1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35
36 #include "perf_event.h"
37
38 #if 0
39 #undef wrmsrl
40 #define wrmsrl(msr, val) \
41 do { \
42 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
43 (unsigned long)(val)); \
44 native_write_msr((msr), (u32)((u64)(val)), \
45 (u32)((u64)(val) >> 32)); \
46 } while (0)
47 #endif
48
49 struct x86_pmu x86_pmu __read_mostly;
50
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .enabled = 1,
53 };
54
55 u64 __read_mostly hw_cache_event_ids
56 [PERF_COUNT_HW_CACHE_MAX]
57 [PERF_COUNT_HW_CACHE_OP_MAX]
58 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60 [PERF_COUNT_HW_CACHE_MAX]
61 [PERF_COUNT_HW_CACHE_OP_MAX]
62 [PERF_COUNT_HW_CACHE_RESULT_MAX];
63
64 /*
65 * Propagate event elapsed time into the generic event.
66 * Can only be executed on the CPU where the event is active.
67 * Returns the delta events processed.
68 */
x86_perf_event_update(struct perf_event * event)69 u64 x86_perf_event_update(struct perf_event *event)
70 {
71 struct hw_perf_event *hwc = &event->hw;
72 int shift = 64 - x86_pmu.cntval_bits;
73 u64 prev_raw_count, new_raw_count;
74 int idx = hwc->idx;
75 s64 delta;
76
77 if (idx == X86_PMC_IDX_FIXED_BTS)
78 return 0;
79
80 /*
81 * Careful: an NMI might modify the previous event value.
82 *
83 * Our tactic to handle this is to first atomically read and
84 * exchange a new raw count - then add that new-prev delta
85 * count to the generic event atomically:
86 */
87 again:
88 prev_raw_count = local64_read(&hwc->prev_count);
89 rdmsrl(hwc->event_base, new_raw_count);
90
91 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
92 new_raw_count) != prev_raw_count)
93 goto again;
94
95 /*
96 * Now we have the new raw value and have updated the prev
97 * timestamp already. We can now calculate the elapsed delta
98 * (event-)time and add that to the generic event.
99 *
100 * Careful, not all hw sign-extends above the physical width
101 * of the count.
102 */
103 delta = (new_raw_count << shift) - (prev_raw_count << shift);
104 delta >>= shift;
105
106 local64_add(delta, &event->count);
107 local64_sub(delta, &hwc->period_left);
108
109 return new_raw_count;
110 }
111
112 /*
113 * Find and validate any extra registers to set up.
114 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)115 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 {
117 struct hw_perf_event_extra *reg;
118 struct extra_reg *er;
119
120 reg = &event->hw.extra_reg;
121
122 if (!x86_pmu.extra_regs)
123 return 0;
124
125 for (er = x86_pmu.extra_regs; er->msr; er++) {
126 if (er->event != (config & er->config_mask))
127 continue;
128 if (event->attr.config1 & ~er->valid_mask)
129 return -EINVAL;
130
131 reg->idx = er->idx;
132 reg->config = event->attr.config1;
133 reg->reg = er->msr;
134 break;
135 }
136 return 0;
137 }
138
139 static atomic_t active_events;
140 static DEFINE_MUTEX(pmc_reserve_mutex);
141
142 #ifdef CONFIG_X86_LOCAL_APIC
143
reserve_pmc_hardware(void)144 static bool reserve_pmc_hardware(void)
145 {
146 int i;
147
148 for (i = 0; i < x86_pmu.num_counters; i++) {
149 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
150 goto perfctr_fail;
151 }
152
153 for (i = 0; i < x86_pmu.num_counters; i++) {
154 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
155 goto eventsel_fail;
156 }
157
158 return true;
159
160 eventsel_fail:
161 for (i--; i >= 0; i--)
162 release_evntsel_nmi(x86_pmu_config_addr(i));
163
164 i = x86_pmu.num_counters;
165
166 perfctr_fail:
167 for (i--; i >= 0; i--)
168 release_perfctr_nmi(x86_pmu_event_addr(i));
169
170 return false;
171 }
172
release_pmc_hardware(void)173 static void release_pmc_hardware(void)
174 {
175 int i;
176
177 for (i = 0; i < x86_pmu.num_counters; i++) {
178 release_perfctr_nmi(x86_pmu_event_addr(i));
179 release_evntsel_nmi(x86_pmu_config_addr(i));
180 }
181 }
182
183 #else
184
reserve_pmc_hardware(void)185 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)186 static void release_pmc_hardware(void) {}
187
188 #endif
189
check_hw_exists(void)190 static bool check_hw_exists(void)
191 {
192 u64 val, val_new = 0;
193 int i, reg, ret = 0;
194
195 /*
196 * Check to see if the BIOS enabled any of the counters, if so
197 * complain and bail.
198 */
199 for (i = 0; i < x86_pmu.num_counters; i++) {
200 reg = x86_pmu_config_addr(i);
201 ret = rdmsrl_safe(reg, &val);
202 if (ret)
203 goto msr_fail;
204 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
205 goto bios_fail;
206 }
207
208 if (x86_pmu.num_counters_fixed) {
209 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
210 ret = rdmsrl_safe(reg, &val);
211 if (ret)
212 goto msr_fail;
213 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
214 if (val & (0x03 << i*4))
215 goto bios_fail;
216 }
217 }
218
219 /*
220 * Now write a value and read it back to see if it matches,
221 * this is needed to detect certain hardware emulators (qemu/kvm)
222 * that don't trap on the MSR access and always return 0s.
223 */
224 val = 0xabcdUL;
225 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
226 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
227 if (ret || val != val_new)
228 goto msr_fail;
229
230 return true;
231
232 bios_fail:
233 /*
234 * We still allow the PMU driver to operate:
235 */
236 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
237 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
238
239 return true;
240
241 msr_fail:
242 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243
244 return false;
245 }
246
hw_perf_event_destroy(struct perf_event * event)247 static void hw_perf_event_destroy(struct perf_event *event)
248 {
249 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
250 release_pmc_hardware();
251 release_ds_buffers();
252 mutex_unlock(&pmc_reserve_mutex);
253 }
254 }
255
x86_pmu_initialized(void)256 static inline int x86_pmu_initialized(void)
257 {
258 return x86_pmu.handle_irq != NULL;
259 }
260
261 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)262 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
263 {
264 struct perf_event_attr *attr = &event->attr;
265 unsigned int cache_type, cache_op, cache_result;
266 u64 config, val;
267
268 config = attr->config;
269
270 cache_type = (config >> 0) & 0xff;
271 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
272 return -EINVAL;
273
274 cache_op = (config >> 8) & 0xff;
275 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
276 return -EINVAL;
277
278 cache_result = (config >> 16) & 0xff;
279 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
280 return -EINVAL;
281
282 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
283
284 if (val == 0)
285 return -ENOENT;
286
287 if (val == -1)
288 return -EINVAL;
289
290 hwc->config |= val;
291 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
292 return x86_pmu_extra_regs(val, event);
293 }
294
x86_setup_perfctr(struct perf_event * event)295 int x86_setup_perfctr(struct perf_event *event)
296 {
297 struct perf_event_attr *attr = &event->attr;
298 struct hw_perf_event *hwc = &event->hw;
299 u64 config;
300
301 if (!is_sampling_event(event)) {
302 hwc->sample_period = x86_pmu.max_period;
303 hwc->last_period = hwc->sample_period;
304 local64_set(&hwc->period_left, hwc->sample_period);
305 } else {
306 /*
307 * If we have a PMU initialized but no APIC
308 * interrupts, we cannot sample hardware
309 * events (user-space has to fall back and
310 * sample via a hrtimer based software event):
311 */
312 if (!x86_pmu.apic)
313 return -EOPNOTSUPP;
314 }
315
316 if (attr->type == PERF_TYPE_RAW)
317 return x86_pmu_extra_regs(event->attr.config, event);
318
319 if (attr->type == PERF_TYPE_HW_CACHE)
320 return set_ext_hw_attr(hwc, event);
321
322 if (attr->config >= x86_pmu.max_events)
323 return -EINVAL;
324
325 /*
326 * The generic map:
327 */
328 config = x86_pmu.event_map(attr->config);
329
330 if (config == 0)
331 return -ENOENT;
332
333 if (config == -1LL)
334 return -EINVAL;
335
336 /*
337 * Branch tracing:
338 */
339 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
340 !attr->freq && hwc->sample_period == 1) {
341 /* BTS is not supported by this architecture. */
342 if (!x86_pmu.bts_active)
343 return -EOPNOTSUPP;
344
345 /* BTS is currently only allowed for user-mode. */
346 if (!attr->exclude_kernel)
347 return -EOPNOTSUPP;
348 }
349
350 hwc->config |= config;
351
352 return 0;
353 }
354
355 /*
356 * check that branch_sample_type is compatible with
357 * settings needed for precise_ip > 1 which implies
358 * using the LBR to capture ALL taken branches at the
359 * priv levels of the measurement
360 */
precise_br_compat(struct perf_event * event)361 static inline int precise_br_compat(struct perf_event *event)
362 {
363 u64 m = event->attr.branch_sample_type;
364 u64 b = 0;
365
366 /* must capture all branches */
367 if (!(m & PERF_SAMPLE_BRANCH_ANY))
368 return 0;
369
370 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
371
372 if (!event->attr.exclude_user)
373 b |= PERF_SAMPLE_BRANCH_USER;
374
375 if (!event->attr.exclude_kernel)
376 b |= PERF_SAMPLE_BRANCH_KERNEL;
377
378 /*
379 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
380 */
381
382 return m == b;
383 }
384
x86_pmu_hw_config(struct perf_event * event)385 int x86_pmu_hw_config(struct perf_event *event)
386 {
387 if (event->attr.precise_ip) {
388 int precise = 0;
389
390 /* Support for constant skid */
391 if (x86_pmu.pebs_active) {
392 precise++;
393
394 /* Support for IP fixup */
395 if (x86_pmu.lbr_nr)
396 precise++;
397 }
398
399 if (event->attr.precise_ip > precise)
400 return -EOPNOTSUPP;
401 /*
402 * check that PEBS LBR correction does not conflict with
403 * whatever the user is asking with attr->branch_sample_type
404 */
405 if (event->attr.precise_ip > 1) {
406 u64 *br_type = &event->attr.branch_sample_type;
407
408 if (has_branch_stack(event)) {
409 if (!precise_br_compat(event))
410 return -EOPNOTSUPP;
411
412 /* branch_sample_type is compatible */
413
414 } else {
415 /*
416 * user did not specify branch_sample_type
417 *
418 * For PEBS fixups, we capture all
419 * the branches at the priv level of the
420 * event.
421 */
422 *br_type = PERF_SAMPLE_BRANCH_ANY;
423
424 if (!event->attr.exclude_user)
425 *br_type |= PERF_SAMPLE_BRANCH_USER;
426
427 if (!event->attr.exclude_kernel)
428 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
429 }
430 }
431 }
432
433 /*
434 * Generate PMC IRQs:
435 * (keep 'enabled' bit clear for now)
436 */
437 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
438
439 /*
440 * Count user and OS events unless requested not to
441 */
442 if (!event->attr.exclude_user)
443 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444 if (!event->attr.exclude_kernel)
445 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
446
447 if (event->attr.type == PERF_TYPE_RAW)
448 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
449
450 return x86_setup_perfctr(event);
451 }
452
453 /*
454 * Setup the hardware configuration for a given attr_type
455 */
__x86_pmu_event_init(struct perf_event * event)456 static int __x86_pmu_event_init(struct perf_event *event)
457 {
458 int err;
459
460 if (!x86_pmu_initialized())
461 return -ENODEV;
462
463 err = 0;
464 if (!atomic_inc_not_zero(&active_events)) {
465 mutex_lock(&pmc_reserve_mutex);
466 if (atomic_read(&active_events) == 0) {
467 if (!reserve_pmc_hardware())
468 err = -EBUSY;
469 else
470 reserve_ds_buffers();
471 }
472 if (!err)
473 atomic_inc(&active_events);
474 mutex_unlock(&pmc_reserve_mutex);
475 }
476 if (err)
477 return err;
478
479 event->destroy = hw_perf_event_destroy;
480
481 event->hw.idx = -1;
482 event->hw.last_cpu = -1;
483 event->hw.last_tag = ~0ULL;
484
485 /* mark unused */
486 event->hw.extra_reg.idx = EXTRA_REG_NONE;
487
488 /* mark not used */
489 event->hw.extra_reg.idx = EXTRA_REG_NONE;
490 event->hw.branch_reg.idx = EXTRA_REG_NONE;
491
492 return x86_pmu.hw_config(event);
493 }
494
x86_pmu_disable_all(void)495 void x86_pmu_disable_all(void)
496 {
497 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
498 int idx;
499
500 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
501 u64 val;
502
503 if (!test_bit(idx, cpuc->active_mask))
504 continue;
505 rdmsrl(x86_pmu_config_addr(idx), val);
506 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
507 continue;
508 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
509 wrmsrl(x86_pmu_config_addr(idx), val);
510 }
511 }
512
x86_pmu_disable(struct pmu * pmu)513 static void x86_pmu_disable(struct pmu *pmu)
514 {
515 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
516
517 if (!x86_pmu_initialized())
518 return;
519
520 if (!cpuc->enabled)
521 return;
522
523 cpuc->n_added = 0;
524 cpuc->enabled = 0;
525 barrier();
526
527 x86_pmu.disable_all();
528 }
529
x86_pmu_enable_all(int added)530 void x86_pmu_enable_all(int added)
531 {
532 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
533 int idx;
534
535 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
536 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
537
538 if (!test_bit(idx, cpuc->active_mask))
539 continue;
540
541 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
542 }
543 }
544
545 static struct pmu pmu;
546
is_x86_event(struct perf_event * event)547 static inline int is_x86_event(struct perf_event *event)
548 {
549 return event->pmu == &pmu;
550 }
551
552 /*
553 * Event scheduler state:
554 *
555 * Assign events iterating over all events and counters, beginning
556 * with events with least weights first. Keep the current iterator
557 * state in struct sched_state.
558 */
559 struct sched_state {
560 int weight;
561 int event; /* event index */
562 int counter; /* counter index */
563 int unassigned; /* number of events to be assigned left */
564 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
565 };
566
567 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
568 #define SCHED_STATES_MAX 2
569
570 struct perf_sched {
571 int max_weight;
572 int max_events;
573 struct event_constraint **constraints;
574 struct sched_state state;
575 int saved_states;
576 struct sched_state saved[SCHED_STATES_MAX];
577 };
578
579 /*
580 * Initialize interator that runs through all events and counters.
581 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** c,int num,int wmin,int wmax)582 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
583 int num, int wmin, int wmax)
584 {
585 int idx;
586
587 memset(sched, 0, sizeof(*sched));
588 sched->max_events = num;
589 sched->max_weight = wmax;
590 sched->constraints = c;
591
592 for (idx = 0; idx < num; idx++) {
593 if (c[idx]->weight == wmin)
594 break;
595 }
596
597 sched->state.event = idx; /* start with min weight */
598 sched->state.weight = wmin;
599 sched->state.unassigned = num;
600 }
601
perf_sched_save_state(struct perf_sched * sched)602 static void perf_sched_save_state(struct perf_sched *sched)
603 {
604 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
605 return;
606
607 sched->saved[sched->saved_states] = sched->state;
608 sched->saved_states++;
609 }
610
perf_sched_restore_state(struct perf_sched * sched)611 static bool perf_sched_restore_state(struct perf_sched *sched)
612 {
613 if (!sched->saved_states)
614 return false;
615
616 sched->saved_states--;
617 sched->state = sched->saved[sched->saved_states];
618
619 /* continue with next counter: */
620 clear_bit(sched->state.counter++, sched->state.used);
621
622 return true;
623 }
624
625 /*
626 * Select a counter for the current event to schedule. Return true on
627 * success.
628 */
__perf_sched_find_counter(struct perf_sched * sched)629 static bool __perf_sched_find_counter(struct perf_sched *sched)
630 {
631 struct event_constraint *c;
632 int idx;
633
634 if (!sched->state.unassigned)
635 return false;
636
637 if (sched->state.event >= sched->max_events)
638 return false;
639
640 c = sched->constraints[sched->state.event];
641
642 /* Prefer fixed purpose counters */
643 if (x86_pmu.num_counters_fixed) {
644 idx = X86_PMC_IDX_FIXED;
645 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
646 if (!__test_and_set_bit(idx, sched->state.used))
647 goto done;
648 }
649 }
650 /* Grab the first unused counter starting with idx */
651 idx = sched->state.counter;
652 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_FIXED) {
653 if (!__test_and_set_bit(idx, sched->state.used))
654 goto done;
655 }
656
657 return false;
658
659 done:
660 sched->state.counter = idx;
661
662 if (c->overlap)
663 perf_sched_save_state(sched);
664
665 return true;
666 }
667
perf_sched_find_counter(struct perf_sched * sched)668 static bool perf_sched_find_counter(struct perf_sched *sched)
669 {
670 while (!__perf_sched_find_counter(sched)) {
671 if (!perf_sched_restore_state(sched))
672 return false;
673 }
674
675 return true;
676 }
677
678 /*
679 * Go through all unassigned events and find the next one to schedule.
680 * Take events with the least weight first. Return true on success.
681 */
perf_sched_next_event(struct perf_sched * sched)682 static bool perf_sched_next_event(struct perf_sched *sched)
683 {
684 struct event_constraint *c;
685
686 if (!sched->state.unassigned || !--sched->state.unassigned)
687 return false;
688
689 do {
690 /* next event */
691 sched->state.event++;
692 if (sched->state.event >= sched->max_events) {
693 /* next weight */
694 sched->state.event = 0;
695 sched->state.weight++;
696 if (sched->state.weight > sched->max_weight)
697 return false;
698 }
699 c = sched->constraints[sched->state.event];
700 } while (c->weight != sched->state.weight);
701
702 sched->state.counter = 0; /* start with first counter */
703
704 return true;
705 }
706
707 /*
708 * Assign a counter for each event.
709 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int * assign)710 static int perf_assign_events(struct event_constraint **constraints, int n,
711 int wmin, int wmax, int *assign)
712 {
713 struct perf_sched sched;
714
715 perf_sched_init(&sched, constraints, n, wmin, wmax);
716
717 do {
718 if (!perf_sched_find_counter(&sched))
719 break; /* failed */
720 if (assign)
721 assign[sched.state.event] = sched.state.counter;
722 } while (perf_sched_next_event(&sched));
723
724 return sched.state.unassigned;
725 }
726
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)727 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
728 {
729 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
730 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
731 int i, wmin, wmax, num = 0;
732 struct hw_perf_event *hwc;
733
734 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
735
736 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
737 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
738 constraints[i] = c;
739 wmin = min(wmin, c->weight);
740 wmax = max(wmax, c->weight);
741 }
742
743 /*
744 * fastpath, try to reuse previous register
745 */
746 for (i = 0; i < n; i++) {
747 hwc = &cpuc->event_list[i]->hw;
748 c = constraints[i];
749
750 /* never assigned */
751 if (hwc->idx == -1)
752 break;
753
754 /* constraint still honored */
755 if (!test_bit(hwc->idx, c->idxmsk))
756 break;
757
758 /* not already used */
759 if (test_bit(hwc->idx, used_mask))
760 break;
761
762 __set_bit(hwc->idx, used_mask);
763 if (assign)
764 assign[i] = hwc->idx;
765 }
766
767 /* slow path */
768 if (i != n)
769 num = perf_assign_events(constraints, n, wmin, wmax, assign);
770
771 /*
772 * scheduling failed or is just a simulation,
773 * free resources if necessary
774 */
775 if (!assign || num) {
776 for (i = 0; i < n; i++) {
777 if (x86_pmu.put_event_constraints)
778 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
779 }
780 }
781 return num ? -EINVAL : 0;
782 }
783
784 /*
785 * dogrp: true if must collect siblings events (group)
786 * returns total number of events and error code
787 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)788 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
789 {
790 struct perf_event *event;
791 int n, max_count;
792
793 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
794
795 /* current number of events already accepted */
796 n = cpuc->n_events;
797
798 if (is_x86_event(leader)) {
799 if (n >= max_count)
800 return -EINVAL;
801 cpuc->event_list[n] = leader;
802 n++;
803 }
804 if (!dogrp)
805 return n;
806
807 list_for_each_entry(event, &leader->sibling_list, group_entry) {
808 if (!is_x86_event(event) ||
809 event->state <= PERF_EVENT_STATE_OFF)
810 continue;
811
812 if (n >= max_count)
813 return -EINVAL;
814
815 cpuc->event_list[n] = event;
816 n++;
817 }
818 return n;
819 }
820
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)821 static inline void x86_assign_hw_event(struct perf_event *event,
822 struct cpu_hw_events *cpuc, int i)
823 {
824 struct hw_perf_event *hwc = &event->hw;
825
826 hwc->idx = cpuc->assign[i];
827 hwc->last_cpu = smp_processor_id();
828 hwc->last_tag = ++cpuc->tags[i];
829
830 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
831 hwc->config_base = 0;
832 hwc->event_base = 0;
833 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
834 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
835 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
836 } else {
837 hwc->config_base = x86_pmu_config_addr(hwc->idx);
838 hwc->event_base = x86_pmu_event_addr(hwc->idx);
839 }
840 }
841
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)842 static inline int match_prev_assignment(struct hw_perf_event *hwc,
843 struct cpu_hw_events *cpuc,
844 int i)
845 {
846 return hwc->idx == cpuc->assign[i] &&
847 hwc->last_cpu == smp_processor_id() &&
848 hwc->last_tag == cpuc->tags[i];
849 }
850
851 static void x86_pmu_start(struct perf_event *event, int flags);
852
x86_pmu_enable(struct pmu * pmu)853 static void x86_pmu_enable(struct pmu *pmu)
854 {
855 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
856 struct perf_event *event;
857 struct hw_perf_event *hwc;
858 int i, added = cpuc->n_added;
859
860 if (!x86_pmu_initialized())
861 return;
862
863 if (cpuc->enabled)
864 return;
865
866 if (cpuc->n_added) {
867 int n_running = cpuc->n_events - cpuc->n_added;
868 /*
869 * apply assignment obtained either from
870 * hw_perf_group_sched_in() or x86_pmu_enable()
871 *
872 * step1: save events moving to new counters
873 * step2: reprogram moved events into new counters
874 */
875 for (i = 0; i < n_running; i++) {
876 event = cpuc->event_list[i];
877 hwc = &event->hw;
878
879 /*
880 * we can avoid reprogramming counter if:
881 * - assigned same counter as last time
882 * - running on same CPU as last time
883 * - no other event has used the counter since
884 */
885 if (hwc->idx == -1 ||
886 match_prev_assignment(hwc, cpuc, i))
887 continue;
888
889 /*
890 * Ensure we don't accidentally enable a stopped
891 * counter simply because we rescheduled.
892 */
893 if (hwc->state & PERF_HES_STOPPED)
894 hwc->state |= PERF_HES_ARCH;
895
896 x86_pmu_stop(event, PERF_EF_UPDATE);
897 }
898
899 for (i = 0; i < cpuc->n_events; i++) {
900 event = cpuc->event_list[i];
901 hwc = &event->hw;
902
903 if (!match_prev_assignment(hwc, cpuc, i))
904 x86_assign_hw_event(event, cpuc, i);
905 else if (i < n_running)
906 continue;
907
908 if (hwc->state & PERF_HES_ARCH)
909 continue;
910
911 x86_pmu_start(event, PERF_EF_RELOAD);
912 }
913 cpuc->n_added = 0;
914 perf_events_lapic_init();
915 }
916
917 cpuc->enabled = 1;
918 barrier();
919
920 x86_pmu.enable_all(added);
921 }
922
923 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
924
925 /*
926 * Set the next IRQ period, based on the hwc->period_left value.
927 * To be called with the event disabled in hw:
928 */
x86_perf_event_set_period(struct perf_event * event)929 int x86_perf_event_set_period(struct perf_event *event)
930 {
931 struct hw_perf_event *hwc = &event->hw;
932 s64 left = local64_read(&hwc->period_left);
933 s64 period = hwc->sample_period;
934 int ret = 0, idx = hwc->idx;
935
936 if (idx == X86_PMC_IDX_FIXED_BTS)
937 return 0;
938
939 /*
940 * If we are way outside a reasonable range then just skip forward:
941 */
942 if (unlikely(left <= -period)) {
943 left = period;
944 local64_set(&hwc->period_left, left);
945 hwc->last_period = period;
946 ret = 1;
947 }
948
949 if (unlikely(left <= 0)) {
950 left += period;
951 local64_set(&hwc->period_left, left);
952 hwc->last_period = period;
953 ret = 1;
954 }
955 /*
956 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
957 */
958 if (unlikely(left < 2))
959 left = 2;
960
961 if (left > x86_pmu.max_period)
962 left = x86_pmu.max_period;
963
964 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
965
966 /*
967 * The hw event starts counting from this event offset,
968 * mark it to be able to extra future deltas:
969 */
970 local64_set(&hwc->prev_count, (u64)-left);
971
972 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
973
974 /*
975 * Due to erratum on certan cpu we need
976 * a second write to be sure the register
977 * is updated properly
978 */
979 if (x86_pmu.perfctr_second_write) {
980 wrmsrl(hwc->event_base,
981 (u64)(-left) & x86_pmu.cntval_mask);
982 }
983
984 perf_event_update_userpage(event);
985
986 return ret;
987 }
988
x86_pmu_enable_event(struct perf_event * event)989 void x86_pmu_enable_event(struct perf_event *event)
990 {
991 if (__this_cpu_read(cpu_hw_events.enabled))
992 __x86_pmu_enable_event(&event->hw,
993 ARCH_PERFMON_EVENTSEL_ENABLE);
994 }
995
996 /*
997 * Add a single event to the PMU.
998 *
999 * The event is added to the group of enabled events
1000 * but only if it can be scehduled with existing events.
1001 */
x86_pmu_add(struct perf_event * event,int flags)1002 static int x86_pmu_add(struct perf_event *event, int flags)
1003 {
1004 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005 struct hw_perf_event *hwc;
1006 int assign[X86_PMC_IDX_MAX];
1007 int n, n0, ret;
1008
1009 hwc = &event->hw;
1010
1011 perf_pmu_disable(event->pmu);
1012 n0 = cpuc->n_events;
1013 ret = n = collect_events(cpuc, event, false);
1014 if (ret < 0)
1015 goto out;
1016
1017 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1018 if (!(flags & PERF_EF_START))
1019 hwc->state |= PERF_HES_ARCH;
1020
1021 /*
1022 * If group events scheduling transaction was started,
1023 * skip the schedulability test here, it will be performed
1024 * at commit time (->commit_txn) as a whole
1025 */
1026 if (cpuc->group_flag & PERF_EVENT_TXN)
1027 goto done_collect;
1028
1029 ret = x86_pmu.schedule_events(cpuc, n, assign);
1030 if (ret)
1031 goto out;
1032 /*
1033 * copy new assignment, now we know it is possible
1034 * will be used by hw_perf_enable()
1035 */
1036 memcpy(cpuc->assign, assign, n*sizeof(int));
1037
1038 done_collect:
1039 cpuc->n_events = n;
1040 cpuc->n_added += n - n0;
1041 cpuc->n_txn += n - n0;
1042
1043 ret = 0;
1044 out:
1045 perf_pmu_enable(event->pmu);
1046 return ret;
1047 }
1048
x86_pmu_start(struct perf_event * event,int flags)1049 static void x86_pmu_start(struct perf_event *event, int flags)
1050 {
1051 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052 int idx = event->hw.idx;
1053
1054 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1055 return;
1056
1057 if (WARN_ON_ONCE(idx == -1))
1058 return;
1059
1060 if (flags & PERF_EF_RELOAD) {
1061 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1062 x86_perf_event_set_period(event);
1063 }
1064
1065 event->hw.state = 0;
1066
1067 cpuc->events[idx] = event;
1068 __set_bit(idx, cpuc->active_mask);
1069 __set_bit(idx, cpuc->running);
1070 x86_pmu.enable(event);
1071 perf_event_update_userpage(event);
1072 }
1073
perf_event_print_debug(void)1074 void perf_event_print_debug(void)
1075 {
1076 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1077 u64 pebs;
1078 struct cpu_hw_events *cpuc;
1079 unsigned long flags;
1080 int cpu, idx;
1081
1082 if (!x86_pmu.num_counters)
1083 return;
1084
1085 local_irq_save(flags);
1086
1087 cpu = smp_processor_id();
1088 cpuc = &per_cpu(cpu_hw_events, cpu);
1089
1090 if (x86_pmu.version >= 2) {
1091 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1092 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1093 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1094 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1095 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1096
1097 pr_info("\n");
1098 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1099 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1100 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1101 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1102 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1103 }
1104 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1105
1106 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1107 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1108 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1109
1110 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1111
1112 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1113 cpu, idx, pmc_ctrl);
1114 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1115 cpu, idx, pmc_count);
1116 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1117 cpu, idx, prev_left);
1118 }
1119 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1120 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1121
1122 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1123 cpu, idx, pmc_count);
1124 }
1125 local_irq_restore(flags);
1126 }
1127
x86_pmu_stop(struct perf_event * event,int flags)1128 void x86_pmu_stop(struct perf_event *event, int flags)
1129 {
1130 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1131 struct hw_perf_event *hwc = &event->hw;
1132
1133 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1134 x86_pmu.disable(event);
1135 cpuc->events[hwc->idx] = NULL;
1136 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1137 hwc->state |= PERF_HES_STOPPED;
1138 }
1139
1140 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1141 /*
1142 * Drain the remaining delta count out of a event
1143 * that we are disabling:
1144 */
1145 x86_perf_event_update(event);
1146 hwc->state |= PERF_HES_UPTODATE;
1147 }
1148 }
1149
x86_pmu_del(struct perf_event * event,int flags)1150 static void x86_pmu_del(struct perf_event *event, int flags)
1151 {
1152 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153 int i;
1154
1155 /*
1156 * If we're called during a txn, we don't need to do anything.
1157 * The events never got scheduled and ->cancel_txn will truncate
1158 * the event_list.
1159 */
1160 if (cpuc->group_flag & PERF_EVENT_TXN)
1161 return;
1162
1163 x86_pmu_stop(event, PERF_EF_UPDATE);
1164
1165 for (i = 0; i < cpuc->n_events; i++) {
1166 if (event == cpuc->event_list[i]) {
1167
1168 if (x86_pmu.put_event_constraints)
1169 x86_pmu.put_event_constraints(cpuc, event);
1170
1171 while (++i < cpuc->n_events)
1172 cpuc->event_list[i-1] = cpuc->event_list[i];
1173
1174 --cpuc->n_events;
1175 break;
1176 }
1177 }
1178 perf_event_update_userpage(event);
1179 }
1180
x86_pmu_handle_irq(struct pt_regs * regs)1181 int x86_pmu_handle_irq(struct pt_regs *regs)
1182 {
1183 struct perf_sample_data data;
1184 struct cpu_hw_events *cpuc;
1185 struct perf_event *event;
1186 int idx, handled = 0;
1187 u64 val;
1188
1189 perf_sample_data_init(&data, 0);
1190
1191 cpuc = &__get_cpu_var(cpu_hw_events);
1192
1193 /*
1194 * Some chipsets need to unmask the LVTPC in a particular spot
1195 * inside the nmi handler. As a result, the unmasking was pushed
1196 * into all the nmi handlers.
1197 *
1198 * This generic handler doesn't seem to have any issues where the
1199 * unmasking occurs so it was left at the top.
1200 */
1201 apic_write(APIC_LVTPC, APIC_DM_NMI);
1202
1203 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1204 if (!test_bit(idx, cpuc->active_mask)) {
1205 /*
1206 * Though we deactivated the counter some cpus
1207 * might still deliver spurious interrupts still
1208 * in flight. Catch them:
1209 */
1210 if (__test_and_clear_bit(idx, cpuc->running))
1211 handled++;
1212 continue;
1213 }
1214
1215 event = cpuc->events[idx];
1216
1217 val = x86_perf_event_update(event);
1218 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1219 continue;
1220
1221 /*
1222 * event overflow
1223 */
1224 handled++;
1225 data.period = event->hw.last_period;
1226
1227 if (!x86_perf_event_set_period(event))
1228 continue;
1229
1230 if (perf_event_overflow(event, &data, regs))
1231 x86_pmu_stop(event, 0);
1232 }
1233
1234 if (handled)
1235 inc_irq_stat(apic_perf_irqs);
1236
1237 return handled;
1238 }
1239
perf_events_lapic_init(void)1240 void perf_events_lapic_init(void)
1241 {
1242 if (!x86_pmu.apic || !x86_pmu_initialized())
1243 return;
1244
1245 /*
1246 * Always use NMI for PMU
1247 */
1248 apic_write(APIC_LVTPC, APIC_DM_NMI);
1249 }
1250
1251 static int __kprobes
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1252 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1253 {
1254 if (!atomic_read(&active_events))
1255 return NMI_DONE;
1256
1257 return x86_pmu.handle_irq(regs);
1258 }
1259
1260 struct event_constraint emptyconstraint;
1261 struct event_constraint unconstrained;
1262
1263 static int __cpuinit
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1264 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1265 {
1266 unsigned int cpu = (long)hcpu;
1267 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1268 int ret = NOTIFY_OK;
1269
1270 switch (action & ~CPU_TASKS_FROZEN) {
1271 case CPU_UP_PREPARE:
1272 cpuc->kfree_on_online = NULL;
1273 if (x86_pmu.cpu_prepare)
1274 ret = x86_pmu.cpu_prepare(cpu);
1275 break;
1276
1277 case CPU_STARTING:
1278 if (x86_pmu.attr_rdpmc)
1279 set_in_cr4(X86_CR4_PCE);
1280 if (x86_pmu.cpu_starting)
1281 x86_pmu.cpu_starting(cpu);
1282 break;
1283
1284 case CPU_ONLINE:
1285 kfree(cpuc->kfree_on_online);
1286 break;
1287
1288 case CPU_DYING:
1289 if (x86_pmu.cpu_dying)
1290 x86_pmu.cpu_dying(cpu);
1291 break;
1292
1293 case CPU_UP_CANCELED:
1294 case CPU_DEAD:
1295 if (x86_pmu.cpu_dead)
1296 x86_pmu.cpu_dead(cpu);
1297 break;
1298
1299 default:
1300 break;
1301 }
1302
1303 return ret;
1304 }
1305
pmu_check_apic(void)1306 static void __init pmu_check_apic(void)
1307 {
1308 if (cpu_has_apic)
1309 return;
1310
1311 x86_pmu.apic = 0;
1312 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1313 pr_info("no hardware sampling interrupt available.\n");
1314 }
1315
1316 static struct attribute_group x86_pmu_format_group = {
1317 .name = "format",
1318 .attrs = NULL,
1319 };
1320
init_hw_perf_events(void)1321 static int __init init_hw_perf_events(void)
1322 {
1323 struct x86_pmu_quirk *quirk;
1324 struct event_constraint *c;
1325 int err;
1326
1327 pr_info("Performance Events: ");
1328
1329 switch (boot_cpu_data.x86_vendor) {
1330 case X86_VENDOR_INTEL:
1331 err = intel_pmu_init();
1332 break;
1333 case X86_VENDOR_AMD:
1334 err = amd_pmu_init();
1335 break;
1336 default:
1337 return 0;
1338 }
1339 if (err != 0) {
1340 pr_cont("no PMU driver, software events only.\n");
1341 return 0;
1342 }
1343
1344 pmu_check_apic();
1345
1346 /* sanity check that the hardware exists or is emulated */
1347 if (!check_hw_exists())
1348 return 0;
1349
1350 pr_cont("%s PMU driver.\n", x86_pmu.name);
1351
1352 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1353 quirk->func();
1354
1355 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1356 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1357 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1358 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1359 }
1360 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1361
1362 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1363 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1364 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1365 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1366 }
1367
1368 x86_pmu.intel_ctrl |=
1369 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1370
1371 perf_events_lapic_init();
1372 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1373
1374 unconstrained = (struct event_constraint)
1375 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1376 0, x86_pmu.num_counters, 0);
1377
1378 if (x86_pmu.event_constraints) {
1379 /*
1380 * event on fixed counter2 (REF_CYCLES) only works on this
1381 * counter, so do not extend mask to generic counters
1382 */
1383 for_each_event_constraint(c, x86_pmu.event_constraints) {
1384 if (c->cmask != X86_RAW_EVENT_MASK
1385 || c->idxmsk64 == X86_PMC_MSK_FIXED_REF_CYCLES) {
1386 continue;
1387 }
1388
1389 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1390 c->weight += x86_pmu.num_counters;
1391 }
1392 }
1393
1394 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1395 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1396
1397 pr_info("... version: %d\n", x86_pmu.version);
1398 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1399 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1400 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1401 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1402 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1403 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1404
1405 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1406 perf_cpu_notifier(x86_pmu_notifier);
1407
1408 return 0;
1409 }
1410 early_initcall(init_hw_perf_events);
1411
x86_pmu_read(struct perf_event * event)1412 static inline void x86_pmu_read(struct perf_event *event)
1413 {
1414 x86_perf_event_update(event);
1415 }
1416
1417 /*
1418 * Start group events scheduling transaction
1419 * Set the flag to make pmu::enable() not perform the
1420 * schedulability test, it will be performed at commit time
1421 */
x86_pmu_start_txn(struct pmu * pmu)1422 static void x86_pmu_start_txn(struct pmu *pmu)
1423 {
1424 perf_pmu_disable(pmu);
1425 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1426 __this_cpu_write(cpu_hw_events.n_txn, 0);
1427 }
1428
1429 /*
1430 * Stop group events scheduling transaction
1431 * Clear the flag and pmu::enable() will perform the
1432 * schedulability test.
1433 */
x86_pmu_cancel_txn(struct pmu * pmu)1434 static void x86_pmu_cancel_txn(struct pmu *pmu)
1435 {
1436 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1437 /*
1438 * Truncate the collected events.
1439 */
1440 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1441 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1442 perf_pmu_enable(pmu);
1443 }
1444
1445 /*
1446 * Commit group events scheduling transaction
1447 * Perform the group schedulability test as a whole
1448 * Return 0 if success
1449 */
x86_pmu_commit_txn(struct pmu * pmu)1450 static int x86_pmu_commit_txn(struct pmu *pmu)
1451 {
1452 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1453 int assign[X86_PMC_IDX_MAX];
1454 int n, ret;
1455
1456 n = cpuc->n_events;
1457
1458 if (!x86_pmu_initialized())
1459 return -EAGAIN;
1460
1461 ret = x86_pmu.schedule_events(cpuc, n, assign);
1462 if (ret)
1463 return ret;
1464
1465 /*
1466 * copy new assignment, now we know it is possible
1467 * will be used by hw_perf_enable()
1468 */
1469 memcpy(cpuc->assign, assign, n*sizeof(int));
1470
1471 cpuc->group_flag &= ~PERF_EVENT_TXN;
1472 perf_pmu_enable(pmu);
1473 return 0;
1474 }
1475 /*
1476 * a fake_cpuc is used to validate event groups. Due to
1477 * the extra reg logic, we need to also allocate a fake
1478 * per_core and per_cpu structure. Otherwise, group events
1479 * using extra reg may conflict without the kernel being
1480 * able to catch this when the last event gets added to
1481 * the group.
1482 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1483 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1484 {
1485 kfree(cpuc->shared_regs);
1486 kfree(cpuc);
1487 }
1488
allocate_fake_cpuc(void)1489 static struct cpu_hw_events *allocate_fake_cpuc(void)
1490 {
1491 struct cpu_hw_events *cpuc;
1492 int cpu = raw_smp_processor_id();
1493
1494 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1495 if (!cpuc)
1496 return ERR_PTR(-ENOMEM);
1497
1498 /* only needed, if we have extra_regs */
1499 if (x86_pmu.extra_regs) {
1500 cpuc->shared_regs = allocate_shared_regs(cpu);
1501 if (!cpuc->shared_regs)
1502 goto error;
1503 }
1504 return cpuc;
1505 error:
1506 free_fake_cpuc(cpuc);
1507 return ERR_PTR(-ENOMEM);
1508 }
1509
1510 /*
1511 * validate that we can schedule this event
1512 */
validate_event(struct perf_event * event)1513 static int validate_event(struct perf_event *event)
1514 {
1515 struct cpu_hw_events *fake_cpuc;
1516 struct event_constraint *c;
1517 int ret = 0;
1518
1519 fake_cpuc = allocate_fake_cpuc();
1520 if (IS_ERR(fake_cpuc))
1521 return PTR_ERR(fake_cpuc);
1522
1523 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1524
1525 if (!c || !c->weight)
1526 ret = -EINVAL;
1527
1528 if (x86_pmu.put_event_constraints)
1529 x86_pmu.put_event_constraints(fake_cpuc, event);
1530
1531 free_fake_cpuc(fake_cpuc);
1532
1533 return ret;
1534 }
1535
1536 /*
1537 * validate a single event group
1538 *
1539 * validation include:
1540 * - check events are compatible which each other
1541 * - events do not compete for the same counter
1542 * - number of events <= number of counters
1543 *
1544 * validation ensures the group can be loaded onto the
1545 * PMU if it was the only group available.
1546 */
validate_group(struct perf_event * event)1547 static int validate_group(struct perf_event *event)
1548 {
1549 struct perf_event *leader = event->group_leader;
1550 struct cpu_hw_events *fake_cpuc;
1551 int ret = -EINVAL, n;
1552
1553 fake_cpuc = allocate_fake_cpuc();
1554 if (IS_ERR(fake_cpuc))
1555 return PTR_ERR(fake_cpuc);
1556 /*
1557 * the event is not yet connected with its
1558 * siblings therefore we must first collect
1559 * existing siblings, then add the new event
1560 * before we can simulate the scheduling
1561 */
1562 n = collect_events(fake_cpuc, leader, true);
1563 if (n < 0)
1564 goto out;
1565
1566 fake_cpuc->n_events = n;
1567 n = collect_events(fake_cpuc, event, false);
1568 if (n < 0)
1569 goto out;
1570
1571 fake_cpuc->n_events = n;
1572
1573 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1574
1575 out:
1576 free_fake_cpuc(fake_cpuc);
1577 return ret;
1578 }
1579
x86_pmu_event_init(struct perf_event * event)1580 static int x86_pmu_event_init(struct perf_event *event)
1581 {
1582 struct pmu *tmp;
1583 int err;
1584
1585 switch (event->attr.type) {
1586 case PERF_TYPE_RAW:
1587 case PERF_TYPE_HARDWARE:
1588 case PERF_TYPE_HW_CACHE:
1589 break;
1590
1591 default:
1592 return -ENOENT;
1593 }
1594
1595 err = __x86_pmu_event_init(event);
1596 if (!err) {
1597 /*
1598 * we temporarily connect event to its pmu
1599 * such that validate_group() can classify
1600 * it as an x86 event using is_x86_event()
1601 */
1602 tmp = event->pmu;
1603 event->pmu = &pmu;
1604
1605 if (event->group_leader != event)
1606 err = validate_group(event);
1607 else
1608 err = validate_event(event);
1609
1610 event->pmu = tmp;
1611 }
1612 if (err) {
1613 if (event->destroy)
1614 event->destroy(event);
1615 }
1616
1617 return err;
1618 }
1619
x86_pmu_event_idx(struct perf_event * event)1620 static int x86_pmu_event_idx(struct perf_event *event)
1621 {
1622 int idx = event->hw.idx;
1623
1624 if (!x86_pmu.attr_rdpmc)
1625 return 0;
1626
1627 if (x86_pmu.num_counters_fixed && idx >= X86_PMC_IDX_FIXED) {
1628 idx -= X86_PMC_IDX_FIXED;
1629 idx |= 1 << 30;
1630 }
1631
1632 return idx + 1;
1633 }
1634
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)1635 static ssize_t get_attr_rdpmc(struct device *cdev,
1636 struct device_attribute *attr,
1637 char *buf)
1638 {
1639 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1640 }
1641
change_rdpmc(void * info)1642 static void change_rdpmc(void *info)
1643 {
1644 bool enable = !!(unsigned long)info;
1645
1646 if (enable)
1647 set_in_cr4(X86_CR4_PCE);
1648 else
1649 clear_in_cr4(X86_CR4_PCE);
1650 }
1651
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)1652 static ssize_t set_attr_rdpmc(struct device *cdev,
1653 struct device_attribute *attr,
1654 const char *buf, size_t count)
1655 {
1656 unsigned long val = simple_strtoul(buf, NULL, 0);
1657
1658 if (!!val != !!x86_pmu.attr_rdpmc) {
1659 x86_pmu.attr_rdpmc = !!val;
1660 smp_call_function(change_rdpmc, (void *)val, 1);
1661 }
1662
1663 return count;
1664 }
1665
1666 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1667
1668 static struct attribute *x86_pmu_attrs[] = {
1669 &dev_attr_rdpmc.attr,
1670 NULL,
1671 };
1672
1673 static struct attribute_group x86_pmu_attr_group = {
1674 .attrs = x86_pmu_attrs,
1675 };
1676
1677 static const struct attribute_group *x86_pmu_attr_groups[] = {
1678 &x86_pmu_attr_group,
1679 &x86_pmu_format_group,
1680 NULL,
1681 };
1682
x86_pmu_flush_branch_stack(void)1683 static void x86_pmu_flush_branch_stack(void)
1684 {
1685 if (x86_pmu.flush_branch_stack)
1686 x86_pmu.flush_branch_stack();
1687 }
1688
1689 static struct pmu pmu = {
1690 .pmu_enable = x86_pmu_enable,
1691 .pmu_disable = x86_pmu_disable,
1692
1693 .attr_groups = x86_pmu_attr_groups,
1694
1695 .event_init = x86_pmu_event_init,
1696
1697 .add = x86_pmu_add,
1698 .del = x86_pmu_del,
1699 .start = x86_pmu_start,
1700 .stop = x86_pmu_stop,
1701 .read = x86_pmu_read,
1702
1703 .start_txn = x86_pmu_start_txn,
1704 .cancel_txn = x86_pmu_cancel_txn,
1705 .commit_txn = x86_pmu_commit_txn,
1706
1707 .event_idx = x86_pmu_event_idx,
1708 .flush_branch_stack = x86_pmu_flush_branch_stack,
1709 };
1710
arch_perf_update_userpage(struct perf_event_mmap_page * userpg,u64 now)1711 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1712 {
1713 userpg->cap_usr_time = 0;
1714 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1715 userpg->pmc_width = x86_pmu.cntval_bits;
1716
1717 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1718 return;
1719
1720 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1721 return;
1722
1723 userpg->cap_usr_time = 1;
1724 userpg->time_mult = this_cpu_read(cyc2ns);
1725 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1726 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1727 }
1728
1729 /*
1730 * callchain support
1731 */
1732
backtrace_stack(void * data,char * name)1733 static int backtrace_stack(void *data, char *name)
1734 {
1735 return 0;
1736 }
1737
backtrace_address(void * data,unsigned long addr,int reliable)1738 static void backtrace_address(void *data, unsigned long addr, int reliable)
1739 {
1740 struct perf_callchain_entry *entry = data;
1741
1742 perf_callchain_store(entry, addr);
1743 }
1744
1745 static const struct stacktrace_ops backtrace_ops = {
1746 .stack = backtrace_stack,
1747 .address = backtrace_address,
1748 .walk_stack = print_context_stack_bp,
1749 };
1750
1751 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)1752 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1753 {
1754 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1755 /* TODO: We don't support guest os callchain now */
1756 return;
1757 }
1758
1759 perf_callchain_store(entry, regs->ip);
1760
1761 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1762 }
1763
1764 #ifdef CONFIG_COMPAT
1765
1766 #include <asm/compat.h>
1767
1768 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1769 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1770 {
1771 /* 32-bit process in 64-bit kernel. */
1772 struct stack_frame_ia32 frame;
1773 const void __user *fp;
1774
1775 if (!test_thread_flag(TIF_IA32))
1776 return 0;
1777
1778 fp = compat_ptr(regs->bp);
1779 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1780 unsigned long bytes;
1781 frame.next_frame = 0;
1782 frame.return_address = 0;
1783
1784 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1785 if (bytes != sizeof(frame))
1786 break;
1787
1788 if (fp < compat_ptr(regs->sp))
1789 break;
1790
1791 perf_callchain_store(entry, frame.return_address);
1792 fp = compat_ptr(frame.next_frame);
1793 }
1794 return 1;
1795 }
1796 #else
1797 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1798 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1799 {
1800 return 0;
1801 }
1802 #endif
1803
1804 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)1805 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1806 {
1807 struct stack_frame frame;
1808 const void __user *fp;
1809
1810 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1811 /* TODO: We don't support guest os callchain now */
1812 return;
1813 }
1814
1815 fp = (void __user *)regs->bp;
1816
1817 perf_callchain_store(entry, regs->ip);
1818
1819 if (!current->mm)
1820 return;
1821
1822 if (perf_callchain_user32(regs, entry))
1823 return;
1824
1825 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1826 unsigned long bytes;
1827 frame.next_frame = NULL;
1828 frame.return_address = 0;
1829
1830 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1831 if (bytes != sizeof(frame))
1832 break;
1833
1834 if ((unsigned long)fp < regs->sp)
1835 break;
1836
1837 perf_callchain_store(entry, frame.return_address);
1838 fp = frame.next_frame;
1839 }
1840 }
1841
perf_instruction_pointer(struct pt_regs * regs)1842 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1843 {
1844 unsigned long ip;
1845
1846 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1847 ip = perf_guest_cbs->get_guest_ip();
1848 else
1849 ip = instruction_pointer(regs);
1850
1851 return ip;
1852 }
1853
perf_misc_flags(struct pt_regs * regs)1854 unsigned long perf_misc_flags(struct pt_regs *regs)
1855 {
1856 int misc = 0;
1857
1858 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1859 if (perf_guest_cbs->is_user_mode())
1860 misc |= PERF_RECORD_MISC_GUEST_USER;
1861 else
1862 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1863 } else {
1864 if (user_mode(regs))
1865 misc |= PERF_RECORD_MISC_USER;
1866 else
1867 misc |= PERF_RECORD_MISC_KERNEL;
1868 }
1869
1870 if (regs->flags & PERF_EFLAGS_EXACT)
1871 misc |= PERF_RECORD_MISC_EXACT_IP;
1872
1873 return misc;
1874 }
1875
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)1876 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1877 {
1878 cap->version = x86_pmu.version;
1879 cap->num_counters_gp = x86_pmu.num_counters;
1880 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1881 cap->bit_width_gp = x86_pmu.cntval_bits;
1882 cap->bit_width_fixed = x86_pmu.cntval_bits;
1883 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
1884 cap->events_mask_len = x86_pmu.events_mask_len;
1885 }
1886 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
1887