• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём),
20  *         Frank Haverkamp
21  */
22 
23 /*
24  * This file includes UBI initialization and building of UBI devices.
25  *
26  * When UBI is initialized, it attaches all the MTD devices specified as the
27  * module load parameters or the kernel boot parameters. If MTD devices were
28  * specified, UBI does not attach any MTD device, but it is possible to do
29  * later using the "UBI control device".
30  *
31  * At the moment we only attach UBI devices by scanning, which will become a
32  * bottleneck when flashes reach certain large size. Then one may improve UBI
33  * and add other methods, although it does not seem to be easy to do.
34  */
35 
36 #include <linux/err.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/stringify.h>
40 #include <linux/namei.h>
41 #include <linux/stat.h>
42 #include <linux/miscdevice.h>
43 #include <linux/log2.h>
44 #include <linux/kthread.h>
45 #include <linux/kernel.h>
46 #include <linux/slab.h>
47 #include "ubi.h"
48 
49 /* Maximum length of the 'mtd=' parameter */
50 #define MTD_PARAM_LEN_MAX 64
51 
52 #ifdef CONFIG_MTD_UBI_MODULE
53 #define ubi_is_module() 1
54 #else
55 #define ubi_is_module() 0
56 #endif
57 
58 /**
59  * struct mtd_dev_param - MTD device parameter description data structure.
60  * @name: MTD character device node path, MTD device name, or MTD device number
61  *        string
62  * @vid_hdr_offs: VID header offset
63  */
64 struct mtd_dev_param {
65 	char name[MTD_PARAM_LEN_MAX];
66 	int vid_hdr_offs;
67 };
68 
69 /* Numbers of elements set in the @mtd_dev_param array */
70 static int __initdata mtd_devs;
71 
72 /* MTD devices specification parameters */
73 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
74 
75 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
76 struct class *ubi_class;
77 
78 /* Slab cache for wear-leveling entries */
79 struct kmem_cache *ubi_wl_entry_slab;
80 
81 /* UBI control character device */
82 static struct miscdevice ubi_ctrl_cdev = {
83 	.minor = MISC_DYNAMIC_MINOR,
84 	.name = "ubi_ctrl",
85 	.fops = &ubi_ctrl_cdev_operations,
86 };
87 
88 /* All UBI devices in system */
89 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
90 
91 /* Serializes UBI devices creations and removals */
92 DEFINE_MUTEX(ubi_devices_mutex);
93 
94 /* Protects @ubi_devices and @ubi->ref_count */
95 static DEFINE_SPINLOCK(ubi_devices_lock);
96 
97 /* "Show" method for files in '/<sysfs>/class/ubi/' */
ubi_version_show(struct class * class,struct class_attribute * attr,char * buf)98 static ssize_t ubi_version_show(struct class *class,
99 				struct class_attribute *attr, char *buf)
100 {
101 	return sprintf(buf, "%d\n", UBI_VERSION);
102 }
103 
104 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
105 static struct class_attribute ubi_version =
106 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
107 
108 static ssize_t dev_attribute_show(struct device *dev,
109 				  struct device_attribute *attr, char *buf);
110 
111 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
112 static struct device_attribute dev_eraseblock_size =
113 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_avail_eraseblocks =
115 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_total_eraseblocks =
117 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_volumes_count =
119 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_max_ec =
121 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_reserved_for_bad =
123 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_bad_peb_count =
125 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_max_vol_count =
127 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_min_io_size =
129 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_bgt_enabled =
131 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_mtd_num =
133 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
134 
135 /**
136  * ubi_volume_notify - send a volume change notification.
137  * @ubi: UBI device description object
138  * @vol: volume description object of the changed volume
139  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
140  *
141  * This is a helper function which notifies all subscribers about a volume
142  * change event (creation, removal, re-sizing, re-naming, updating). Returns
143  * zero in case of success and a negative error code in case of failure.
144  */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)145 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
146 {
147 	struct ubi_notification nt;
148 
149 	ubi_do_get_device_info(ubi, &nt.di);
150 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
151 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
152 }
153 
154 /**
155  * ubi_notify_all - send a notification to all volumes.
156  * @ubi: UBI device description object
157  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
158  * @nb: the notifier to call
159  *
160  * This function walks all volumes of UBI device @ubi and sends the @ntype
161  * notification for each volume. If @nb is %NULL, then all registered notifiers
162  * are called, otherwise only the @nb notifier is called. Returns the number of
163  * sent notifications.
164  */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)165 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
166 {
167 	struct ubi_notification nt;
168 	int i, count = 0;
169 
170 	ubi_do_get_device_info(ubi, &nt.di);
171 
172 	mutex_lock(&ubi->device_mutex);
173 	for (i = 0; i < ubi->vtbl_slots; i++) {
174 		/*
175 		 * Since the @ubi->device is locked, and we are not going to
176 		 * change @ubi->volumes, we do not have to lock
177 		 * @ubi->volumes_lock.
178 		 */
179 		if (!ubi->volumes[i])
180 			continue;
181 
182 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
183 		if (nb)
184 			nb->notifier_call(nb, ntype, &nt);
185 		else
186 			blocking_notifier_call_chain(&ubi_notifiers, ntype,
187 						     &nt);
188 		count += 1;
189 	}
190 	mutex_unlock(&ubi->device_mutex);
191 
192 	return count;
193 }
194 
195 /**
196  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
197  * @nb: the notifier to call
198  *
199  * This function walks all UBI devices and volumes and sends the
200  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
201  * registered notifiers are called, otherwise only the @nb notifier is called.
202  * Returns the number of sent notifications.
203  */
ubi_enumerate_volumes(struct notifier_block * nb)204 int ubi_enumerate_volumes(struct notifier_block *nb)
205 {
206 	int i, count = 0;
207 
208 	/*
209 	 * Since the @ubi_devices_mutex is locked, and we are not going to
210 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
211 	 */
212 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
213 		struct ubi_device *ubi = ubi_devices[i];
214 
215 		if (!ubi)
216 			continue;
217 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
218 	}
219 
220 	return count;
221 }
222 
223 /**
224  * ubi_get_device - get UBI device.
225  * @ubi_num: UBI device number
226  *
227  * This function returns UBI device description object for UBI device number
228  * @ubi_num, or %NULL if the device does not exist. This function increases the
229  * device reference count to prevent removal of the device. In other words, the
230  * device cannot be removed if its reference count is not zero.
231  */
ubi_get_device(int ubi_num)232 struct ubi_device *ubi_get_device(int ubi_num)
233 {
234 	struct ubi_device *ubi;
235 
236 	spin_lock(&ubi_devices_lock);
237 	ubi = ubi_devices[ubi_num];
238 	if (ubi) {
239 		ubi_assert(ubi->ref_count >= 0);
240 		ubi->ref_count += 1;
241 		get_device(&ubi->dev);
242 	}
243 	spin_unlock(&ubi_devices_lock);
244 
245 	return ubi;
246 }
247 
248 /**
249  * ubi_put_device - drop an UBI device reference.
250  * @ubi: UBI device description object
251  */
ubi_put_device(struct ubi_device * ubi)252 void ubi_put_device(struct ubi_device *ubi)
253 {
254 	spin_lock(&ubi_devices_lock);
255 	ubi->ref_count -= 1;
256 	put_device(&ubi->dev);
257 	spin_unlock(&ubi_devices_lock);
258 }
259 
260 /**
261  * ubi_get_by_major - get UBI device by character device major number.
262  * @major: major number
263  *
264  * This function is similar to 'ubi_get_device()', but it searches the device
265  * by its major number.
266  */
ubi_get_by_major(int major)267 struct ubi_device *ubi_get_by_major(int major)
268 {
269 	int i;
270 	struct ubi_device *ubi;
271 
272 	spin_lock(&ubi_devices_lock);
273 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
274 		ubi = ubi_devices[i];
275 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
276 			ubi_assert(ubi->ref_count >= 0);
277 			ubi->ref_count += 1;
278 			get_device(&ubi->dev);
279 			spin_unlock(&ubi_devices_lock);
280 			return ubi;
281 		}
282 	}
283 	spin_unlock(&ubi_devices_lock);
284 
285 	return NULL;
286 }
287 
288 /**
289  * ubi_major2num - get UBI device number by character device major number.
290  * @major: major number
291  *
292  * This function searches UBI device number object by its major number. If UBI
293  * device was not found, this function returns -ENODEV, otherwise the UBI device
294  * number is returned.
295  */
ubi_major2num(int major)296 int ubi_major2num(int major)
297 {
298 	int i, ubi_num = -ENODEV;
299 
300 	spin_lock(&ubi_devices_lock);
301 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
302 		struct ubi_device *ubi = ubi_devices[i];
303 
304 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
305 			ubi_num = ubi->ubi_num;
306 			break;
307 		}
308 	}
309 	spin_unlock(&ubi_devices_lock);
310 
311 	return ubi_num;
312 }
313 
314 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)315 static ssize_t dev_attribute_show(struct device *dev,
316 				  struct device_attribute *attr, char *buf)
317 {
318 	ssize_t ret;
319 	struct ubi_device *ubi;
320 
321 	/*
322 	 * The below code looks weird, but it actually makes sense. We get the
323 	 * UBI device reference from the contained 'struct ubi_device'. But it
324 	 * is unclear if the device was removed or not yet. Indeed, if the
325 	 * device was removed before we increased its reference count,
326 	 * 'ubi_get_device()' will return -ENODEV and we fail.
327 	 *
328 	 * Remember, 'struct ubi_device' is freed in the release function, so
329 	 * we still can use 'ubi->ubi_num'.
330 	 */
331 	ubi = container_of(dev, struct ubi_device, dev);
332 	ubi = ubi_get_device(ubi->ubi_num);
333 	if (!ubi)
334 		return -ENODEV;
335 
336 	if (attr == &dev_eraseblock_size)
337 		ret = sprintf(buf, "%d\n", ubi->leb_size);
338 	else if (attr == &dev_avail_eraseblocks)
339 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
340 	else if (attr == &dev_total_eraseblocks)
341 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
342 	else if (attr == &dev_volumes_count)
343 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
344 	else if (attr == &dev_max_ec)
345 		ret = sprintf(buf, "%d\n", ubi->max_ec);
346 	else if (attr == &dev_reserved_for_bad)
347 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
348 	else if (attr == &dev_bad_peb_count)
349 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
350 	else if (attr == &dev_max_vol_count)
351 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
352 	else if (attr == &dev_min_io_size)
353 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
354 	else if (attr == &dev_bgt_enabled)
355 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
356 	else if (attr == &dev_mtd_num)
357 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
358 	else
359 		ret = -EINVAL;
360 
361 	ubi_put_device(ubi);
362 	return ret;
363 }
364 
dev_release(struct device * dev)365 static void dev_release(struct device *dev)
366 {
367 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
368 
369 	kfree(ubi);
370 }
371 
372 /**
373  * ubi_sysfs_init - initialize sysfs for an UBI device.
374  * @ubi: UBI device description object
375  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
376  *       taken
377  *
378  * This function returns zero in case of success and a negative error code in
379  * case of failure.
380  */
ubi_sysfs_init(struct ubi_device * ubi,int * ref)381 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
382 {
383 	int err;
384 
385 	ubi->dev.release = dev_release;
386 	ubi->dev.devt = ubi->cdev.dev;
387 	ubi->dev.class = ubi_class;
388 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
389 	err = device_register(&ubi->dev);
390 	if (err)
391 		return err;
392 
393 	*ref = 1;
394 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
395 	if (err)
396 		return err;
397 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
398 	if (err)
399 		return err;
400 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
401 	if (err)
402 		return err;
403 	err = device_create_file(&ubi->dev, &dev_volumes_count);
404 	if (err)
405 		return err;
406 	err = device_create_file(&ubi->dev, &dev_max_ec);
407 	if (err)
408 		return err;
409 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
410 	if (err)
411 		return err;
412 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
413 	if (err)
414 		return err;
415 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
416 	if (err)
417 		return err;
418 	err = device_create_file(&ubi->dev, &dev_min_io_size);
419 	if (err)
420 		return err;
421 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
422 	if (err)
423 		return err;
424 	err = device_create_file(&ubi->dev, &dev_mtd_num);
425 	return err;
426 }
427 
428 /**
429  * ubi_sysfs_close - close sysfs for an UBI device.
430  * @ubi: UBI device description object
431  */
ubi_sysfs_close(struct ubi_device * ubi)432 static void ubi_sysfs_close(struct ubi_device *ubi)
433 {
434 	device_remove_file(&ubi->dev, &dev_mtd_num);
435 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
436 	device_remove_file(&ubi->dev, &dev_min_io_size);
437 	device_remove_file(&ubi->dev, &dev_max_vol_count);
438 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
439 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
440 	device_remove_file(&ubi->dev, &dev_max_ec);
441 	device_remove_file(&ubi->dev, &dev_volumes_count);
442 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
443 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
444 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
445 	device_unregister(&ubi->dev);
446 }
447 
448 /**
449  * kill_volumes - destroy all user volumes.
450  * @ubi: UBI device description object
451  */
kill_volumes(struct ubi_device * ubi)452 static void kill_volumes(struct ubi_device *ubi)
453 {
454 	int i;
455 
456 	for (i = 0; i < ubi->vtbl_slots; i++)
457 		if (ubi->volumes[i])
458 			ubi_free_volume(ubi, ubi->volumes[i]);
459 }
460 
461 /**
462  * uif_init - initialize user interfaces for an UBI device.
463  * @ubi: UBI device description object
464  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
465  *       taken, otherwise set to %0
466  *
467  * This function initializes various user interfaces for an UBI device. If the
468  * initialization fails at an early stage, this function frees all the
469  * resources it allocated, returns an error, and @ref is set to %0. However,
470  * if the initialization fails after the UBI device was registered in the
471  * driver core subsystem, this function takes a reference to @ubi->dev, because
472  * otherwise the release function ('dev_release()') would free whole @ubi
473  * object. The @ref argument is set to %1 in this case. The caller has to put
474  * this reference.
475  *
476  * This function returns zero in case of success and a negative error code in
477  * case of failure.
478  */
uif_init(struct ubi_device * ubi,int * ref)479 static int uif_init(struct ubi_device *ubi, int *ref)
480 {
481 	int i, err;
482 	dev_t dev;
483 
484 	*ref = 0;
485 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
486 
487 	/*
488 	 * Major numbers for the UBI character devices are allocated
489 	 * dynamically. Major numbers of volume character devices are
490 	 * equivalent to ones of the corresponding UBI character device. Minor
491 	 * numbers of UBI character devices are 0, while minor numbers of
492 	 * volume character devices start from 1. Thus, we allocate one major
493 	 * number and ubi->vtbl_slots + 1 minor numbers.
494 	 */
495 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
496 	if (err) {
497 		ubi_err("cannot register UBI character devices");
498 		return err;
499 	}
500 
501 	ubi_assert(MINOR(dev) == 0);
502 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
503 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
504 	ubi->cdev.owner = THIS_MODULE;
505 
506 	err = cdev_add(&ubi->cdev, dev, 1);
507 	if (err) {
508 		ubi_err("cannot add character device");
509 		goto out_unreg;
510 	}
511 
512 	err = ubi_sysfs_init(ubi, ref);
513 	if (err)
514 		goto out_sysfs;
515 
516 	for (i = 0; i < ubi->vtbl_slots; i++)
517 		if (ubi->volumes[i]) {
518 			err = ubi_add_volume(ubi, ubi->volumes[i]);
519 			if (err) {
520 				ubi_err("cannot add volume %d", i);
521 				goto out_volumes;
522 			}
523 		}
524 
525 	return 0;
526 
527 out_volumes:
528 	kill_volumes(ubi);
529 out_sysfs:
530 	if (*ref)
531 		get_device(&ubi->dev);
532 	ubi_sysfs_close(ubi);
533 	cdev_del(&ubi->cdev);
534 out_unreg:
535 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
536 	ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
537 	return err;
538 }
539 
540 /**
541  * uif_close - close user interfaces for an UBI device.
542  * @ubi: UBI device description object
543  *
544  * Note, since this function un-registers UBI volume device objects (@vol->dev),
545  * the memory allocated voe the volumes is freed as well (in the release
546  * function).
547  */
uif_close(struct ubi_device * ubi)548 static void uif_close(struct ubi_device *ubi)
549 {
550 	kill_volumes(ubi);
551 	ubi_sysfs_close(ubi);
552 	cdev_del(&ubi->cdev);
553 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
554 }
555 
556 /**
557  * free_internal_volumes - free internal volumes.
558  * @ubi: UBI device description object
559  */
free_internal_volumes(struct ubi_device * ubi)560 static void free_internal_volumes(struct ubi_device *ubi)
561 {
562 	int i;
563 
564 	for (i = ubi->vtbl_slots;
565 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
566 		kfree(ubi->volumes[i]->eba_tbl);
567 		kfree(ubi->volumes[i]);
568 	}
569 }
570 
571 /**
572  * attach_by_scanning - attach an MTD device using scanning method.
573  * @ubi: UBI device descriptor
574  *
575  * This function returns zero in case of success and a negative error code in
576  * case of failure.
577  *
578  * Note, currently this is the only method to attach UBI devices. Hopefully in
579  * the future we'll have more scalable attaching methods and avoid full media
580  * scanning. But even in this case scanning will be needed as a fall-back
581  * attaching method if there are some on-flash table corruptions.
582  */
attach_by_scanning(struct ubi_device * ubi)583 static int attach_by_scanning(struct ubi_device *ubi)
584 {
585 	int err;
586 	struct ubi_scan_info *si;
587 
588 	si = ubi_scan(ubi);
589 	if (IS_ERR(si))
590 		return PTR_ERR(si);
591 
592 	ubi->bad_peb_count = si->bad_peb_count;
593 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
594 	ubi->corr_peb_count = si->corr_peb_count;
595 	ubi->max_ec = si->max_ec;
596 	ubi->mean_ec = si->mean_ec;
597 	ubi_msg("max. sequence number:       %llu", si->max_sqnum);
598 
599 	err = ubi_read_volume_table(ubi, si);
600 	if (err)
601 		goto out_si;
602 
603 	err = ubi_wl_init_scan(ubi, si);
604 	if (err)
605 		goto out_vtbl;
606 
607 	err = ubi_eba_init_scan(ubi, si);
608 	if (err)
609 		goto out_wl;
610 
611 	ubi_scan_destroy_si(si);
612 	return 0;
613 
614 out_wl:
615 	ubi_wl_close(ubi);
616 out_vtbl:
617 	free_internal_volumes(ubi);
618 	vfree(ubi->vtbl);
619 out_si:
620 	ubi_scan_destroy_si(si);
621 	return err;
622 }
623 
624 /**
625  * io_init - initialize I/O sub-system for a given UBI device.
626  * @ubi: UBI device description object
627  *
628  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
629  * assumed:
630  *   o EC header is always at offset zero - this cannot be changed;
631  *   o VID header starts just after the EC header at the closest address
632  *     aligned to @io->hdrs_min_io_size;
633  *   o data starts just after the VID header at the closest address aligned to
634  *     @io->min_io_size
635  *
636  * This function returns zero in case of success and a negative error code in
637  * case of failure.
638  */
io_init(struct ubi_device * ubi)639 static int io_init(struct ubi_device *ubi)
640 {
641 	if (ubi->mtd->numeraseregions != 0) {
642 		/*
643 		 * Some flashes have several erase regions. Different regions
644 		 * may have different eraseblock size and other
645 		 * characteristics. It looks like mostly multi-region flashes
646 		 * have one "main" region and one or more small regions to
647 		 * store boot loader code or boot parameters or whatever. I
648 		 * guess we should just pick the largest region. But this is
649 		 * not implemented.
650 		 */
651 		ubi_err("multiple regions, not implemented");
652 		return -EINVAL;
653 	}
654 
655 	if (ubi->vid_hdr_offset < 0)
656 		return -EINVAL;
657 
658 	/*
659 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
660 	 * physical eraseblocks maximum.
661 	 */
662 
663 	ubi->peb_size   = ubi->mtd->erasesize;
664 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
665 	ubi->flash_size = ubi->mtd->size;
666 
667 	if (mtd_can_have_bb(ubi->mtd))
668 		ubi->bad_allowed = 1;
669 
670 	if (ubi->mtd->type == MTD_NORFLASH) {
671 		ubi_assert(ubi->mtd->writesize == 1);
672 		ubi->nor_flash = 1;
673 	}
674 
675 	ubi->min_io_size = ubi->mtd->writesize;
676 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
677 
678 	/*
679 	 * Make sure minimal I/O unit is power of 2. Note, there is no
680 	 * fundamental reason for this assumption. It is just an optimization
681 	 * which allows us to avoid costly division operations.
682 	 */
683 	if (!is_power_of_2(ubi->min_io_size)) {
684 		ubi_err("min. I/O unit (%d) is not power of 2",
685 			ubi->min_io_size);
686 		return -EINVAL;
687 	}
688 
689 	ubi_assert(ubi->hdrs_min_io_size > 0);
690 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
691 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
692 
693 	ubi->max_write_size = ubi->mtd->writebufsize;
694 	/*
695 	 * Maximum write size has to be greater or equivalent to min. I/O
696 	 * size, and be multiple of min. I/O size.
697 	 */
698 	if (ubi->max_write_size < ubi->min_io_size ||
699 	    ubi->max_write_size % ubi->min_io_size ||
700 	    !is_power_of_2(ubi->max_write_size)) {
701 		ubi_err("bad write buffer size %d for %d min. I/O unit",
702 			ubi->max_write_size, ubi->min_io_size);
703 		return -EINVAL;
704 	}
705 
706 	/* Calculate default aligned sizes of EC and VID headers */
707 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
708 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
709 
710 	dbg_msg("min_io_size      %d", ubi->min_io_size);
711 	dbg_msg("max_write_size   %d", ubi->max_write_size);
712 	dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
713 	dbg_msg("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
714 	dbg_msg("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
715 
716 	if (ubi->vid_hdr_offset == 0)
717 		/* Default offset */
718 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
719 				      ubi->ec_hdr_alsize;
720 	else {
721 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
722 						~(ubi->hdrs_min_io_size - 1);
723 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
724 						ubi->vid_hdr_aloffset;
725 	}
726 
727 	/* Similar for the data offset */
728 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
729 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
730 
731 	dbg_msg("vid_hdr_offset   %d", ubi->vid_hdr_offset);
732 	dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
733 	dbg_msg("vid_hdr_shift    %d", ubi->vid_hdr_shift);
734 	dbg_msg("leb_start        %d", ubi->leb_start);
735 
736 	/* The shift must be aligned to 32-bit boundary */
737 	if (ubi->vid_hdr_shift % 4) {
738 		ubi_err("unaligned VID header shift %d",
739 			ubi->vid_hdr_shift);
740 		return -EINVAL;
741 	}
742 
743 	/* Check sanity */
744 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
745 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
746 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
747 	    ubi->leb_start & (ubi->min_io_size - 1)) {
748 		ubi_err("bad VID header (%d) or data offsets (%d)",
749 			ubi->vid_hdr_offset, ubi->leb_start);
750 		return -EINVAL;
751 	}
752 
753 	/*
754 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
755 	 * Erroneous PEB are those which have read errors.
756 	 */
757 	ubi->max_erroneous = ubi->peb_count / 10;
758 	if (ubi->max_erroneous < 16)
759 		ubi->max_erroneous = 16;
760 	dbg_msg("max_erroneous    %d", ubi->max_erroneous);
761 
762 	/*
763 	 * It may happen that EC and VID headers are situated in one minimal
764 	 * I/O unit. In this case we can only accept this UBI image in
765 	 * read-only mode.
766 	 */
767 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
768 		ubi_warn("EC and VID headers are in the same minimal I/O unit, "
769 			 "switch to read-only mode");
770 		ubi->ro_mode = 1;
771 	}
772 
773 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
774 
775 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
776 		ubi_msg("MTD device %d is write-protected, attach in "
777 			"read-only mode", ubi->mtd->index);
778 		ubi->ro_mode = 1;
779 	}
780 
781 	ubi_msg("physical eraseblock size:   %d bytes (%d KiB)",
782 		ubi->peb_size, ubi->peb_size >> 10);
783 	ubi_msg("logical eraseblock size:    %d bytes", ubi->leb_size);
784 	ubi_msg("smallest flash I/O unit:    %d", ubi->min_io_size);
785 	if (ubi->hdrs_min_io_size != ubi->min_io_size)
786 		ubi_msg("sub-page size:              %d",
787 			ubi->hdrs_min_io_size);
788 	ubi_msg("VID header offset:          %d (aligned %d)",
789 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
790 	ubi_msg("data offset:                %d", ubi->leb_start);
791 
792 	/*
793 	 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
794 	 * unfortunately, MTD does not provide this information. We should loop
795 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
796 	 * each physical eraseblock. So, we skip ubi->bad_peb_count
797 	 * uninitialized and initialize it after scanning.
798 	 */
799 
800 	return 0;
801 }
802 
803 /**
804  * autoresize - re-size the volume which has the "auto-resize" flag set.
805  * @ubi: UBI device description object
806  * @vol_id: ID of the volume to re-size
807  *
808  * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
809  * the volume table to the largest possible size. See comments in ubi-header.h
810  * for more description of the flag. Returns zero in case of success and a
811  * negative error code in case of failure.
812  */
autoresize(struct ubi_device * ubi,int vol_id)813 static int autoresize(struct ubi_device *ubi, int vol_id)
814 {
815 	struct ubi_volume_desc desc;
816 	struct ubi_volume *vol = ubi->volumes[vol_id];
817 	int err, old_reserved_pebs = vol->reserved_pebs;
818 
819 	if (ubi->ro_mode) {
820 		ubi_warn("skip auto-resize because of R/O mode");
821 		return 0;
822 	}
823 
824 	/*
825 	 * Clear the auto-resize flag in the volume in-memory copy of the
826 	 * volume table, and 'ubi_resize_volume()' will propagate this change
827 	 * to the flash.
828 	 */
829 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
830 
831 	if (ubi->avail_pebs == 0) {
832 		struct ubi_vtbl_record vtbl_rec;
833 
834 		/*
835 		 * No available PEBs to re-size the volume, clear the flag on
836 		 * flash and exit.
837 		 */
838 		memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
839 		       sizeof(struct ubi_vtbl_record));
840 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
841 		if (err)
842 			ubi_err("cannot clean auto-resize flag for volume %d",
843 				vol_id);
844 	} else {
845 		desc.vol = vol;
846 		err = ubi_resize_volume(&desc,
847 					old_reserved_pebs + ubi->avail_pebs);
848 		if (err)
849 			ubi_err("cannot auto-resize volume %d", vol_id);
850 	}
851 
852 	if (err)
853 		return err;
854 
855 	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
856 		vol->name, old_reserved_pebs, vol->reserved_pebs);
857 	return 0;
858 }
859 
860 /**
861  * ubi_attach_mtd_dev - attach an MTD device.
862  * @mtd: MTD device description object
863  * @ubi_num: number to assign to the new UBI device
864  * @vid_hdr_offset: VID header offset
865  *
866  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
867  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
868  * which case this function finds a vacant device number and assigns it
869  * automatically. Returns the new UBI device number in case of success and a
870  * negative error code in case of failure.
871  *
872  * Note, the invocations of this function has to be serialized by the
873  * @ubi_devices_mutex.
874  */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset)875 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
876 {
877 	struct ubi_device *ubi;
878 	int i, err, ref = 0;
879 
880 	/*
881 	 * Check if we already have the same MTD device attached.
882 	 *
883 	 * Note, this function assumes that UBI devices creations and deletions
884 	 * are serialized, so it does not take the &ubi_devices_lock.
885 	 */
886 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
887 		ubi = ubi_devices[i];
888 		if (ubi && mtd->index == ubi->mtd->index) {
889 			dbg_err("mtd%d is already attached to ubi%d",
890 				mtd->index, i);
891 			return -EEXIST;
892 		}
893 	}
894 
895 	/*
896 	 * Make sure this MTD device is not emulated on top of an UBI volume
897 	 * already. Well, generally this recursion works fine, but there are
898 	 * different problems like the UBI module takes a reference to itself
899 	 * by attaching (and thus, opening) the emulated MTD device. This
900 	 * results in inability to unload the module. And in general it makes
901 	 * no sense to attach emulated MTD devices, so we prohibit this.
902 	 */
903 	if (mtd->type == MTD_UBIVOLUME) {
904 		ubi_err("refuse attaching mtd%d - it is already emulated on "
905 			"top of UBI", mtd->index);
906 		return -EINVAL;
907 	}
908 
909 	if (ubi_num == UBI_DEV_NUM_AUTO) {
910 		/* Search for an empty slot in the @ubi_devices array */
911 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
912 			if (!ubi_devices[ubi_num])
913 				break;
914 		if (ubi_num == UBI_MAX_DEVICES) {
915 			dbg_err("only %d UBI devices may be created",
916 				UBI_MAX_DEVICES);
917 			return -ENFILE;
918 		}
919 	} else {
920 		if (ubi_num >= UBI_MAX_DEVICES)
921 			return -EINVAL;
922 
923 		/* Make sure ubi_num is not busy */
924 		if (ubi_devices[ubi_num]) {
925 			dbg_err("ubi%d already exists", ubi_num);
926 			return -EEXIST;
927 		}
928 	}
929 
930 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
931 	if (!ubi)
932 		return -ENOMEM;
933 
934 	ubi->mtd = mtd;
935 	ubi->ubi_num = ubi_num;
936 	ubi->vid_hdr_offset = vid_hdr_offset;
937 	ubi->autoresize_vol_id = -1;
938 
939 	mutex_init(&ubi->buf_mutex);
940 	mutex_init(&ubi->ckvol_mutex);
941 	mutex_init(&ubi->device_mutex);
942 	spin_lock_init(&ubi->volumes_lock);
943 
944 	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
945 	dbg_msg("sizeof(struct ubi_scan_leb) %zu", sizeof(struct ubi_scan_leb));
946 	dbg_msg("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
947 
948 	err = io_init(ubi);
949 	if (err)
950 		goto out_free;
951 
952 	err = -ENOMEM;
953 	ubi->peb_buf = vmalloc(ubi->peb_size);
954 	if (!ubi->peb_buf)
955 		goto out_free;
956 
957 	err = ubi_debugging_init_dev(ubi);
958 	if (err)
959 		goto out_free;
960 
961 	err = attach_by_scanning(ubi);
962 	if (err) {
963 		dbg_err("failed to attach by scanning, error %d", err);
964 		goto out_debugging;
965 	}
966 
967 	if (ubi->autoresize_vol_id != -1) {
968 		err = autoresize(ubi, ubi->autoresize_vol_id);
969 		if (err)
970 			goto out_detach;
971 	}
972 
973 	err = uif_init(ubi, &ref);
974 	if (err)
975 		goto out_detach;
976 
977 	err = ubi_debugfs_init_dev(ubi);
978 	if (err)
979 		goto out_uif;
980 
981 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
982 	if (IS_ERR(ubi->bgt_thread)) {
983 		err = PTR_ERR(ubi->bgt_thread);
984 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
985 			err);
986 		goto out_debugfs;
987 	}
988 
989 	ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
990 	ubi_msg("MTD device name:            \"%s\"", mtd->name);
991 	ubi_msg("MTD device size:            %llu MiB", ubi->flash_size >> 20);
992 	ubi_msg("number of good PEBs:        %d", ubi->good_peb_count);
993 	ubi_msg("number of bad PEBs:         %d", ubi->bad_peb_count);
994 	ubi_msg("number of corrupted PEBs:   %d", ubi->corr_peb_count);
995 	ubi_msg("max. allowed volumes:       %d", ubi->vtbl_slots);
996 	ubi_msg("wear-leveling threshold:    %d", CONFIG_MTD_UBI_WL_THRESHOLD);
997 	ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
998 	ubi_msg("number of user volumes:     %d",
999 		ubi->vol_count - UBI_INT_VOL_COUNT);
1000 	ubi_msg("available PEBs:             %d", ubi->avail_pebs);
1001 	ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
1002 	ubi_msg("number of PEBs reserved for bad PEB handling: %d",
1003 		ubi->beb_rsvd_pebs);
1004 	ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
1005 	ubi_msg("image sequence number:  %d", ubi->image_seq);
1006 
1007 	/*
1008 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1009 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1010 	 */
1011 	spin_lock(&ubi->wl_lock);
1012 	ubi->thread_enabled = 1;
1013 	wake_up_process(ubi->bgt_thread);
1014 	spin_unlock(&ubi->wl_lock);
1015 
1016 	ubi_devices[ubi_num] = ubi;
1017 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1018 	return ubi_num;
1019 
1020 out_debugfs:
1021 	ubi_debugfs_exit_dev(ubi);
1022 out_uif:
1023 	get_device(&ubi->dev);
1024 	ubi_assert(ref);
1025 	uif_close(ubi);
1026 out_detach:
1027 	ubi_wl_close(ubi);
1028 	free_internal_volumes(ubi);
1029 	vfree(ubi->vtbl);
1030 out_debugging:
1031 	ubi_debugging_exit_dev(ubi);
1032 out_free:
1033 	vfree(ubi->peb_buf);
1034 	if (ref)
1035 		put_device(&ubi->dev);
1036 	else
1037 		kfree(ubi);
1038 	return err;
1039 }
1040 
1041 /**
1042  * ubi_detach_mtd_dev - detach an MTD device.
1043  * @ubi_num: UBI device number to detach from
1044  * @anyway: detach MTD even if device reference count is not zero
1045  *
1046  * This function destroys an UBI device number @ubi_num and detaches the
1047  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1048  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1049  * exist.
1050  *
1051  * Note, the invocations of this function has to be serialized by the
1052  * @ubi_devices_mutex.
1053  */
ubi_detach_mtd_dev(int ubi_num,int anyway)1054 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1055 {
1056 	struct ubi_device *ubi;
1057 
1058 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1059 		return -EINVAL;
1060 
1061 	ubi = ubi_get_device(ubi_num);
1062 	if (!ubi)
1063 		return -EINVAL;
1064 
1065 	spin_lock(&ubi_devices_lock);
1066 	put_device(&ubi->dev);
1067 	ubi->ref_count -= 1;
1068 	if (ubi->ref_count) {
1069 		if (!anyway) {
1070 			spin_unlock(&ubi_devices_lock);
1071 			return -EBUSY;
1072 		}
1073 		/* This may only happen if there is a bug */
1074 		ubi_err("%s reference count %d, destroy anyway",
1075 			ubi->ubi_name, ubi->ref_count);
1076 	}
1077 	ubi_devices[ubi_num] = NULL;
1078 	spin_unlock(&ubi_devices_lock);
1079 
1080 	ubi_assert(ubi_num == ubi->ubi_num);
1081 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1082 	dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1083 
1084 	/*
1085 	 * Before freeing anything, we have to stop the background thread to
1086 	 * prevent it from doing anything on this device while we are freeing.
1087 	 */
1088 	if (ubi->bgt_thread)
1089 		kthread_stop(ubi->bgt_thread);
1090 
1091 	/*
1092 	 * Get a reference to the device in order to prevent 'dev_release()'
1093 	 * from freeing the @ubi object.
1094 	 */
1095 	get_device(&ubi->dev);
1096 
1097 	ubi_debugfs_exit_dev(ubi);
1098 	uif_close(ubi);
1099 	ubi_wl_close(ubi);
1100 	free_internal_volumes(ubi);
1101 	vfree(ubi->vtbl);
1102 	put_mtd_device(ubi->mtd);
1103 	ubi_debugging_exit_dev(ubi);
1104 	vfree(ubi->peb_buf);
1105 	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1106 	put_device(&ubi->dev);
1107 	return 0;
1108 }
1109 
1110 /**
1111  * open_mtd_by_chdev - open an MTD device by its character device node path.
1112  * @mtd_dev: MTD character device node path
1113  *
1114  * This helper function opens an MTD device by its character node device path.
1115  * Returns MTD device description object in case of success and a negative
1116  * error code in case of failure.
1117  */
open_mtd_by_chdev(const char * mtd_dev)1118 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1119 {
1120 	int err, major, minor, mode;
1121 	struct path path;
1122 
1123 	/* Probably this is an MTD character device node path */
1124 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1125 	if (err)
1126 		return ERR_PTR(err);
1127 
1128 	/* MTD device number is defined by the major / minor numbers */
1129 	major = imajor(path.dentry->d_inode);
1130 	minor = iminor(path.dentry->d_inode);
1131 	mode = path.dentry->d_inode->i_mode;
1132 	path_put(&path);
1133 	if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1134 		return ERR_PTR(-EINVAL);
1135 
1136 	if (minor & 1)
1137 		/*
1138 		 * Just do not think the "/dev/mtdrX" devices support is need,
1139 		 * so do not support them to avoid doing extra work.
1140 		 */
1141 		return ERR_PTR(-EINVAL);
1142 
1143 	return get_mtd_device(NULL, minor / 2);
1144 }
1145 
1146 /**
1147  * open_mtd_device - open MTD device by name, character device path, or number.
1148  * @mtd_dev: name, character device node path, or MTD device device number
1149  *
1150  * This function tries to open and MTD device described by @mtd_dev string,
1151  * which is first treated as ASCII MTD device number, and if it is not true, it
1152  * is treated as MTD device name, and if that is also not true, it is treated
1153  * as MTD character device node path. Returns MTD device description object in
1154  * case of success and a negative error code in case of failure.
1155  */
open_mtd_device(const char * mtd_dev)1156 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1157 {
1158 	struct mtd_info *mtd;
1159 	int mtd_num;
1160 	char *endp;
1161 
1162 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1163 	if (*endp != '\0' || mtd_dev == endp) {
1164 		/*
1165 		 * This does not look like an ASCII integer, probably this is
1166 		 * MTD device name.
1167 		 */
1168 		mtd = get_mtd_device_nm(mtd_dev);
1169 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1170 			/* Probably this is an MTD character device node path */
1171 			mtd = open_mtd_by_chdev(mtd_dev);
1172 	} else
1173 		mtd = get_mtd_device(NULL, mtd_num);
1174 
1175 	return mtd;
1176 }
1177 
ubi_init(void)1178 static int __init ubi_init(void)
1179 {
1180 	int err, i, k;
1181 
1182 	/* Ensure that EC and VID headers have correct size */
1183 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1184 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1185 
1186 	if (mtd_devs > UBI_MAX_DEVICES) {
1187 		ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1188 		return -EINVAL;
1189 	}
1190 
1191 	/* Create base sysfs directory and sysfs files */
1192 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1193 	if (IS_ERR(ubi_class)) {
1194 		err = PTR_ERR(ubi_class);
1195 		ubi_err("cannot create UBI class");
1196 		goto out;
1197 	}
1198 
1199 	err = class_create_file(ubi_class, &ubi_version);
1200 	if (err) {
1201 		ubi_err("cannot create sysfs file");
1202 		goto out_class;
1203 	}
1204 
1205 	err = misc_register(&ubi_ctrl_cdev);
1206 	if (err) {
1207 		ubi_err("cannot register device");
1208 		goto out_version;
1209 	}
1210 
1211 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1212 					      sizeof(struct ubi_wl_entry),
1213 					      0, 0, NULL);
1214 	if (!ubi_wl_entry_slab)
1215 		goto out_dev_unreg;
1216 
1217 	err = ubi_debugfs_init();
1218 	if (err)
1219 		goto out_slab;
1220 
1221 
1222 	/* Attach MTD devices */
1223 	for (i = 0; i < mtd_devs; i++) {
1224 		struct mtd_dev_param *p = &mtd_dev_param[i];
1225 		struct mtd_info *mtd;
1226 
1227 		cond_resched();
1228 
1229 		mtd = open_mtd_device(p->name);
1230 		if (IS_ERR(mtd)) {
1231 			err = PTR_ERR(mtd);
1232 			goto out_detach;
1233 		}
1234 
1235 		mutex_lock(&ubi_devices_mutex);
1236 		err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1237 					 p->vid_hdr_offs);
1238 		mutex_unlock(&ubi_devices_mutex);
1239 		if (err < 0) {
1240 			ubi_err("cannot attach mtd%d", mtd->index);
1241 			put_mtd_device(mtd);
1242 
1243 			/*
1244 			 * Originally UBI stopped initializing on any error.
1245 			 * However, later on it was found out that this
1246 			 * behavior is not very good when UBI is compiled into
1247 			 * the kernel and the MTD devices to attach are passed
1248 			 * through the command line. Indeed, UBI failure
1249 			 * stopped whole boot sequence.
1250 			 *
1251 			 * To fix this, we changed the behavior for the
1252 			 * non-module case, but preserved the old behavior for
1253 			 * the module case, just for compatibility. This is a
1254 			 * little inconsistent, though.
1255 			 */
1256 			if (ubi_is_module())
1257 				goto out_detach;
1258 		}
1259 	}
1260 
1261 	return 0;
1262 
1263 out_detach:
1264 	for (k = 0; k < i; k++)
1265 		if (ubi_devices[k]) {
1266 			mutex_lock(&ubi_devices_mutex);
1267 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1268 			mutex_unlock(&ubi_devices_mutex);
1269 		}
1270 	ubi_debugfs_exit();
1271 out_slab:
1272 	kmem_cache_destroy(ubi_wl_entry_slab);
1273 out_dev_unreg:
1274 	misc_deregister(&ubi_ctrl_cdev);
1275 out_version:
1276 	class_remove_file(ubi_class, &ubi_version);
1277 out_class:
1278 	class_destroy(ubi_class);
1279 out:
1280 	ubi_err("UBI error: cannot initialize UBI, error %d", err);
1281 	return err;
1282 }
1283 module_init(ubi_init);
1284 
ubi_exit(void)1285 static void __exit ubi_exit(void)
1286 {
1287 	int i;
1288 
1289 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1290 		if (ubi_devices[i]) {
1291 			mutex_lock(&ubi_devices_mutex);
1292 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1293 			mutex_unlock(&ubi_devices_mutex);
1294 		}
1295 	ubi_debugfs_exit();
1296 	kmem_cache_destroy(ubi_wl_entry_slab);
1297 	misc_deregister(&ubi_ctrl_cdev);
1298 	class_remove_file(ubi_class, &ubi_version);
1299 	class_destroy(ubi_class);
1300 }
1301 module_exit(ubi_exit);
1302 
1303 /**
1304  * bytes_str_to_int - convert a number of bytes string into an integer.
1305  * @str: the string to convert
1306  *
1307  * This function returns positive resulting integer in case of success and a
1308  * negative error code in case of failure.
1309  */
bytes_str_to_int(const char * str)1310 static int __init bytes_str_to_int(const char *str)
1311 {
1312 	char *endp;
1313 	unsigned long result;
1314 
1315 	result = simple_strtoul(str, &endp, 0);
1316 	if (str == endp || result >= INT_MAX) {
1317 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1318 		       str);
1319 		return -EINVAL;
1320 	}
1321 
1322 	switch (*endp) {
1323 	case 'G':
1324 		result *= 1024;
1325 	case 'M':
1326 		result *= 1024;
1327 	case 'K':
1328 		result *= 1024;
1329 		if (endp[1] == 'i' && endp[2] == 'B')
1330 			endp += 2;
1331 	case '\0':
1332 		break;
1333 	default:
1334 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1335 		       str);
1336 		return -EINVAL;
1337 	}
1338 
1339 	return result;
1340 }
1341 
1342 /**
1343  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1344  * @val: the parameter value to parse
1345  * @kp: not used
1346  *
1347  * This function returns zero in case of success and a negative error code in
1348  * case of error.
1349  */
ubi_mtd_param_parse(const char * val,struct kernel_param * kp)1350 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1351 {
1352 	int i, len;
1353 	struct mtd_dev_param *p;
1354 	char buf[MTD_PARAM_LEN_MAX];
1355 	char *pbuf = &buf[0];
1356 	char *tokens[2] = {NULL, NULL};
1357 
1358 	if (!val)
1359 		return -EINVAL;
1360 
1361 	if (mtd_devs == UBI_MAX_DEVICES) {
1362 		printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1363 		       UBI_MAX_DEVICES);
1364 		return -EINVAL;
1365 	}
1366 
1367 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1368 	if (len == MTD_PARAM_LEN_MAX) {
1369 		printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1370 		       "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1371 		return -EINVAL;
1372 	}
1373 
1374 	if (len == 0) {
1375 		printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1376 		       "ignored\n");
1377 		return 0;
1378 	}
1379 
1380 	strcpy(buf, val);
1381 
1382 	/* Get rid of the final newline */
1383 	if (buf[len - 1] == '\n')
1384 		buf[len - 1] = '\0';
1385 
1386 	for (i = 0; i < 2; i++)
1387 		tokens[i] = strsep(&pbuf, ",");
1388 
1389 	if (pbuf) {
1390 		printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1391 		       val);
1392 		return -EINVAL;
1393 	}
1394 
1395 	p = &mtd_dev_param[mtd_devs];
1396 	strcpy(&p->name[0], tokens[0]);
1397 
1398 	if (tokens[1])
1399 		p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1400 
1401 	if (p->vid_hdr_offs < 0)
1402 		return p->vid_hdr_offs;
1403 
1404 	mtd_devs += 1;
1405 	return 0;
1406 }
1407 
1408 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1409 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1410 		      "mtd=<name|num|path>[,<vid_hdr_offs>].\n"
1411 		      "Multiple \"mtd\" parameters may be specified.\n"
1412 		      "MTD devices may be specified by their number, name, or "
1413 		      "path to the MTD character device node.\n"
1414 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1415 		      "header position to be used by UBI.\n"
1416 		      "Example 1: mtd=/dev/mtd0 - attach MTD device "
1417 		      "/dev/mtd0.\n"
1418 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device "
1419 		      "with name \"content\" using VID header offset 1984, and "
1420 		      "MTD device number 4 with default VID header offset.");
1421 
1422 MODULE_VERSION(__stringify(UBI_VERSION));
1423 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1424 MODULE_AUTHOR("Artem Bityutskiy");
1425 MODULE_LICENSE("GPL");
1426