• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  *****************************************************************************/
63 /*
64  * Please use this file (iwl-commands.h) only for uCode API definitions.
65  * Please use iwl-xxxx-hw.h for hardware-related definitions.
66  * Please use iwl-dev.h for driver implementation definitions.
67  */
68 
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71 
72 #include <linux/ieee80211.h>
73 #include <linux/types.h>
74 
75 
76 enum {
77 	REPLY_ALIVE = 0x1,
78 	REPLY_ERROR = 0x2,
79 	REPLY_ECHO = 0x3,		/* test command */
80 
81 	/* RXON and QOS commands */
82 	REPLY_RXON = 0x10,
83 	REPLY_RXON_ASSOC = 0x11,
84 	REPLY_QOS_PARAM = 0x13,
85 	REPLY_RXON_TIMING = 0x14,
86 
87 	/* Multi-Station support */
88 	REPLY_ADD_STA = 0x18,
89 	REPLY_REMOVE_STA = 0x19,
90 	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
91 	REPLY_TXFIFO_FLUSH = 0x1e,
92 
93 	/* Security */
94 	REPLY_WEPKEY = 0x20,
95 
96 	/* RX, TX, LEDs */
97 	REPLY_TX = 0x1c,
98 	REPLY_LEDS_CMD = 0x48,
99 	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100 
101 	/* WiMAX coexistence */
102 	COEX_PRIORITY_TABLE_CMD = 0x5a,
103 	COEX_MEDIUM_NOTIFICATION = 0x5b,
104 	COEX_EVENT_CMD = 0x5c,
105 
106 	/* Calibration */
107 	TEMPERATURE_NOTIFICATION = 0x62,
108 	CALIBRATION_CFG_CMD = 0x65,
109 	CALIBRATION_RES_NOTIFICATION = 0x66,
110 	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111 
112 	/* 802.11h related */
113 	REPLY_QUIET_CMD = 0x71,		/* not used */
114 	REPLY_CHANNEL_SWITCH = 0x72,
115 	CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118 
119 	/* Power Management */
120 	POWER_TABLE_CMD = 0x77,
121 	PM_SLEEP_NOTIFICATION = 0x7A,
122 	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123 
124 	/* Scan commands and notifications */
125 	REPLY_SCAN_CMD = 0x80,
126 	REPLY_SCAN_ABORT_CMD = 0x81,
127 	SCAN_START_NOTIFICATION = 0x82,
128 	SCAN_RESULTS_NOTIFICATION = 0x83,
129 	SCAN_COMPLETE_NOTIFICATION = 0x84,
130 
131 	/* IBSS/AP commands */
132 	BEACON_NOTIFICATION = 0x90,
133 	REPLY_TX_BEACON = 0x91,
134 	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
135 
136 	/* Miscellaneous commands */
137 	REPLY_TX_POWER_DBM_CMD = 0x95,
138 	QUIET_NOTIFICATION = 0x96,		/* not used */
139 	REPLY_TX_PWR_TABLE_CMD = 0x97,
140 	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
141 	TX_ANT_CONFIGURATION_CMD = 0x98,
142 	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
143 
144 	/* Bluetooth device coexistence config command */
145 	REPLY_BT_CONFIG = 0x9b,
146 
147 	/* Statistics */
148 	REPLY_STATISTICS_CMD = 0x9c,
149 	STATISTICS_NOTIFICATION = 0x9d,
150 
151 	/* RF-KILL commands and notifications */
152 	REPLY_CARD_STATE_CMD = 0xa0,
153 	CARD_STATE_NOTIFICATION = 0xa1,
154 
155 	/* Missed beacons notification */
156 	MISSED_BEACONS_NOTIFICATION = 0xa2,
157 
158 	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 	SENSITIVITY_CMD = 0xa8,
160 	REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 	REPLY_RX_PHY_CMD = 0xc0,
162 	REPLY_RX_MPDU_CMD = 0xc1,
163 	REPLY_RX = 0xc3,
164 	REPLY_COMPRESSED_BA = 0xc5,
165 
166 	/* BT Coex */
167 	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 	REPLY_BT_COEX_PROT_ENV = 0xcd,
169 	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170 
171 	/* PAN commands */
172 	REPLY_WIPAN_PARAMS = 0xb2,
173 	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
174 	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
175 	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
176 	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
177 	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
178 	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181 
182 	REPLY_WOWLAN_PATTERNS = 0xe0,
183 	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 	REPLY_WOWLAN_GET_STATUS = 0xe5,
188 	REPLY_D3_CONFIG = 0xd3,
189 
190 	REPLY_MAX = 0xff
191 };
192 
193 /******************************************************************************
194  * (0)
195  * Commonly used structures and definitions:
196  * Command header, rate_n_flags, txpower
197  *
198  *****************************************************************************/
199 
200 /* iwl_cmd_header flags value */
201 #define IWL_CMD_FAILED_MSK 0x40
202 
203 /**
204  * iwlagn rate_n_flags bit fields
205  *
206  * rate_n_flags format is used in following iwlagn commands:
207  *  REPLY_RX (response only)
208  *  REPLY_RX_MPDU (response only)
209  *  REPLY_TX (both command and response)
210  *  REPLY_TX_LINK_QUALITY_CMD
211  *
212  * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
213  *  2-0:  0)   6 Mbps
214  *        1)  12 Mbps
215  *        2)  18 Mbps
216  *        3)  24 Mbps
217  *        4)  36 Mbps
218  *        5)  48 Mbps
219  *        6)  54 Mbps
220  *        7)  60 Mbps
221  *
222  *  4-3:  0)  Single stream (SISO)
223  *        1)  Dual stream (MIMO)
224  *        2)  Triple stream (MIMO)
225  *
226  *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
227  *
228  * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
229  *  3-0:  0xD)   6 Mbps
230  *        0xF)   9 Mbps
231  *        0x5)  12 Mbps
232  *        0x7)  18 Mbps
233  *        0x9)  24 Mbps
234  *        0xB)  36 Mbps
235  *        0x1)  48 Mbps
236  *        0x3)  54 Mbps
237  *
238  * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
239  *  6-0:   10)  1 Mbps
240  *         20)  2 Mbps
241  *         55)  5.5 Mbps
242  *        110)  11 Mbps
243  */
244 #define RATE_MCS_CODE_MSK 0x7
245 #define RATE_MCS_SPATIAL_POS 3
246 #define RATE_MCS_SPATIAL_MSK 0x18
247 #define RATE_MCS_HT_DUP_POS 5
248 #define RATE_MCS_HT_DUP_MSK 0x20
249 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
250 #define RATE_MCS_RATE_MSK 0xff
251 
252 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
253 #define RATE_MCS_FLAGS_POS 8
254 #define RATE_MCS_HT_POS 8
255 #define RATE_MCS_HT_MSK 0x100
256 
257 /* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
258 #define RATE_MCS_CCK_POS 9
259 #define RATE_MCS_CCK_MSK 0x200
260 
261 /* Bit 10: (1) Use Green Field preamble */
262 #define RATE_MCS_GF_POS 10
263 #define RATE_MCS_GF_MSK 0x400
264 
265 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
266 #define RATE_MCS_HT40_POS 11
267 #define RATE_MCS_HT40_MSK 0x800
268 
269 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
270 #define RATE_MCS_DUP_POS 12
271 #define RATE_MCS_DUP_MSK 0x1000
272 
273 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
274 #define RATE_MCS_SGI_POS 13
275 #define RATE_MCS_SGI_MSK 0x2000
276 
277 /**
278  * rate_n_flags Tx antenna masks
279  * 4965 has 2 transmitters
280  * 5100 has 1 transmitter B
281  * 5150 has 1 transmitter A
282  * 5300 has 3 transmitters
283  * 5350 has 3 transmitters
284  * bit14:16
285  */
286 #define RATE_MCS_ANT_POS	14
287 #define RATE_MCS_ANT_A_MSK	0x04000
288 #define RATE_MCS_ANT_B_MSK	0x08000
289 #define RATE_MCS_ANT_C_MSK	0x10000
290 #define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
291 #define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
292 #define RATE_ANT_NUM 3
293 
294 #define POWER_TABLE_NUM_ENTRIES			33
295 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
296 #define POWER_TABLE_CCK_ENTRY			32
297 
298 #define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
299 #define IWL_PWR_CCK_ENTRIES			2
300 
301 /**
302  * struct tx_power_dual_stream
303  *
304  * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
305  *
306  * Same format as iwl_tx_power_dual_stream, but __le32
307  */
308 struct tx_power_dual_stream {
309 	__le32 dw;
310 } __packed;
311 
312 /**
313  * Command REPLY_TX_POWER_DBM_CMD = 0x98
314  * struct iwlagn_tx_power_dbm_cmd
315  */
316 #define IWLAGN_TX_POWER_AUTO 0x7f
317 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
318 
319 struct iwlagn_tx_power_dbm_cmd {
320 	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
321 	u8 flags;
322 	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
323 	u8 reserved;
324 } __packed;
325 
326 /**
327  * Command TX_ANT_CONFIGURATION_CMD = 0x98
328  * This command is used to configure valid Tx antenna.
329  * By default uCode concludes the valid antenna according to the radio flavor.
330  * This command enables the driver to override/modify this conclusion.
331  */
332 struct iwl_tx_ant_config_cmd {
333 	__le32 valid;
334 } __packed;
335 
336 /******************************************************************************
337  * (0a)
338  * Alive and Error Commands & Responses:
339  *
340  *****************************************************************************/
341 
342 #define UCODE_VALID_OK	cpu_to_le32(0x1)
343 
344 /**
345  * REPLY_ALIVE = 0x1 (response only, not a command)
346  *
347  * uCode issues this "alive" notification once the runtime image is ready
348  * to receive commands from the driver.  This is the *second* "alive"
349  * notification that the driver will receive after rebooting uCode;
350  * this "alive" is indicated by subtype field != 9.
351  *
352  * See comments documenting "BSM" (bootstrap state machine).
353  *
354  * This response includes two pointers to structures within the device's
355  * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
356  *
357  * 1)  log_event_table_ptr indicates base of the event log.  This traces
358  *     a 256-entry history of uCode execution within a circular buffer.
359  *     Its header format is:
360  *
361  *	__le32 log_size;     log capacity (in number of entries)
362  *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
363  *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
364  *      __le32 write_index;  next circular buffer entry that uCode would fill
365  *
366  *     The header is followed by the circular buffer of log entries.  Entries
367  *     with timestamps have the following format:
368  *
369  *	__le32 event_id;     range 0 - 1500
370  *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
371  *	__le32 data;         event_id-specific data value
372  *
373  *     Entries without timestamps contain only event_id and data.
374  *
375  *
376  * 2)  error_event_table_ptr indicates base of the error log.  This contains
377  *     information about any uCode error that occurs.  For agn, the format
378  *     of the error log is defined by struct iwl_error_event_table.
379  *
380  * The Linux driver can print both logs to the system log when a uCode error
381  * occurs.
382  */
383 
384 /*
385  * Note: This structure is read from the device with IO accesses,
386  * and the reading already does the endian conversion. As it is
387  * read with u32-sized accesses, any members with a different size
388  * need to be ordered correctly though!
389  */
390 struct iwl_error_event_table {
391 	u32 valid;		/* (nonzero) valid, (0) log is empty */
392 	u32 error_id;		/* type of error */
393 	u32 pc;			/* program counter */
394 	u32 blink1;		/* branch link */
395 	u32 blink2;		/* branch link */
396 	u32 ilink1;		/* interrupt link */
397 	u32 ilink2;		/* interrupt link */
398 	u32 data1;		/* error-specific data */
399 	u32 data2;		/* error-specific data */
400 	u32 line;		/* source code line of error */
401 	u32 bcon_time;		/* beacon timer */
402 	u32 tsf_low;		/* network timestamp function timer */
403 	u32 tsf_hi;		/* network timestamp function timer */
404 	u32 gp1;		/* GP1 timer register */
405 	u32 gp2;		/* GP2 timer register */
406 	u32 gp3;		/* GP3 timer register */
407 	u32 ucode_ver;		/* uCode version */
408 	u32 hw_ver;		/* HW Silicon version */
409 	u32 brd_ver;		/* HW board version */
410 	u32 log_pc;		/* log program counter */
411 	u32 frame_ptr;		/* frame pointer */
412 	u32 stack_ptr;		/* stack pointer */
413 	u32 hcmd;		/* last host command header */
414 	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
415 				 * rxtx_flag */
416 	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
417 				 * host_flag */
418 	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
419 				 * enc_flag */
420 	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
421 				 * time_flag */
422 	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
423 				 * wico interrupt */
424 	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
425 	u32 wait_event;		/* wait event() caller address */
426 	u32 l2p_control;	/* L2pControlField */
427 	u32 l2p_duration;	/* L2pDurationField */
428 	u32 l2p_mhvalid;	/* L2pMhValidBits */
429 	u32 l2p_addr_match;	/* L2pAddrMatchStat */
430 	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
431 				 * (LMPM_PMG_SEL) */
432 	u32 u_timestamp;	/* indicate when the date and time of the
433 				 * compilation */
434 	u32 flow_handler;	/* FH read/write pointers, RX credit */
435 } __packed;
436 
437 struct iwl_alive_resp {
438 	u8 ucode_minor;
439 	u8 ucode_major;
440 	__le16 reserved1;
441 	u8 sw_rev[8];
442 	u8 ver_type;
443 	u8 ver_subtype;			/* not "9" for runtime alive */
444 	__le16 reserved2;
445 	__le32 log_event_table_ptr;	/* SRAM address for event log */
446 	__le32 error_event_table_ptr;	/* SRAM address for error log */
447 	__le32 timestamp;
448 	__le32 is_valid;
449 } __packed;
450 
451 /*
452  * REPLY_ERROR = 0x2 (response only, not a command)
453  */
454 struct iwl_error_resp {
455 	__le32 error_type;
456 	u8 cmd_id;
457 	u8 reserved1;
458 	__le16 bad_cmd_seq_num;
459 	__le32 error_info;
460 	__le64 timestamp;
461 } __packed;
462 
463 /******************************************************************************
464  * (1)
465  * RXON Commands & Responses:
466  *
467  *****************************************************************************/
468 
469 /*
470  * Rx config defines & structure
471  */
472 /* rx_config device types  */
473 enum {
474 	RXON_DEV_TYPE_AP = 1,
475 	RXON_DEV_TYPE_ESS = 3,
476 	RXON_DEV_TYPE_IBSS = 4,
477 	RXON_DEV_TYPE_SNIFFER = 6,
478 	RXON_DEV_TYPE_CP = 7,
479 	RXON_DEV_TYPE_2STA = 8,
480 	RXON_DEV_TYPE_P2P = 9,
481 };
482 
483 
484 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
485 #define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
486 #define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
487 #define RXON_RX_CHAIN_VALID_POS			(1)
488 #define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
489 #define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
490 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
491 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
492 #define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
493 #define RXON_RX_CHAIN_CNT_POS			(10)
494 #define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
495 #define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
496 #define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
497 #define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
498 
499 /* rx_config flags */
500 /* band & modulation selection */
501 #define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
502 #define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
503 /* auto detection enable */
504 #define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
505 /* TGg protection when tx */
506 #define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
507 /* cck short slot & preamble */
508 #define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
509 #define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
510 /* antenna selection */
511 #define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
512 #define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
513 #define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
514 #define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
515 /* radar detection enable */
516 #define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
517 #define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
518 /* rx response to host with 8-byte TSF
519 * (according to ON_AIR deassertion) */
520 #define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
521 
522 
523 /* HT flags */
524 #define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
525 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
526 
527 #define RXON_FLG_HT_OPERATING_MODE_POS		(23)
528 
529 #define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
530 #define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
531 
532 #define RXON_FLG_CHANNEL_MODE_POS		(25)
533 #define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
534 
535 /* channel mode */
536 enum {
537 	CHANNEL_MODE_LEGACY = 0,
538 	CHANNEL_MODE_PURE_40 = 1,
539 	CHANNEL_MODE_MIXED = 2,
540 	CHANNEL_MODE_RESERVED = 3,
541 };
542 #define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
543 #define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
544 #define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
545 
546 /* CTS to self (if spec allows) flag */
547 #define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
548 
549 /* rx_config filter flags */
550 /* accept all data frames */
551 #define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
552 /* pass control & management to host */
553 #define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
554 /* accept multi-cast */
555 #define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
556 /* don't decrypt uni-cast frames */
557 #define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
558 /* don't decrypt multi-cast frames */
559 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
560 /* STA is associated */
561 #define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
562 /* transfer to host non bssid beacons in associated state */
563 #define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
564 
565 /**
566  * REPLY_RXON = 0x10 (command, has simple generic response)
567  *
568  * RXON tunes the radio tuner to a service channel, and sets up a number
569  * of parameters that are used primarily for Rx, but also for Tx operations.
570  *
571  * NOTE:  When tuning to a new channel, driver must set the
572  *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
573  *        info within the device, including the station tables, tx retry
574  *        rate tables, and txpower tables.  Driver must build a new station
575  *        table and txpower table before transmitting anything on the RXON
576  *        channel.
577  *
578  * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
579  *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
580  *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
581  */
582 
583 struct iwl_rxon_cmd {
584 	u8 node_addr[6];
585 	__le16 reserved1;
586 	u8 bssid_addr[6];
587 	__le16 reserved2;
588 	u8 wlap_bssid_addr[6];
589 	__le16 reserved3;
590 	u8 dev_type;
591 	u8 air_propagation;
592 	__le16 rx_chain;
593 	u8 ofdm_basic_rates;
594 	u8 cck_basic_rates;
595 	__le16 assoc_id;
596 	__le32 flags;
597 	__le32 filter_flags;
598 	__le16 channel;
599 	u8 ofdm_ht_single_stream_basic_rates;
600 	u8 ofdm_ht_dual_stream_basic_rates;
601 	u8 ofdm_ht_triple_stream_basic_rates;
602 	u8 reserved5;
603 	__le16 acquisition_data;
604 	__le16 reserved6;
605 } __packed;
606 
607 /*
608  * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
609  */
610 struct iwl_rxon_assoc_cmd {
611 	__le32 flags;
612 	__le32 filter_flags;
613 	u8 ofdm_basic_rates;
614 	u8 cck_basic_rates;
615 	__le16 reserved1;
616 	u8 ofdm_ht_single_stream_basic_rates;
617 	u8 ofdm_ht_dual_stream_basic_rates;
618 	u8 ofdm_ht_triple_stream_basic_rates;
619 	u8 reserved2;
620 	__le16 rx_chain_select_flags;
621 	__le16 acquisition_data;
622 	__le32 reserved3;
623 } __packed;
624 
625 #define IWL_CONN_MAX_LISTEN_INTERVAL	10
626 #define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
627 
628 /*
629  * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
630  */
631 struct iwl_rxon_time_cmd {
632 	__le64 timestamp;
633 	__le16 beacon_interval;
634 	__le16 atim_window;
635 	__le32 beacon_init_val;
636 	__le16 listen_interval;
637 	u8 dtim_period;
638 	u8 delta_cp_bss_tbtts;
639 } __packed;
640 
641 /*
642  * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
643  */
644 /**
645  * struct iwl5000_channel_switch_cmd
646  * @band: 0- 5.2GHz, 1- 2.4GHz
647  * @expect_beacon: 0- resume transmits after channel switch
648  *		   1- wait for beacon to resume transmits
649  * @channel: new channel number
650  * @rxon_flags: Rx on flags
651  * @rxon_filter_flags: filtering parameters
652  * @switch_time: switch time in extended beacon format
653  * @reserved: reserved bytes
654  */
655 struct iwl5000_channel_switch_cmd {
656 	u8 band;
657 	u8 expect_beacon;
658 	__le16 channel;
659 	__le32 rxon_flags;
660 	__le32 rxon_filter_flags;
661 	__le32 switch_time;
662 	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
663 } __packed;
664 
665 /**
666  * struct iwl6000_channel_switch_cmd
667  * @band: 0- 5.2GHz, 1- 2.4GHz
668  * @expect_beacon: 0- resume transmits after channel switch
669  *		   1- wait for beacon to resume transmits
670  * @channel: new channel number
671  * @rxon_flags: Rx on flags
672  * @rxon_filter_flags: filtering parameters
673  * @switch_time: switch time in extended beacon format
674  * @reserved: reserved bytes
675  */
676 struct iwl6000_channel_switch_cmd {
677 	u8 band;
678 	u8 expect_beacon;
679 	__le16 channel;
680 	__le32 rxon_flags;
681 	__le32 rxon_filter_flags;
682 	__le32 switch_time;
683 	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
684 } __packed;
685 
686 /*
687  * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
688  */
689 struct iwl_csa_notification {
690 	__le16 band;
691 	__le16 channel;
692 	__le32 status;		/* 0 - OK, 1 - fail */
693 } __packed;
694 
695 /******************************************************************************
696  * (2)
697  * Quality-of-Service (QOS) Commands & Responses:
698  *
699  *****************************************************************************/
700 
701 /**
702  * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
703  * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
704  *
705  * @cw_min: Contention window, start value in numbers of slots.
706  *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
707  * @cw_max: Contention window, max value in numbers of slots.
708  *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
709  * @aifsn:  Number of slots in Arbitration Interframe Space (before
710  *          performing random backoff timing prior to Tx).  Device default 1.
711  * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
712  *
713  * Device will automatically increase contention window by (2*CW) + 1 for each
714  * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
715  * value, to cap the CW value.
716  */
717 struct iwl_ac_qos {
718 	__le16 cw_min;
719 	__le16 cw_max;
720 	u8 aifsn;
721 	u8 reserved1;
722 	__le16 edca_txop;
723 } __packed;
724 
725 /* QoS flags defines */
726 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
727 #define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
728 #define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
729 
730 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
731 #define AC_NUM                4
732 
733 /*
734  * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
735  *
736  * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
737  * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
738  */
739 struct iwl_qosparam_cmd {
740 	__le32 qos_flags;
741 	struct iwl_ac_qos ac[AC_NUM];
742 } __packed;
743 
744 /******************************************************************************
745  * (3)
746  * Add/Modify Stations Commands & Responses:
747  *
748  *****************************************************************************/
749 /*
750  * Multi station support
751  */
752 
753 /* Special, dedicated locations within device's station table */
754 #define	IWL_AP_ID		0
755 #define	IWL_AP_ID_PAN		1
756 #define	IWL_STA_ID		2
757 #define IWLAGN_PAN_BCAST_ID	14
758 #define IWLAGN_BROADCAST_ID	15
759 #define	IWLAGN_STATION_COUNT	16
760 
761 #define	IWL_INVALID_STATION 	255
762 #define IWL_MAX_TID_COUNT	8
763 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
764 
765 #define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
766 #define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
767 #define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
768 #define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
769 #define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
770 #define STA_FLG_MAX_AGG_SIZE_POS	(19)
771 #define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
772 #define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
773 #define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
774 #define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
775 #define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
776 
777 /* Use in mode field.  1: modify existing entry, 0: add new station entry */
778 #define STA_CONTROL_MODIFY_MSK		0x01
779 
780 /* key flags __le16*/
781 #define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
782 #define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
783 #define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
784 #define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
785 #define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
786 
787 #define STA_KEY_FLG_KEYID_POS	8
788 #define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
789 /* wep key is either from global key (0) or from station info array (1) */
790 #define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
791 
792 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
793 #define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
794 #define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
795 #define STA_KEY_MAX_NUM		8
796 #define STA_KEY_MAX_NUM_PAN	16
797 /* must not match WEP_INVALID_OFFSET */
798 #define IWLAGN_HW_KEY_DEFAULT	0xfe
799 
800 /* Flags indicate whether to modify vs. don't change various station params */
801 #define	STA_MODIFY_KEY_MASK		0x01
802 #define	STA_MODIFY_TID_DISABLE_TX	0x02
803 #define	STA_MODIFY_TX_RATE_MSK		0x04
804 #define STA_MODIFY_ADDBA_TID_MSK	0x08
805 #define STA_MODIFY_DELBA_TID_MSK	0x10
806 #define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
807 
808 /* Receiver address (actually, Rx station's index into station table),
809  * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
810 #define BUILD_RAxTID(sta_id, tid)	(((sta_id) << 4) + (tid))
811 
812 /* agn */
813 struct iwl_keyinfo {
814 	__le16 key_flags;
815 	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
816 	u8 reserved1;
817 	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
818 	u8 key_offset;
819 	u8 reserved2;
820 	u8 key[16];		/* 16-byte unicast decryption key */
821 	__le64 tx_secur_seq_cnt;
822 	__le64 hw_tkip_mic_rx_key;
823 	__le64 hw_tkip_mic_tx_key;
824 } __packed;
825 
826 /**
827  * struct sta_id_modify
828  * @addr[ETH_ALEN]: station's MAC address
829  * @sta_id: index of station in uCode's station table
830  * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
831  *
832  * Driver selects unused table index when adding new station,
833  * or the index to a pre-existing station entry when modifying that station.
834  * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
835  *
836  * modify_mask flags select which parameters to modify vs. leave alone.
837  */
838 struct sta_id_modify {
839 	u8 addr[ETH_ALEN];
840 	__le16 reserved1;
841 	u8 sta_id;
842 	u8 modify_mask;
843 	__le16 reserved2;
844 } __packed;
845 
846 /*
847  * REPLY_ADD_STA = 0x18 (command)
848  *
849  * The device contains an internal table of per-station information,
850  * with info on security keys, aggregation parameters, and Tx rates for
851  * initial Tx attempt and any retries (agn devices uses
852  * REPLY_TX_LINK_QUALITY_CMD,
853  *
854  * REPLY_ADD_STA sets up the table entry for one station, either creating
855  * a new entry, or modifying a pre-existing one.
856  *
857  * NOTE:  RXON command (without "associated" bit set) wipes the station table
858  *        clean.  Moving into RF_KILL state does this also.  Driver must set up
859  *        new station table before transmitting anything on the RXON channel
860  *        (except active scans or active measurements; those commands carry
861  *        their own txpower/rate setup data).
862  *
863  *        When getting started on a new channel, driver must set up the
864  *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
865  *        station in a BSS, once an AP is selected, driver sets up the AP STA
866  *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
867  *        are all that are needed for a BSS client station.  If the device is
868  *        used as AP, or in an IBSS network, driver must set up station table
869  *        entries for all STAs in network, starting with index IWL_STA_ID.
870  */
871 
872 struct iwl_addsta_cmd {
873 	u8 mode;		/* 1: modify existing, 0: add new station */
874 	u8 reserved[3];
875 	struct sta_id_modify sta;
876 	struct iwl_keyinfo key;
877 	__le32 station_flags;		/* STA_FLG_* */
878 	__le32 station_flags_msk;	/* STA_FLG_* */
879 
880 	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
881 	 * corresponding to bit (e.g. bit 5 controls TID 5).
882 	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
883 	__le16 tid_disable_tx;
884 	__le16 legacy_reserved;
885 
886 	/* TID for which to add block-ack support.
887 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
888 	u8 add_immediate_ba_tid;
889 
890 	/* TID for which to remove block-ack support.
891 	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
892 	u8 remove_immediate_ba_tid;
893 
894 	/* Starting Sequence Number for added block-ack support.
895 	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
896 	__le16 add_immediate_ba_ssn;
897 
898 	/*
899 	 * Number of packets OK to transmit to station even though
900 	 * it is asleep -- used to synchronise PS-poll and u-APSD
901 	 * responses while ucode keeps track of STA sleep state.
902 	 */
903 	__le16 sleep_tx_count;
904 
905 	__le16 reserved2;
906 } __packed;
907 
908 
909 #define ADD_STA_SUCCESS_MSK		0x1
910 #define ADD_STA_NO_ROOM_IN_TABLE	0x2
911 #define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
912 #define ADD_STA_MODIFY_NON_EXIST_STA	0x8
913 /*
914  * REPLY_ADD_STA = 0x18 (response)
915  */
916 struct iwl_add_sta_resp {
917 	u8 status;	/* ADD_STA_* */
918 } __packed;
919 
920 #define REM_STA_SUCCESS_MSK              0x1
921 /*
922  *  REPLY_REM_STA = 0x19 (response)
923  */
924 struct iwl_rem_sta_resp {
925 	u8 status;
926 } __packed;
927 
928 /*
929  *  REPLY_REM_STA = 0x19 (command)
930  */
931 struct iwl_rem_sta_cmd {
932 	u8 num_sta;     /* number of removed stations */
933 	u8 reserved[3];
934 	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
935 	u8 reserved2[2];
936 } __packed;
937 
938 
939 /* WiFi queues mask */
940 #define IWL_SCD_BK_MSK			cpu_to_le32(BIT(0))
941 #define IWL_SCD_BE_MSK			cpu_to_le32(BIT(1))
942 #define IWL_SCD_VI_MSK			cpu_to_le32(BIT(2))
943 #define IWL_SCD_VO_MSK			cpu_to_le32(BIT(3))
944 #define IWL_SCD_MGMT_MSK		cpu_to_le32(BIT(3))
945 
946 /* PAN queues mask */
947 #define IWL_PAN_SCD_BK_MSK		cpu_to_le32(BIT(4))
948 #define IWL_PAN_SCD_BE_MSK		cpu_to_le32(BIT(5))
949 #define IWL_PAN_SCD_VI_MSK		cpu_to_le32(BIT(6))
950 #define IWL_PAN_SCD_VO_MSK		cpu_to_le32(BIT(7))
951 #define IWL_PAN_SCD_MGMT_MSK		cpu_to_le32(BIT(7))
952 #define IWL_PAN_SCD_MULTICAST_MSK	cpu_to_le32(BIT(8))
953 
954 #define IWL_AGG_TX_QUEUE_MSK		cpu_to_le32(0xffc00)
955 
956 #define IWL_DROP_SINGLE		0
957 #define IWL_DROP_ALL		(BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
958 
959 /*
960  * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
961  *
962  * When using full FIFO flush this command checks the scheduler HW block WR/RD
963  * pointers to check if all the frames were transferred by DMA into the
964  * relevant TX FIFO queue. Only when the DMA is finished and the queue is
965  * empty the command can finish.
966  * This command is used to flush the TXFIFO from transmit commands, it may
967  * operate on single or multiple queues, the command queue can't be flushed by
968  * this command. The command response is returned when all the queue flush
969  * operations are done. Each TX command flushed return response with the FLUSH
970  * status set in the TX response status. When FIFO flush operation is used,
971  * the flush operation ends when both the scheduler DMA done and TXFIFO empty
972  * are set.
973  *
974  * @fifo_control: bit mask for which queues to flush
975  * @flush_control: flush controls
976  *	0: Dump single MSDU
977  *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
978  *	2: Dump all FIFO
979  */
980 struct iwl_txfifo_flush_cmd {
981 	__le32 fifo_control;
982 	__le16 flush_control;
983 	__le16 reserved;
984 } __packed;
985 
986 /*
987  * REPLY_WEP_KEY = 0x20
988  */
989 struct iwl_wep_key {
990 	u8 key_index;
991 	u8 key_offset;
992 	u8 reserved1[2];
993 	u8 key_size;
994 	u8 reserved2[3];
995 	u8 key[16];
996 } __packed;
997 
998 struct iwl_wep_cmd {
999 	u8 num_keys;
1000 	u8 global_key_type;
1001 	u8 flags;
1002 	u8 reserved;
1003 	struct iwl_wep_key key[0];
1004 } __packed;
1005 
1006 #define WEP_KEY_WEP_TYPE 1
1007 #define WEP_KEYS_MAX 4
1008 #define WEP_INVALID_OFFSET 0xff
1009 #define WEP_KEY_LEN_64 5
1010 #define WEP_KEY_LEN_128 13
1011 
1012 /******************************************************************************
1013  * (4)
1014  * Rx Responses:
1015  *
1016  *****************************************************************************/
1017 
1018 #define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1019 #define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1020 
1021 #define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1022 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1023 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1024 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1025 #define RX_RES_PHY_FLAGS_ANTENNA_MSK		0xf0
1026 #define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1027 
1028 #define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1029 #define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1030 #define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1031 #define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1032 #define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1033 #define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1034 
1035 #define RX_RES_STATUS_STATION_FOUND	(1<<6)
1036 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1037 
1038 #define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1039 #define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1040 #define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1041 #define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1042 #define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1043 
1044 #define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1045 #define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1046 #define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1047 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1048 
1049 
1050 #define IWLAGN_RX_RES_PHY_CNT 8
1051 #define IWLAGN_RX_RES_AGC_IDX     1
1052 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1053 #define IWLAGN_RX_RES_RSSI_C_IDX  3
1054 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1055 #define IWLAGN_OFDM_AGC_BIT_POS 9
1056 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1057 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1058 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1059 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1060 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1061 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1062 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1063 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1064 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1065 
1066 struct iwlagn_non_cfg_phy {
1067 	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1068 } __packed;
1069 
1070 
1071 /*
1072  * REPLY_RX = 0xc3 (response only, not a command)
1073  * Used only for legacy (non 11n) frames.
1074  */
1075 struct iwl_rx_phy_res {
1076 	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1077 	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1078 	u8 stat_id;		/* configurable DSP phy data set ID */
1079 	u8 reserved1;
1080 	__le64 timestamp;	/* TSF at on air rise */
1081 	__le32 beacon_time_stamp; /* beacon at on-air rise */
1082 	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1083 	__le16 channel;		/* channel number */
1084 	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1085 	__le32 rate_n_flags;	/* RATE_MCS_* */
1086 	__le16 byte_count;	/* frame's byte-count */
1087 	__le16 frame_time;	/* frame's time on the air */
1088 } __packed;
1089 
1090 struct iwl_rx_mpdu_res_start {
1091 	__le16 byte_count;
1092 	__le16 reserved;
1093 } __packed;
1094 
1095 
1096 /******************************************************************************
1097  * (5)
1098  * Tx Commands & Responses:
1099  *
1100  * Driver must place each REPLY_TX command into one of the prioritized Tx
1101  * queues in host DRAM, shared between driver and device (see comments for
1102  * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1103  * are preparing to transmit, the device pulls the Tx command over the PCI
1104  * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1105  * from which data will be transmitted.
1106  *
1107  * uCode handles all timing and protocol related to control frames
1108  * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1109  * handle reception of block-acks; uCode updates the host driver via
1110  * REPLY_COMPRESSED_BA.
1111  *
1112  * uCode handles retrying Tx when an ACK is expected but not received.
1113  * This includes trying lower data rates than the one requested in the Tx
1114  * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1115  *
1116  * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1117  * This command must be executed after every RXON command, before Tx can occur.
1118  *****************************************************************************/
1119 
1120 /* REPLY_TX Tx flags field */
1121 
1122 /*
1123  * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1124  * before this frame. if CTS-to-self required check
1125  * RXON_FLG_SELF_CTS_EN status.
1126  */
1127 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1128 
1129 /* 1: Expect ACK from receiving station
1130  * 0: Don't expect ACK (MAC header's duration field s/b 0)
1131  * Set this for unicast frames, but not broadcast/multicast. */
1132 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1133 
1134 /* For agn devices:
1135  * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1136  *    Tx command's initial_rate_index indicates first rate to try;
1137  *    uCode walks through table for additional Tx attempts.
1138  * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1139  *    This rate will be used for all Tx attempts; it will not be scaled. */
1140 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1141 
1142 /* 1: Expect immediate block-ack.
1143  * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1144 #define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1145 
1146 /* Tx antenna selection field; reserved (0) for agn devices. */
1147 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1148 
1149 /* 1: Ignore Bluetooth priority for this frame.
1150  * 0: Delay Tx until Bluetooth device is done (normal usage). */
1151 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1152 
1153 /* 1: uCode overrides sequence control field in MAC header.
1154  * 0: Driver provides sequence control field in MAC header.
1155  * Set this for management frames, non-QOS data frames, non-unicast frames,
1156  * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1157 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1158 
1159 /* 1: This frame is non-last MPDU; more fragments are coming.
1160  * 0: Last fragment, or not using fragmentation. */
1161 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1162 
1163 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1164  * 0: No TSF required in outgoing frame.
1165  * Set this for transmitting beacons and probe responses. */
1166 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1167 
1168 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1169  *    alignment of frame's payload data field.
1170  * 0: No pad
1171  * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1172  * field (but not both).  Driver must align frame data (i.e. data following
1173  * MAC header) to DWORD boundary. */
1174 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1175 
1176 /* accelerate aggregation support
1177  * 0 - no CCMP encryption; 1 - CCMP encryption */
1178 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1179 
1180 /* HCCA-AP - disable duration overwriting. */
1181 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1182 
1183 
1184 /*
1185  * TX command security control
1186  */
1187 #define TX_CMD_SEC_WEP  	0x01
1188 #define TX_CMD_SEC_CCM  	0x02
1189 #define TX_CMD_SEC_TKIP		0x03
1190 #define TX_CMD_SEC_MSK		0x03
1191 #define TX_CMD_SEC_SHIFT	6
1192 #define TX_CMD_SEC_KEY128	0x08
1193 
1194 /*
1195  * security overhead sizes
1196  */
1197 #define WEP_IV_LEN 4
1198 #define WEP_ICV_LEN 4
1199 #define CCMP_MIC_LEN 8
1200 #define TKIP_ICV_LEN 4
1201 
1202 /*
1203  * REPLY_TX = 0x1c (command)
1204  */
1205 
1206 /*
1207  * 4965 uCode updates these Tx attempt count values in host DRAM.
1208  * Used for managing Tx retries when expecting block-acks.
1209  * Driver should set these fields to 0.
1210  */
1211 struct iwl_dram_scratch {
1212 	u8 try_cnt;		/* Tx attempts */
1213 	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1214 	__le16 reserved;
1215 } __packed;
1216 
1217 struct iwl_tx_cmd {
1218 	/*
1219 	 * MPDU byte count:
1220 	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1221 	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1222 	 * + Data payload
1223 	 * + 8-byte MIC (not used for CCM/WEP)
1224 	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1225 	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1226 	 * Range: 14-2342 bytes.
1227 	 */
1228 	__le16 len;
1229 
1230 	/*
1231 	 * MPDU or MSDU byte count for next frame.
1232 	 * Used for fragmentation and bursting, but not 11n aggregation.
1233 	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1234 	 */
1235 	__le16 next_frame_len;
1236 
1237 	__le32 tx_flags;	/* TX_CMD_FLG_* */
1238 
1239 	/* uCode may modify this field of the Tx command (in host DRAM!).
1240 	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1241 	struct iwl_dram_scratch scratch;
1242 
1243 	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1244 	__le32 rate_n_flags;	/* RATE_MCS_* */
1245 
1246 	/* Index of destination station in uCode's station table */
1247 	u8 sta_id;
1248 
1249 	/* Type of security encryption:  CCM or TKIP */
1250 	u8 sec_ctl;		/* TX_CMD_SEC_* */
1251 
1252 	/*
1253 	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1254 	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1255 	 * data frames, this field may be used to selectively reduce initial
1256 	 * rate (via non-0 value) for special frames (e.g. management), while
1257 	 * still supporting rate scaling for all frames.
1258 	 */
1259 	u8 initial_rate_index;
1260 	u8 reserved;
1261 	u8 key[16];
1262 	__le16 next_frame_flags;
1263 	__le16 reserved2;
1264 	union {
1265 		__le32 life_time;
1266 		__le32 attempt;
1267 	} stop_time;
1268 
1269 	/* Host DRAM physical address pointer to "scratch" in this command.
1270 	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1271 	__le32 dram_lsb_ptr;
1272 	u8 dram_msb_ptr;
1273 
1274 	u8 rts_retry_limit;	/*byte 50 */
1275 	u8 data_retry_limit;	/*byte 51 */
1276 	u8 tid_tspec;
1277 	union {
1278 		__le16 pm_frame_timeout;
1279 		__le16 attempt_duration;
1280 	} timeout;
1281 
1282 	/*
1283 	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1284 	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1285 	 */
1286 	__le16 driver_txop;
1287 
1288 	/*
1289 	 * MAC header goes here, followed by 2 bytes padding if MAC header
1290 	 * length is 26 or 30 bytes, followed by payload data
1291 	 */
1292 	u8 payload[0];
1293 	struct ieee80211_hdr hdr[0];
1294 } __packed;
1295 
1296 /*
1297  * TX command response is sent after *agn* transmission attempts.
1298  *
1299  * both postpone and abort status are expected behavior from uCode. there is
1300  * no special operation required from driver; except for RFKILL_FLUSH,
1301  * which required tx flush host command to flush all the tx frames in queues
1302  */
1303 enum {
1304 	TX_STATUS_SUCCESS = 0x01,
1305 	TX_STATUS_DIRECT_DONE = 0x02,
1306 	/* postpone TX */
1307 	TX_STATUS_POSTPONE_DELAY = 0x40,
1308 	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1309 	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1310 	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1311 	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1312 	/* abort TX */
1313 	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1314 	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1315 	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1316 	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1317 	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1318 	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1319 	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1320 	TX_STATUS_FAIL_DEST_PS = 0x88,
1321 	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1322 	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1323 	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1324 	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1325 	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1326 	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1327 	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1328 	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1329 	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1330 };
1331 
1332 #define	TX_PACKET_MODE_REGULAR		0x0000
1333 #define	TX_PACKET_MODE_BURST_SEQ	0x0100
1334 #define	TX_PACKET_MODE_BURST_FIRST	0x0200
1335 
1336 enum {
1337 	TX_POWER_PA_NOT_ACTIVE = 0x0,
1338 };
1339 
1340 enum {
1341 	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1342 	TX_STATUS_DELAY_MSK = 0x00000040,
1343 	TX_STATUS_ABORT_MSK = 0x00000080,
1344 	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1345 	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1346 	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1347 	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1348 	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1349 };
1350 
1351 /* *******************************
1352  * TX aggregation status
1353  ******************************* */
1354 
1355 enum {
1356 	AGG_TX_STATE_TRANSMITTED = 0x00,
1357 	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1358 	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1359 	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1360 	AGG_TX_STATE_ABORT_MSK = 0x08,
1361 	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1362 	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1363 	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1364 	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1365 	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1366 	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1367 	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1368 	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1369 };
1370 
1371 #define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1372 #define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1373 
1374 #define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1375 				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1376 				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1377 
1378 /* # tx attempts for first frame in aggregation */
1379 #define AGG_TX_STATE_TRY_CNT_POS 12
1380 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1381 
1382 /* Command ID and sequence number of Tx command for this frame */
1383 #define AGG_TX_STATE_SEQ_NUM_POS 16
1384 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1385 
1386 /*
1387  * REPLY_TX = 0x1c (response)
1388  *
1389  * This response may be in one of two slightly different formats, indicated
1390  * by the frame_count field:
1391  *
1392  * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1393  *     a single frame.  Multiple attempts, at various bit rates, may have
1394  *     been made for this frame.
1395  *
1396  * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1397  *     2 or more frames that used block-acknowledge.  All frames were
1398  *     transmitted at same rate.  Rate scaling may have been used if first
1399  *     frame in this new agg block failed in previous agg block(s).
1400  *
1401  *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1402  *     block-ack has not been received by the time the agn device records
1403  *     this status.
1404  *     This status relates to reasons the tx might have been blocked or aborted
1405  *     within the sending station (this agn device), rather than whether it was
1406  *     received successfully by the destination station.
1407  */
1408 struct agg_tx_status {
1409 	__le16 status;
1410 	__le16 sequence;
1411 } __packed;
1412 
1413 /*
1414  * definitions for initial rate index field
1415  * bits [3:0] initial rate index
1416  * bits [6:4] rate table color, used for the initial rate
1417  * bit-7 invalid rate indication
1418  *   i.e. rate was not chosen from rate table
1419  *   or rate table color was changed during frame retries
1420  * refer tlc rate info
1421  */
1422 
1423 #define IWL50_TX_RES_INIT_RATE_INDEX_POS	0
1424 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK	0x0f
1425 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS	4
1426 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK	0x70
1427 #define IWL50_TX_RES_INV_RATE_INDEX_MSK	0x80
1428 
1429 /* refer to ra_tid */
1430 #define IWLAGN_TX_RES_TID_POS	0
1431 #define IWLAGN_TX_RES_TID_MSK	0x0f
1432 #define IWLAGN_TX_RES_RA_POS	4
1433 #define IWLAGN_TX_RES_RA_MSK	0xf0
1434 
1435 struct iwlagn_tx_resp {
1436 	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1437 	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1438 	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1439 	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1440 
1441 	/* For non-agg:  Rate at which frame was successful.
1442 	 * For agg:  Rate at which all frames were transmitted. */
1443 	__le32 rate_n_flags;	/* RATE_MCS_*  */
1444 
1445 	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1446 	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1447 	__le16 wireless_media_time;	/* uSecs */
1448 
1449 	u8 pa_status;		/* RF power amplifier measurement (not used) */
1450 	u8 pa_integ_res_a[3];
1451 	u8 pa_integ_res_b[3];
1452 	u8 pa_integ_res_C[3];
1453 
1454 	__le32 tfd_info;
1455 	__le16 seq_ctl;
1456 	__le16 byte_cnt;
1457 	u8 tlc_info;
1458 	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1459 	__le16 frame_ctrl;
1460 	/*
1461 	 * For non-agg:  frame status TX_STATUS_*
1462 	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1463 	 *           fields follow this one, up to frame_count.
1464 	 *           Bit fields:
1465 	 *           11- 0:  AGG_TX_STATE_* status code
1466 	 *           15-12:  Retry count for 1st frame in aggregation (retries
1467 	 *                   occur if tx failed for this frame when it was a
1468 	 *                   member of a previous aggregation block).  If rate
1469 	 *                   scaling is used, retry count indicates the rate
1470 	 *                   table entry used for all frames in the new agg.
1471 	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1472 	 */
1473 	struct agg_tx_status status;	/* TX status (in aggregation -
1474 					 * status of 1st frame) */
1475 } __packed;
1476 /*
1477  * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1478  *
1479  * Reports Block-Acknowledge from recipient station
1480  */
1481 struct iwl_compressed_ba_resp {
1482 	__le32 sta_addr_lo32;
1483 	__le16 sta_addr_hi16;
1484 	__le16 reserved;
1485 
1486 	/* Index of recipient (BA-sending) station in uCode's station table */
1487 	u8 sta_id;
1488 	u8 tid;
1489 	__le16 seq_ctl;
1490 	__le64 bitmap;
1491 	__le16 scd_flow;
1492 	__le16 scd_ssn;
1493 	u8 txed;	/* number of frames sent */
1494 	u8 txed_2_done; /* number of frames acked */
1495 } __packed;
1496 
1497 /*
1498  * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1499  *
1500  */
1501 
1502 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1503 #define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1504 
1505 /* # of EDCA prioritized tx fifos */
1506 #define  LINK_QUAL_AC_NUM AC_NUM
1507 
1508 /* # entries in rate scale table to support Tx retries */
1509 #define  LINK_QUAL_MAX_RETRY_NUM 16
1510 
1511 /* Tx antenna selection values */
1512 #define  LINK_QUAL_ANT_A_MSK (1 << 0)
1513 #define  LINK_QUAL_ANT_B_MSK (1 << 1)
1514 #define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1515 
1516 
1517 /**
1518  * struct iwl_link_qual_general_params
1519  *
1520  * Used in REPLY_TX_LINK_QUALITY_CMD
1521  */
1522 struct iwl_link_qual_general_params {
1523 	u8 flags;
1524 
1525 	/* No entries at or above this (driver chosen) index contain MIMO */
1526 	u8 mimo_delimiter;
1527 
1528 	/* Best single antenna to use for single stream (legacy, SISO). */
1529 	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1530 
1531 	/* Best antennas to use for MIMO (unused for 4965, assumes both). */
1532 	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1533 
1534 	/*
1535 	 * If driver needs to use different initial rates for different
1536 	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1537 	 * this table will set that up, by indicating the indexes in the
1538 	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1539 	 * Otherwise, driver should set all entries to 0.
1540 	 *
1541 	 * Entry usage:
1542 	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1543 	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1544 	 */
1545 	u8 start_rate_index[LINK_QUAL_AC_NUM];
1546 } __packed;
1547 
1548 #define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1549 #define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1550 #define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1551 
1552 #define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1553 #define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1554 #define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1555 
1556 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1557 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1558 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1559 
1560 /**
1561  * struct iwl_link_qual_agg_params
1562  *
1563  * Used in REPLY_TX_LINK_QUALITY_CMD
1564  */
1565 struct iwl_link_qual_agg_params {
1566 
1567 	/*
1568 	 *Maximum number of uSec in aggregation.
1569 	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1570 	 */
1571 	__le16 agg_time_limit;
1572 
1573 	/*
1574 	 * Number of Tx retries allowed for a frame, before that frame will
1575 	 * no longer be considered for the start of an aggregation sequence
1576 	 * (scheduler will then try to tx it as single frame).
1577 	 * Driver should set this to 3.
1578 	 */
1579 	u8 agg_dis_start_th;
1580 
1581 	/*
1582 	 * Maximum number of frames in aggregation.
1583 	 * 0 = no limit (default).  1 = no aggregation.
1584 	 * Other values = max # frames in aggregation.
1585 	 */
1586 	u8 agg_frame_cnt_limit;
1587 
1588 	__le32 reserved;
1589 } __packed;
1590 
1591 /*
1592  * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1593  *
1594  * For agn devices
1595  *
1596  * Each station in the agn device's internal station table has its own table
1597  * of 16
1598  * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1599  * an ACK is not received.  This command replaces the entire table for
1600  * one station.
1601  *
1602  * NOTE:  Station must already be in agn device's station table.
1603  *	  Use REPLY_ADD_STA.
1604  *
1605  * The rate scaling procedures described below work well.  Of course, other
1606  * procedures are possible, and may work better for particular environments.
1607  *
1608  *
1609  * FILLING THE RATE TABLE
1610  *
1611  * Given a particular initial rate and mode, as determined by the rate
1612  * scaling algorithm described below, the Linux driver uses the following
1613  * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1614  * Link Quality command:
1615  *
1616  *
1617  * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1618  *     a) Use this same initial rate for first 3 entries.
1619  *     b) Find next lower available rate using same mode (SISO or MIMO),
1620  *        use for next 3 entries.  If no lower rate available, switch to
1621  *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1622  *     c) If using MIMO, set command's mimo_delimiter to number of entries
1623  *        using MIMO (3 or 6).
1624  *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1625  *        no MIMO, no short guard interval), at the next lower bit rate
1626  *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1627  *        legacy procedure for remaining table entries.
1628  *
1629  * 2)  If using legacy initial rate:
1630  *     a) Use the initial rate for only one entry.
1631  *     b) For each following entry, reduce the rate to next lower available
1632  *        rate, until reaching the lowest available rate.
1633  *     c) When reducing rate, also switch antenna selection.
1634  *     d) Once lowest available rate is reached, repeat this rate until
1635  *        rate table is filled (16 entries), switching antenna each entry.
1636  *
1637  *
1638  * ACCUMULATING HISTORY
1639  *
1640  * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1641  * uses two sets of frame Tx success history:  One for the current/active
1642  * modulation mode, and one for a speculative/search mode that is being
1643  * attempted. If the speculative mode turns out to be more effective (i.e.
1644  * actual transfer rate is better), then the driver continues to use the
1645  * speculative mode as the new current active mode.
1646  *
1647  * Each history set contains, separately for each possible rate, data for a
1648  * sliding window of the 62 most recent tx attempts at that rate.  The data
1649  * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1650  * and attempted frames, from which the driver can additionally calculate a
1651  * success ratio (success / attempted) and number of failures
1652  * (attempted - success), and control the size of the window (attempted).
1653  * The driver uses the bit map to remove successes from the success sum, as
1654  * the oldest tx attempts fall out of the window.
1655  *
1656  * When the agn device makes multiple tx attempts for a given frame, each
1657  * attempt might be at a different rate, and have different modulation
1658  * characteristics (e.g. antenna, fat channel, short guard interval), as set
1659  * up in the rate scaling table in the Link Quality command.  The driver must
1660  * determine which rate table entry was used for each tx attempt, to determine
1661  * which rate-specific history to update, and record only those attempts that
1662  * match the modulation characteristics of the history set.
1663  *
1664  * When using block-ack (aggregation), all frames are transmitted at the same
1665  * rate, since there is no per-attempt acknowledgment from the destination
1666  * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1667  * rate_n_flags field.  After receiving a block-ack, the driver can update
1668  * history for the entire block all at once.
1669  *
1670  *
1671  * FINDING BEST STARTING RATE:
1672  *
1673  * When working with a selected initial modulation mode (see below), the
1674  * driver attempts to find a best initial rate.  The initial rate is the
1675  * first entry in the Link Quality command's rate table.
1676  *
1677  * 1)  Calculate actual throughput (success ratio * expected throughput, see
1678  *     table below) for current initial rate.  Do this only if enough frames
1679  *     have been attempted to make the value meaningful:  at least 6 failed
1680  *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1681  *     scaling yet.
1682  *
1683  * 2)  Find available rates adjacent to current initial rate.  Available means:
1684  *     a)  supported by hardware &&
1685  *     b)  supported by association &&
1686  *     c)  within any constraints selected by user
1687  *
1688  * 3)  Gather measured throughputs for adjacent rates.  These might not have
1689  *     enough history to calculate a throughput.  That's okay, we might try
1690  *     using one of them anyway!
1691  *
1692  * 4)  Try decreasing rate if, for current rate:
1693  *     a)  success ratio is < 15% ||
1694  *     b)  lower adjacent rate has better measured throughput ||
1695  *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1696  *
1697  *     As a sanity check, if decrease was determined above, leave rate
1698  *     unchanged if:
1699  *     a)  lower rate unavailable
1700  *     b)  success ratio at current rate > 85% (very good)
1701  *     c)  current measured throughput is better than expected throughput
1702  *         of lower rate (under perfect 100% tx conditions, see table below)
1703  *
1704  * 5)  Try increasing rate if, for current rate:
1705  *     a)  success ratio is < 15% ||
1706  *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1707  *     b)  higher adjacent rate has better measured throughput ||
1708  *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1709  *
1710  *     As a sanity check, if increase was determined above, leave rate
1711  *     unchanged if:
1712  *     a)  success ratio at current rate < 70%.  This is not particularly
1713  *         good performance; higher rate is sure to have poorer success.
1714  *
1715  * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1716  *     acknowledge, history and statistics may be calculated for the entire
1717  *     block (including prior history that fits within the history windows),
1718  *     before re-evaluation.
1719  *
1720  * FINDING BEST STARTING MODULATION MODE:
1721  *
1722  * After working with a modulation mode for a "while" (and doing rate scaling),
1723  * the driver searches for a new initial mode in an attempt to improve
1724  * throughput.  The "while" is measured by numbers of attempted frames:
1725  *
1726  * For legacy mode, search for new mode after:
1727  *   480 successful frames, or 160 failed frames
1728  * For high-throughput modes (SISO or MIMO), search for new mode after:
1729  *   4500 successful frames, or 400 failed frames
1730  *
1731  * Mode switch possibilities are (3 for each mode):
1732  *
1733  * For legacy:
1734  *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1735  * For SISO:
1736  *   Change antenna, try MIMO, try shortened guard interval (SGI)
1737  * For MIMO:
1738  *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1739  *
1740  * When trying a new mode, use the same bit rate as the old/current mode when
1741  * trying antenna switches and shortened guard interval.  When switching to
1742  * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1743  * for which the expected throughput (under perfect conditions) is about the
1744  * same or slightly better than the actual measured throughput delivered by
1745  * the old/current mode.
1746  *
1747  * Actual throughput can be estimated by multiplying the expected throughput
1748  * by the success ratio (successful / attempted tx frames).  Frame size is
1749  * not considered in this calculation; it assumes that frame size will average
1750  * out to be fairly consistent over several samples.  The following are
1751  * metric values for expected throughput assuming 100% success ratio.
1752  * Only G band has support for CCK rates:
1753  *
1754  *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1755  *
1756  *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1757  *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1758  *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1759  * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1760  *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1761  * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1762  *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1763  * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1764  *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1765  * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1766  *
1767  * After the new mode has been tried for a short while (minimum of 6 failed
1768  * frames or 8 successful frames), compare success ratio and actual throughput
1769  * estimate of the new mode with the old.  If either is better with the new
1770  * mode, continue to use the new mode.
1771  *
1772  * Continue comparing modes until all 3 possibilities have been tried.
1773  * If moving from legacy to HT, try all 3 possibilities from the new HT
1774  * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1775  * for the longer "while" described above (e.g. 480 successful frames for
1776  * legacy), and then repeat the search process.
1777  *
1778  */
1779 struct iwl_link_quality_cmd {
1780 
1781 	/* Index of destination/recipient station in uCode's station table */
1782 	u8 sta_id;
1783 	u8 reserved1;
1784 	__le16 control;		/* not used */
1785 	struct iwl_link_qual_general_params general_params;
1786 	struct iwl_link_qual_agg_params agg_params;
1787 
1788 	/*
1789 	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1790 	 * specifies 1st Tx rate attempted, via index into this table.
1791 	 * agn devices works its way through table when retrying Tx.
1792 	 */
1793 	struct {
1794 		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1795 	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1796 	__le32 reserved2;
1797 } __packed;
1798 
1799 /*
1800  * BT configuration enable flags:
1801  *   bit 0 - 1: BT channel announcement enabled
1802  *           0: disable
1803  *   bit 1 - 1: priority of BT device enabled
1804  *           0: disable
1805  *   bit 2 - 1: BT 2 wire support enabled
1806  *           0: disable
1807  */
1808 #define BT_COEX_DISABLE (0x0)
1809 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1810 #define BT_ENABLE_PRIORITY	   BIT(1)
1811 #define BT_ENABLE_2_WIRE	   BIT(2)
1812 
1813 #define BT_COEX_DISABLE (0x0)
1814 #define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1815 
1816 #define BT_LEAD_TIME_MIN (0x0)
1817 #define BT_LEAD_TIME_DEF (0x1E)
1818 #define BT_LEAD_TIME_MAX (0xFF)
1819 
1820 #define BT_MAX_KILL_MIN (0x1)
1821 #define BT_MAX_KILL_DEF (0x5)
1822 #define BT_MAX_KILL_MAX (0xFF)
1823 
1824 #define BT_DURATION_LIMIT_DEF	625
1825 #define BT_DURATION_LIMIT_MAX	1250
1826 #define BT_DURATION_LIMIT_MIN	625
1827 
1828 #define BT_ON_THRESHOLD_DEF	4
1829 #define BT_ON_THRESHOLD_MAX	1000
1830 #define BT_ON_THRESHOLD_MIN	1
1831 
1832 #define BT_FRAG_THRESHOLD_DEF	0
1833 #define BT_FRAG_THRESHOLD_MAX	0
1834 #define BT_FRAG_THRESHOLD_MIN	0
1835 
1836 #define BT_AGG_THRESHOLD_DEF	1200
1837 #define BT_AGG_THRESHOLD_MAX	8000
1838 #define BT_AGG_THRESHOLD_MIN	400
1839 
1840 /*
1841  * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1842  *
1843  * agn devices support hardware handshake with Bluetooth device on
1844  * same platform.  Bluetooth device alerts wireless device when it will Tx;
1845  * wireless device can delay or kill its own Tx to accommodate.
1846  */
1847 struct iwl_bt_cmd {
1848 	u8 flags;
1849 	u8 lead_time;
1850 	u8 max_kill;
1851 	u8 reserved;
1852 	__le32 kill_ack_mask;
1853 	__le32 kill_cts_mask;
1854 } __packed;
1855 
1856 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1857 
1858 #define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1859 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1860 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1861 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1862 #define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1863 #define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1864 
1865 #define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1866 /* Disable Sync PSPoll on SCO/eSCO */
1867 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1868 
1869 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1870 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1871 
1872 #define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1873 #define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1874 #define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1875 
1876 #define IWLAGN_BT_MAX_KILL_DEFAULT	5
1877 
1878 #define IWLAGN_BT3_T7_DEFAULT		1
1879 
1880 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1881 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1882 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1883 
1884 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1885 
1886 #define IWLAGN_BT3_T2_DEFAULT		0xc
1887 
1888 #define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1889 #define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1890 #define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1891 #define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1892 #define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1893 #define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1894 #define IWLAGN_BT_VALID_BT4_TIMES	cpu_to_le16(BIT(6))
1895 #define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1896 
1897 #define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1898 					IWLAGN_BT_VALID_BOOST | \
1899 					IWLAGN_BT_VALID_MAX_KILL | \
1900 					IWLAGN_BT_VALID_3W_TIMERS | \
1901 					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1902 					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1903 					IWLAGN_BT_VALID_BT4_TIMES | \
1904 					IWLAGN_BT_VALID_3W_LUT)
1905 
1906 struct iwl_basic_bt_cmd {
1907 	u8 flags;
1908 	u8 ledtime; /* unused */
1909 	u8 max_kill;
1910 	u8 bt3_timer_t7_value;
1911 	__le32 kill_ack_mask;
1912 	__le32 kill_cts_mask;
1913 	u8 bt3_prio_sample_time;
1914 	u8 bt3_timer_t2_value;
1915 	__le16 bt4_reaction_time; /* unused */
1916 	__le32 bt3_lookup_table[12];
1917 	__le16 bt4_decision_time; /* unused */
1918 	__le16 valid;
1919 };
1920 
1921 struct iwl6000_bt_cmd {
1922 	struct iwl_basic_bt_cmd basic;
1923 	u8 prio_boost;
1924 	/*
1925 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1926 	 * if configure the following patterns
1927 	 */
1928 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1929 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1930 };
1931 
1932 struct iwl2000_bt_cmd {
1933 	struct iwl_basic_bt_cmd basic;
1934 	__le32 prio_boost;
1935 	/*
1936 	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1937 	 * if configure the following patterns
1938 	 */
1939 	u8 reserved;
1940 	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1941 	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1942 };
1943 
1944 #define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1945 
1946 struct iwlagn_bt_sco_cmd {
1947 	__le32 flags;
1948 };
1949 
1950 /******************************************************************************
1951  * (6)
1952  * Spectrum Management (802.11h) Commands, Responses, Notifications:
1953  *
1954  *****************************************************************************/
1955 
1956 /*
1957  * Spectrum Management
1958  */
1959 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1960 				 RXON_FILTER_CTL2HOST_MSK        | \
1961 				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1962 				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1963 				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1964 				 RXON_FILTER_ASSOC_MSK           | \
1965 				 RXON_FILTER_BCON_AWARE_MSK)
1966 
1967 struct iwl_measure_channel {
1968 	__le32 duration;	/* measurement duration in extended beacon
1969 				 * format */
1970 	u8 channel;		/* channel to measure */
1971 	u8 type;		/* see enum iwl_measure_type */
1972 	__le16 reserved;
1973 } __packed;
1974 
1975 /*
1976  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1977  */
1978 struct iwl_spectrum_cmd {
1979 	__le16 len;		/* number of bytes starting from token */
1980 	u8 token;		/* token id */
1981 	u8 id;			/* measurement id -- 0 or 1 */
1982 	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
1983 	u8 periodic;		/* 1 = periodic */
1984 	__le16 path_loss_timeout;
1985 	__le32 start_time;	/* start time in extended beacon format */
1986 	__le32 reserved2;
1987 	__le32 flags;		/* rxon flags */
1988 	__le32 filter_flags;	/* rxon filter flags */
1989 	__le16 channel_count;	/* minimum 1, maximum 10 */
1990 	__le16 reserved3;
1991 	struct iwl_measure_channel channels[10];
1992 } __packed;
1993 
1994 /*
1995  * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
1996  */
1997 struct iwl_spectrum_resp {
1998 	u8 token;
1999 	u8 id;			/* id of the prior command replaced, or 0xff */
2000 	__le16 status;		/* 0 - command will be handled
2001 				 * 1 - cannot handle (conflicts with another
2002 				 *     measurement) */
2003 } __packed;
2004 
2005 enum iwl_measurement_state {
2006 	IWL_MEASUREMENT_START = 0,
2007 	IWL_MEASUREMENT_STOP = 1,
2008 };
2009 
2010 enum iwl_measurement_status {
2011 	IWL_MEASUREMENT_OK = 0,
2012 	IWL_MEASUREMENT_CONCURRENT = 1,
2013 	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2014 	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2015 	/* 4-5 reserved */
2016 	IWL_MEASUREMENT_STOPPED = 6,
2017 	IWL_MEASUREMENT_TIMEOUT = 7,
2018 	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2019 };
2020 
2021 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2022 
2023 struct iwl_measurement_histogram {
2024 	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2025 	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2026 } __packed;
2027 
2028 /* clear channel availability counters */
2029 struct iwl_measurement_cca_counters {
2030 	__le32 ofdm;
2031 	__le32 cck;
2032 } __packed;
2033 
2034 enum iwl_measure_type {
2035 	IWL_MEASURE_BASIC = (1 << 0),
2036 	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2037 	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2038 	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2039 	IWL_MEASURE_FRAME = (1 << 4),
2040 	/* bits 5:6 are reserved */
2041 	IWL_MEASURE_IDLE = (1 << 7),
2042 };
2043 
2044 /*
2045  * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2046  */
2047 struct iwl_spectrum_notification {
2048 	u8 id;			/* measurement id -- 0 or 1 */
2049 	u8 token;
2050 	u8 channel_index;	/* index in measurement channel list */
2051 	u8 state;		/* 0 - start, 1 - stop */
2052 	__le32 start_time;	/* lower 32-bits of TSF */
2053 	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2054 	u8 channel;
2055 	u8 type;		/* see enum iwl_measurement_type */
2056 	u8 reserved1;
2057 	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2058 	 * valid if applicable for measurement type requested. */
2059 	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2060 	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2061 	__le32 cca_time;	/* channel load time in usecs */
2062 	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2063 				 * unidentified */
2064 	u8 reserved2[3];
2065 	struct iwl_measurement_histogram histogram;
2066 	__le32 stop_time;	/* lower 32-bits of TSF */
2067 	__le32 status;		/* see iwl_measurement_status */
2068 } __packed;
2069 
2070 /******************************************************************************
2071  * (7)
2072  * Power Management Commands, Responses, Notifications:
2073  *
2074  *****************************************************************************/
2075 
2076 /**
2077  * struct iwl_powertable_cmd - Power Table Command
2078  * @flags: See below:
2079  *
2080  * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2081  *
2082  * PM allow:
2083  *   bit 0 - '0' Driver not allow power management
2084  *           '1' Driver allow PM (use rest of parameters)
2085  *
2086  * uCode send sleep notifications:
2087  *   bit 1 - '0' Don't send sleep notification
2088  *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2089  *
2090  * Sleep over DTIM
2091  *   bit 2 - '0' PM have to walk up every DTIM
2092  *           '1' PM could sleep over DTIM till listen Interval.
2093  *
2094  * PCI power managed
2095  *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2096  *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2097  *
2098  * Fast PD
2099  *   bit 4 - '1' Put radio to sleep when receiving frame for others
2100  *
2101  * Force sleep Modes
2102  *   bit 31/30- '00' use both mac/xtal sleeps
2103  *              '01' force Mac sleep
2104  *              '10' force xtal sleep
2105  *              '11' Illegal set
2106  *
2107  * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2108  * ucode assume sleep over DTIM is allowed and we don't need to wake up
2109  * for every DTIM.
2110  */
2111 #define IWL_POWER_VEC_SIZE 5
2112 
2113 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2114 #define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2115 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2116 #define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2117 #define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2118 #define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2119 #define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2120 #define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2121 #define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2122 #define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2123 #define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2124 
2125 struct iwl_powertable_cmd {
2126 	__le16 flags;
2127 	u8 keep_alive_seconds;
2128 	u8 debug_flags;
2129 	__le32 rx_data_timeout;
2130 	__le32 tx_data_timeout;
2131 	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2132 	__le32 keep_alive_beacons;
2133 } __packed;
2134 
2135 /*
2136  * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2137  * all devices identical.
2138  */
2139 struct iwl_sleep_notification {
2140 	u8 pm_sleep_mode;
2141 	u8 pm_wakeup_src;
2142 	__le16 reserved;
2143 	__le32 sleep_time;
2144 	__le32 tsf_low;
2145 	__le32 bcon_timer;
2146 } __packed;
2147 
2148 /* Sleep states.  all devices identical. */
2149 enum {
2150 	IWL_PM_NO_SLEEP = 0,
2151 	IWL_PM_SLP_MAC = 1,
2152 	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2153 	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2154 	IWL_PM_SLP_PHY = 4,
2155 	IWL_PM_SLP_REPENT = 5,
2156 	IWL_PM_WAKEUP_BY_TIMER = 6,
2157 	IWL_PM_WAKEUP_BY_DRIVER = 7,
2158 	IWL_PM_WAKEUP_BY_RFKILL = 8,
2159 	/* 3 reserved */
2160 	IWL_PM_NUM_OF_MODES = 12,
2161 };
2162 
2163 /*
2164  * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2165  */
2166 #define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2167 #define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2168 #define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2169 struct iwl_card_state_cmd {
2170 	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2171 } __packed;
2172 
2173 /*
2174  * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2175  */
2176 struct iwl_card_state_notif {
2177 	__le32 flags;
2178 } __packed;
2179 
2180 #define HW_CARD_DISABLED   0x01
2181 #define SW_CARD_DISABLED   0x02
2182 #define CT_CARD_DISABLED   0x04
2183 #define RXON_CARD_DISABLED 0x10
2184 
2185 struct iwl_ct_kill_config {
2186 	__le32   reserved;
2187 	__le32   critical_temperature_M;
2188 	__le32   critical_temperature_R;
2189 }  __packed;
2190 
2191 /* 1000, and 6x00 */
2192 struct iwl_ct_kill_throttling_config {
2193 	__le32   critical_temperature_exit;
2194 	__le32   reserved;
2195 	__le32   critical_temperature_enter;
2196 }  __packed;
2197 
2198 /******************************************************************************
2199  * (8)
2200  * Scan Commands, Responses, Notifications:
2201  *
2202  *****************************************************************************/
2203 
2204 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2205 #define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2206 
2207 /**
2208  * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2209  *
2210  * One for each channel in the scan list.
2211  * Each channel can independently select:
2212  * 1)  SSID for directed active scans
2213  * 2)  Txpower setting (for rate specified within Tx command)
2214  * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2215  *     quiet_plcp_th, good_CRC_th)
2216  *
2217  * To avoid uCode errors, make sure the following are true (see comments
2218  * under struct iwl_scan_cmd about max_out_time and quiet_time):
2219  * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2220  *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2221  * 2)  quiet_time <= active_dwell
2222  * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2223  *     passive_dwell < max_out_time
2224  *     active_dwell < max_out_time
2225  */
2226 
2227 struct iwl_scan_channel {
2228 	/*
2229 	 * type is defined as:
2230 	 * 0:0 1 = active, 0 = passive
2231 	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2232 	 *     SSID IE is transmitted in probe request.
2233 	 * 21:31 reserved
2234 	 */
2235 	__le32 type;
2236 	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2237 	u8 tx_gain;		/* gain for analog radio */
2238 	u8 dsp_atten;		/* gain for DSP */
2239 	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2240 	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2241 } __packed;
2242 
2243 /* set number of direct probes __le32 type */
2244 #define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2245 
2246 /**
2247  * struct iwl_ssid_ie - directed scan network information element
2248  *
2249  * Up to 20 of these may appear in REPLY_SCAN_CMD,
2250  * selected by "type" bit field in struct iwl_scan_channel;
2251  * each channel may select different ssids from among the 20 entries.
2252  * SSID IEs get transmitted in reverse order of entry.
2253  */
2254 struct iwl_ssid_ie {
2255 	u8 id;
2256 	u8 len;
2257 	u8 ssid[32];
2258 } __packed;
2259 
2260 #define PROBE_OPTION_MAX		20
2261 #define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2262 #define IWL_GOOD_CRC_TH_DISABLED	0
2263 #define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2264 #define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2265 #define IWL_MAX_SCAN_SIZE 1024
2266 #define IWL_MAX_CMD_SIZE 4096
2267 
2268 /*
2269  * REPLY_SCAN_CMD = 0x80 (command)
2270  *
2271  * The hardware scan command is very powerful; the driver can set it up to
2272  * maintain (relatively) normal network traffic while doing a scan in the
2273  * background.  The max_out_time and suspend_time control the ratio of how
2274  * long the device stays on an associated network channel ("service channel")
2275  * vs. how long it's away from the service channel, i.e. tuned to other channels
2276  * for scanning.
2277  *
2278  * max_out_time is the max time off-channel (in usec), and suspend_time
2279  * is how long (in "extended beacon" format) that the scan is "suspended"
2280  * after returning to the service channel.  That is, suspend_time is the
2281  * time that we stay on the service channel, doing normal work, between
2282  * scan segments.  The driver may set these parameters differently to support
2283  * scanning when associated vs. not associated, and light vs. heavy traffic
2284  * loads when associated.
2285  *
2286  * After receiving this command, the device's scan engine does the following;
2287  *
2288  * 1)  Sends SCAN_START notification to driver
2289  * 2)  Checks to see if it has time to do scan for one channel
2290  * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2291  *     to tell AP that we're going off-channel
2292  * 4)  Tunes to first channel in scan list, does active or passive scan
2293  * 5)  Sends SCAN_RESULT notification to driver
2294  * 6)  Checks to see if it has time to do scan on *next* channel in list
2295  * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2296  *     before max_out_time expires
2297  * 8)  Returns to service channel
2298  * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2299  * 10) Stays on service channel until suspend_time expires
2300  * 11) Repeats entire process 2-10 until list is complete
2301  * 12) Sends SCAN_COMPLETE notification
2302  *
2303  * For fast, efficient scans, the scan command also has support for staying on
2304  * a channel for just a short time, if doing active scanning and getting no
2305  * responses to the transmitted probe request.  This time is controlled by
2306  * quiet_time, and the number of received packets below which a channel is
2307  * considered "quiet" is controlled by quiet_plcp_threshold.
2308  *
2309  * For active scanning on channels that have regulatory restrictions against
2310  * blindly transmitting, the scan can listen before transmitting, to make sure
2311  * that there is already legitimate activity on the channel.  If enough
2312  * packets are cleanly received on the channel (controlled by good_CRC_th,
2313  * typical value 1), the scan engine starts transmitting probe requests.
2314  *
2315  * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2316  *
2317  * To avoid uCode errors, see timing restrictions described under
2318  * struct iwl_scan_channel.
2319  */
2320 
2321 enum iwl_scan_flags {
2322 	/* BIT(0) currently unused */
2323 	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2324 	/* bits 2-7 reserved */
2325 };
2326 
2327 struct iwl_scan_cmd {
2328 	__le16 len;
2329 	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2330 	u8 channel_count;	/* # channels in channel list */
2331 	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2332 				 * (only for active scan) */
2333 	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2334 	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2335 	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2336 	__le32 max_out_time;	/* max usec to be away from associated (service)
2337 				 * channel */
2338 	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2339 				 * format") when returning to service chnl:
2340 				 */
2341 	__le32 flags;		/* RXON_FLG_* */
2342 	__le32 filter_flags;	/* RXON_FILTER_* */
2343 
2344 	/* For active scans (set to all-0s for passive scans).
2345 	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2346 	struct iwl_tx_cmd tx_cmd;
2347 
2348 	/* For directed active scans (set to all-0s otherwise) */
2349 	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2350 
2351 	/*
2352 	 * Probe request frame, followed by channel list.
2353 	 *
2354 	 * Size of probe request frame is specified by byte count in tx_cmd.
2355 	 * Channel list follows immediately after probe request frame.
2356 	 * Number of channels in list is specified by channel_count.
2357 	 * Each channel in list is of type:
2358 	 *
2359 	 * struct iwl_scan_channel channels[0];
2360 	 *
2361 	 * NOTE:  Only one band of channels can be scanned per pass.  You
2362 	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2363 	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2364 	 * before requesting another scan.
2365 	 */
2366 	u8 data[0];
2367 } __packed;
2368 
2369 /* Can abort will notify by complete notification with abort status. */
2370 #define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2371 /* complete notification statuses */
2372 #define ABORT_STATUS            0x2
2373 
2374 /*
2375  * REPLY_SCAN_CMD = 0x80 (response)
2376  */
2377 struct iwl_scanreq_notification {
2378 	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2379 } __packed;
2380 
2381 /*
2382  * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2383  */
2384 struct iwl_scanstart_notification {
2385 	__le32 tsf_low;
2386 	__le32 tsf_high;
2387 	__le32 beacon_timer;
2388 	u8 channel;
2389 	u8 band;
2390 	u8 reserved[2];
2391 	__le32 status;
2392 } __packed;
2393 
2394 #define  SCAN_OWNER_STATUS 0x1
2395 #define  MEASURE_OWNER_STATUS 0x2
2396 
2397 #define IWL_PROBE_STATUS_OK		0
2398 #define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2399 /* error statuses combined with TX_FAILED */
2400 #define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2401 #define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2402 
2403 #define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2404 /*
2405  * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2406  */
2407 struct iwl_scanresults_notification {
2408 	u8 channel;
2409 	u8 band;
2410 	u8 probe_status;
2411 	u8 num_probe_not_sent; /* not enough time to send */
2412 	__le32 tsf_low;
2413 	__le32 tsf_high;
2414 	__le32 statistics[NUMBER_OF_STATISTICS];
2415 } __packed;
2416 
2417 /*
2418  * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2419  */
2420 struct iwl_scancomplete_notification {
2421 	u8 scanned_channels;
2422 	u8 status;
2423 	u8 bt_status;	/* BT On/Off status */
2424 	u8 last_channel;
2425 	__le32 tsf_low;
2426 	__le32 tsf_high;
2427 } __packed;
2428 
2429 
2430 /******************************************************************************
2431  * (9)
2432  * IBSS/AP Commands and Notifications:
2433  *
2434  *****************************************************************************/
2435 
2436 enum iwl_ibss_manager {
2437 	IWL_NOT_IBSS_MANAGER = 0,
2438 	IWL_IBSS_MANAGER = 1,
2439 };
2440 
2441 /*
2442  * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2443  */
2444 
2445 struct iwlagn_beacon_notif {
2446 	struct iwlagn_tx_resp beacon_notify_hdr;
2447 	__le32 low_tsf;
2448 	__le32 high_tsf;
2449 	__le32 ibss_mgr_status;
2450 } __packed;
2451 
2452 /*
2453  * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2454  */
2455 
2456 struct iwl_tx_beacon_cmd {
2457 	struct iwl_tx_cmd tx;
2458 	__le16 tim_idx;
2459 	u8 tim_size;
2460 	u8 reserved1;
2461 	struct ieee80211_hdr frame[0];	/* beacon frame */
2462 } __packed;
2463 
2464 /******************************************************************************
2465  * (10)
2466  * Statistics Commands and Notifications:
2467  *
2468  *****************************************************************************/
2469 
2470 #define IWL_TEMP_CONVERT 260
2471 
2472 #define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2473 #define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2474 #define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2475 
2476 /* Used for passing to driver number of successes and failures per rate */
2477 struct rate_histogram {
2478 	union {
2479 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2480 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2481 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2482 	} success;
2483 	union {
2484 		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2485 		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2486 		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2487 	} failed;
2488 } __packed;
2489 
2490 /* statistics command response */
2491 
2492 struct statistics_dbg {
2493 	__le32 burst_check;
2494 	__le32 burst_count;
2495 	__le32 wait_for_silence_timeout_cnt;
2496 	__le32 reserved[3];
2497 } __packed;
2498 
2499 struct statistics_rx_phy {
2500 	__le32 ina_cnt;
2501 	__le32 fina_cnt;
2502 	__le32 plcp_err;
2503 	__le32 crc32_err;
2504 	__le32 overrun_err;
2505 	__le32 early_overrun_err;
2506 	__le32 crc32_good;
2507 	__le32 false_alarm_cnt;
2508 	__le32 fina_sync_err_cnt;
2509 	__le32 sfd_timeout;
2510 	__le32 fina_timeout;
2511 	__le32 unresponded_rts;
2512 	__le32 rxe_frame_limit_overrun;
2513 	__le32 sent_ack_cnt;
2514 	__le32 sent_cts_cnt;
2515 	__le32 sent_ba_rsp_cnt;
2516 	__le32 dsp_self_kill;
2517 	__le32 mh_format_err;
2518 	__le32 re_acq_main_rssi_sum;
2519 	__le32 reserved3;
2520 } __packed;
2521 
2522 struct statistics_rx_ht_phy {
2523 	__le32 plcp_err;
2524 	__le32 overrun_err;
2525 	__le32 early_overrun_err;
2526 	__le32 crc32_good;
2527 	__le32 crc32_err;
2528 	__le32 mh_format_err;
2529 	__le32 agg_crc32_good;
2530 	__le32 agg_mpdu_cnt;
2531 	__le32 agg_cnt;
2532 	__le32 unsupport_mcs;
2533 } __packed;
2534 
2535 #define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2536 
2537 struct statistics_rx_non_phy {
2538 	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2539 	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2540 	__le32 non_bssid_frames;	/* number of frames with BSSID that
2541 					 * doesn't belong to the STA BSSID */
2542 	__le32 filtered_frames;	/* count frames that were dumped in the
2543 				 * filtering process */
2544 	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2545 					 * our serving channel */
2546 	__le32 channel_beacons;	/* beacons with our bss id and in our
2547 				 * serving channel */
2548 	__le32 num_missed_bcon;	/* number of missed beacons */
2549 	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2550 					 * ADC was in saturation */
2551 	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2552 					  * for INA */
2553 	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2554 	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2555 	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2556 	__le32 interference_data_flag;	/* flag for interference data
2557 					 * availability. 1 when data is
2558 					 * available. */
2559 	__le32 channel_load;		/* counts RX Enable time in uSec */
2560 	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2561 					 * and CCK) counter */
2562 	__le32 beacon_rssi_a;
2563 	__le32 beacon_rssi_b;
2564 	__le32 beacon_rssi_c;
2565 	__le32 beacon_energy_a;
2566 	__le32 beacon_energy_b;
2567 	__le32 beacon_energy_c;
2568 } __packed;
2569 
2570 struct statistics_rx_non_phy_bt {
2571 	struct statistics_rx_non_phy common;
2572 	/* additional stats for bt */
2573 	__le32 num_bt_kills;
2574 	__le32 reserved[2];
2575 } __packed;
2576 
2577 struct statistics_rx {
2578 	struct statistics_rx_phy ofdm;
2579 	struct statistics_rx_phy cck;
2580 	struct statistics_rx_non_phy general;
2581 	struct statistics_rx_ht_phy ofdm_ht;
2582 } __packed;
2583 
2584 struct statistics_rx_bt {
2585 	struct statistics_rx_phy ofdm;
2586 	struct statistics_rx_phy cck;
2587 	struct statistics_rx_non_phy_bt general;
2588 	struct statistics_rx_ht_phy ofdm_ht;
2589 } __packed;
2590 
2591 /**
2592  * struct statistics_tx_power - current tx power
2593  *
2594  * @ant_a: current tx power on chain a in 1/2 dB step
2595  * @ant_b: current tx power on chain b in 1/2 dB step
2596  * @ant_c: current tx power on chain c in 1/2 dB step
2597  */
2598 struct statistics_tx_power {
2599 	u8 ant_a;
2600 	u8 ant_b;
2601 	u8 ant_c;
2602 	u8 reserved;
2603 } __packed;
2604 
2605 struct statistics_tx_non_phy_agg {
2606 	__le32 ba_timeout;
2607 	__le32 ba_reschedule_frames;
2608 	__le32 scd_query_agg_frame_cnt;
2609 	__le32 scd_query_no_agg;
2610 	__le32 scd_query_agg;
2611 	__le32 scd_query_mismatch;
2612 	__le32 frame_not_ready;
2613 	__le32 underrun;
2614 	__le32 bt_prio_kill;
2615 	__le32 rx_ba_rsp_cnt;
2616 } __packed;
2617 
2618 struct statistics_tx {
2619 	__le32 preamble_cnt;
2620 	__le32 rx_detected_cnt;
2621 	__le32 bt_prio_defer_cnt;
2622 	__le32 bt_prio_kill_cnt;
2623 	__le32 few_bytes_cnt;
2624 	__le32 cts_timeout;
2625 	__le32 ack_timeout;
2626 	__le32 expected_ack_cnt;
2627 	__le32 actual_ack_cnt;
2628 	__le32 dump_msdu_cnt;
2629 	__le32 burst_abort_next_frame_mismatch_cnt;
2630 	__le32 burst_abort_missing_next_frame_cnt;
2631 	__le32 cts_timeout_collision;
2632 	__le32 ack_or_ba_timeout_collision;
2633 	struct statistics_tx_non_phy_agg agg;
2634 	/*
2635 	 * "tx_power" are optional parameters provided by uCode,
2636 	 * 6000 series is the only device provide the information,
2637 	 * Those are reserved fields for all the other devices
2638 	 */
2639 	struct statistics_tx_power tx_power;
2640 	__le32 reserved1;
2641 } __packed;
2642 
2643 
2644 struct statistics_div {
2645 	__le32 tx_on_a;
2646 	__le32 tx_on_b;
2647 	__le32 exec_time;
2648 	__le32 probe_time;
2649 	__le32 reserved1;
2650 	__le32 reserved2;
2651 } __packed;
2652 
2653 struct statistics_general_common {
2654 	__le32 temperature;   /* radio temperature */
2655 	__le32 temperature_m; /* radio voltage */
2656 	struct statistics_dbg dbg;
2657 	__le32 sleep_time;
2658 	__le32 slots_out;
2659 	__le32 slots_idle;
2660 	__le32 ttl_timestamp;
2661 	struct statistics_div div;
2662 	__le32 rx_enable_counter;
2663 	/*
2664 	 * num_of_sos_states:
2665 	 *  count the number of times we have to re-tune
2666 	 *  in order to get out of bad PHY status
2667 	 */
2668 	__le32 num_of_sos_states;
2669 } __packed;
2670 
2671 struct statistics_bt_activity {
2672 	/* Tx statistics */
2673 	__le32 hi_priority_tx_req_cnt;
2674 	__le32 hi_priority_tx_denied_cnt;
2675 	__le32 lo_priority_tx_req_cnt;
2676 	__le32 lo_priority_tx_denied_cnt;
2677 	/* Rx statistics */
2678 	__le32 hi_priority_rx_req_cnt;
2679 	__le32 hi_priority_rx_denied_cnt;
2680 	__le32 lo_priority_rx_req_cnt;
2681 	__le32 lo_priority_rx_denied_cnt;
2682 } __packed;
2683 
2684 struct statistics_general {
2685 	struct statistics_general_common common;
2686 	__le32 reserved2;
2687 	__le32 reserved3;
2688 } __packed;
2689 
2690 struct statistics_general_bt {
2691 	struct statistics_general_common common;
2692 	struct statistics_bt_activity activity;
2693 	__le32 reserved2;
2694 	__le32 reserved3;
2695 } __packed;
2696 
2697 #define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2698 #define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2699 #define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2700 
2701 /*
2702  * REPLY_STATISTICS_CMD = 0x9c,
2703  * all devices identical.
2704  *
2705  * This command triggers an immediate response containing uCode statistics.
2706  * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2707  *
2708  * If the CLEAR_STATS configuration flag is set, uCode will clear its
2709  * internal copy of the statistics (counters) after issuing the response.
2710  * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2711  *
2712  * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2713  * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2714  * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2715  */
2716 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2717 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2718 struct iwl_statistics_cmd {
2719 	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2720 } __packed;
2721 
2722 /*
2723  * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2724  *
2725  * By default, uCode issues this notification after receiving a beacon
2726  * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2727  * REPLY_STATISTICS_CMD 0x9c, above.
2728  *
2729  * Statistics counters continue to increment beacon after beacon, but are
2730  * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2731  * 0x9c with CLEAR_STATS bit set (see above).
2732  *
2733  * uCode also issues this notification during scans.  uCode clears statistics
2734  * appropriately so that each notification contains statistics for only the
2735  * one channel that has just been scanned.
2736  */
2737 #define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2738 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2739 
2740 struct iwl_notif_statistics {
2741 	__le32 flag;
2742 	struct statistics_rx rx;
2743 	struct statistics_tx tx;
2744 	struct statistics_general general;
2745 } __packed;
2746 
2747 struct iwl_bt_notif_statistics {
2748 	__le32 flag;
2749 	struct statistics_rx_bt rx;
2750 	struct statistics_tx tx;
2751 	struct statistics_general_bt general;
2752 } __packed;
2753 
2754 /*
2755  * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2756  *
2757  * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2758  * in regardless of how many missed beacons, which mean when driver receive the
2759  * notification, inside the command, it can find all the beacons information
2760  * which include number of total missed beacons, number of consecutive missed
2761  * beacons, number of beacons received and number of beacons expected to
2762  * receive.
2763  *
2764  * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2765  * in order to bring the radio/PHY back to working state; which has no relation
2766  * to when driver will perform sensitivity calibration.
2767  *
2768  * Driver should set it own missed_beacon_threshold to decide when to perform
2769  * sensitivity calibration based on number of consecutive missed beacons in
2770  * order to improve overall performance, especially in noisy environment.
2771  *
2772  */
2773 
2774 #define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2775 #define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2776 #define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2777 
2778 struct iwl_missed_beacon_notif {
2779 	__le32 consecutive_missed_beacons;
2780 	__le32 total_missed_becons;
2781 	__le32 num_expected_beacons;
2782 	__le32 num_recvd_beacons;
2783 } __packed;
2784 
2785 
2786 /******************************************************************************
2787  * (11)
2788  * Rx Calibration Commands:
2789  *
2790  * With the uCode used for open source drivers, most Tx calibration (except
2791  * for Tx Power) and most Rx calibration is done by uCode during the
2792  * "initialize" phase of uCode boot.  Driver must calibrate only:
2793  *
2794  * 1)  Tx power (depends on temperature), described elsewhere
2795  * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2796  * 3)  Receiver sensitivity (to optimize signal detection)
2797  *
2798  *****************************************************************************/
2799 
2800 /**
2801  * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2802  *
2803  * This command sets up the Rx signal detector for a sensitivity level that
2804  * is high enough to lock onto all signals within the associated network,
2805  * but low enough to ignore signals that are below a certain threshold, so as
2806  * not to have too many "false alarms".  False alarms are signals that the
2807  * Rx DSP tries to lock onto, but then discards after determining that they
2808  * are noise.
2809  *
2810  * The optimum number of false alarms is between 5 and 50 per 200 TUs
2811  * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2812  * time listening, not transmitting).  Driver must adjust sensitivity so that
2813  * the ratio of actual false alarms to actual Rx time falls within this range.
2814  *
2815  * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2816  * received beacon.  These provide information to the driver to analyze the
2817  * sensitivity.  Don't analyze statistics that come in from scanning, or any
2818  * other non-associated-network source.  Pertinent statistics include:
2819  *
2820  * From "general" statistics (struct statistics_rx_non_phy):
2821  *
2822  * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2823  *   Measure of energy of desired signal.  Used for establishing a level
2824  *   below which the device does not detect signals.
2825  *
2826  * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2827  *   Measure of background noise in silent period after beacon.
2828  *
2829  * channel_load
2830  *   uSecs of actual Rx time during beacon period (varies according to
2831  *   how much time was spent transmitting).
2832  *
2833  * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2834  *
2835  * false_alarm_cnt
2836  *   Signal locks abandoned early (before phy-level header).
2837  *
2838  * plcp_err
2839  *   Signal locks abandoned late (during phy-level header).
2840  *
2841  * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2842  *        beacon to beacon, i.e. each value is an accumulation of all errors
2843  *        before and including the latest beacon.  Values will wrap around to 0
2844  *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2845  *        previous beacon's values to determine # false alarms in the current
2846  *        beacon period.
2847  *
2848  * Total number of false alarms = false_alarms + plcp_errs
2849  *
2850  * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2851  * (notice that the start points for OFDM are at or close to settings for
2852  * maximum sensitivity):
2853  *
2854  *                                             START  /  MIN  /  MAX
2855  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2856  *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2857  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2858  *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2859  *
2860  *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2861  *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2862  *   by *adding* 1 to all 4 of the table entries above, up to the max for
2863  *   each entry.  Conversely, if false alarm rate is too low (less than 5
2864  *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2865  *   increase sensitivity.
2866  *
2867  * For CCK sensitivity, keep track of the following:
2868  *
2869  *   1).  20-beacon history of maximum background noise, indicated by
2870  *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2871  *        3 receivers.  For any given beacon, the "silence reference" is
2872  *        the maximum of last 60 samples (20 beacons * 3 receivers).
2873  *
2874  *   2).  10-beacon history of strongest signal level, as indicated
2875  *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2876  *        i.e. the strength of the signal through the best receiver at the
2877  *        moment.  These measurements are "upside down", with lower values
2878  *        for stronger signals, so max energy will be *minimum* value.
2879  *
2880  *        Then for any given beacon, the driver must determine the *weakest*
2881  *        of the strongest signals; this is the minimum level that needs to be
2882  *        successfully detected, when using the best receiver at the moment.
2883  *        "Max cck energy" is the maximum (higher value means lower energy!)
2884  *        of the last 10 minima.  Once this is determined, driver must add
2885  *        a little margin by adding "6" to it.
2886  *
2887  *   3).  Number of consecutive beacon periods with too few false alarms.
2888  *        Reset this to 0 at the first beacon period that falls within the
2889  *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2890  *
2891  * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2892  * (notice that the start points for CCK are at maximum sensitivity):
2893  *
2894  *                                             START  /  MIN  /  MAX
2895  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2896  *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2897  *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2898  *
2899  *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2900  *   (greater than 50 for each 204.8 msecs listening), method for reducing
2901  *   sensitivity is:
2902  *
2903  *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2904  *       up to max 400.
2905  *
2906  *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2907  *       sensitivity has been reduced a significant amount; bring it up to
2908  *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2909  *
2910  *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2911  *       sensitivity has been reduced only a moderate or small amount;
2912  *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2913  *       down to min 0.  Otherwise (if gain has been significantly reduced),
2914  *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2915  *
2916  *       b)  Save a snapshot of the "silence reference".
2917  *
2918  *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2919  *   (less than 5 for each 204.8 msecs listening), method for increasing
2920  *   sensitivity is used only if:
2921  *
2922  *   1a)  Previous beacon did not have too many false alarms
2923  *   1b)  AND difference between previous "silence reference" and current
2924  *        "silence reference" (prev - current) is 2 or more,
2925  *   OR 2)  100 or more consecutive beacon periods have had rate of
2926  *          less than 5 false alarms per 204.8 milliseconds rx time.
2927  *
2928  *   Method for increasing sensitivity:
2929  *
2930  *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2931  *       down to min 125.
2932  *
2933  *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2934  *       down to min 200.
2935  *
2936  *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2937  *
2938  *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2939  *   (between 5 and 50 for each 204.8 msecs listening):
2940  *
2941  *   1)  Save a snapshot of the silence reference.
2942  *
2943  *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2944  *       give some extra margin to energy threshold by *subtracting* 8
2945  *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2946  *
2947  *   For all cases (too few, too many, good range), make sure that the CCK
2948  *   detection threshold (energy) is below the energy level for robust
2949  *   detection over the past 10 beacon periods, the "Max cck energy".
2950  *   Lower values mean higher energy; this means making sure that the value
2951  *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2952  *
2953  */
2954 
2955 /*
2956  * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2957  */
2958 #define HD_TABLE_SIZE  (11)	/* number of entries */
2959 #define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2960 #define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2961 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2962 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2963 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2964 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2965 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2966 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2967 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2968 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2969 #define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2970 
2971 /*
2972  * Additional table entries in enhance SENSITIVITY_CMD
2973  */
2974 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2975 #define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2976 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2977 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
2978 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
2979 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
2980 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
2981 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
2982 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
2983 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
2984 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
2985 #define HD_RESERVED					(22)
2986 
2987 /* number of entries for enhanced tbl */
2988 #define ENHANCE_HD_TABLE_SIZE  (23)
2989 
2990 /* number of additional entries for enhanced tbl */
2991 #define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
2992 
2993 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
2994 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
2995 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
2996 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
2997 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
2998 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
2999 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3000 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3001 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3002 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3003 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3004 
3005 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3006 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3007 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3008 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3009 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3010 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3011 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3012 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3013 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3014 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3015 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3016 
3017 
3018 /* Control field in struct iwl_sensitivity_cmd */
3019 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3020 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3021 
3022 /**
3023  * struct iwl_sensitivity_cmd
3024  * @control:  (1) updates working table, (0) updates default table
3025  * @table:  energy threshold values, use HD_* as index into table
3026  *
3027  * Always use "1" in "control" to update uCode's working table and DSP.
3028  */
3029 struct iwl_sensitivity_cmd {
3030 	__le16 control;			/* always use "1" */
3031 	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3032 } __packed;
3033 
3034 /*
3035  *
3036  */
3037 struct iwl_enhance_sensitivity_cmd {
3038 	__le16 control;			/* always use "1" */
3039 	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3040 } __packed;
3041 
3042 
3043 /**
3044  * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3045  *
3046  * This command sets the relative gains of agn device's 3 radio receiver chains.
3047  *
3048  * After the first association, driver should accumulate signal and noise
3049  * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3050  * beacons from the associated network (don't collect statistics that come
3051  * in from scanning, or any other non-network source).
3052  *
3053  * DISCONNECTED ANTENNA:
3054  *
3055  * Driver should determine which antennas are actually connected, by comparing
3056  * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3057  * following values over 20 beacons, one accumulator for each of the chains
3058  * a/b/c, from struct statistics_rx_non_phy:
3059  *
3060  * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3061  *
3062  * Find the strongest signal from among a/b/c.  Compare the other two to the
3063  * strongest.  If any signal is more than 15 dB (times 20, unless you
3064  * divide the accumulated values by 20) below the strongest, the driver
3065  * considers that antenna to be disconnected, and should not try to use that
3066  * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3067  * driver should declare the stronger one as connected, and attempt to use it
3068  * (A and B are the only 2 Tx chains!).
3069  *
3070  *
3071  * RX BALANCE:
3072  *
3073  * Driver should balance the 3 receivers (but just the ones that are connected
3074  * to antennas, see above) for gain, by comparing the average signal levels
3075  * detected during the silence after each beacon (background noise).
3076  * Accumulate (add) the following values over 20 beacons, one accumulator for
3077  * each of the chains a/b/c, from struct statistics_rx_non_phy:
3078  *
3079  * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3080  *
3081  * Find the weakest background noise level from among a/b/c.  This Rx chain
3082  * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3083  * finding noise difference:
3084  *
3085  * (accum_noise[i] - accum_noise[reference]) / 30
3086  *
3087  * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3088  * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3089  * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3090  * and set bit 2 to indicate "reduce gain".  The value for the reference
3091  * (weakest) chain should be "0".
3092  *
3093  * diff_gain_[abc] bit fields:
3094  *   2: (1) reduce gain, (0) increase gain
3095  * 1-0: amount of gain, units of 1.5 dB
3096  */
3097 
3098 /* Phy calibration command for series */
3099 enum {
3100 	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3101 	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3102 	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3103 	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3104 	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3105 	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3106 	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3107 };
3108 
3109 /* This enum defines the bitmap of various calibrations to enable in both
3110  * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3111  */
3112 enum iwl_ucode_calib_cfg {
3113 	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3114 	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3115 	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3116 	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3117 	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3118 	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3119 	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3120 	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3121 	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3122 	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3123 	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3124 };
3125 
3126 #define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3127 					IWL_CALIB_CFG_DC_IDX |		\
3128 					IWL_CALIB_CFG_LO_IDX |		\
3129 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3130 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3131 					IWL_CALIB_CFG_CRYSTAL_IDX)
3132 
3133 #define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3134 					IWL_CALIB_CFG_DC_IDX |		\
3135 					IWL_CALIB_CFG_LO_IDX |		\
3136 					IWL_CALIB_CFG_TX_IQ_IDX |	\
3137 					IWL_CALIB_CFG_RX_IQ_IDX |	\
3138 					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3139 					IWL_CALIB_CFG_PAPD_IDX |	\
3140 					IWL_CALIB_CFG_TX_PWR_IDX |	\
3141 					IWL_CALIB_CFG_CRYSTAL_IDX)
3142 
3143 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3144 
3145 struct iwl_calib_cfg_elmnt_s {
3146 	__le32 is_enable;
3147 	__le32 start;
3148 	__le32 send_res;
3149 	__le32 apply_res;
3150 	__le32 reserved;
3151 } __packed;
3152 
3153 struct iwl_calib_cfg_status_s {
3154 	struct iwl_calib_cfg_elmnt_s once;
3155 	struct iwl_calib_cfg_elmnt_s perd;
3156 	__le32 flags;
3157 } __packed;
3158 
3159 struct iwl_calib_cfg_cmd {
3160 	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3161 	struct iwl_calib_cfg_status_s drv_calib_cfg;
3162 	__le32 reserved1;
3163 } __packed;
3164 
3165 struct iwl_calib_hdr {
3166 	u8 op_code;
3167 	u8 first_group;
3168 	u8 groups_num;
3169 	u8 data_valid;
3170 } __packed;
3171 
3172 struct iwl_calib_cmd {
3173 	struct iwl_calib_hdr hdr;
3174 	u8 data[0];
3175 } __packed;
3176 
3177 struct iwl_calib_xtal_freq_cmd {
3178 	struct iwl_calib_hdr hdr;
3179 	u8 cap_pin1;
3180 	u8 cap_pin2;
3181 	u8 pad[2];
3182 } __packed;
3183 
3184 #define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3185 struct iwl_calib_temperature_offset_cmd {
3186 	struct iwl_calib_hdr hdr;
3187 	__le16 radio_sensor_offset;
3188 	__le16 reserved;
3189 } __packed;
3190 
3191 struct iwl_calib_temperature_offset_v2_cmd {
3192 	struct iwl_calib_hdr hdr;
3193 	__le16 radio_sensor_offset_high;
3194 	__le16 radio_sensor_offset_low;
3195 	__le16 burntVoltageRef;
3196 	__le16 reserved;
3197 } __packed;
3198 
3199 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3200 struct iwl_calib_chain_noise_reset_cmd {
3201 	struct iwl_calib_hdr hdr;
3202 	u8 data[0];
3203 };
3204 
3205 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3206 struct iwl_calib_chain_noise_gain_cmd {
3207 	struct iwl_calib_hdr hdr;
3208 	u8 delta_gain_1;
3209 	u8 delta_gain_2;
3210 	u8 pad[2];
3211 } __packed;
3212 
3213 /******************************************************************************
3214  * (12)
3215  * Miscellaneous Commands:
3216  *
3217  *****************************************************************************/
3218 
3219 /*
3220  * LEDs Command & Response
3221  * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3222  *
3223  * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3224  * this command turns it on or off, or sets up a periodic blinking cycle.
3225  */
3226 struct iwl_led_cmd {
3227 	__le32 interval;	/* "interval" in uSec */
3228 	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3229 	u8 off;			/* # intervals off while blinking;
3230 				 * "0", with >0 "on" value, turns LED on */
3231 	u8 on;			/* # intervals on while blinking;
3232 				 * "0", regardless of "off", turns LED off */
3233 	u8 reserved;
3234 } __packed;
3235 
3236 /*
3237  * station priority table entries
3238  * also used as potential "events" value for both
3239  * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3240  */
3241 
3242 /*
3243  * COEX events entry flag masks
3244  * RP - Requested Priority
3245  * WP - Win Medium Priority: priority assigned when the contention has been won
3246  */
3247 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3248 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3249 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3250 
3251 #define COEX_CU_UNASSOC_IDLE_RP               4
3252 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3253 #define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3254 #define COEX_CU_CALIBRATION_RP                4
3255 #define COEX_CU_PERIODIC_CALIBRATION_RP       4
3256 #define COEX_CU_CONNECTION_ESTAB_RP           4
3257 #define COEX_CU_ASSOCIATED_IDLE_RP            4
3258 #define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3259 #define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3260 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3261 #define COEX_CU_RF_ON_RP                      6
3262 #define COEX_CU_RF_OFF_RP                     4
3263 #define COEX_CU_STAND_ALONE_DEBUG_RP          6
3264 #define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3265 #define COEX_CU_RSRVD1_RP                     4
3266 #define COEX_CU_RSRVD2_RP                     4
3267 
3268 #define COEX_CU_UNASSOC_IDLE_WP               3
3269 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3270 #define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3271 #define COEX_CU_CALIBRATION_WP                3
3272 #define COEX_CU_PERIODIC_CALIBRATION_WP       3
3273 #define COEX_CU_CONNECTION_ESTAB_WP           3
3274 #define COEX_CU_ASSOCIATED_IDLE_WP            3
3275 #define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3276 #define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3277 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3278 #define COEX_CU_RF_ON_WP                      3
3279 #define COEX_CU_RF_OFF_WP                     3
3280 #define COEX_CU_STAND_ALONE_DEBUG_WP          6
3281 #define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3282 #define COEX_CU_RSRVD1_WP                     3
3283 #define COEX_CU_RSRVD2_WP                     3
3284 
3285 #define COEX_UNASSOC_IDLE_FLAGS                     0
3286 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3287 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3288 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3289 #define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3290 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3291 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3292 #define COEX_CALIBRATION_FLAGS			\
3293 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3294 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3295 #define COEX_PERIODIC_CALIBRATION_FLAGS             0
3296 /*
3297  * COEX_CONNECTION_ESTAB:
3298  * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3299  */
3300 #define COEX_CONNECTION_ESTAB_FLAGS		\
3301 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3302 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3303 	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3304 #define COEX_ASSOCIATED_IDLE_FLAGS                  0
3305 #define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3306 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3307 	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3308 #define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3309 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3310 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3311 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3312 #define COEX_RF_ON_FLAGS                            0
3313 #define COEX_RF_OFF_FLAGS                           0
3314 #define COEX_STAND_ALONE_DEBUG_FLAGS		\
3315 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3316 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3317 #define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3318 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3319 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3320 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3321 #define COEX_RSRVD1_FLAGS                           0
3322 #define COEX_RSRVD2_FLAGS                           0
3323 /*
3324  * COEX_CU_RF_ON is the event wrapping all radio ownership.
3325  * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3326  */
3327 #define COEX_CU_RF_ON_FLAGS			\
3328 	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3329 	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3330 	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3331 
3332 
3333 enum {
3334 	/* un-association part */
3335 	COEX_UNASSOC_IDLE		= 0,
3336 	COEX_UNASSOC_MANUAL_SCAN	= 1,
3337 	COEX_UNASSOC_AUTO_SCAN		= 2,
3338 	/* calibration */
3339 	COEX_CALIBRATION		= 3,
3340 	COEX_PERIODIC_CALIBRATION	= 4,
3341 	/* connection */
3342 	COEX_CONNECTION_ESTAB		= 5,
3343 	/* association part */
3344 	COEX_ASSOCIATED_IDLE		= 6,
3345 	COEX_ASSOC_MANUAL_SCAN		= 7,
3346 	COEX_ASSOC_AUTO_SCAN		= 8,
3347 	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3348 	/* RF ON/OFF */
3349 	COEX_RF_ON			= 10,
3350 	COEX_RF_OFF			= 11,
3351 	COEX_STAND_ALONE_DEBUG		= 12,
3352 	/* IPAN */
3353 	COEX_IPAN_ASSOC_LEVEL		= 13,
3354 	/* reserved */
3355 	COEX_RSRVD1			= 14,
3356 	COEX_RSRVD2			= 15,
3357 	COEX_NUM_OF_EVENTS		= 16
3358 };
3359 
3360 /*
3361  * Coexistence WIFI/WIMAX  Command
3362  * COEX_PRIORITY_TABLE_CMD = 0x5a
3363  *
3364  */
3365 struct iwl_wimax_coex_event_entry {
3366 	u8 request_prio;
3367 	u8 win_medium_prio;
3368 	u8 reserved;
3369 	u8 flags;
3370 } __packed;
3371 
3372 /* COEX flag masks */
3373 
3374 /* Station table is valid */
3375 #define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3376 /* UnMask wake up src at unassociated sleep */
3377 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3378 /* UnMask wake up src at associated sleep */
3379 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3380 /* Enable CoEx feature. */
3381 #define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3382 
3383 struct iwl_wimax_coex_cmd {
3384 	u8 flags;
3385 	u8 reserved[3];
3386 	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3387 } __packed;
3388 
3389 /*
3390  * Coexistence MEDIUM NOTIFICATION
3391  * COEX_MEDIUM_NOTIFICATION = 0x5b
3392  *
3393  * notification from uCode to host to indicate medium changes
3394  *
3395  */
3396 /*
3397  * status field
3398  * bit 0 - 2: medium status
3399  * bit 3: medium change indication
3400  * bit 4 - 31: reserved
3401  */
3402 /* status option values, (0 - 2 bits) */
3403 #define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3404 #define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3405 #define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3406 #define COEX_MEDIUM_MSK		(0x7)
3407 
3408 /* send notification status (1 bit) */
3409 #define COEX_MEDIUM_CHANGED	(0x8)
3410 #define COEX_MEDIUM_CHANGED_MSK	(0x8)
3411 #define COEX_MEDIUM_SHIFT	(3)
3412 
3413 struct iwl_coex_medium_notification {
3414 	__le32 status;
3415 	__le32 events;
3416 } __packed;
3417 
3418 /*
3419  * Coexistence EVENT  Command
3420  * COEX_EVENT_CMD = 0x5c
3421  *
3422  * send from host to uCode for coex event request.
3423  */
3424 /* flags options */
3425 #define COEX_EVENT_REQUEST_MSK	(0x1)
3426 
3427 struct iwl_coex_event_cmd {
3428 	u8 flags;
3429 	u8 event;
3430 	__le16 reserved;
3431 } __packed;
3432 
3433 struct iwl_coex_event_resp {
3434 	__le32 status;
3435 } __packed;
3436 
3437 
3438 /******************************************************************************
3439  * Bluetooth Coexistence commands
3440  *
3441  *****************************************************************************/
3442 
3443 /*
3444  * BT Status notification
3445  * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3446  */
3447 enum iwl_bt_coex_profile_traffic_load {
3448 	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3449 	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3450 	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3451 	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3452 /*
3453  * There are no more even though below is a u8, the
3454  * indication from the BT device only has two bits.
3455  */
3456 };
3457 
3458 #define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3459 #define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3460 
3461 /* BT UART message - Share Part (BT -> WiFi) */
3462 #define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3463 #define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3464 		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3465 #define BT_UART_MSG_FRAME1SSN_POS		(3)
3466 #define BT_UART_MSG_FRAME1SSN_MSK		\
3467 		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3468 #define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3469 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3470 		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3471 #define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3472 #define BT_UART_MSG_FRAME1RESERVED_MSK		\
3473 		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3474 
3475 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3476 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3477 		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3478 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3479 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3480 		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3481 #define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3482 #define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3483 		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3484 #define BT_UART_MSG_FRAME2INBAND_POS		(5)
3485 #define BT_UART_MSG_FRAME2INBAND_MSK		\
3486 		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3487 #define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3488 #define BT_UART_MSG_FRAME2RESERVED_MSK		\
3489 		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3490 
3491 #define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3492 #define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3493 		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3494 #define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3495 #define BT_UART_MSG_FRAME3SNIFF_MSK		\
3496 		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3497 #define BT_UART_MSG_FRAME3A2DP_POS		(2)
3498 #define BT_UART_MSG_FRAME3A2DP_MSK		\
3499 		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3500 #define BT_UART_MSG_FRAME3ACL_POS		(3)
3501 #define BT_UART_MSG_FRAME3ACL_MSK		\
3502 		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3503 #define BT_UART_MSG_FRAME3MASTER_POS		(4)
3504 #define BT_UART_MSG_FRAME3MASTER_MSK		\
3505 		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3506 #define BT_UART_MSG_FRAME3OBEX_POS		(5)
3507 #define BT_UART_MSG_FRAME3OBEX_MSK		\
3508 		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3509 #define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3510 #define BT_UART_MSG_FRAME3RESERVED_MSK		\
3511 		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3512 
3513 #define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3514 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3515 		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3516 #define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3517 #define BT_UART_MSG_FRAME4RESERVED_MSK		\
3518 		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3519 
3520 #define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3521 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3522 		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3523 #define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3524 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3525 		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3526 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3527 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3528 		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3529 #define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3530 #define BT_UART_MSG_FRAME5RESERVED_MSK		\
3531 		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3532 
3533 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3534 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3535 		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3536 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3537 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3538 		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3539 #define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3540 #define BT_UART_MSG_FRAME6RESERVED_MSK		\
3541 		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3542 
3543 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3544 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3545 		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3546 #define BT_UART_MSG_FRAME7PAGE_POS		(3)
3547 #define BT_UART_MSG_FRAME7PAGE_MSK		\
3548 		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3549 #define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3550 #define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3551 		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3552 #define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3553 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3554 		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3555 #define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3556 #define BT_UART_MSG_FRAME7RESERVED_MSK		\
3557 		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3558 
3559 /* BT Session Activity 2 UART message (BT -> WiFi) */
3560 #define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3561 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3562 		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3563 #define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3564 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3565 		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3566 
3567 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3568 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3569 		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3570 #define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3571 #define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3572 		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3573 
3574 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3575 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3576 		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3577 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3578 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3579 		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3580 #define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3581 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3582 		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3583 #define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3584 #define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3585 		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3586 
3587 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3588 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3589 		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3590 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3591 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3592 		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3593 #define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3594 #define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3595 		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3596 
3597 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3598 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3599 		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3600 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3601 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3602 		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3603 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3604 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3605 		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3606 #define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3607 #define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3608 		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3609 
3610 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3611 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3612 		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3613 #define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3614 #define BT_UART_MSG_2_FRAME6RFU_MSK		\
3615 		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3616 #define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3617 #define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3618 		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3619 
3620 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3621 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3622 		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3623 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3624 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3625 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3626 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3627 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3628 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3629 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3630 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3631 		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3632 #define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3633 #define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3634 		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3635 
3636 
3637 struct iwl_bt_uart_msg {
3638 	u8 header;
3639 	u8 frame1;
3640 	u8 frame2;
3641 	u8 frame3;
3642 	u8 frame4;
3643 	u8 frame5;
3644 	u8 frame6;
3645 	u8 frame7;
3646 } __attribute__((packed));
3647 
3648 struct iwl_bt_coex_profile_notif {
3649 	struct iwl_bt_uart_msg last_bt_uart_msg;
3650 	u8 bt_status; /* 0 - off, 1 - on */
3651 	u8 bt_traffic_load; /* 0 .. 3? */
3652 	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3653 	u8 reserved;
3654 } __attribute__((packed));
3655 
3656 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3657 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3658 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3659 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3660 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3661 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3662 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3663 
3664 /*
3665  * BT Coexistence Priority table
3666  * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3667  */
3668 enum bt_coex_prio_table_events {
3669 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3670 	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3671 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3672 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3673 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3674 	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3675 	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3676 	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3677 	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3678 	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3679 	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3680 	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3681 	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3682 	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3683 	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3684 	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3685 	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3686 	BT_COEX_PRIO_TBL_EVT_MAX,
3687 };
3688 
3689 enum bt_coex_prio_table_priorities {
3690 	BT_COEX_PRIO_TBL_DISABLED = 0,
3691 	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3692 	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3693 	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3694 	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3695 	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3696 	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3697 	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3698 	BT_COEX_PRIO_TBL_MAX,
3699 };
3700 
3701 struct iwl_bt_coex_prio_table_cmd {
3702 	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3703 } __attribute__((packed));
3704 
3705 #define IWL_BT_COEX_ENV_CLOSE	0
3706 #define IWL_BT_COEX_ENV_OPEN	1
3707 /*
3708  * BT Protection Envelope
3709  * REPLY_BT_COEX_PROT_ENV = 0xcd
3710  */
3711 struct iwl_bt_coex_prot_env_cmd {
3712 	u8 action; /* 0 = closed, 1 = open */
3713 	u8 type; /* 0 .. 15 */
3714 	u8 reserved[2];
3715 } __attribute__((packed));
3716 
3717 /*
3718  * REPLY_D3_CONFIG
3719  */
3720 enum iwlagn_d3_wakeup_filters {
3721 	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3722 	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3723 };
3724 
3725 struct iwlagn_d3_config_cmd {
3726 	__le32 min_sleep_time;
3727 	__le32 wakeup_flags;
3728 } __packed;
3729 
3730 /*
3731  * REPLY_WOWLAN_PATTERNS
3732  */
3733 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3734 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3735 
3736 struct iwlagn_wowlan_pattern {
3737 	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3738 	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3739 	u8 mask_size;
3740 	u8 pattern_size;
3741 	__le16 reserved;
3742 } __packed;
3743 
3744 #define IWLAGN_WOWLAN_MAX_PATTERNS	20
3745 
3746 struct iwlagn_wowlan_patterns_cmd {
3747 	__le32 n_patterns;
3748 	struct iwlagn_wowlan_pattern patterns[];
3749 } __packed;
3750 
3751 /*
3752  * REPLY_WOWLAN_WAKEUP_FILTER
3753  */
3754 enum iwlagn_wowlan_wakeup_filters {
3755 	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3756 	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3757 	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3758 	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3759 	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3760 	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3761 	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3762 	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3763 	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3764 };
3765 
3766 struct iwlagn_wowlan_wakeup_filter_cmd {
3767 	__le32 enabled;
3768 	__le16 non_qos_seq;
3769 	__le16 reserved;
3770 	__le16 qos_seq[8];
3771 };
3772 
3773 /*
3774  * REPLY_WOWLAN_TSC_RSC_PARAMS
3775  */
3776 #define IWLAGN_NUM_RSC	16
3777 
3778 struct tkip_sc {
3779 	__le16 iv16;
3780 	__le16 pad;
3781 	__le32 iv32;
3782 } __packed;
3783 
3784 struct iwlagn_tkip_rsc_tsc {
3785 	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3786 	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3787 	struct tkip_sc tsc;
3788 } __packed;
3789 
3790 struct aes_sc {
3791 	__le64 pn;
3792 } __packed;
3793 
3794 struct iwlagn_aes_rsc_tsc {
3795 	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3796 	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3797 	struct aes_sc tsc;
3798 } __packed;
3799 
3800 union iwlagn_all_tsc_rsc {
3801 	struct iwlagn_tkip_rsc_tsc tkip;
3802 	struct iwlagn_aes_rsc_tsc aes;
3803 };
3804 
3805 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3806 	union iwlagn_all_tsc_rsc all_tsc_rsc;
3807 } __packed;
3808 
3809 /*
3810  * REPLY_WOWLAN_TKIP_PARAMS
3811  */
3812 #define IWLAGN_MIC_KEY_SIZE	8
3813 #define IWLAGN_P1K_SIZE		5
3814 struct iwlagn_mic_keys {
3815 	u8 tx[IWLAGN_MIC_KEY_SIZE];
3816 	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3817 	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3818 } __packed;
3819 
3820 struct iwlagn_p1k_cache {
3821 	__le16 p1k[IWLAGN_P1K_SIZE];
3822 } __packed;
3823 
3824 #define IWLAGN_NUM_RX_P1K_CACHE	2
3825 
3826 struct iwlagn_wowlan_tkip_params_cmd {
3827 	struct iwlagn_mic_keys mic_keys;
3828 	struct iwlagn_p1k_cache tx;
3829 	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3830 	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3831 } __packed;
3832 
3833 /*
3834  * REPLY_WOWLAN_KEK_KCK_MATERIAL
3835  */
3836 
3837 #define IWLAGN_KCK_MAX_SIZE	32
3838 #define IWLAGN_KEK_MAX_SIZE	32
3839 
3840 struct iwlagn_wowlan_kek_kck_material_cmd {
3841 	u8	kck[IWLAGN_KCK_MAX_SIZE];
3842 	u8	kek[IWLAGN_KEK_MAX_SIZE];
3843 	__le16	kck_len;
3844 	__le16	kek_len;
3845 	__le64	replay_ctr;
3846 } __packed;
3847 
3848 /*
3849  * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3850  */
3851 
3852 /*
3853  * Minimum slot time in TU
3854  */
3855 #define IWL_MIN_SLOT_TIME	20
3856 
3857 /**
3858  * struct iwl_wipan_slot
3859  * @width: Time in TU
3860  * @type:
3861  *   0 - BSS
3862  *   1 - PAN
3863  */
3864 struct iwl_wipan_slot {
3865 	__le16 width;
3866 	u8 type;
3867 	u8 reserved;
3868 } __packed;
3869 
3870 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3871 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3872 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3873 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3874 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3875 
3876 /**
3877  * struct iwl_wipan_params_cmd
3878  * @flags:
3879  *   bit0: reserved
3880  *   bit1: CP leave channel with CTS
3881  *   bit2: CP leave channel qith Quiet
3882  *   bit3: slotted mode
3883  *     1 - work in slotted mode
3884  *     0 - work in non slotted mode
3885  *   bit4: filter beacon notification
3886  *   bit5: full tx slotted mode. if this flag is set,
3887  *         uCode will perform leaving channel methods in context switch
3888  *         also when working in same channel mode
3889  * @num_slots: 1 - 10
3890  */
3891 struct iwl_wipan_params_cmd {
3892 	__le16 flags;
3893 	u8 reserved;
3894 	u8 num_slots;
3895 	struct iwl_wipan_slot slots[10];
3896 } __packed;
3897 
3898 /*
3899  * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3900  *
3901  * TODO: Figure out what this is used for,
3902  *	 it can only switch between 2.4 GHz
3903  *	 channels!!
3904  */
3905 
3906 struct iwl_wipan_p2p_channel_switch_cmd {
3907 	__le16 channel;
3908 	__le16 reserved;
3909 };
3910 
3911 /*
3912  * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3913  *
3914  * This is used by the device to notify us of the
3915  * NoA schedule it determined so we can forward it
3916  * to userspace for inclusion in probe responses.
3917  *
3918  * In beacons, the NoA schedule is simply appended
3919  * to the frame we give the device.
3920  */
3921 
3922 struct iwl_wipan_noa_descriptor {
3923 	u8 count;
3924 	__le32 duration;
3925 	__le32 interval;
3926 	__le32 starttime;
3927 } __packed;
3928 
3929 struct iwl_wipan_noa_attribute {
3930 	u8 id;
3931 	__le16 length;
3932 	u8 index;
3933 	u8 ct_window;
3934 	struct iwl_wipan_noa_descriptor descr0, descr1;
3935 	u8 reserved;
3936 } __packed;
3937 
3938 struct iwl_wipan_noa_notification {
3939 	u32 noa_active;
3940 	struct iwl_wipan_noa_attribute noa_attribute;
3941 } __packed;
3942 
3943 #endif				/* __iwl_commands_h__ */
3944