• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Xen time implementation.
3  *
4  * This is implemented in terms of a clocksource driver which uses
5  * the hypervisor clock as a nanosecond timebase, and a clockevent
6  * driver which uses the hypervisor's timer mechanism.
7  *
8  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9  */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
17 
18 #include <asm/pvclock.h>
19 #include <asm/xen/hypervisor.h>
20 #include <asm/xen/hypercall.h>
21 
22 #include <xen/events.h>
23 #include <xen/features.h>
24 #include <xen/interface/xen.h>
25 #include <xen/interface/vcpu.h>
26 
27 #include "xen-ops.h"
28 
29 /* Xen may fire a timer up to this many ns early */
30 #define TIMER_SLOP	100000
31 #define NS_PER_TICK	(1000000000LL / HZ)
32 
33 /* runstate info updated by Xen */
34 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
35 
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
38 
39 /* unused ns of stolen time */
40 static DEFINE_PER_CPU(u64, xen_residual_stolen);
41 
42 /* return an consistent snapshot of 64-bit time/counter value */
get64(const u64 * p)43 static u64 get64(const u64 *p)
44 {
45 	u64 ret;
46 
47 	if (BITS_PER_LONG < 64) {
48 		u32 *p32 = (u32 *)p;
49 		u32 h, l;
50 
51 		/*
52 		 * Read high then low, and then make sure high is
53 		 * still the same; this will only loop if low wraps
54 		 * and carries into high.
55 		 * XXX some clean way to make this endian-proof?
56 		 */
57 		do {
58 			h = p32[1];
59 			barrier();
60 			l = p32[0];
61 			barrier();
62 		} while (p32[1] != h);
63 
64 		ret = (((u64)h) << 32) | l;
65 	} else
66 		ret = *p;
67 
68 	return ret;
69 }
70 
71 /*
72  * Runstate accounting
73  */
get_runstate_snapshot(struct vcpu_runstate_info * res)74 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
75 {
76 	u64 state_time;
77 	struct vcpu_runstate_info *state;
78 
79 	BUG_ON(preemptible());
80 
81 	state = &__get_cpu_var(xen_runstate);
82 
83 	/*
84 	 * The runstate info is always updated by the hypervisor on
85 	 * the current CPU, so there's no need to use anything
86 	 * stronger than a compiler barrier when fetching it.
87 	 */
88 	do {
89 		state_time = get64(&state->state_entry_time);
90 		barrier();
91 		*res = *state;
92 		barrier();
93 	} while (get64(&state->state_entry_time) != state_time);
94 }
95 
96 /* return true when a vcpu could run but has no real cpu to run on */
xen_vcpu_stolen(int vcpu)97 bool xen_vcpu_stolen(int vcpu)
98 {
99 	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
100 }
101 
xen_setup_runstate_info(int cpu)102 void xen_setup_runstate_info(int cpu)
103 {
104 	struct vcpu_register_runstate_memory_area area;
105 
106 	area.addr.v = &per_cpu(xen_runstate, cpu);
107 
108 	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
109 			       cpu, &area))
110 		BUG();
111 }
112 
do_stolen_accounting(void)113 static void do_stolen_accounting(void)
114 {
115 	struct vcpu_runstate_info state;
116 	struct vcpu_runstate_info *snap;
117 	s64 runnable, offline, stolen;
118 	cputime_t ticks;
119 
120 	get_runstate_snapshot(&state);
121 
122 	WARN_ON(state.state != RUNSTATE_running);
123 
124 	snap = &__get_cpu_var(xen_runstate_snapshot);
125 
126 	/* work out how much time the VCPU has not been runn*ing*  */
127 	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
128 	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
129 
130 	*snap = state;
131 
132 	/* Add the appropriate number of ticks of stolen time,
133 	   including any left-overs from last time. */
134 	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
135 
136 	if (stolen < 0)
137 		stolen = 0;
138 
139 	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
140 	__this_cpu_write(xen_residual_stolen, stolen);
141 	account_steal_ticks(ticks);
142 }
143 
144 /* Get the TSC speed from Xen */
xen_tsc_khz(void)145 static unsigned long xen_tsc_khz(void)
146 {
147 	struct pvclock_vcpu_time_info *info =
148 		&HYPERVISOR_shared_info->vcpu_info[0].time;
149 
150 	return pvclock_tsc_khz(info);
151 }
152 
xen_clocksource_read(void)153 cycle_t xen_clocksource_read(void)
154 {
155         struct pvclock_vcpu_time_info *src;
156 	cycle_t ret;
157 
158 	preempt_disable_notrace();
159 	src = &__get_cpu_var(xen_vcpu)->time;
160 	ret = pvclock_clocksource_read(src);
161 	preempt_enable_notrace();
162 	return ret;
163 }
164 
xen_clocksource_get_cycles(struct clocksource * cs)165 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
166 {
167 	return xen_clocksource_read();
168 }
169 
xen_read_wallclock(struct timespec * ts)170 static void xen_read_wallclock(struct timespec *ts)
171 {
172 	struct shared_info *s = HYPERVISOR_shared_info;
173 	struct pvclock_wall_clock *wall_clock = &(s->wc);
174         struct pvclock_vcpu_time_info *vcpu_time;
175 
176 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
177 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
178 	put_cpu_var(xen_vcpu);
179 }
180 
xen_get_wallclock(void)181 static unsigned long xen_get_wallclock(void)
182 {
183 	struct timespec ts;
184 
185 	xen_read_wallclock(&ts);
186 	return ts.tv_sec;
187 }
188 
xen_set_wallclock(unsigned long now)189 static int xen_set_wallclock(unsigned long now)
190 {
191 	struct xen_platform_op op;
192 	int rc;
193 
194 	/* do nothing for domU */
195 	if (!xen_initial_domain())
196 		return -1;
197 
198 	op.cmd = XENPF_settime;
199 	op.u.settime.secs = now;
200 	op.u.settime.nsecs = 0;
201 	op.u.settime.system_time = xen_clocksource_read();
202 
203 	rc = HYPERVISOR_dom0_op(&op);
204 	WARN(rc != 0, "XENPF_settime failed: now=%ld\n", now);
205 
206 	return rc;
207 }
208 
209 static struct clocksource xen_clocksource __read_mostly = {
210 	.name = "xen",
211 	.rating = 400,
212 	.read = xen_clocksource_get_cycles,
213 	.mask = ~0,
214 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
215 };
216 
217 /*
218    Xen clockevent implementation
219 
220    Xen has two clockevent implementations:
221 
222    The old timer_op one works with all released versions of Xen prior
223    to version 3.0.4.  This version of the hypervisor provides a
224    single-shot timer with nanosecond resolution.  However, sharing the
225    same event channel is a 100Hz tick which is delivered while the
226    vcpu is running.  We don't care about or use this tick, but it will
227    cause the core time code to think the timer fired too soon, and
228    will end up resetting it each time.  It could be filtered, but
229    doing so has complications when the ktime clocksource is not yet
230    the xen clocksource (ie, at boot time).
231 
232    The new vcpu_op-based timer interface allows the tick timer period
233    to be changed or turned off.  The tick timer is not useful as a
234    periodic timer because events are only delivered to running vcpus.
235    The one-shot timer can report when a timeout is in the past, so
236    set_next_event is capable of returning -ETIME when appropriate.
237    This interface is used when available.
238 */
239 
240 
241 /*
242   Get a hypervisor absolute time.  In theory we could maintain an
243   offset between the kernel's time and the hypervisor's time, and
244   apply that to a kernel's absolute timeout.  Unfortunately the
245   hypervisor and kernel times can drift even if the kernel is using
246   the Xen clocksource, because ntp can warp the kernel's clocksource.
247 */
get_abs_timeout(unsigned long delta)248 static s64 get_abs_timeout(unsigned long delta)
249 {
250 	return xen_clocksource_read() + delta;
251 }
252 
xen_timerop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)253 static void xen_timerop_set_mode(enum clock_event_mode mode,
254 				 struct clock_event_device *evt)
255 {
256 	switch (mode) {
257 	case CLOCK_EVT_MODE_PERIODIC:
258 		/* unsupported */
259 		WARN_ON(1);
260 		break;
261 
262 	case CLOCK_EVT_MODE_ONESHOT:
263 	case CLOCK_EVT_MODE_RESUME:
264 		break;
265 
266 	case CLOCK_EVT_MODE_UNUSED:
267 	case CLOCK_EVT_MODE_SHUTDOWN:
268 		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
269 		break;
270 	}
271 }
272 
xen_timerop_set_next_event(unsigned long delta,struct clock_event_device * evt)273 static int xen_timerop_set_next_event(unsigned long delta,
274 				      struct clock_event_device *evt)
275 {
276 	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
277 
278 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
279 		BUG();
280 
281 	/* We may have missed the deadline, but there's no real way of
282 	   knowing for sure.  If the event was in the past, then we'll
283 	   get an immediate interrupt. */
284 
285 	return 0;
286 }
287 
288 static const struct clock_event_device xen_timerop_clockevent = {
289 	.name = "xen",
290 	.features = CLOCK_EVT_FEAT_ONESHOT,
291 
292 	.max_delta_ns = 0xffffffff,
293 	.min_delta_ns = TIMER_SLOP,
294 
295 	.mult = 1,
296 	.shift = 0,
297 	.rating = 500,
298 
299 	.set_mode = xen_timerop_set_mode,
300 	.set_next_event = xen_timerop_set_next_event,
301 };
302 
303 
304 
xen_vcpuop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)305 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
306 				struct clock_event_device *evt)
307 {
308 	int cpu = smp_processor_id();
309 
310 	switch (mode) {
311 	case CLOCK_EVT_MODE_PERIODIC:
312 		WARN_ON(1);	/* unsupported */
313 		break;
314 
315 	case CLOCK_EVT_MODE_ONESHOT:
316 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
317 			BUG();
318 		break;
319 
320 	case CLOCK_EVT_MODE_UNUSED:
321 	case CLOCK_EVT_MODE_SHUTDOWN:
322 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
323 		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
324 			BUG();
325 		break;
326 	case CLOCK_EVT_MODE_RESUME:
327 		break;
328 	}
329 }
330 
xen_vcpuop_set_next_event(unsigned long delta,struct clock_event_device * evt)331 static int xen_vcpuop_set_next_event(unsigned long delta,
332 				     struct clock_event_device *evt)
333 {
334 	int cpu = smp_processor_id();
335 	struct vcpu_set_singleshot_timer single;
336 	int ret;
337 
338 	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
339 
340 	single.timeout_abs_ns = get_abs_timeout(delta);
341 	single.flags = VCPU_SSHOTTMR_future;
342 
343 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
344 
345 	BUG_ON(ret != 0 && ret != -ETIME);
346 
347 	return ret;
348 }
349 
350 static const struct clock_event_device xen_vcpuop_clockevent = {
351 	.name = "xen",
352 	.features = CLOCK_EVT_FEAT_ONESHOT,
353 
354 	.max_delta_ns = 0xffffffff,
355 	.min_delta_ns = TIMER_SLOP,
356 
357 	.mult = 1,
358 	.shift = 0,
359 	.rating = 500,
360 
361 	.set_mode = xen_vcpuop_set_mode,
362 	.set_next_event = xen_vcpuop_set_next_event,
363 };
364 
365 static const struct clock_event_device *xen_clockevent =
366 	&xen_timerop_clockevent;
367 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
368 
xen_timer_interrupt(int irq,void * dev_id)369 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
370 {
371 	struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
372 	irqreturn_t ret;
373 
374 	ret = IRQ_NONE;
375 	if (evt->event_handler) {
376 		evt->event_handler(evt);
377 		ret = IRQ_HANDLED;
378 	}
379 
380 	do_stolen_accounting();
381 
382 	return ret;
383 }
384 
xen_setup_timer(int cpu)385 void xen_setup_timer(int cpu)
386 {
387 	const char *name;
388 	struct clock_event_device *evt;
389 	int irq;
390 
391 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
392 
393 	name = kasprintf(GFP_KERNEL, "timer%d", cpu);
394 	if (!name)
395 		name = "<timer kasprintf failed>";
396 
397 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
398 				      IRQF_DISABLED|IRQF_PERCPU|
399 				      IRQF_NOBALANCING|IRQF_TIMER|
400 				      IRQF_FORCE_RESUME,
401 				      name, NULL);
402 
403 	evt = &per_cpu(xen_clock_events, cpu);
404 	memcpy(evt, xen_clockevent, sizeof(*evt));
405 
406 	evt->cpumask = cpumask_of(cpu);
407 	evt->irq = irq;
408 }
409 
xen_teardown_timer(int cpu)410 void xen_teardown_timer(int cpu)
411 {
412 	struct clock_event_device *evt;
413 	BUG_ON(cpu == 0);
414 	evt = &per_cpu(xen_clock_events, cpu);
415 	unbind_from_irqhandler(evt->irq, NULL);
416 }
417 
xen_setup_cpu_clockevents(void)418 void xen_setup_cpu_clockevents(void)
419 {
420 	BUG_ON(preemptible());
421 
422 	clockevents_register_device(&__get_cpu_var(xen_clock_events));
423 }
424 
xen_timer_resume(void)425 void xen_timer_resume(void)
426 {
427 	int cpu;
428 
429 	pvclock_resume();
430 
431 	if (xen_clockevent != &xen_vcpuop_clockevent)
432 		return;
433 
434 	for_each_online_cpu(cpu) {
435 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
436 			BUG();
437 	}
438 }
439 
440 static const struct pv_time_ops xen_time_ops __initconst = {
441 	.sched_clock = xen_clocksource_read,
442 };
443 
xen_time_init(void)444 static void __init xen_time_init(void)
445 {
446 	int cpu = smp_processor_id();
447 	struct timespec tp;
448 
449 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
450 
451 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
452 		/* Successfully turned off 100Hz tick, so we have the
453 		   vcpuop-based timer interface */
454 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
455 		xen_clockevent = &xen_vcpuop_clockevent;
456 	}
457 
458 	/* Set initial system time with full resolution */
459 	xen_read_wallclock(&tp);
460 	do_settimeofday(&tp);
461 
462 	setup_force_cpu_cap(X86_FEATURE_TSC);
463 
464 	xen_setup_runstate_info(cpu);
465 	xen_setup_timer(cpu);
466 	xen_setup_cpu_clockevents();
467 }
468 
xen_init_time_ops(void)469 void __init xen_init_time_ops(void)
470 {
471 	pv_time_ops = xen_time_ops;
472 
473 	x86_init.timers.timer_init = xen_time_init;
474 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
475 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
476 
477 	x86_platform.calibrate_tsc = xen_tsc_khz;
478 	x86_platform.get_wallclock = xen_get_wallclock;
479 	x86_platform.set_wallclock = xen_set_wallclock;
480 }
481 
482 #ifdef CONFIG_XEN_PVHVM
xen_hvm_setup_cpu_clockevents(void)483 static void xen_hvm_setup_cpu_clockevents(void)
484 {
485 	int cpu = smp_processor_id();
486 	xen_setup_runstate_info(cpu);
487 	/*
488 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
489 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
490 	 * early bootup and also during CPU hotplug events).
491 	 */
492 	xen_setup_cpu_clockevents();
493 }
494 
xen_hvm_init_time_ops(void)495 void __init xen_hvm_init_time_ops(void)
496 {
497 	/* vector callback is needed otherwise we cannot receive interrupts
498 	 * on cpu > 0 and at this point we don't know how many cpus are
499 	 * available */
500 	if (!xen_have_vector_callback)
501 		return;
502 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
503 		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
504 				"disable pv timer\n");
505 		return;
506 	}
507 
508 	pv_time_ops = xen_time_ops;
509 	x86_init.timers.setup_percpu_clockev = xen_time_init;
510 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
511 
512 	x86_platform.calibrate_tsc = xen_tsc_khz;
513 	x86_platform.get_wallclock = xen_get_wallclock;
514 	x86_platform.set_wallclock = xen_set_wallclock;
515 }
516 #endif
517