTR(txstatus_fifo, u32);
978 
979 	/*
980 	 * Timer to ensure tx status reports are read (rt2800usb).
981 	 */
982 	struct hrtimer txstatus_timer;
983 
984 	/*
985 	 * Tasklet for processing tx status reports (rt2800pci).
986 	 */
987 	struct tasklet_struct txstatus_tasklet;
988 	struct tasklet_struct pretbtt_tasklet;
989 	struct tasklet_struct tbtt_tasklet;
990 	struct tasklet_struct rxdone_tasklet;
991 	struct tasklet_struct autowake_tasklet;
992 
993 	/*
994 	 * Used for VCO periodic calibration.
995 	 */
996 	int rf_channel;
997 
998 	/*
999 	 * Protect the interrupt mask register.
1000 	 */
1001 	spinlock_t irqmask_lock;
1002 };
1003 
1004 /*
1005  * Register defines.
1006  * Some registers require multiple attempts before success,
1007  * in those cases REGISTER_BUSY_COUNT attempts should be
1008  * taken with a REGISTER_BUSY_DELAY interval.
1009  */
1010 #define REGISTER_BUSY_COUNT	100
1011 #define REGISTER_BUSY_DELAY	100
1012 
1013 /*
1014  * Generic RF access.
1015  * The RF is being accessed by word index.
1016  */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 * data)1017 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1018 				  const unsigned int word, u32 *data)
1019 {
1020 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1021 	*data = rt2x00dev->rf[word - 1];
1022 }
1023 
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1024 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1025 				   const unsigned int word, u32 data)
1026 {
1027 	BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1028 	rt2x00dev->rf[word - 1] = data;
1029 }
1030 
1031 /*
1032  *  Generic EEPROM access.
1033  * The EEPROM is being accessed by word index.
1034  */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1035 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1036 				       const unsigned int word)
1037 {
1038 	return (void *)&rt2x00dev->eeprom[word];
1039 }
1040 
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 * data)1041 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1042 				      const unsigned int word, u16 *data)
1043 {
1044 	*data = le16_to_cpu(rt2x00dev->eeprom[word]);
1045 }
1046 
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1047 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1048 				       const unsigned int word, u16 data)
1049 {
1050 	rt2x00dev->eeprom[word] = cpu_to_le16(data);
1051 }
1052 
1053 /*
1054  * Chipset handlers
1055  */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1056 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1057 				   const u16 rt, const u16 rf, const u16 rev)
1058 {
1059 	rt2x00dev->chip.rt = rt;
1060 	rt2x00dev->chip.rf = rf;
1061 	rt2x00dev->chip.rev = rev;
1062 
1063 	INFO(rt2x00dev,
1064 	     "Chipset detected - rt: %04x, rf: %04x, rev: %04x.\n",
1065 	     rt2x00dev->chip.rt, rt2x00dev->chip.rf, rt2x00dev->chip.rev);
1066 }
1067 
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1068 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1069 {
1070 	return (rt2x00dev->chip.rt == rt);
1071 }
1072 
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1073 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1074 {
1075 	return (rt2x00dev->chip.rf == rf);
1076 }
1077 
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1078 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1079 {
1080 	return rt2x00dev->chip.rev;
1081 }
1082 
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1083 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1084 				 const u16 rt, const u16 rev)
1085 {
1086 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1087 }
1088 
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1089 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1090 				    const u16 rt, const u16 rev)
1091 {
1092 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1093 }
1094 
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1095 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1096 				     const u16 rt, const u16 rev)
1097 {
1098 	return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1099 }
1100 
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1101 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1102 					enum rt2x00_chip_intf intf)
1103 {
1104 	rt2x00dev->chip.intf = intf;
1105 }
1106 
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1107 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1108 			       enum rt2x00_chip_intf intf)
1109 {
1110 	return (rt2x00dev->chip.intf == intf);
1111 }
1112 
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1113 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1114 {
1115 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1116 	       rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1117 }
1118 
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1119 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1120 {
1121 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1122 }
1123 
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1124 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1125 {
1126 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1127 }
1128 
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1129 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1130 {
1131 	return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1132 }
1133 
1134 /**
1135  * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1136  * @entry: Pointer to &struct queue_entry
1137  */
1138 void rt2x00queue_map_txskb(struct queue_entry *entry);
1139 
1140 /**
1141  * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1142  * @entry: Pointer to &struct queue_entry
1143  */
1144 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1145 
1146 /**
1147  * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1148  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1149  * @queue: rt2x00 queue index (see &enum data_queue_qid).
1150  *
1151  * Returns NULL for non tx queues.
1152  */
1153 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1154 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1155 			 const enum data_queue_qid queue)
1156 {
1157 	if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1158 		return &rt2x00dev->tx[queue];
1159 
1160 	if (queue == QID_ATIM)
1161 		return rt2x00dev->atim;
1162 
1163 	return NULL;
1164 }
1165 
1166 /**
1167  * rt2x00queue_get_entry - Get queue entry where the given index points to.
1168  * @queue: Pointer to &struct data_queue from where we obtain the entry.
1169  * @index: Index identifier for obtaining the correct index.
1170  */
1171 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1172 					  enum queue_index index);
1173 
1174 /**
1175  * rt2x00queue_pause_queue - Pause a data queue
1176  * @queue: Pointer to &struct data_queue.
1177  *
1178  * This function will pause the data queue locally, preventing
1179  * new frames to be added to the queue (while the hardware is
1180  * still allowed to run).
1181  */
1182 void rt2x00queue_pause_queue(struct data_queue *queue);
1183 
1184 /**
1185  * rt2x00queue_unpause_queue - unpause a data queue
1186  * @queue: Pointer to &struct data_queue.
1187  *
1188  * This function will unpause the data queue locally, allowing
1189  * new frames to be added to the queue again.
1190  */
1191 void rt2x00queue_unpause_queue(struct data_queue *queue);
1192 
1193 /**
1194  * rt2x00queue_start_queue - Start a data queue
1195  * @queue: Pointer to &struct data_queue.
1196  *
1197  * This function will start handling all pending frames in the queue.
1198  */
1199 void rt2x00queue_start_queue(struct data_queue *queue);
1200 
1201 /**
1202  * rt2x00queue_stop_queue - Halt a data queue
1203  * @queue: Pointer to &struct data_queue.
1204  *
1205  * This function will stop all pending frames in the queue.
1206  */
1207 void rt2x00queue_stop_queue(struct data_queue *queue);
1208 
1209 /**
1210  * rt2x00queue_flush_queue - Flush a data queue
1211  * @queue: Pointer to &struct data_queue.
1212  * @drop: True to drop all pending frames.
1213  *
1214  * This function will flush the queue. After this call
1215  * the queue is guaranteed to be empty.
1216  */
1217 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1218 
1219 /**
1220  * rt2x00queue_start_queues - Start all data queues
1221  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1222  *
1223  * This function will loop through all available queues to start them
1224  */
1225 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1226 
1227 /**
1228  * rt2x00queue_stop_queues - Halt all data queues
1229  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1230  *
1231  * This function will loop through all available queues to stop
1232  * any pending frames.
1233  */
1234 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1235 
1236 /**
1237  * rt2x00queue_flush_queues - Flush all data queues
1238  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1239  * @drop: True to drop all pending frames.
1240  *
1241  * This function will loop through all available queues to flush
1242  * any pending frames.
1243  */
1244 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1245 
1246 /*
1247  * Debugfs handlers.
1248  */
1249 /**
1250  * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1251  * @rt2x00dev: Pointer to &struct rt2x00_dev.
1252  * @type: The type of frame that is being dumped.
1253  * @skb: The skb containing the frame to be dumped.
1254  */
1255 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1256 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1257 			    enum rt2x00_dump_type type, struct sk_buff *skb);
1258 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct sk_buff * skb)1259 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1260 					  enum rt2x00_dump_type type,
1261 					  struct sk_buff *skb)
1262 {
1263 }
1264 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1265 
1266 /*
1267  * Utility functions.
1268  */
1269 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1270 			 struct ieee80211_vif *vif);
1271 
1272 /*
1273  * Interrupt context handlers.
1274  */
1275 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1276 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1277 void rt2x00lib_dmastart(struct queue_entry *entry);
1278 void rt2x00lib_dmadone(struct queue_entry *entry);
1279 void rt2x00lib_txdone(struct queue_entry *entry,
1280 		      struct txdone_entry_desc *txdesc);
1281 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1282 void rt2x00lib_rxdone(struct queue_entry *entry);
1283 
1284 /*
1285  * mac80211 handlers.
1286  */
1287 void rt2x00mac_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
1288 int rt2x00mac_start(struct ieee80211_hw *hw);
1289 void rt2x00mac_stop(struct ieee80211_hw *hw);
1290 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1291 			    struct ieee80211_vif *vif);
1292 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1293 				struct ieee80211_vif *vif);
1294 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1295 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1296 				unsigned int changed_flags,
1297 				unsigned int *total_flags,
1298 				u64 multicast);
1299 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1300 		      bool set);
1301 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1302 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1303 		      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1304 		      struct ieee80211_key_conf *key);
1305 #else
1306 #define rt2x00mac_set_key	NULL
1307 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1308 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1309 		      struct ieee80211_sta *sta);
1310 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1311 			 struct ieee80211_sta *sta);
1312 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw);
1313 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw);
1314 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1315 			struct ieee80211_low_level_stats *stats);
1316 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1317 				struct ieee80211_vif *vif,
1318 				struct ieee80211_bss_conf *bss_conf,
1319 				u32 changes);
1320 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1321 		      struct ieee80211_vif *vif, u16 queue,
1322 		      const struct ieee80211_tx_queue_params *params);
1323 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1324 void rt2x00mac_flush(struct ieee80211_hw *hw, bool drop);
1325 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1326 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1327 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1328 			     u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1329 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1330 
1331 /*
1332  * Driver allocation handlers.
1333  */
1334 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1335 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1336 #ifdef CONFIG_PM
1337 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1338 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1339 #endif /* CONFIG_PM */
1340 
1341 #endif /* RT2X00_H */
1342