• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_alloc.h"
32 #include "xfs_discard.h"
33 
34 /*
35  * Perform initial CIL structure initialisation.
36  */
37 int
xlog_cil_init(struct log * log)38 xlog_cil_init(
39 	struct log	*log)
40 {
41 	struct xfs_cil	*cil;
42 	struct xfs_cil_ctx *ctx;
43 
44 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
45 	if (!cil)
46 		return ENOMEM;
47 
48 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
49 	if (!ctx) {
50 		kmem_free(cil);
51 		return ENOMEM;
52 	}
53 
54 	INIT_LIST_HEAD(&cil->xc_cil);
55 	INIT_LIST_HEAD(&cil->xc_committing);
56 	spin_lock_init(&cil->xc_cil_lock);
57 	init_rwsem(&cil->xc_ctx_lock);
58 	init_waitqueue_head(&cil->xc_commit_wait);
59 
60 	INIT_LIST_HEAD(&ctx->committing);
61 	INIT_LIST_HEAD(&ctx->busy_extents);
62 	ctx->sequence = 1;
63 	ctx->cil = cil;
64 	cil->xc_ctx = ctx;
65 	cil->xc_current_sequence = ctx->sequence;
66 
67 	cil->xc_log = log;
68 	log->l_cilp = cil;
69 	return 0;
70 }
71 
72 void
xlog_cil_destroy(struct log * log)73 xlog_cil_destroy(
74 	struct log	*log)
75 {
76 	if (log->l_cilp->xc_ctx) {
77 		if (log->l_cilp->xc_ctx->ticket)
78 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
79 		kmem_free(log->l_cilp->xc_ctx);
80 	}
81 
82 	ASSERT(list_empty(&log->l_cilp->xc_cil));
83 	kmem_free(log->l_cilp);
84 }
85 
86 /*
87  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
88  * recover, so we don't allow failure here. Also, we allocate in a context that
89  * we don't want to be issuing transactions from, so we need to tell the
90  * allocation code this as well.
91  *
92  * We don't reserve any space for the ticket - we are going to steal whatever
93  * space we require from transactions as they commit. To ensure we reserve all
94  * the space required, we need to set the current reservation of the ticket to
95  * zero so that we know to steal the initial transaction overhead from the
96  * first transaction commit.
97  */
98 static struct xlog_ticket *
xlog_cil_ticket_alloc(struct log * log)99 xlog_cil_ticket_alloc(
100 	struct log	*log)
101 {
102 	struct xlog_ticket *tic;
103 
104 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
105 				KM_SLEEP|KM_NOFS);
106 	tic->t_trans_type = XFS_TRANS_CHECKPOINT;
107 
108 	/*
109 	 * set the current reservation to zero so we know to steal the basic
110 	 * transaction overhead reservation from the first transaction commit.
111 	 */
112 	tic->t_curr_res = 0;
113 	return tic;
114 }
115 
116 /*
117  * After the first stage of log recovery is done, we know where the head and
118  * tail of the log are. We need this log initialisation done before we can
119  * initialise the first CIL checkpoint context.
120  *
121  * Here we allocate a log ticket to track space usage during a CIL push.  This
122  * ticket is passed to xlog_write() directly so that we don't slowly leak log
123  * space by failing to account for space used by log headers and additional
124  * region headers for split regions.
125  */
126 void
xlog_cil_init_post_recovery(struct log * log)127 xlog_cil_init_post_recovery(
128 	struct log	*log)
129 {
130 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
131 	log->l_cilp->xc_ctx->sequence = 1;
132 	log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
133 								log->l_curr_block);
134 }
135 
136 /*
137  * Format log item into a flat buffers
138  *
139  * For delayed logging, we need to hold a formatted buffer containing all the
140  * changes on the log item. This enables us to relog the item in memory and
141  * write it out asynchronously without needing to relock the object that was
142  * modified at the time it gets written into the iclog.
143  *
144  * This function builds a vector for the changes in each log item in the
145  * transaction. It then works out the length of the buffer needed for each log
146  * item, allocates them and formats the vector for the item into the buffer.
147  * The buffer is then attached to the log item are then inserted into the
148  * Committed Item List for tracking until the next checkpoint is written out.
149  *
150  * We don't set up region headers during this process; we simply copy the
151  * regions into the flat buffer. We can do this because we still have to do a
152  * formatting step to write the regions into the iclog buffer.  Writing the
153  * ophdrs during the iclog write means that we can support splitting large
154  * regions across iclog boundares without needing a change in the format of the
155  * item/region encapsulation.
156  *
157  * Hence what we need to do now is change the rewrite the vector array to point
158  * to the copied region inside the buffer we just allocated. This allows us to
159  * format the regions into the iclog as though they are being formatted
160  * directly out of the objects themselves.
161  */
162 static struct xfs_log_vec *
xlog_cil_prepare_log_vecs(struct xfs_trans * tp)163 xlog_cil_prepare_log_vecs(
164 	struct xfs_trans	*tp)
165 {
166 	struct xfs_log_item_desc *lidp;
167 	struct xfs_log_vec	*lv = NULL;
168 	struct xfs_log_vec	*ret_lv = NULL;
169 
170 
171 	/* Bail out if we didn't find a log item.  */
172 	if (list_empty(&tp->t_items)) {
173 		ASSERT(0);
174 		return NULL;
175 	}
176 
177 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
178 		struct xfs_log_vec *new_lv;
179 		void	*ptr;
180 		int	index;
181 		int	len = 0;
182 		uint	niovecs;
183 
184 		/* Skip items which aren't dirty in this transaction. */
185 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
186 			continue;
187 
188 		/* Skip items that do not have any vectors for writing */
189 		niovecs = IOP_SIZE(lidp->lid_item);
190 		if (!niovecs)
191 			continue;
192 
193 		new_lv = kmem_zalloc(sizeof(*new_lv) +
194 				niovecs * sizeof(struct xfs_log_iovec),
195 				KM_SLEEP);
196 
197 		/* The allocated iovec region lies beyond the log vector. */
198 		new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
199 		new_lv->lv_niovecs = niovecs;
200 		new_lv->lv_item = lidp->lid_item;
201 
202 		/* build the vector array and calculate it's length */
203 		IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp);
204 		for (index = 0; index < new_lv->lv_niovecs; index++)
205 			len += new_lv->lv_iovecp[index].i_len;
206 
207 		new_lv->lv_buf_len = len;
208 		new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len,
209 				KM_SLEEP|KM_NOFS);
210 		ptr = new_lv->lv_buf;
211 
212 		for (index = 0; index < new_lv->lv_niovecs; index++) {
213 			struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index];
214 
215 			memcpy(ptr, vec->i_addr, vec->i_len);
216 			vec->i_addr = ptr;
217 			ptr += vec->i_len;
218 		}
219 		ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len);
220 
221 		if (!ret_lv)
222 			ret_lv = new_lv;
223 		else
224 			lv->lv_next = new_lv;
225 		lv = new_lv;
226 	}
227 
228 	return ret_lv;
229 }
230 
231 /*
232  * Prepare the log item for insertion into the CIL. Calculate the difference in
233  * log space and vectors it will consume, and if it is a new item pin it as
234  * well.
235  */
236 STATIC void
xfs_cil_prepare_item(struct log * log,struct xfs_log_vec * lv,int * len,int * diff_iovecs)237 xfs_cil_prepare_item(
238 	struct log		*log,
239 	struct xfs_log_vec	*lv,
240 	int			*len,
241 	int			*diff_iovecs)
242 {
243 	struct xfs_log_vec	*old = lv->lv_item->li_lv;
244 
245 	if (old) {
246 		/* existing lv on log item, space used is a delta */
247 		ASSERT(!list_empty(&lv->lv_item->li_cil));
248 		ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
249 
250 		*len += lv->lv_buf_len - old->lv_buf_len;
251 		*diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
252 		kmem_free(old->lv_buf);
253 		kmem_free(old);
254 	} else {
255 		/* new lv, must pin the log item */
256 		ASSERT(!lv->lv_item->li_lv);
257 		ASSERT(list_empty(&lv->lv_item->li_cil));
258 
259 		*len += lv->lv_buf_len;
260 		*diff_iovecs += lv->lv_niovecs;
261 		IOP_PIN(lv->lv_item);
262 
263 	}
264 
265 	/* attach new log vector to log item */
266 	lv->lv_item->li_lv = lv;
267 
268 	/*
269 	 * If this is the first time the item is being committed to the
270 	 * CIL, store the sequence number on the log item so we can
271 	 * tell in future commits whether this is the first checkpoint
272 	 * the item is being committed into.
273 	 */
274 	if (!lv->lv_item->li_seq)
275 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
276 }
277 
278 /*
279  * Insert the log items into the CIL and calculate the difference in space
280  * consumed by the item. Add the space to the checkpoint ticket and calculate
281  * if the change requires additional log metadata. If it does, take that space
282  * as well. Remove the amount of space we added to the checkpoint ticket from
283  * the current transaction ticket so that the accounting works out correctly.
284  */
285 static void
xlog_cil_insert_items(struct log * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket)286 xlog_cil_insert_items(
287 	struct log		*log,
288 	struct xfs_log_vec	*log_vector,
289 	struct xlog_ticket	*ticket)
290 {
291 	struct xfs_cil		*cil = log->l_cilp;
292 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
293 	struct xfs_log_vec	*lv;
294 	int			len = 0;
295 	int			diff_iovecs = 0;
296 	int			iclog_space;
297 
298 	ASSERT(log_vector);
299 
300 	/*
301 	 * Do all the accounting aggregation and switching of log vectors
302 	 * around in a separate loop to the insertion of items into the CIL.
303 	 * Then we can do a separate loop to update the CIL within a single
304 	 * lock/unlock pair. This reduces the number of round trips on the CIL
305 	 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
306 	 * hold time for the transaction commit.
307 	 *
308 	 * If this is the first time the item is being placed into the CIL in
309 	 * this context, pin it so it can't be written to disk until the CIL is
310 	 * flushed to the iclog and the iclog written to disk.
311 	 *
312 	 * We can do this safely because the context can't checkpoint until we
313 	 * are done so it doesn't matter exactly how we update the CIL.
314 	 */
315 	for (lv = log_vector; lv; lv = lv->lv_next)
316 		xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
317 
318 	/* account for space used by new iovec headers  */
319 	len += diff_iovecs * sizeof(xlog_op_header_t);
320 
321 	spin_lock(&cil->xc_cil_lock);
322 
323 	/* move the items to the tail of the CIL */
324 	for (lv = log_vector; lv; lv = lv->lv_next)
325 		list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
326 
327 	ctx->nvecs += diff_iovecs;
328 
329 	/*
330 	 * Now transfer enough transaction reservation to the context ticket
331 	 * for the checkpoint. The context ticket is special - the unit
332 	 * reservation has to grow as well as the current reservation as we
333 	 * steal from tickets so we can correctly determine the space used
334 	 * during the transaction commit.
335 	 */
336 	if (ctx->ticket->t_curr_res == 0) {
337 		/* first commit in checkpoint, steal the header reservation */
338 		ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
339 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
340 		ticket->t_curr_res -= ctx->ticket->t_unit_res;
341 	}
342 
343 	/* do we need space for more log record headers? */
344 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
345 	if (len > 0 && (ctx->space_used / iclog_space !=
346 				(ctx->space_used + len) / iclog_space)) {
347 		int hdrs;
348 
349 		hdrs = (len + iclog_space - 1) / iclog_space;
350 		/* need to take into account split region headers, too */
351 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
352 		ctx->ticket->t_unit_res += hdrs;
353 		ctx->ticket->t_curr_res += hdrs;
354 		ticket->t_curr_res -= hdrs;
355 		ASSERT(ticket->t_curr_res >= len);
356 	}
357 	ticket->t_curr_res -= len;
358 	ctx->space_used += len;
359 
360 	spin_unlock(&cil->xc_cil_lock);
361 }
362 
363 static void
xlog_cil_free_logvec(struct xfs_log_vec * log_vector)364 xlog_cil_free_logvec(
365 	struct xfs_log_vec	*log_vector)
366 {
367 	struct xfs_log_vec	*lv;
368 
369 	for (lv = log_vector; lv; ) {
370 		struct xfs_log_vec *next = lv->lv_next;
371 		kmem_free(lv->lv_buf);
372 		kmem_free(lv);
373 		lv = next;
374 	}
375 }
376 
377 /*
378  * Mark all items committed and clear busy extents. We free the log vector
379  * chains in a separate pass so that we unpin the log items as quickly as
380  * possible.
381  */
382 static void
xlog_cil_committed(void * args,int abort)383 xlog_cil_committed(
384 	void	*args,
385 	int	abort)
386 {
387 	struct xfs_cil_ctx	*ctx = args;
388 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
389 
390 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
391 					ctx->start_lsn, abort);
392 
393 	xfs_alloc_busy_sort(&ctx->busy_extents);
394 	xfs_alloc_busy_clear(mp, &ctx->busy_extents,
395 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
396 
397 	spin_lock(&ctx->cil->xc_cil_lock);
398 	list_del(&ctx->committing);
399 	spin_unlock(&ctx->cil->xc_cil_lock);
400 
401 	xlog_cil_free_logvec(ctx->lv_chain);
402 
403 	if (!list_empty(&ctx->busy_extents)) {
404 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
405 
406 		xfs_discard_extents(mp, &ctx->busy_extents);
407 		xfs_alloc_busy_clear(mp, &ctx->busy_extents, false);
408 	}
409 
410 	kmem_free(ctx);
411 }
412 
413 /*
414  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
415  * is a background flush and so we can chose to ignore it. Otherwise, if the
416  * current sequence is the same as @push_seq we need to do a flush. If
417  * @push_seq is less than the current sequence, then it has already been
418  * flushed and we don't need to do anything - the caller will wait for it to
419  * complete if necessary.
420  *
421  * @push_seq is a value rather than a flag because that allows us to do an
422  * unlocked check of the sequence number for a match. Hence we can allows log
423  * forces to run racily and not issue pushes for the same sequence twice. If we
424  * get a race between multiple pushes for the same sequence they will block on
425  * the first one and then abort, hence avoiding needless pushes.
426  */
427 STATIC int
xlog_cil_push(struct log * log,xfs_lsn_t push_seq)428 xlog_cil_push(
429 	struct log		*log,
430 	xfs_lsn_t		push_seq)
431 {
432 	struct xfs_cil		*cil = log->l_cilp;
433 	struct xfs_log_vec	*lv;
434 	struct xfs_cil_ctx	*ctx;
435 	struct xfs_cil_ctx	*new_ctx;
436 	struct xlog_in_core	*commit_iclog;
437 	struct xlog_ticket	*tic;
438 	int			num_lv;
439 	int			num_iovecs;
440 	int			len;
441 	int			error = 0;
442 	struct xfs_trans_header thdr;
443 	struct xfs_log_iovec	lhdr;
444 	struct xfs_log_vec	lvhdr = { NULL };
445 	xfs_lsn_t		commit_lsn;
446 
447 	if (!cil)
448 		return 0;
449 
450 	ASSERT(!push_seq || push_seq <= cil->xc_ctx->sequence);
451 
452 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
453 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
454 
455 	/*
456 	 * Lock out transaction commit, but don't block for background pushes
457 	 * unless we are well over the CIL space limit. See the definition of
458 	 * XLOG_CIL_HARD_SPACE_LIMIT() for the full explanation of the logic
459 	 * used here.
460 	 */
461 	if (!down_write_trylock(&cil->xc_ctx_lock)) {
462 		if (!push_seq &&
463 		    cil->xc_ctx->space_used < XLOG_CIL_HARD_SPACE_LIMIT(log))
464 			goto out_free_ticket;
465 		down_write(&cil->xc_ctx_lock);
466 	}
467 	ctx = cil->xc_ctx;
468 
469 	/* check if we've anything to push */
470 	if (list_empty(&cil->xc_cil))
471 		goto out_skip;
472 
473 	/* check for spurious background flush */
474 	if (!push_seq && cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
475 		goto out_skip;
476 
477 	/* check for a previously pushed seqeunce */
478 	if (push_seq && push_seq < cil->xc_ctx->sequence)
479 		goto out_skip;
480 
481 	/*
482 	 * pull all the log vectors off the items in the CIL, and
483 	 * remove the items from the CIL. We don't need the CIL lock
484 	 * here because it's only needed on the transaction commit
485 	 * side which is currently locked out by the flush lock.
486 	 */
487 	lv = NULL;
488 	num_lv = 0;
489 	num_iovecs = 0;
490 	len = 0;
491 	while (!list_empty(&cil->xc_cil)) {
492 		struct xfs_log_item	*item;
493 		int			i;
494 
495 		item = list_first_entry(&cil->xc_cil,
496 					struct xfs_log_item, li_cil);
497 		list_del_init(&item->li_cil);
498 		if (!ctx->lv_chain)
499 			ctx->lv_chain = item->li_lv;
500 		else
501 			lv->lv_next = item->li_lv;
502 		lv = item->li_lv;
503 		item->li_lv = NULL;
504 
505 		num_lv++;
506 		num_iovecs += lv->lv_niovecs;
507 		for (i = 0; i < lv->lv_niovecs; i++)
508 			len += lv->lv_iovecp[i].i_len;
509 	}
510 
511 	/*
512 	 * initialise the new context and attach it to the CIL. Then attach
513 	 * the current context to the CIL committing lsit so it can be found
514 	 * during log forces to extract the commit lsn of the sequence that
515 	 * needs to be forced.
516 	 */
517 	INIT_LIST_HEAD(&new_ctx->committing);
518 	INIT_LIST_HEAD(&new_ctx->busy_extents);
519 	new_ctx->sequence = ctx->sequence + 1;
520 	new_ctx->cil = cil;
521 	cil->xc_ctx = new_ctx;
522 
523 	/*
524 	 * mirror the new sequence into the cil structure so that we can do
525 	 * unlocked checks against the current sequence in log forces without
526 	 * risking deferencing a freed context pointer.
527 	 */
528 	cil->xc_current_sequence = new_ctx->sequence;
529 
530 	/*
531 	 * The switch is now done, so we can drop the context lock and move out
532 	 * of a shared context. We can't just go straight to the commit record,
533 	 * though - we need to synchronise with previous and future commits so
534 	 * that the commit records are correctly ordered in the log to ensure
535 	 * that we process items during log IO completion in the correct order.
536 	 *
537 	 * For example, if we get an EFI in one checkpoint and the EFD in the
538 	 * next (e.g. due to log forces), we do not want the checkpoint with
539 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
540 	 * we must strictly order the commit records of the checkpoints so
541 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
542 	 * correct order; and b) the checkpoints are replayed in correct order
543 	 * in log recovery.
544 	 *
545 	 * Hence we need to add this context to the committing context list so
546 	 * that higher sequences will wait for us to write out a commit record
547 	 * before they do.
548 	 */
549 	spin_lock(&cil->xc_cil_lock);
550 	list_add(&ctx->committing, &cil->xc_committing);
551 	spin_unlock(&cil->xc_cil_lock);
552 	up_write(&cil->xc_ctx_lock);
553 
554 	/*
555 	 * Build a checkpoint transaction header and write it to the log to
556 	 * begin the transaction. We need to account for the space used by the
557 	 * transaction header here as it is not accounted for in xlog_write().
558 	 *
559 	 * The LSN we need to pass to the log items on transaction commit is
560 	 * the LSN reported by the first log vector write. If we use the commit
561 	 * record lsn then we can move the tail beyond the grant write head.
562 	 */
563 	tic = ctx->ticket;
564 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
565 	thdr.th_type = XFS_TRANS_CHECKPOINT;
566 	thdr.th_tid = tic->t_tid;
567 	thdr.th_num_items = num_iovecs;
568 	lhdr.i_addr = &thdr;
569 	lhdr.i_len = sizeof(xfs_trans_header_t);
570 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
571 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
572 
573 	lvhdr.lv_niovecs = 1;
574 	lvhdr.lv_iovecp = &lhdr;
575 	lvhdr.lv_next = ctx->lv_chain;
576 
577 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
578 	if (error)
579 		goto out_abort_free_ticket;
580 
581 	/*
582 	 * now that we've written the checkpoint into the log, strictly
583 	 * order the commit records so replay will get them in the right order.
584 	 */
585 restart:
586 	spin_lock(&cil->xc_cil_lock);
587 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
588 		/*
589 		 * Higher sequences will wait for this one so skip them.
590 		 * Don't wait for own own sequence, either.
591 		 */
592 		if (new_ctx->sequence >= ctx->sequence)
593 			continue;
594 		if (!new_ctx->commit_lsn) {
595 			/*
596 			 * It is still being pushed! Wait for the push to
597 			 * complete, then start again from the beginning.
598 			 */
599 			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
600 			goto restart;
601 		}
602 	}
603 	spin_unlock(&cil->xc_cil_lock);
604 
605 	/* xfs_log_done always frees the ticket on error. */
606 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
607 	if (commit_lsn == -1)
608 		goto out_abort;
609 
610 	/* attach all the transactions w/ busy extents to iclog */
611 	ctx->log_cb.cb_func = xlog_cil_committed;
612 	ctx->log_cb.cb_arg = ctx;
613 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
614 	if (error)
615 		goto out_abort;
616 
617 	/*
618 	 * now the checkpoint commit is complete and we've attached the
619 	 * callbacks to the iclog we can assign the commit LSN to the context
620 	 * and wake up anyone who is waiting for the commit to complete.
621 	 */
622 	spin_lock(&cil->xc_cil_lock);
623 	ctx->commit_lsn = commit_lsn;
624 	wake_up_all(&cil->xc_commit_wait);
625 	spin_unlock(&cil->xc_cil_lock);
626 
627 	/* release the hounds! */
628 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
629 
630 out_skip:
631 	up_write(&cil->xc_ctx_lock);
632 out_free_ticket:
633 	xfs_log_ticket_put(new_ctx->ticket);
634 	kmem_free(new_ctx);
635 	return 0;
636 
637 out_abort_free_ticket:
638 	xfs_log_ticket_put(tic);
639 out_abort:
640 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
641 	return XFS_ERROR(EIO);
642 }
643 
644 /*
645  * Commit a transaction with the given vector to the Committed Item List.
646  *
647  * To do this, we need to format the item, pin it in memory if required and
648  * account for the space used by the transaction. Once we have done that we
649  * need to release the unused reservation for the transaction, attach the
650  * transaction to the checkpoint context so we carry the busy extents through
651  * to checkpoint completion, and then unlock all the items in the transaction.
652  *
653  * For more specific information about the order of operations in
654  * xfs_log_commit_cil() please refer to the comments in
655  * xfs_trans_commit_iclog().
656  *
657  * Called with the context lock already held in read mode to lock out
658  * background commit, returns without it held once background commits are
659  * allowed again.
660  */
661 int
xfs_log_commit_cil(struct xfs_mount * mp,struct xfs_trans * tp,xfs_lsn_t * commit_lsn,int flags)662 xfs_log_commit_cil(
663 	struct xfs_mount	*mp,
664 	struct xfs_trans	*tp,
665 	xfs_lsn_t		*commit_lsn,
666 	int			flags)
667 {
668 	struct log		*log = mp->m_log;
669 	int			log_flags = 0;
670 	int			push = 0;
671 	struct xfs_log_vec	*log_vector;
672 
673 	if (flags & XFS_TRANS_RELEASE_LOG_RES)
674 		log_flags = XFS_LOG_REL_PERM_RESERV;
675 
676 	/*
677 	 * Do all the hard work of formatting items (including memory
678 	 * allocation) outside the CIL context lock. This prevents stalling CIL
679 	 * pushes when we are low on memory and a transaction commit spends a
680 	 * lot of time in memory reclaim.
681 	 */
682 	log_vector = xlog_cil_prepare_log_vecs(tp);
683 	if (!log_vector)
684 		return ENOMEM;
685 
686 	/* lock out background commit */
687 	down_read(&log->l_cilp->xc_ctx_lock);
688 	if (commit_lsn)
689 		*commit_lsn = log->l_cilp->xc_ctx->sequence;
690 
691 	xlog_cil_insert_items(log, log_vector, tp->t_ticket);
692 
693 	/* check we didn't blow the reservation */
694 	if (tp->t_ticket->t_curr_res < 0)
695 		xlog_print_tic_res(log->l_mp, tp->t_ticket);
696 
697 	/* attach the transaction to the CIL if it has any busy extents */
698 	if (!list_empty(&tp->t_busy)) {
699 		spin_lock(&log->l_cilp->xc_cil_lock);
700 		list_splice_init(&tp->t_busy,
701 					&log->l_cilp->xc_ctx->busy_extents);
702 		spin_unlock(&log->l_cilp->xc_cil_lock);
703 	}
704 
705 	tp->t_commit_lsn = *commit_lsn;
706 	xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
707 	xfs_trans_unreserve_and_mod_sb(tp);
708 
709 	/*
710 	 * Once all the items of the transaction have been copied to the CIL,
711 	 * the items can be unlocked and freed.
712 	 *
713 	 * This needs to be done before we drop the CIL context lock because we
714 	 * have to update state in the log items and unlock them before they go
715 	 * to disk. If we don't, then the CIL checkpoint can race with us and
716 	 * we can run checkpoint completion before we've updated and unlocked
717 	 * the log items. This affects (at least) processing of stale buffers,
718 	 * inodes and EFIs.
719 	 */
720 	xfs_trans_free_items(tp, *commit_lsn, 0);
721 
722 	/* check for background commit before unlock */
723 	if (log->l_cilp->xc_ctx->space_used > XLOG_CIL_SPACE_LIMIT(log))
724 		push = 1;
725 
726 	up_read(&log->l_cilp->xc_ctx_lock);
727 
728 	/*
729 	 * We need to push CIL every so often so we don't cache more than we
730 	 * can fit in the log. The limit really is that a checkpoint can't be
731 	 * more than half the log (the current checkpoint is not allowed to
732 	 * overwrite the previous checkpoint), but commit latency and memory
733 	 * usage limit this to a smaller size in most cases.
734 	 */
735 	if (push)
736 		xlog_cil_push(log, 0);
737 	return 0;
738 }
739 
740 /*
741  * Conditionally push the CIL based on the sequence passed in.
742  *
743  * We only need to push if we haven't already pushed the sequence
744  * number given. Hence the only time we will trigger a push here is
745  * if the push sequence is the same as the current context.
746  *
747  * We return the current commit lsn to allow the callers to determine if a
748  * iclog flush is necessary following this call.
749  *
750  * XXX: Initially, just push the CIL unconditionally and return whatever
751  * commit lsn is there. It'll be empty, so this is broken for now.
752  */
753 xfs_lsn_t
xlog_cil_force_lsn(struct log * log,xfs_lsn_t sequence)754 xlog_cil_force_lsn(
755 	struct log	*log,
756 	xfs_lsn_t	sequence)
757 {
758 	struct xfs_cil		*cil = log->l_cilp;
759 	struct xfs_cil_ctx	*ctx;
760 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
761 
762 	ASSERT(sequence <= cil->xc_current_sequence);
763 
764 	/*
765 	 * check to see if we need to force out the current context.
766 	 * xlog_cil_push() handles racing pushes for the same sequence,
767 	 * so no need to deal with it here.
768 	 */
769 	if (sequence == cil->xc_current_sequence)
770 		xlog_cil_push(log, sequence);
771 
772 	/*
773 	 * See if we can find a previous sequence still committing.
774 	 * We need to wait for all previous sequence commits to complete
775 	 * before allowing the force of push_seq to go ahead. Hence block
776 	 * on commits for those as well.
777 	 */
778 restart:
779 	spin_lock(&cil->xc_cil_lock);
780 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
781 		if (ctx->sequence > sequence)
782 			continue;
783 		if (!ctx->commit_lsn) {
784 			/*
785 			 * It is still being pushed! Wait for the push to
786 			 * complete, then start again from the beginning.
787 			 */
788 			xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
789 			goto restart;
790 		}
791 		if (ctx->sequence != sequence)
792 			continue;
793 		/* found it! */
794 		commit_lsn = ctx->commit_lsn;
795 	}
796 	spin_unlock(&cil->xc_cil_lock);
797 	return commit_lsn;
798 }
799 
800 /*
801  * Check if the current log item was first committed in this sequence.
802  * We can't rely on just the log item being in the CIL, we have to check
803  * the recorded commit sequence number.
804  *
805  * Note: for this to be used in a non-racy manner, it has to be called with
806  * CIL flushing locked out. As a result, it should only be used during the
807  * transaction commit process when deciding what to format into the item.
808  */
809 bool
xfs_log_item_in_current_chkpt(struct xfs_log_item * lip)810 xfs_log_item_in_current_chkpt(
811 	struct xfs_log_item *lip)
812 {
813 	struct xfs_cil_ctx *ctx;
814 
815 	if (list_empty(&lip->li_cil))
816 		return false;
817 
818 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
819 
820 	/*
821 	 * li_seq is written on the first commit of a log item to record the
822 	 * first checkpoint it is written to. Hence if it is different to the
823 	 * current sequence, we're in a new checkpoint.
824 	 */
825 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
826 		return false;
827 	return true;
828 }
829