1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66 #ifdef CONFIG_QEMU_TRACE
67 void qemu_trace_thread_name(char *name);
68 #endif
69
70 #include <trace/events/sched.h>
71
72 int core_uses_pid;
73 char core_pattern[CORENAME_MAX_SIZE] = "core";
74 unsigned int core_pipe_limit;
75 int suid_dumpable = 0;
76
77 struct core_name {
78 char *corename;
79 int used, size;
80 };
81 static atomic_t call_count = ATOMIC_INIT(1);
82
83 /* The maximal length of core_pattern is also specified in sysctl.c */
84
85 static LIST_HEAD(formats);
86 static DEFINE_RWLOCK(binfmt_lock);
87
__register_binfmt(struct linux_binfmt * fmt,int insert)88 void __register_binfmt(struct linux_binfmt * fmt, int insert)
89 {
90 BUG_ON(!fmt);
91 write_lock(&binfmt_lock);
92 insert ? list_add(&fmt->lh, &formats) :
93 list_add_tail(&fmt->lh, &formats);
94 write_unlock(&binfmt_lock);
95 }
96
97 EXPORT_SYMBOL(__register_binfmt);
98
unregister_binfmt(struct linux_binfmt * fmt)99 void unregister_binfmt(struct linux_binfmt * fmt)
100 {
101 write_lock(&binfmt_lock);
102 list_del(&fmt->lh);
103 write_unlock(&binfmt_lock);
104 }
105
106 EXPORT_SYMBOL(unregister_binfmt);
107
put_binfmt(struct linux_binfmt * fmt)108 static inline void put_binfmt(struct linux_binfmt * fmt)
109 {
110 module_put(fmt->module);
111 }
112
113 /*
114 * Note that a shared library must be both readable and executable due to
115 * security reasons.
116 *
117 * Also note that we take the address to load from from the file itself.
118 */
SYSCALL_DEFINE1(uselib,const char __user *,library)119 SYSCALL_DEFINE1(uselib, const char __user *, library)
120 {
121 struct file *file;
122 char *tmp = getname(library);
123 int error = PTR_ERR(tmp);
124 static const struct open_flags uselib_flags = {
125 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
126 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
127 .intent = LOOKUP_OPEN
128 };
129
130 if (IS_ERR(tmp))
131 goto out;
132
133 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
134 putname(tmp);
135 error = PTR_ERR(file);
136 if (IS_ERR(file))
137 goto out;
138
139 error = -EINVAL;
140 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
141 goto exit;
142
143 error = -EACCES;
144 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
145 goto exit;
146
147 fsnotify_open(file);
148
149 error = -ENOEXEC;
150 if(file->f_op) {
151 struct linux_binfmt * fmt;
152
153 read_lock(&binfmt_lock);
154 list_for_each_entry(fmt, &formats, lh) {
155 if (!fmt->load_shlib)
156 continue;
157 if (!try_module_get(fmt->module))
158 continue;
159 read_unlock(&binfmt_lock);
160 error = fmt->load_shlib(file);
161 read_lock(&binfmt_lock);
162 put_binfmt(fmt);
163 if (error != -ENOEXEC)
164 break;
165 }
166 read_unlock(&binfmt_lock);
167 }
168 exit:
169 fput(file);
170 out:
171 return error;
172 }
173
174 #ifdef CONFIG_MMU
175 /*
176 * The nascent bprm->mm is not visible until exec_mmap() but it can
177 * use a lot of memory, account these pages in current->mm temporary
178 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
179 * change the counter back via acct_arg_size(0).
180 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)181 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
182 {
183 struct mm_struct *mm = current->mm;
184 long diff = (long)(pages - bprm->vma_pages);
185
186 if (!mm || !diff)
187 return;
188
189 bprm->vma_pages = pages;
190 add_mm_counter(mm, MM_ANONPAGES, diff);
191 }
192
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)193 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
194 int write)
195 {
196 struct page *page;
197 int ret;
198
199 #ifdef CONFIG_STACK_GROWSUP
200 if (write) {
201 ret = expand_downwards(bprm->vma, pos);
202 if (ret < 0)
203 return NULL;
204 }
205 #endif
206 ret = get_user_pages(current, bprm->mm, pos,
207 1, write, 1, &page, NULL);
208 if (ret <= 0)
209 return NULL;
210
211 if (write) {
212 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213 struct rlimit *rlim;
214
215 acct_arg_size(bprm, size / PAGE_SIZE);
216
217 /*
218 * We've historically supported up to 32 pages (ARG_MAX)
219 * of argument strings even with small stacks
220 */
221 if (size <= ARG_MAX)
222 return page;
223
224 /*
225 * Limit to 1/4-th the stack size for the argv+env strings.
226 * This ensures that:
227 * - the remaining binfmt code will not run out of stack space,
228 * - the program will have a reasonable amount of stack left
229 * to work from.
230 */
231 rlim = current->signal->rlim;
232 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233 put_page(page);
234 return NULL;
235 }
236 }
237
238 return page;
239 }
240
put_arg_page(struct page * page)241 static void put_arg_page(struct page *page)
242 {
243 put_page(page);
244 }
245
free_arg_page(struct linux_binprm * bprm,int i)246 static void free_arg_page(struct linux_binprm *bprm, int i)
247 {
248 }
249
free_arg_pages(struct linux_binprm * bprm)250 static void free_arg_pages(struct linux_binprm *bprm)
251 {
252 }
253
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)254 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
255 struct page *page)
256 {
257 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
258 }
259
__bprm_mm_init(struct linux_binprm * bprm)260 static int __bprm_mm_init(struct linux_binprm *bprm)
261 {
262 int err;
263 struct vm_area_struct *vma = NULL;
264 struct mm_struct *mm = bprm->mm;
265
266 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
267 if (!vma)
268 return -ENOMEM;
269
270 down_write(&mm->mmap_sem);
271 vma->vm_mm = mm;
272
273 /*
274 * Place the stack at the largest stack address the architecture
275 * supports. Later, we'll move this to an appropriate place. We don't
276 * use STACK_TOP because that can depend on attributes which aren't
277 * configured yet.
278 */
279 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
280 vma->vm_end = STACK_TOP_MAX;
281 vma->vm_start = vma->vm_end - PAGE_SIZE;
282 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
283 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
284 INIT_LIST_HEAD(&vma->anon_vma_chain);
285
286 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
287 if (err)
288 goto err;
289
290 err = insert_vm_struct(mm, vma);
291 if (err)
292 goto err;
293
294 mm->stack_vm = mm->total_vm = 1;
295 up_write(&mm->mmap_sem);
296 bprm->p = vma->vm_end - sizeof(void *);
297 return 0;
298 err:
299 up_write(&mm->mmap_sem);
300 bprm->vma = NULL;
301 kmem_cache_free(vm_area_cachep, vma);
302 return err;
303 }
304
valid_arg_len(struct linux_binprm * bprm,long len)305 static bool valid_arg_len(struct linux_binprm *bprm, long len)
306 {
307 return len <= MAX_ARG_STRLEN;
308 }
309
310 #else
311
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)312 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
313 {
314 }
315
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)316 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
317 int write)
318 {
319 struct page *page;
320
321 page = bprm->page[pos / PAGE_SIZE];
322 if (!page && write) {
323 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
324 if (!page)
325 return NULL;
326 bprm->page[pos / PAGE_SIZE] = page;
327 }
328
329 return page;
330 }
331
put_arg_page(struct page * page)332 static void put_arg_page(struct page *page)
333 {
334 }
335
free_arg_page(struct linux_binprm * bprm,int i)336 static void free_arg_page(struct linux_binprm *bprm, int i)
337 {
338 if (bprm->page[i]) {
339 __free_page(bprm->page[i]);
340 bprm->page[i] = NULL;
341 }
342 }
343
free_arg_pages(struct linux_binprm * bprm)344 static void free_arg_pages(struct linux_binprm *bprm)
345 {
346 int i;
347
348 for (i = 0; i < MAX_ARG_PAGES; i++)
349 free_arg_page(bprm, i);
350 }
351
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)352 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
353 struct page *page)
354 {
355 }
356
__bprm_mm_init(struct linux_binprm * bprm)357 static int __bprm_mm_init(struct linux_binprm *bprm)
358 {
359 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
360 return 0;
361 }
362
valid_arg_len(struct linux_binprm * bprm,long len)363 static bool valid_arg_len(struct linux_binprm *bprm, long len)
364 {
365 return len <= bprm->p;
366 }
367
368 #endif /* CONFIG_MMU */
369
370 /*
371 * Create a new mm_struct and populate it with a temporary stack
372 * vm_area_struct. We don't have enough context at this point to set the stack
373 * flags, permissions, and offset, so we use temporary values. We'll update
374 * them later in setup_arg_pages().
375 */
bprm_mm_init(struct linux_binprm * bprm)376 int bprm_mm_init(struct linux_binprm *bprm)
377 {
378 int err;
379 struct mm_struct *mm = NULL;
380
381 bprm->mm = mm = mm_alloc();
382 err = -ENOMEM;
383 if (!mm)
384 goto err;
385
386 err = init_new_context(current, mm);
387 if (err)
388 goto err;
389
390 err = __bprm_mm_init(bprm);
391 if (err)
392 goto err;
393
394 return 0;
395
396 err:
397 if (mm) {
398 bprm->mm = NULL;
399 mmdrop(mm);
400 }
401
402 return err;
403 }
404
405 struct user_arg_ptr {
406 #ifdef CONFIG_COMPAT
407 bool is_compat;
408 #endif
409 union {
410 const char __user *const __user *native;
411 #ifdef CONFIG_COMPAT
412 compat_uptr_t __user *compat;
413 #endif
414 } ptr;
415 };
416
get_user_arg_ptr(struct user_arg_ptr argv,int nr)417 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
418 {
419 const char __user *native;
420
421 #ifdef CONFIG_COMPAT
422 if (unlikely(argv.is_compat)) {
423 compat_uptr_t compat;
424
425 if (get_user(compat, argv.ptr.compat + nr))
426 return ERR_PTR(-EFAULT);
427
428 return compat_ptr(compat);
429 }
430 #endif
431
432 if (get_user(native, argv.ptr.native + nr))
433 return ERR_PTR(-EFAULT);
434
435 return native;
436 }
437
438 /*
439 * count() counts the number of strings in array ARGV.
440 */
count(struct user_arg_ptr argv,int max)441 static int count(struct user_arg_ptr argv, int max)
442 {
443 int i = 0;
444
445 if (argv.ptr.native != NULL) {
446 for (;;) {
447 const char __user *p = get_user_arg_ptr(argv, i);
448
449 if (!p)
450 break;
451
452 if (IS_ERR(p))
453 return -EFAULT;
454
455 if (i++ >= max)
456 return -E2BIG;
457
458 if (fatal_signal_pending(current))
459 return -ERESTARTNOHAND;
460 cond_resched();
461 }
462 }
463 return i;
464 }
465
466 /*
467 * 'copy_strings()' copies argument/environment strings from the old
468 * processes's memory to the new process's stack. The call to get_user_pages()
469 * ensures the destination page is created and not swapped out.
470 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)471 static int copy_strings(int argc, struct user_arg_ptr argv,
472 struct linux_binprm *bprm)
473 {
474 struct page *kmapped_page = NULL;
475 char *kaddr = NULL;
476 unsigned long kpos = 0;
477 int ret;
478
479 while (argc-- > 0) {
480 const char __user *str;
481 int len;
482 unsigned long pos;
483
484 ret = -EFAULT;
485 str = get_user_arg_ptr(argv, argc);
486 if (IS_ERR(str))
487 goto out;
488
489 len = strnlen_user(str, MAX_ARG_STRLEN);
490 if (!len)
491 goto out;
492
493 ret = -E2BIG;
494 if (!valid_arg_len(bprm, len))
495 goto out;
496
497 /* We're going to work our way backwords. */
498 pos = bprm->p;
499 str += len;
500 bprm->p -= len;
501
502 while (len > 0) {
503 int offset, bytes_to_copy;
504
505 if (fatal_signal_pending(current)) {
506 ret = -ERESTARTNOHAND;
507 goto out;
508 }
509 cond_resched();
510
511 offset = pos % PAGE_SIZE;
512 if (offset == 0)
513 offset = PAGE_SIZE;
514
515 bytes_to_copy = offset;
516 if (bytes_to_copy > len)
517 bytes_to_copy = len;
518
519 offset -= bytes_to_copy;
520 pos -= bytes_to_copy;
521 str -= bytes_to_copy;
522 len -= bytes_to_copy;
523
524 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
525 struct page *page;
526
527 page = get_arg_page(bprm, pos, 1);
528 if (!page) {
529 ret = -E2BIG;
530 goto out;
531 }
532
533 if (kmapped_page) {
534 flush_kernel_dcache_page(kmapped_page);
535 kunmap(kmapped_page);
536 put_arg_page(kmapped_page);
537 }
538 kmapped_page = page;
539 kaddr = kmap(kmapped_page);
540 kpos = pos & PAGE_MASK;
541 flush_arg_page(bprm, kpos, kmapped_page);
542 }
543 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
544 ret = -EFAULT;
545 goto out;
546 }
547 }
548 }
549 ret = 0;
550 out:
551 if (kmapped_page) {
552 flush_kernel_dcache_page(kmapped_page);
553 kunmap(kmapped_page);
554 put_arg_page(kmapped_page);
555 }
556 return ret;
557 }
558
559 /*
560 * Like copy_strings, but get argv and its values from kernel memory.
561 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)562 int copy_strings_kernel(int argc, const char *const *__argv,
563 struct linux_binprm *bprm)
564 {
565 int r;
566 mm_segment_t oldfs = get_fs();
567 struct user_arg_ptr argv = {
568 .ptr.native = (const char __user *const __user *)__argv,
569 };
570
571 set_fs(KERNEL_DS);
572 r = copy_strings(argc, argv, bprm);
573 set_fs(oldfs);
574
575 return r;
576 }
577 EXPORT_SYMBOL(copy_strings_kernel);
578
579 #ifdef CONFIG_MMU
580
581 /*
582 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
583 * the binfmt code determines where the new stack should reside, we shift it to
584 * its final location. The process proceeds as follows:
585 *
586 * 1) Use shift to calculate the new vma endpoints.
587 * 2) Extend vma to cover both the old and new ranges. This ensures the
588 * arguments passed to subsequent functions are consistent.
589 * 3) Move vma's page tables to the new range.
590 * 4) Free up any cleared pgd range.
591 * 5) Shrink the vma to cover only the new range.
592 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)593 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
594 {
595 struct mm_struct *mm = vma->vm_mm;
596 unsigned long old_start = vma->vm_start;
597 unsigned long old_end = vma->vm_end;
598 unsigned long length = old_end - old_start;
599 unsigned long new_start = old_start - shift;
600 unsigned long new_end = old_end - shift;
601 struct mmu_gather tlb;
602
603 BUG_ON(new_start > new_end);
604
605 /*
606 * ensure there are no vmas between where we want to go
607 * and where we are
608 */
609 if (vma != find_vma(mm, new_start))
610 return -EFAULT;
611
612 /*
613 * cover the whole range: [new_start, old_end)
614 */
615 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
616 return -ENOMEM;
617
618 /*
619 * move the page tables downwards, on failure we rely on
620 * process cleanup to remove whatever mess we made.
621 */
622 if (length != move_page_tables(vma, old_start,
623 vma, new_start, length))
624 return -ENOMEM;
625
626 lru_add_drain();
627 tlb_gather_mmu(&tlb, mm, 0);
628 if (new_end > old_start) {
629 /*
630 * when the old and new regions overlap clear from new_end.
631 */
632 free_pgd_range(&tlb, new_end, old_end, new_end,
633 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
634 } else {
635 /*
636 * otherwise, clean from old_start; this is done to not touch
637 * the address space in [new_end, old_start) some architectures
638 * have constraints on va-space that make this illegal (IA64) -
639 * for the others its just a little faster.
640 */
641 free_pgd_range(&tlb, old_start, old_end, new_end,
642 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
643 }
644 tlb_finish_mmu(&tlb, new_end, old_end);
645
646 /*
647 * Shrink the vma to just the new range. Always succeeds.
648 */
649 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
650
651 return 0;
652 }
653
654 /*
655 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
656 * the stack is optionally relocated, and some extra space is added.
657 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)658 int setup_arg_pages(struct linux_binprm *bprm,
659 unsigned long stack_top,
660 int executable_stack)
661 {
662 unsigned long ret;
663 unsigned long stack_shift;
664 struct mm_struct *mm = current->mm;
665 struct vm_area_struct *vma = bprm->vma;
666 struct vm_area_struct *prev = NULL;
667 unsigned long vm_flags;
668 unsigned long stack_base;
669 unsigned long stack_size;
670 unsigned long stack_expand;
671 unsigned long rlim_stack;
672
673 #ifdef CONFIG_STACK_GROWSUP
674 /* Limit stack size to 1GB */
675 stack_base = rlimit_max(RLIMIT_STACK);
676 if (stack_base > (1 << 30))
677 stack_base = 1 << 30;
678
679 /* Make sure we didn't let the argument array grow too large. */
680 if (vma->vm_end - vma->vm_start > stack_base)
681 return -ENOMEM;
682
683 stack_base = PAGE_ALIGN(stack_top - stack_base);
684
685 stack_shift = vma->vm_start - stack_base;
686 mm->arg_start = bprm->p - stack_shift;
687 bprm->p = vma->vm_end - stack_shift;
688 #else
689 stack_top = arch_align_stack(stack_top);
690 stack_top = PAGE_ALIGN(stack_top);
691
692 if (unlikely(stack_top < mmap_min_addr) ||
693 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
694 return -ENOMEM;
695
696 stack_shift = vma->vm_end - stack_top;
697
698 bprm->p -= stack_shift;
699 mm->arg_start = bprm->p;
700 #endif
701
702 if (bprm->loader)
703 bprm->loader -= stack_shift;
704 bprm->exec -= stack_shift;
705
706 down_write(&mm->mmap_sem);
707 vm_flags = VM_STACK_FLAGS;
708
709 /*
710 * Adjust stack execute permissions; explicitly enable for
711 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
712 * (arch default) otherwise.
713 */
714 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
715 vm_flags |= VM_EXEC;
716 else if (executable_stack == EXSTACK_DISABLE_X)
717 vm_flags &= ~VM_EXEC;
718 vm_flags |= mm->def_flags;
719 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
720
721 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
722 vm_flags);
723 if (ret)
724 goto out_unlock;
725 BUG_ON(prev != vma);
726
727 /* Move stack pages down in memory. */
728 if (stack_shift) {
729 ret = shift_arg_pages(vma, stack_shift);
730 if (ret)
731 goto out_unlock;
732 }
733
734 /* mprotect_fixup is overkill to remove the temporary stack flags */
735 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
736
737 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
738 stack_size = vma->vm_end - vma->vm_start;
739 /*
740 * Align this down to a page boundary as expand_stack
741 * will align it up.
742 */
743 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
744 #ifdef CONFIG_STACK_GROWSUP
745 if (stack_size + stack_expand > rlim_stack)
746 stack_base = vma->vm_start + rlim_stack;
747 else
748 stack_base = vma->vm_end + stack_expand;
749 #else
750 if (stack_size + stack_expand > rlim_stack)
751 stack_base = vma->vm_end - rlim_stack;
752 else
753 stack_base = vma->vm_start - stack_expand;
754 #endif
755 current->mm->start_stack = bprm->p;
756 ret = expand_stack(vma, stack_base);
757 if (ret)
758 ret = -EFAULT;
759
760 out_unlock:
761 up_write(&mm->mmap_sem);
762 return ret;
763 }
764 EXPORT_SYMBOL(setup_arg_pages);
765
766 #endif /* CONFIG_MMU */
767
open_exec(const char * name)768 struct file *open_exec(const char *name)
769 {
770 struct file *file;
771 int err;
772 static const struct open_flags open_exec_flags = {
773 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
774 .acc_mode = MAY_EXEC | MAY_OPEN,
775 .intent = LOOKUP_OPEN
776 };
777
778 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
779 if (IS_ERR(file))
780 goto out;
781
782 err = -EACCES;
783 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
784 goto exit;
785
786 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
787 goto exit;
788
789 fsnotify_open(file);
790
791 err = deny_write_access(file);
792 if (err)
793 goto exit;
794
795 out:
796 return file;
797
798 exit:
799 fput(file);
800 return ERR_PTR(err);
801 }
802 EXPORT_SYMBOL(open_exec);
803
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)804 int kernel_read(struct file *file, loff_t offset,
805 char *addr, unsigned long count)
806 {
807 mm_segment_t old_fs;
808 loff_t pos = offset;
809 int result;
810
811 old_fs = get_fs();
812 set_fs(get_ds());
813 /* The cast to a user pointer is valid due to the set_fs() */
814 result = vfs_read(file, (void __user *)addr, count, &pos);
815 set_fs(old_fs);
816 return result;
817 }
818
819 EXPORT_SYMBOL(kernel_read);
820
exec_mmap(struct mm_struct * mm)821 static int exec_mmap(struct mm_struct *mm)
822 {
823 struct task_struct *tsk;
824 struct mm_struct * old_mm, *active_mm;
825
826 /* Notify parent that we're no longer interested in the old VM */
827 tsk = current;
828 old_mm = current->mm;
829 mm_release(tsk, old_mm);
830
831 if (old_mm) {
832 sync_mm_rss(old_mm);
833 /*
834 * Make sure that if there is a core dump in progress
835 * for the old mm, we get out and die instead of going
836 * through with the exec. We must hold mmap_sem around
837 * checking core_state and changing tsk->mm.
838 */
839 down_read(&old_mm->mmap_sem);
840 if (unlikely(old_mm->core_state)) {
841 up_read(&old_mm->mmap_sem);
842 return -EINTR;
843 }
844 }
845 task_lock(tsk);
846 active_mm = tsk->active_mm;
847 tsk->mm = mm;
848 tsk->active_mm = mm;
849 activate_mm(active_mm, mm);
850 task_unlock(tsk);
851 arch_pick_mmap_layout(mm);
852 if (old_mm) {
853 up_read(&old_mm->mmap_sem);
854 BUG_ON(active_mm != old_mm);
855 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
856 mm_update_next_owner(old_mm);
857 mmput(old_mm);
858 return 0;
859 }
860 mmdrop(active_mm);
861 return 0;
862 }
863
864 /*
865 * This function makes sure the current process has its own signal table,
866 * so that flush_signal_handlers can later reset the handlers without
867 * disturbing other processes. (Other processes might share the signal
868 * table via the CLONE_SIGHAND option to clone().)
869 */
de_thread(struct task_struct * tsk)870 static int de_thread(struct task_struct *tsk)
871 {
872 struct signal_struct *sig = tsk->signal;
873 struct sighand_struct *oldsighand = tsk->sighand;
874 spinlock_t *lock = &oldsighand->siglock;
875
876 if (thread_group_empty(tsk))
877 goto no_thread_group;
878
879 /*
880 * Kill all other threads in the thread group.
881 */
882 spin_lock_irq(lock);
883 if (signal_group_exit(sig)) {
884 /*
885 * Another group action in progress, just
886 * return so that the signal is processed.
887 */
888 spin_unlock_irq(lock);
889 return -EAGAIN;
890 }
891
892 sig->group_exit_task = tsk;
893 sig->notify_count = zap_other_threads(tsk);
894 if (!thread_group_leader(tsk))
895 sig->notify_count--;
896
897 while (sig->notify_count) {
898 __set_current_state(TASK_UNINTERRUPTIBLE);
899 spin_unlock_irq(lock);
900 schedule();
901 spin_lock_irq(lock);
902 }
903 spin_unlock_irq(lock);
904
905 /*
906 * At this point all other threads have exited, all we have to
907 * do is to wait for the thread group leader to become inactive,
908 * and to assume its PID:
909 */
910 if (!thread_group_leader(tsk)) {
911 struct task_struct *leader = tsk->group_leader;
912
913 sig->notify_count = -1; /* for exit_notify() */
914 for (;;) {
915 write_lock_irq(&tasklist_lock);
916 if (likely(leader->exit_state))
917 break;
918 __set_current_state(TASK_UNINTERRUPTIBLE);
919 write_unlock_irq(&tasklist_lock);
920 schedule();
921 }
922
923 /*
924 * The only record we have of the real-time age of a
925 * process, regardless of execs it's done, is start_time.
926 * All the past CPU time is accumulated in signal_struct
927 * from sister threads now dead. But in this non-leader
928 * exec, nothing survives from the original leader thread,
929 * whose birth marks the true age of this process now.
930 * When we take on its identity by switching to its PID, we
931 * also take its birthdate (always earlier than our own).
932 */
933 tsk->start_time = leader->start_time;
934
935 BUG_ON(!same_thread_group(leader, tsk));
936 BUG_ON(has_group_leader_pid(tsk));
937 /*
938 * An exec() starts a new thread group with the
939 * TGID of the previous thread group. Rehash the
940 * two threads with a switched PID, and release
941 * the former thread group leader:
942 */
943
944 /* Become a process group leader with the old leader's pid.
945 * The old leader becomes a thread of the this thread group.
946 * Note: The old leader also uses this pid until release_task
947 * is called. Odd but simple and correct.
948 */
949 detach_pid(tsk, PIDTYPE_PID);
950 tsk->pid = leader->pid;
951 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
952 transfer_pid(leader, tsk, PIDTYPE_PGID);
953 transfer_pid(leader, tsk, PIDTYPE_SID);
954
955 list_replace_rcu(&leader->tasks, &tsk->tasks);
956 list_replace_init(&leader->sibling, &tsk->sibling);
957
958 tsk->group_leader = tsk;
959 leader->group_leader = tsk;
960
961 tsk->exit_signal = SIGCHLD;
962 leader->exit_signal = -1;
963
964 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
965 leader->exit_state = EXIT_DEAD;
966
967 /*
968 * We are going to release_task()->ptrace_unlink() silently,
969 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
970 * the tracer wont't block again waiting for this thread.
971 */
972 if (unlikely(leader->ptrace))
973 __wake_up_parent(leader, leader->parent);
974 write_unlock_irq(&tasklist_lock);
975
976 release_task(leader);
977 }
978
979 sig->group_exit_task = NULL;
980 sig->notify_count = 0;
981
982 no_thread_group:
983 /* we have changed execution domain */
984 tsk->exit_signal = SIGCHLD;
985
986 exit_itimers(sig);
987 flush_itimer_signals();
988
989 if (atomic_read(&oldsighand->count) != 1) {
990 struct sighand_struct *newsighand;
991 /*
992 * This ->sighand is shared with the CLONE_SIGHAND
993 * but not CLONE_THREAD task, switch to the new one.
994 */
995 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996 if (!newsighand)
997 return -ENOMEM;
998
999 atomic_set(&newsighand->count, 1);
1000 memcpy(newsighand->action, oldsighand->action,
1001 sizeof(newsighand->action));
1002
1003 write_lock_irq(&tasklist_lock);
1004 spin_lock(&oldsighand->siglock);
1005 rcu_assign_pointer(tsk->sighand, newsighand);
1006 spin_unlock(&oldsighand->siglock);
1007 write_unlock_irq(&tasklist_lock);
1008
1009 __cleanup_sighand(oldsighand);
1010 }
1011
1012 BUG_ON(!thread_group_leader(tsk));
1013 return 0;
1014 }
1015
1016 /*
1017 * These functions flushes out all traces of the currently running executable
1018 * so that a new one can be started
1019 */
flush_old_files(struct files_struct * files)1020 static void flush_old_files(struct files_struct * files)
1021 {
1022 long j = -1;
1023 struct fdtable *fdt;
1024
1025 spin_lock(&files->file_lock);
1026 for (;;) {
1027 unsigned long set, i;
1028
1029 j++;
1030 i = j * BITS_PER_LONG;
1031 fdt = files_fdtable(files);
1032 if (i >= fdt->max_fds)
1033 break;
1034 set = fdt->close_on_exec[j];
1035 if (!set)
1036 continue;
1037 fdt->close_on_exec[j] = 0;
1038 spin_unlock(&files->file_lock);
1039 for ( ; set ; i++,set >>= 1) {
1040 if (set & 1) {
1041 sys_close(i);
1042 }
1043 }
1044 spin_lock(&files->file_lock);
1045
1046 }
1047 spin_unlock(&files->file_lock);
1048 }
1049
get_task_comm(char * buf,struct task_struct * tsk)1050 char *get_task_comm(char *buf, struct task_struct *tsk)
1051 {
1052 /* buf must be at least sizeof(tsk->comm) in size */
1053 task_lock(tsk);
1054 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1055 task_unlock(tsk);
1056 return buf;
1057 }
1058 EXPORT_SYMBOL_GPL(get_task_comm);
1059
set_task_comm(struct task_struct * tsk,char * buf)1060 void set_task_comm(struct task_struct *tsk, char *buf)
1061 {
1062 task_lock(tsk);
1063
1064 trace_task_rename(tsk, buf);
1065
1066 /*
1067 * Threads may access current->comm without holding
1068 * the task lock, so write the string carefully.
1069 * Readers without a lock may see incomplete new
1070 * names but are safe from non-terminating string reads.
1071 */
1072 memset(tsk->comm, 0, TASK_COMM_LEN);
1073 wmb();
1074 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1075 task_unlock(tsk);
1076 perf_event_comm(tsk);
1077 #ifdef CONFIG_QEMU_TRACE
1078 qemu_trace_thread_name(buf);
1079 #endif
1080 }
1081
filename_to_taskname(char * tcomm,const char * fn,unsigned int len)1082 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1083 {
1084 int i, ch;
1085
1086 /* Copies the binary name from after last slash */
1087 for (i = 0; (ch = *(fn++)) != '\0';) {
1088 if (ch == '/')
1089 i = 0; /* overwrite what we wrote */
1090 else
1091 if (i < len - 1)
1092 tcomm[i++] = ch;
1093 }
1094 tcomm[i] = '\0';
1095 }
1096
flush_old_exec(struct linux_binprm * bprm)1097 int flush_old_exec(struct linux_binprm * bprm)
1098 {
1099 int retval;
1100
1101 /*
1102 * Make sure we have a private signal table and that
1103 * we are unassociated from the previous thread group.
1104 */
1105 retval = de_thread(current);
1106 if (retval)
1107 goto out;
1108
1109 set_mm_exe_file(bprm->mm, bprm->file);
1110
1111 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1112 /*
1113 * Release all of the old mmap stuff
1114 */
1115 acct_arg_size(bprm, 0);
1116 retval = exec_mmap(bprm->mm);
1117 if (retval)
1118 goto out;
1119
1120 bprm->mm = NULL; /* We're using it now */
1121
1122 set_fs(USER_DS);
1123 current->flags &=
1124 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1125 flush_thread();
1126 current->personality &= ~bprm->per_clear;
1127
1128 return 0;
1129
1130 out:
1131 return retval;
1132 }
1133 EXPORT_SYMBOL(flush_old_exec);
1134
would_dump(struct linux_binprm * bprm,struct file * file)1135 void would_dump(struct linux_binprm *bprm, struct file *file)
1136 {
1137 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1138 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1139 }
1140 EXPORT_SYMBOL(would_dump);
1141
setup_new_exec(struct linux_binprm * bprm)1142 void setup_new_exec(struct linux_binprm * bprm)
1143 {
1144 arch_pick_mmap_layout(current->mm);
1145
1146 /* This is the point of no return */
1147 current->sas_ss_sp = current->sas_ss_size = 0;
1148
1149 if (current_euid() == current_uid() && current_egid() == current_gid())
1150 set_dumpable(current->mm, 1);
1151 else
1152 set_dumpable(current->mm, suid_dumpable);
1153
1154 set_task_comm(current, bprm->tcomm);
1155
1156 /* Set the new mm task size. We have to do that late because it may
1157 * depend on TIF_32BIT which is only updated in flush_thread() on
1158 * some architectures like powerpc
1159 */
1160 current->mm->task_size = TASK_SIZE;
1161
1162 /* install the new credentials */
1163 if (bprm->cred->uid != current_euid() ||
1164 bprm->cred->gid != current_egid()) {
1165 current->pdeath_signal = 0;
1166 } else {
1167 would_dump(bprm, bprm->file);
1168 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1169 set_dumpable(current->mm, suid_dumpable);
1170 }
1171
1172 /* An exec changes our domain. We are no longer part of the thread
1173 group */
1174
1175 current->self_exec_id++;
1176
1177 flush_signal_handlers(current, 0);
1178 flush_old_files(current->files);
1179 }
1180 EXPORT_SYMBOL(setup_new_exec);
1181
1182 /*
1183 * Prepare credentials and lock ->cred_guard_mutex.
1184 * install_exec_creds() commits the new creds and drops the lock.
1185 * Or, if exec fails before, free_bprm() should release ->cred and
1186 * and unlock.
1187 */
prepare_bprm_creds(struct linux_binprm * bprm)1188 int prepare_bprm_creds(struct linux_binprm *bprm)
1189 {
1190 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1191 return -ERESTARTNOINTR;
1192
1193 bprm->cred = prepare_exec_creds();
1194 if (likely(bprm->cred))
1195 return 0;
1196
1197 mutex_unlock(¤t->signal->cred_guard_mutex);
1198 return -ENOMEM;
1199 }
1200
free_bprm(struct linux_binprm * bprm)1201 void free_bprm(struct linux_binprm *bprm)
1202 {
1203 free_arg_pages(bprm);
1204 if (bprm->cred) {
1205 mutex_unlock(¤t->signal->cred_guard_mutex);
1206 abort_creds(bprm->cred);
1207 }
1208 /* If a binfmt changed the interp, free it. */
1209 if (bprm->interp != bprm->filename)
1210 kfree(bprm->interp);
1211 kfree(bprm);
1212 }
1213
bprm_change_interp(char * interp,struct linux_binprm * bprm)1214 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1215 {
1216 /* If a binfmt changed the interp, free it first. */
1217 if (bprm->interp != bprm->filename)
1218 kfree(bprm->interp);
1219 bprm->interp = kstrdup(interp, GFP_KERNEL);
1220 if (!bprm->interp)
1221 return -ENOMEM;
1222 return 0;
1223 }
1224 EXPORT_SYMBOL(bprm_change_interp);
1225
1226 /*
1227 * install the new credentials for this executable
1228 */
install_exec_creds(struct linux_binprm * bprm)1229 void install_exec_creds(struct linux_binprm *bprm)
1230 {
1231 security_bprm_committing_creds(bprm);
1232
1233 commit_creds(bprm->cred);
1234 bprm->cred = NULL;
1235
1236 /*
1237 * Disable monitoring for regular users
1238 * when executing setuid binaries. Must
1239 * wait until new credentials are committed
1240 * by commit_creds() above
1241 */
1242 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1243 perf_event_exit_task(current);
1244 /*
1245 * cred_guard_mutex must be held at least to this point to prevent
1246 * ptrace_attach() from altering our determination of the task's
1247 * credentials; any time after this it may be unlocked.
1248 */
1249 security_bprm_committed_creds(bprm);
1250 mutex_unlock(¤t->signal->cred_guard_mutex);
1251 }
1252 EXPORT_SYMBOL(install_exec_creds);
1253
1254 /*
1255 * determine how safe it is to execute the proposed program
1256 * - the caller must hold ->cred_guard_mutex to protect against
1257 * PTRACE_ATTACH or seccomp thread-sync
1258 */
check_unsafe_exec(struct linux_binprm * bprm)1259 static int check_unsafe_exec(struct linux_binprm *bprm)
1260 {
1261 struct task_struct *p = current, *t;
1262 unsigned n_fs;
1263 int res = 0;
1264
1265 if (p->ptrace) {
1266 if (p->ptrace & PT_PTRACE_CAP)
1267 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1268 else
1269 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1270 }
1271
1272 /*
1273 * This isn't strictly necessary, but it makes it harder for LSMs to
1274 * mess up.
1275 */
1276 if (task_no_new_privs(current))
1277 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1278
1279 n_fs = 1;
1280 spin_lock(&p->fs->lock);
1281 rcu_read_lock();
1282 for (t = next_thread(p); t != p; t = next_thread(t)) {
1283 if (t->fs == p->fs)
1284 n_fs++;
1285 }
1286 rcu_read_unlock();
1287
1288 if (p->fs->users > n_fs) {
1289 bprm->unsafe |= LSM_UNSAFE_SHARE;
1290 } else {
1291 res = -EAGAIN;
1292 if (!p->fs->in_exec) {
1293 p->fs->in_exec = 1;
1294 res = 1;
1295 }
1296 }
1297 spin_unlock(&p->fs->lock);
1298
1299 return res;
1300 }
1301
1302 /*
1303 * Fill the binprm structure from the inode.
1304 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1305 *
1306 * This may be called multiple times for binary chains (scripts for example).
1307 */
prepare_binprm(struct linux_binprm * bprm)1308 int prepare_binprm(struct linux_binprm *bprm)
1309 {
1310 umode_t mode;
1311 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1312 int retval;
1313
1314 mode = inode->i_mode;
1315 if (bprm->file->f_op == NULL)
1316 return -EACCES;
1317
1318 /* clear any previous set[ug]id data from a previous binary */
1319 bprm->cred->euid = current_euid();
1320 bprm->cred->egid = current_egid();
1321
1322 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1323 !task_no_new_privs(current)) {
1324 /* Set-uid? */
1325 if (mode & S_ISUID) {
1326 bprm->per_clear |= PER_CLEAR_ON_SETID;
1327 bprm->cred->euid = inode->i_uid;
1328 }
1329
1330 /* Set-gid? */
1331 /*
1332 * If setgid is set but no group execute bit then this
1333 * is a candidate for mandatory locking, not a setgid
1334 * executable.
1335 */
1336 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1337 bprm->per_clear |= PER_CLEAR_ON_SETID;
1338 bprm->cred->egid = inode->i_gid;
1339 }
1340 }
1341
1342 /* fill in binprm security blob */
1343 retval = security_bprm_set_creds(bprm);
1344 if (retval)
1345 return retval;
1346 bprm->cred_prepared = 1;
1347
1348 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1349 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1350 }
1351
1352 EXPORT_SYMBOL(prepare_binprm);
1353
1354 /*
1355 * Arguments are '\0' separated strings found at the location bprm->p
1356 * points to; chop off the first by relocating brpm->p to right after
1357 * the first '\0' encountered.
1358 */
remove_arg_zero(struct linux_binprm * bprm)1359 int remove_arg_zero(struct linux_binprm *bprm)
1360 {
1361 int ret = 0;
1362 unsigned long offset;
1363 char *kaddr;
1364 struct page *page;
1365
1366 if (!bprm->argc)
1367 return 0;
1368
1369 do {
1370 offset = bprm->p & ~PAGE_MASK;
1371 page = get_arg_page(bprm, bprm->p, 0);
1372 if (!page) {
1373 ret = -EFAULT;
1374 goto out;
1375 }
1376 kaddr = kmap_atomic(page);
1377
1378 for (; offset < PAGE_SIZE && kaddr[offset];
1379 offset++, bprm->p++)
1380 ;
1381
1382 kunmap_atomic(kaddr);
1383 put_arg_page(page);
1384
1385 if (offset == PAGE_SIZE)
1386 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1387 } while (offset == PAGE_SIZE);
1388
1389 bprm->p++;
1390 bprm->argc--;
1391 ret = 0;
1392
1393 out:
1394 return ret;
1395 }
1396 EXPORT_SYMBOL(remove_arg_zero);
1397
1398 /*
1399 * cycle the list of binary formats handler, until one recognizes the image
1400 */
search_binary_handler(struct linux_binprm * bprm,struct pt_regs * regs)1401 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1402 {
1403 unsigned int depth = bprm->recursion_depth;
1404 int try,retval;
1405 struct linux_binfmt *fmt;
1406 pid_t old_pid, old_vpid;
1407
1408 /* This allows 4 levels of binfmt rewrites before failing hard. */
1409 if (depth > 5)
1410 return -ELOOP;
1411
1412 retval = security_bprm_check(bprm);
1413 if (retval)
1414 return retval;
1415
1416 retval = audit_bprm(bprm);
1417 if (retval)
1418 return retval;
1419
1420 /* Need to fetch pid before load_binary changes it */
1421 old_pid = current->pid;
1422 rcu_read_lock();
1423 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1424 rcu_read_unlock();
1425
1426 retval = -ENOENT;
1427 for (try=0; try<2; try++) {
1428 read_lock(&binfmt_lock);
1429 list_for_each_entry(fmt, &formats, lh) {
1430 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1431 if (!fn)
1432 continue;
1433 if (!try_module_get(fmt->module))
1434 continue;
1435 read_unlock(&binfmt_lock);
1436 bprm->recursion_depth = depth + 1;
1437 retval = fn(bprm, regs);
1438 bprm->recursion_depth = depth;
1439 if (retval >= 0) {
1440 if (depth == 0) {
1441 trace_sched_process_exec(current, old_pid, bprm);
1442 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1443 }
1444 put_binfmt(fmt);
1445 allow_write_access(bprm->file);
1446 if (bprm->file)
1447 fput(bprm->file);
1448 bprm->file = NULL;
1449 current->did_exec = 1;
1450 proc_exec_connector(current);
1451 return retval;
1452 }
1453 read_lock(&binfmt_lock);
1454 put_binfmt(fmt);
1455 if (retval != -ENOEXEC || bprm->mm == NULL)
1456 break;
1457 if (!bprm->file) {
1458 read_unlock(&binfmt_lock);
1459 return retval;
1460 }
1461 }
1462 read_unlock(&binfmt_lock);
1463 #ifdef CONFIG_MODULES
1464 if (retval != -ENOEXEC || bprm->mm == NULL) {
1465 break;
1466 } else {
1467 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1468 if (printable(bprm->buf[0]) &&
1469 printable(bprm->buf[1]) &&
1470 printable(bprm->buf[2]) &&
1471 printable(bprm->buf[3]))
1472 break; /* -ENOEXEC */
1473 if (try)
1474 break; /* -ENOEXEC */
1475 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1476 }
1477 #else
1478 break;
1479 #endif
1480 }
1481 return retval;
1482 }
1483
1484 EXPORT_SYMBOL(search_binary_handler);
1485
1486 #ifdef CONFIG_QEMU_TRACE
1487 extern void qemu_trace_execve(int argc, const char __user *const __user * argv);
1488 #endif
1489
1490 /*
1491 * sys_execve() executes a new program.
1492 */
do_execve_common(const char * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,struct pt_regs * regs)1493 static int do_execve_common(const char *filename,
1494 struct user_arg_ptr argv,
1495 struct user_arg_ptr envp,
1496 struct pt_regs *regs)
1497 {
1498 struct linux_binprm *bprm;
1499 struct file *file;
1500 struct files_struct *displaced;
1501 bool clear_in_exec;
1502 int retval;
1503 const struct cred *cred = current_cred();
1504
1505 /*
1506 * We move the actual failure in case of RLIMIT_NPROC excess from
1507 * set*uid() to execve() because too many poorly written programs
1508 * don't check setuid() return code. Here we additionally recheck
1509 * whether NPROC limit is still exceeded.
1510 */
1511 if ((current->flags & PF_NPROC_EXCEEDED) &&
1512 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1513 retval = -EAGAIN;
1514 goto out_ret;
1515 }
1516
1517 /* We're below the limit (still or again), so we don't want to make
1518 * further execve() calls fail. */
1519 current->flags &= ~PF_NPROC_EXCEEDED;
1520
1521 retval = unshare_files(&displaced);
1522 if (retval)
1523 goto out_ret;
1524
1525 retval = -ENOMEM;
1526 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1527 if (!bprm)
1528 goto out_files;
1529
1530 retval = prepare_bprm_creds(bprm);
1531 if (retval)
1532 goto out_free;
1533
1534 retval = check_unsafe_exec(bprm);
1535 if (retval < 0)
1536 goto out_free;
1537 clear_in_exec = retval;
1538 current->in_execve = 1;
1539
1540 file = open_exec(filename);
1541 retval = PTR_ERR(file);
1542 if (IS_ERR(file))
1543 goto out_unmark;
1544
1545 sched_exec();
1546
1547 bprm->file = file;
1548 bprm->filename = filename;
1549 bprm->interp = filename;
1550
1551 retval = bprm_mm_init(bprm);
1552 if (retval)
1553 goto out_file;
1554
1555 bprm->argc = count(argv, MAX_ARG_STRINGS);
1556 if ((retval = bprm->argc) < 0)
1557 goto out;
1558
1559 bprm->envc = count(envp, MAX_ARG_STRINGS);
1560 if ((retval = bprm->envc) < 0)
1561 goto out;
1562
1563 retval = prepare_binprm(bprm);
1564 if (retval < 0)
1565 goto out;
1566
1567 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1568 if (retval < 0)
1569 goto out;
1570
1571 bprm->exec = bprm->p;
1572 retval = copy_strings(bprm->envc, envp, bprm);
1573 if (retval < 0)
1574 goto out;
1575
1576 retval = copy_strings(bprm->argc, argv, bprm);
1577 if (retval < 0)
1578 goto out;
1579
1580 #ifdef CONFIG_QEMU_TRACE
1581 qemu_trace_execve(bprm->argc, argv.ptr.native);
1582 #endif
1583
1584 retval = search_binary_handler(bprm,regs);
1585 if (retval < 0)
1586 goto out;
1587
1588 /* execve succeeded */
1589 current->fs->in_exec = 0;
1590 current->in_execve = 0;
1591 acct_update_integrals(current);
1592 free_bprm(bprm);
1593 if (displaced)
1594 put_files_struct(displaced);
1595 return retval;
1596
1597 out:
1598 if (bprm->mm) {
1599 acct_arg_size(bprm, 0);
1600 mmput(bprm->mm);
1601 }
1602
1603 out_file:
1604 if (bprm->file) {
1605 allow_write_access(bprm->file);
1606 fput(bprm->file);
1607 }
1608
1609 out_unmark:
1610 if (clear_in_exec)
1611 current->fs->in_exec = 0;
1612 current->in_execve = 0;
1613
1614 out_free:
1615 free_bprm(bprm);
1616
1617 out_files:
1618 if (displaced)
1619 reset_files_struct(displaced);
1620 out_ret:
1621 return retval;
1622 }
1623
do_execve(const char * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,struct pt_regs * regs)1624 int do_execve(const char *filename,
1625 const char __user *const __user *__argv,
1626 const char __user *const __user *__envp,
1627 struct pt_regs *regs)
1628 {
1629 struct user_arg_ptr argv = { .ptr.native = __argv };
1630 struct user_arg_ptr envp = { .ptr.native = __envp };
1631 return do_execve_common(filename, argv, envp, regs);
1632 }
1633
1634 #ifdef CONFIG_COMPAT
compat_do_execve(char * filename,compat_uptr_t __user * __argv,compat_uptr_t __user * __envp,struct pt_regs * regs)1635 int compat_do_execve(char *filename,
1636 compat_uptr_t __user *__argv,
1637 compat_uptr_t __user *__envp,
1638 struct pt_regs *regs)
1639 {
1640 struct user_arg_ptr argv = {
1641 .is_compat = true,
1642 .ptr.compat = __argv,
1643 };
1644 struct user_arg_ptr envp = {
1645 .is_compat = true,
1646 .ptr.compat = __envp,
1647 };
1648 return do_execve_common(filename, argv, envp, regs);
1649 }
1650 #endif
1651
set_binfmt(struct linux_binfmt * new)1652 void set_binfmt(struct linux_binfmt *new)
1653 {
1654 struct mm_struct *mm = current->mm;
1655
1656 if (mm->binfmt)
1657 module_put(mm->binfmt->module);
1658
1659 mm->binfmt = new;
1660 if (new)
1661 __module_get(new->module);
1662 }
1663
1664 EXPORT_SYMBOL(set_binfmt);
1665
expand_corename(struct core_name * cn)1666 static int expand_corename(struct core_name *cn)
1667 {
1668 char *old_corename = cn->corename;
1669
1670 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1671 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1672
1673 if (!cn->corename) {
1674 kfree(old_corename);
1675 return -ENOMEM;
1676 }
1677
1678 return 0;
1679 }
1680
cn_printf(struct core_name * cn,const char * fmt,...)1681 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1682 {
1683 char *cur;
1684 int need;
1685 int ret;
1686 va_list arg;
1687
1688 va_start(arg, fmt);
1689 need = vsnprintf(NULL, 0, fmt, arg);
1690 va_end(arg);
1691
1692 if (likely(need < cn->size - cn->used - 1))
1693 goto out_printf;
1694
1695 ret = expand_corename(cn);
1696 if (ret)
1697 goto expand_fail;
1698
1699 out_printf:
1700 cur = cn->corename + cn->used;
1701 va_start(arg, fmt);
1702 vsnprintf(cur, need + 1, fmt, arg);
1703 va_end(arg);
1704 cn->used += need;
1705 return 0;
1706
1707 expand_fail:
1708 return ret;
1709 }
1710
cn_escape(char * str)1711 static void cn_escape(char *str)
1712 {
1713 for (; *str; str++)
1714 if (*str == '/')
1715 *str = '!';
1716 }
1717
cn_print_exe_file(struct core_name * cn)1718 static int cn_print_exe_file(struct core_name *cn)
1719 {
1720 struct file *exe_file;
1721 char *pathbuf, *path;
1722 int ret;
1723
1724 exe_file = get_mm_exe_file(current->mm);
1725 if (!exe_file) {
1726 char *commstart = cn->corename + cn->used;
1727 ret = cn_printf(cn, "%s (path unknown)", current->comm);
1728 cn_escape(commstart);
1729 return ret;
1730 }
1731
1732 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1733 if (!pathbuf) {
1734 ret = -ENOMEM;
1735 goto put_exe_file;
1736 }
1737
1738 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1739 if (IS_ERR(path)) {
1740 ret = PTR_ERR(path);
1741 goto free_buf;
1742 }
1743
1744 cn_escape(path);
1745
1746 ret = cn_printf(cn, "%s", path);
1747
1748 free_buf:
1749 kfree(pathbuf);
1750 put_exe_file:
1751 fput(exe_file);
1752 return ret;
1753 }
1754
1755 /* format_corename will inspect the pattern parameter, and output a
1756 * name into corename, which must have space for at least
1757 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1758 */
format_corename(struct core_name * cn,long signr)1759 static int format_corename(struct core_name *cn, long signr)
1760 {
1761 const struct cred *cred = current_cred();
1762 const char *pat_ptr = core_pattern;
1763 int ispipe = (*pat_ptr == '|');
1764 int pid_in_pattern = 0;
1765 int err = 0;
1766
1767 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1768 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1769 cn->used = 0;
1770
1771 if (!cn->corename)
1772 return -ENOMEM;
1773
1774 /* Repeat as long as we have more pattern to process and more output
1775 space */
1776 while (*pat_ptr) {
1777 if (*pat_ptr != '%') {
1778 if (*pat_ptr == 0)
1779 goto out;
1780 err = cn_printf(cn, "%c", *pat_ptr++);
1781 } else {
1782 switch (*++pat_ptr) {
1783 /* single % at the end, drop that */
1784 case 0:
1785 goto out;
1786 /* Double percent, output one percent */
1787 case '%':
1788 err = cn_printf(cn, "%c", '%');
1789 break;
1790 /* pid */
1791 case 'p':
1792 pid_in_pattern = 1;
1793 err = cn_printf(cn, "%d",
1794 task_tgid_vnr(current));
1795 break;
1796 /* uid */
1797 case 'u':
1798 err = cn_printf(cn, "%d", cred->uid);
1799 break;
1800 /* gid */
1801 case 'g':
1802 err = cn_printf(cn, "%d", cred->gid);
1803 break;
1804 /* signal that caused the coredump */
1805 case 's':
1806 err = cn_printf(cn, "%ld", signr);
1807 break;
1808 /* UNIX time of coredump */
1809 case 't': {
1810 struct timeval tv;
1811 do_gettimeofday(&tv);
1812 err = cn_printf(cn, "%lu", tv.tv_sec);
1813 break;
1814 }
1815 /* hostname */
1816 case 'h': {
1817 char *namestart = cn->corename + cn->used;
1818 down_read(&uts_sem);
1819 err = cn_printf(cn, "%s",
1820 utsname()->nodename);
1821 up_read(&uts_sem);
1822 cn_escape(namestart);
1823 break;
1824 }
1825 /* executable */
1826 case 'e': {
1827 char *commstart = cn->corename + cn->used;
1828 err = cn_printf(cn, "%s", current->comm);
1829 cn_escape(commstart);
1830 break;
1831 }
1832 case 'E':
1833 err = cn_print_exe_file(cn);
1834 break;
1835 /* core limit size */
1836 case 'c':
1837 err = cn_printf(cn, "%lu",
1838 rlimit(RLIMIT_CORE));
1839 break;
1840 default:
1841 break;
1842 }
1843 ++pat_ptr;
1844 }
1845
1846 if (err)
1847 return err;
1848 }
1849
1850 /* Backward compatibility with core_uses_pid:
1851 *
1852 * If core_pattern does not include a %p (as is the default)
1853 * and core_uses_pid is set, then .%pid will be appended to
1854 * the filename. Do not do this for piped commands. */
1855 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1856 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1857 if (err)
1858 return err;
1859 }
1860 out:
1861 return ispipe;
1862 }
1863
zap_process(struct task_struct * start,int exit_code)1864 static int zap_process(struct task_struct *start, int exit_code)
1865 {
1866 struct task_struct *t;
1867 int nr = 0;
1868
1869 start->signal->flags = SIGNAL_GROUP_EXIT;
1870 start->signal->group_exit_code = exit_code;
1871 start->signal->group_stop_count = 0;
1872
1873 t = start;
1874 do {
1875 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1876 if (t != current && t->mm) {
1877 sigaddset(&t->pending.signal, SIGKILL);
1878 signal_wake_up(t, 1);
1879 nr++;
1880 }
1881 } while_each_thread(start, t);
1882
1883 return nr;
1884 }
1885
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)1886 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1887 struct core_state *core_state, int exit_code)
1888 {
1889 struct task_struct *g, *p;
1890 unsigned long flags;
1891 int nr = -EAGAIN;
1892
1893 spin_lock_irq(&tsk->sighand->siglock);
1894 if (!signal_group_exit(tsk->signal)) {
1895 mm->core_state = core_state;
1896 nr = zap_process(tsk, exit_code);
1897 }
1898 spin_unlock_irq(&tsk->sighand->siglock);
1899 if (unlikely(nr < 0))
1900 return nr;
1901
1902 if (atomic_read(&mm->mm_users) == nr + 1)
1903 goto done;
1904 /*
1905 * We should find and kill all tasks which use this mm, and we should
1906 * count them correctly into ->nr_threads. We don't take tasklist
1907 * lock, but this is safe wrt:
1908 *
1909 * fork:
1910 * None of sub-threads can fork after zap_process(leader). All
1911 * processes which were created before this point should be
1912 * visible to zap_threads() because copy_process() adds the new
1913 * process to the tail of init_task.tasks list, and lock/unlock
1914 * of ->siglock provides a memory barrier.
1915 *
1916 * do_exit:
1917 * The caller holds mm->mmap_sem. This means that the task which
1918 * uses this mm can't pass exit_mm(), so it can't exit or clear
1919 * its ->mm.
1920 *
1921 * de_thread:
1922 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1923 * we must see either old or new leader, this does not matter.
1924 * However, it can change p->sighand, so lock_task_sighand(p)
1925 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1926 * it can't fail.
1927 *
1928 * Note also that "g" can be the old leader with ->mm == NULL
1929 * and already unhashed and thus removed from ->thread_group.
1930 * This is OK, __unhash_process()->list_del_rcu() does not
1931 * clear the ->next pointer, we will find the new leader via
1932 * next_thread().
1933 */
1934 rcu_read_lock();
1935 for_each_process(g) {
1936 if (g == tsk->group_leader)
1937 continue;
1938 if (g->flags & PF_KTHREAD)
1939 continue;
1940 p = g;
1941 do {
1942 if (p->mm) {
1943 if (unlikely(p->mm == mm)) {
1944 lock_task_sighand(p, &flags);
1945 nr += zap_process(p, exit_code);
1946 unlock_task_sighand(p, &flags);
1947 }
1948 break;
1949 }
1950 } while_each_thread(g, p);
1951 }
1952 rcu_read_unlock();
1953 done:
1954 atomic_set(&core_state->nr_threads, nr);
1955 return nr;
1956 }
1957
coredump_wait(int exit_code,struct core_state * core_state)1958 static int coredump_wait(int exit_code, struct core_state *core_state)
1959 {
1960 struct task_struct *tsk = current;
1961 struct mm_struct *mm = tsk->mm;
1962 int core_waiters = -EBUSY;
1963
1964 init_completion(&core_state->startup);
1965 core_state->dumper.task = tsk;
1966 core_state->dumper.next = NULL;
1967
1968 down_write(&mm->mmap_sem);
1969 if (!mm->core_state)
1970 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1971 up_write(&mm->mmap_sem);
1972
1973 if (core_waiters > 0)
1974 wait_for_completion(&core_state->startup);
1975
1976 return core_waiters;
1977 }
1978
coredump_finish(struct mm_struct * mm)1979 static void coredump_finish(struct mm_struct *mm)
1980 {
1981 struct core_thread *curr, *next;
1982 struct task_struct *task;
1983
1984 next = mm->core_state->dumper.next;
1985 while ((curr = next) != NULL) {
1986 next = curr->next;
1987 task = curr->task;
1988 /*
1989 * see exit_mm(), curr->task must not see
1990 * ->task == NULL before we read ->next.
1991 */
1992 smp_mb();
1993 curr->task = NULL;
1994 wake_up_process(task);
1995 }
1996
1997 mm->core_state = NULL;
1998 }
1999
2000 /*
2001 * set_dumpable converts traditional three-value dumpable to two flags and
2002 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
2003 * these bits are not changed atomically. So get_dumpable can observe the
2004 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
2005 * return either old dumpable or new one by paying attention to the order of
2006 * modifying the bits.
2007 *
2008 * dumpable | mm->flags (binary)
2009 * old new | initial interim final
2010 * ---------+-----------------------
2011 * 0 1 | 00 01 01
2012 * 0 2 | 00 10(*) 11
2013 * 1 0 | 01 00 00
2014 * 1 2 | 01 11 11
2015 * 2 0 | 11 10(*) 00
2016 * 2 1 | 11 11 01
2017 *
2018 * (*) get_dumpable regards interim value of 10 as 11.
2019 */
set_dumpable(struct mm_struct * mm,int value)2020 void set_dumpable(struct mm_struct *mm, int value)
2021 {
2022 switch (value) {
2023 case 0:
2024 clear_bit(MMF_DUMPABLE, &mm->flags);
2025 smp_wmb();
2026 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2027 break;
2028 case 1:
2029 set_bit(MMF_DUMPABLE, &mm->flags);
2030 smp_wmb();
2031 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2032 break;
2033 case 2:
2034 set_bit(MMF_DUMP_SECURELY, &mm->flags);
2035 smp_wmb();
2036 set_bit(MMF_DUMPABLE, &mm->flags);
2037 break;
2038 }
2039 }
2040
__get_dumpable(unsigned long mm_flags)2041 static int __get_dumpable(unsigned long mm_flags)
2042 {
2043 int ret;
2044
2045 ret = mm_flags & MMF_DUMPABLE_MASK;
2046 return (ret >= 2) ? 2 : ret;
2047 }
2048
get_dumpable(struct mm_struct * mm)2049 int get_dumpable(struct mm_struct *mm)
2050 {
2051 return __get_dumpable(mm->flags);
2052 }
2053
wait_for_dump_helpers(struct file * file)2054 static void wait_for_dump_helpers(struct file *file)
2055 {
2056 struct pipe_inode_info *pipe;
2057
2058 pipe = file->f_path.dentry->d_inode->i_pipe;
2059
2060 pipe_lock(pipe);
2061 pipe->readers++;
2062 pipe->writers--;
2063
2064 while ((pipe->readers > 1) && (!signal_pending(current))) {
2065 wake_up_interruptible_sync(&pipe->wait);
2066 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2067 pipe_wait(pipe);
2068 }
2069
2070 pipe->readers--;
2071 pipe->writers++;
2072 pipe_unlock(pipe);
2073
2074 }
2075
2076
2077 /*
2078 * umh_pipe_setup
2079 * helper function to customize the process used
2080 * to collect the core in userspace. Specifically
2081 * it sets up a pipe and installs it as fd 0 (stdin)
2082 * for the process. Returns 0 on success, or
2083 * PTR_ERR on failure.
2084 * Note that it also sets the core limit to 1. This
2085 * is a special value that we use to trap recursive
2086 * core dumps
2087 */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)2088 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2089 {
2090 struct file *rp, *wp;
2091 struct fdtable *fdt;
2092 struct coredump_params *cp = (struct coredump_params *)info->data;
2093 struct files_struct *cf = current->files;
2094
2095 wp = create_write_pipe(0);
2096 if (IS_ERR(wp))
2097 return PTR_ERR(wp);
2098
2099 rp = create_read_pipe(wp, 0);
2100 if (IS_ERR(rp)) {
2101 free_write_pipe(wp);
2102 return PTR_ERR(rp);
2103 }
2104
2105 cp->file = wp;
2106
2107 sys_close(0);
2108 fd_install(0, rp);
2109 spin_lock(&cf->file_lock);
2110 fdt = files_fdtable(cf);
2111 __set_open_fd(0, fdt);
2112 __clear_close_on_exec(0, fdt);
2113 spin_unlock(&cf->file_lock);
2114
2115 /* and disallow core files too */
2116 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2117
2118 return 0;
2119 }
2120
do_coredump(long signr,int exit_code,struct pt_regs * regs)2121 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2122 {
2123 struct core_state core_state;
2124 struct core_name cn;
2125 struct mm_struct *mm = current->mm;
2126 struct linux_binfmt * binfmt;
2127 const struct cred *old_cred;
2128 struct cred *cred;
2129 int retval = 0;
2130 int flag = 0;
2131 int ispipe;
2132 static atomic_t core_dump_count = ATOMIC_INIT(0);
2133 struct coredump_params cprm = {
2134 .signr = signr,
2135 .regs = regs,
2136 .limit = rlimit(RLIMIT_CORE),
2137 /*
2138 * We must use the same mm->flags while dumping core to avoid
2139 * inconsistency of bit flags, since this flag is not protected
2140 * by any locks.
2141 */
2142 .mm_flags = mm->flags,
2143 };
2144
2145 audit_core_dumps(signr);
2146
2147 binfmt = mm->binfmt;
2148 if (!binfmt || !binfmt->core_dump)
2149 goto fail;
2150 if (!__get_dumpable(cprm.mm_flags))
2151 goto fail;
2152
2153 cred = prepare_creds();
2154 if (!cred)
2155 goto fail;
2156 /*
2157 * We cannot trust fsuid as being the "true" uid of the
2158 * process nor do we know its entire history. We only know it
2159 * was tainted so we dump it as root in mode 2.
2160 */
2161 if (__get_dumpable(cprm.mm_flags) == 2) {
2162 /* Setuid core dump mode */
2163 flag = O_EXCL; /* Stop rewrite attacks */
2164 cred->fsuid = 0; /* Dump root private */
2165 }
2166
2167 retval = coredump_wait(exit_code, &core_state);
2168 if (retval < 0)
2169 goto fail_creds;
2170
2171 old_cred = override_creds(cred);
2172
2173 /*
2174 * Clear any false indication of pending signals that might
2175 * be seen by the filesystem code called to write the core file.
2176 */
2177 clear_thread_flag(TIF_SIGPENDING);
2178
2179 ispipe = format_corename(&cn, signr);
2180
2181 if (ispipe) {
2182 int dump_count;
2183 char **helper_argv;
2184
2185 if (ispipe < 0) {
2186 printk(KERN_WARNING "format_corename failed\n");
2187 printk(KERN_WARNING "Aborting core\n");
2188 goto fail_corename;
2189 }
2190
2191 if (cprm.limit == 1) {
2192 /*
2193 * Normally core limits are irrelevant to pipes, since
2194 * we're not writing to the file system, but we use
2195 * cprm.limit of 1 here as a speacial value. Any
2196 * non-1 limit gets set to RLIM_INFINITY below, but
2197 * a limit of 0 skips the dump. This is a consistent
2198 * way to catch recursive crashes. We can still crash
2199 * if the core_pattern binary sets RLIM_CORE = !1
2200 * but it runs as root, and can do lots of stupid things
2201 * Note that we use task_tgid_vnr here to grab the pid
2202 * of the process group leader. That way we get the
2203 * right pid if a thread in a multi-threaded
2204 * core_pattern process dies.
2205 */
2206 printk(KERN_WARNING
2207 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2208 task_tgid_vnr(current), current->comm);
2209 printk(KERN_WARNING "Aborting core\n");
2210 goto fail_unlock;
2211 }
2212 cprm.limit = RLIM_INFINITY;
2213
2214 dump_count = atomic_inc_return(&core_dump_count);
2215 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2216 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2217 task_tgid_vnr(current), current->comm);
2218 printk(KERN_WARNING "Skipping core dump\n");
2219 goto fail_dropcount;
2220 }
2221
2222 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2223 if (!helper_argv) {
2224 printk(KERN_WARNING "%s failed to allocate memory\n",
2225 __func__);
2226 goto fail_dropcount;
2227 }
2228
2229 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2230 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2231 NULL, &cprm);
2232 argv_free(helper_argv);
2233 if (retval) {
2234 printk(KERN_INFO "Core dump to %s pipe failed\n",
2235 cn.corename);
2236 goto close_fail;
2237 }
2238 } else {
2239 struct inode *inode;
2240
2241 if (cprm.limit < binfmt->min_coredump)
2242 goto fail_unlock;
2243
2244 cprm.file = filp_open(cn.corename,
2245 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2246 0600);
2247 if (IS_ERR(cprm.file))
2248 goto fail_unlock;
2249
2250 inode = cprm.file->f_path.dentry->d_inode;
2251 if (inode->i_nlink > 1)
2252 goto close_fail;
2253 if (d_unhashed(cprm.file->f_path.dentry))
2254 goto close_fail;
2255 /*
2256 * AK: actually i see no reason to not allow this for named
2257 * pipes etc, but keep the previous behaviour for now.
2258 */
2259 if (!S_ISREG(inode->i_mode))
2260 goto close_fail;
2261 /*
2262 * Dont allow local users get cute and trick others to coredump
2263 * into their pre-created files.
2264 */
2265 if (inode->i_uid != current_fsuid())
2266 goto close_fail;
2267 if (!cprm.file->f_op || !cprm.file->f_op->write)
2268 goto close_fail;
2269 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2270 goto close_fail;
2271 }
2272
2273 retval = binfmt->core_dump(&cprm);
2274 if (retval)
2275 current->signal->group_exit_code |= 0x80;
2276
2277 if (ispipe && core_pipe_limit)
2278 wait_for_dump_helpers(cprm.file);
2279 close_fail:
2280 if (cprm.file)
2281 filp_close(cprm.file, NULL);
2282 fail_dropcount:
2283 if (ispipe)
2284 atomic_dec(&core_dump_count);
2285 fail_unlock:
2286 kfree(cn.corename);
2287 fail_corename:
2288 coredump_finish(mm);
2289 revert_creds(old_cred);
2290 fail_creds:
2291 put_cred(cred);
2292 fail:
2293 return;
2294 }
2295
2296 /*
2297 * Core dumping helper functions. These are the only things you should
2298 * do on a core-file: use only these functions to write out all the
2299 * necessary info.
2300 */
dump_write(struct file * file,const void * addr,int nr)2301 int dump_write(struct file *file, const void *addr, int nr)
2302 {
2303 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2304 }
2305 EXPORT_SYMBOL(dump_write);
2306
dump_seek(struct file * file,loff_t off)2307 int dump_seek(struct file *file, loff_t off)
2308 {
2309 int ret = 1;
2310
2311 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2312 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2313 return 0;
2314 } else {
2315 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2316
2317 if (!buf)
2318 return 0;
2319 while (off > 0) {
2320 unsigned long n = off;
2321
2322 if (n > PAGE_SIZE)
2323 n = PAGE_SIZE;
2324 if (!dump_write(file, buf, n)) {
2325 ret = 0;
2326 break;
2327 }
2328 off -= n;
2329 }
2330 free_page((unsigned long)buf);
2331 }
2332 return ret;
2333 }
2334 EXPORT_SYMBOL(dump_seek);
2335