• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the license that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  */
12 
13 #ifdef CONFIG_ZSMALLOC_DEBUG
14 #define DEBUG
15 #endif
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bitops.h>
20 #include <linux/errno.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgtable.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpu.h>
29 #include <linux/vmalloc.h>
30 
31 #include "zsmalloc.h"
32 #include "zsmalloc_int.h"
33 
34 /*
35  * A zspage's class index and fullness group
36  * are encoded in its (first)page->mapping
37  */
38 #define CLASS_IDX_BITS	28
39 #define FULLNESS_BITS	4
40 #define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
41 #define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
42 
43 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
44 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
45 
is_first_page(struct page * page)46 static int is_first_page(struct page *page)
47 {
48 	return test_bit(PG_private, &page->flags);
49 }
50 
is_last_page(struct page * page)51 static int is_last_page(struct page *page)
52 {
53 	return test_bit(PG_private_2, &page->flags);
54 }
55 
get_zspage_mapping(struct page * page,unsigned int * class_idx,enum fullness_group * fullness)56 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
57 				enum fullness_group *fullness)
58 {
59 	unsigned long m;
60 	BUG_ON(!is_first_page(page));
61 
62 	m = (unsigned long)page->mapping;
63 	*fullness = m & FULLNESS_MASK;
64 	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
65 }
66 
set_zspage_mapping(struct page * page,unsigned int class_idx,enum fullness_group fullness)67 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
68 				enum fullness_group fullness)
69 {
70 	unsigned long m;
71 	BUG_ON(!is_first_page(page));
72 
73 	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
74 			(fullness & FULLNESS_MASK);
75 	page->mapping = (struct address_space *)m;
76 }
77 
get_size_class_index(int size)78 static int get_size_class_index(int size)
79 {
80 	int idx = 0;
81 
82 	if (likely(size > ZS_MIN_ALLOC_SIZE))
83 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
84 				ZS_SIZE_CLASS_DELTA);
85 
86 	return idx;
87 }
88 
get_fullness_group(struct page * page)89 static enum fullness_group get_fullness_group(struct page *page)
90 {
91 	int inuse, max_objects;
92 	enum fullness_group fg;
93 	BUG_ON(!is_first_page(page));
94 
95 	inuse = page->inuse;
96 	max_objects = page->objects;
97 
98 	if (inuse == 0)
99 		fg = ZS_EMPTY;
100 	else if (inuse == max_objects)
101 		fg = ZS_FULL;
102 	else if (inuse <= max_objects / fullness_threshold_frac)
103 		fg = ZS_ALMOST_EMPTY;
104 	else
105 		fg = ZS_ALMOST_FULL;
106 
107 	return fg;
108 }
109 
insert_zspage(struct page * page,struct size_class * class,enum fullness_group fullness)110 static void insert_zspage(struct page *page, struct size_class *class,
111 				enum fullness_group fullness)
112 {
113 	struct page **head;
114 
115 	BUG_ON(!is_first_page(page));
116 
117 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
118 		return;
119 
120 	head = &class->fullness_list[fullness];
121 	if (*head)
122 		list_add_tail(&page->lru, &(*head)->lru);
123 
124 	*head = page;
125 }
126 
remove_zspage(struct page * page,struct size_class * class,enum fullness_group fullness)127 static void remove_zspage(struct page *page, struct size_class *class,
128 				enum fullness_group fullness)
129 {
130 	struct page **head;
131 
132 	BUG_ON(!is_first_page(page));
133 
134 	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
135 		return;
136 
137 	head = &class->fullness_list[fullness];
138 	BUG_ON(!*head);
139 	if (list_empty(&(*head)->lru))
140 		*head = NULL;
141 	else if (*head == page)
142 		*head = (struct page *)list_entry((*head)->lru.next,
143 					struct page, lru);
144 
145 	list_del_init(&page->lru);
146 }
147 
fix_fullness_group(struct zs_pool * pool,struct page * page)148 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
149 						struct page *page)
150 {
151 	int class_idx;
152 	struct size_class *class;
153 	enum fullness_group currfg, newfg;
154 
155 	BUG_ON(!is_first_page(page));
156 
157 	get_zspage_mapping(page, &class_idx, &currfg);
158 	newfg = get_fullness_group(page);
159 	if (newfg == currfg)
160 		goto out;
161 
162 	class = &pool->size_class[class_idx];
163 	remove_zspage(page, class, currfg);
164 	insert_zspage(page, class, newfg);
165 	set_zspage_mapping(page, class_idx, newfg);
166 
167 out:
168 	return newfg;
169 }
170 
171 /*
172  * We have to decide on how many pages to link together
173  * to form a zspage for each size class. This is important
174  * to reduce wastage due to unusable space left at end of
175  * each zspage which is given as:
176  *	wastage = Zp - Zp % size_class
177  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
178  *
179  * For example, for size class of 3/8 * PAGE_SIZE, we should
180  * link together 3 PAGE_SIZE sized pages to form a zspage
181  * since then we can perfectly fit in 8 such objects.
182  */
get_zspage_order(int class_size)183 static int get_zspage_order(int class_size)
184 {
185 	int i, max_usedpc = 0;
186 	/* zspage order which gives maximum used size per KB */
187 	int max_usedpc_order = 1;
188 
189 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
190 		int zspage_size;
191 		int waste, usedpc;
192 
193 		zspage_size = i * PAGE_SIZE;
194 		waste = zspage_size % class_size;
195 		usedpc = (zspage_size - waste) * 100 / zspage_size;
196 
197 		if (usedpc > max_usedpc) {
198 			max_usedpc = usedpc;
199 			max_usedpc_order = i;
200 		}
201 	}
202 
203 	return max_usedpc_order;
204 }
205 
206 /*
207  * A single 'zspage' is composed of many system pages which are
208  * linked together using fields in struct page. This function finds
209  * the first/head page, given any component page of a zspage.
210  */
get_first_page(struct page * page)211 static struct page *get_first_page(struct page *page)
212 {
213 	if (is_first_page(page))
214 		return page;
215 	else
216 		return page->first_page;
217 }
218 
get_next_page(struct page * page)219 static struct page *get_next_page(struct page *page)
220 {
221 	struct page *next;
222 
223 	if (is_last_page(page))
224 		next = NULL;
225 	else if (is_first_page(page))
226 		next = (struct page *)page->private;
227 	else
228 		next = list_entry(page->lru.next, struct page, lru);
229 
230 	return next;
231 }
232 
233 /* Encode <page, obj_idx> as a single handle value */
obj_location_to_handle(struct page * page,unsigned long obj_idx)234 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
235 {
236 	unsigned long handle;
237 
238 	if (!page) {
239 		BUG_ON(obj_idx);
240 		return NULL;
241 	}
242 
243 	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
244 	handle |= (obj_idx & OBJ_INDEX_MASK);
245 
246 	return (void *)handle;
247 }
248 
249 /* Decode <page, obj_idx> pair from the given object handle */
obj_handle_to_location(void * handle,struct page ** page,unsigned long * obj_idx)250 static void obj_handle_to_location(void *handle, struct page **page,
251 				unsigned long *obj_idx)
252 {
253 	unsigned long hval = (unsigned long)handle;
254 
255 	*page = pfn_to_page(hval >> OBJ_INDEX_BITS);
256 	*obj_idx = hval & OBJ_INDEX_MASK;
257 }
258 
obj_idx_to_offset(struct page * page,unsigned long obj_idx,int class_size)259 static unsigned long obj_idx_to_offset(struct page *page,
260 				unsigned long obj_idx, int class_size)
261 {
262 	unsigned long off = 0;
263 
264 	if (!is_first_page(page))
265 		off = page->index;
266 
267 	return off + obj_idx * class_size;
268 }
269 
reset_page(struct page * page)270 static void reset_page(struct page *page)
271 {
272 	clear_bit(PG_private, &page->flags);
273 	clear_bit(PG_private_2, &page->flags);
274 	set_page_private(page, 0);
275 	page->mapping = NULL;
276 	page->freelist = NULL;
277 	reset_page_mapcount(page);
278 }
279 
free_zspage(struct page * first_page)280 static void free_zspage(struct page *first_page)
281 {
282 	struct page *nextp, *tmp, *head_extra;
283 
284 	BUG_ON(!is_first_page(first_page));
285 	BUG_ON(first_page->inuse);
286 
287 	head_extra = (struct page *)page_private(first_page);
288 
289 	reset_page(first_page);
290 	__free_page(first_page);
291 
292 	/* zspage with only 1 system page */
293 	if (!head_extra)
294 		return;
295 
296 	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
297 		list_del(&nextp->lru);
298 		reset_page(nextp);
299 		__free_page(nextp);
300 	}
301 	reset_page(head_extra);
302 	__free_page(head_extra);
303 }
304 
305 /* Initialize a newly allocated zspage */
init_zspage(struct page * first_page,struct size_class * class)306 static void init_zspage(struct page *first_page, struct size_class *class)
307 {
308 	unsigned long off = 0;
309 	struct page *page = first_page;
310 
311 	BUG_ON(!is_first_page(first_page));
312 	while (page) {
313 		struct page *next_page;
314 		struct link_free *link;
315 		unsigned int i, objs_on_page;
316 
317 		/*
318 		 * page->index stores offset of first object starting
319 		 * in the page. For the first page, this is always 0,
320 		 * so we use first_page->index (aka ->freelist) to store
321 		 * head of corresponding zspage's freelist.
322 		 */
323 		if (page != first_page)
324 			page->index = off;
325 
326 		link = (struct link_free *)kmap_atomic(page) +
327 						off / sizeof(*link);
328 		objs_on_page = (PAGE_SIZE - off) / class->size;
329 
330 		for (i = 1; i <= objs_on_page; i++) {
331 			off += class->size;
332 			if (off < PAGE_SIZE) {
333 				link->next = obj_location_to_handle(page, i);
334 				link += class->size / sizeof(*link);
335 			}
336 		}
337 
338 		/*
339 		 * We now come to the last (full or partial) object on this
340 		 * page, which must point to the first object on the next
341 		 * page (if present)
342 		 */
343 		next_page = get_next_page(page);
344 		link->next = obj_location_to_handle(next_page, 0);
345 		kunmap_atomic(link);
346 		page = next_page;
347 		off = (off + class->size) % PAGE_SIZE;
348 	}
349 }
350 
351 /*
352  * Allocate a zspage for the given size class
353  */
alloc_zspage(struct size_class * class,gfp_t flags)354 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
355 {
356 	int i, error;
357 	struct page *first_page = NULL;
358 
359 	/*
360 	 * Allocate individual pages and link them together as:
361 	 * 1. first page->private = first sub-page
362 	 * 2. all sub-pages are linked together using page->lru
363 	 * 3. each sub-page is linked to the first page using page->first_page
364 	 *
365 	 * For each size class, First/Head pages are linked together using
366 	 * page->lru. Also, we set PG_private to identify the first page
367 	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
368 	 * identify the last page.
369 	 */
370 	error = -ENOMEM;
371 	for (i = 0; i < class->zspage_order; i++) {
372 		struct page *page, *prev_page;
373 
374 		page = alloc_page(flags);
375 		if (!page)
376 			goto cleanup;
377 
378 		INIT_LIST_HEAD(&page->lru);
379 		if (i == 0) {	/* first page */
380 			set_bit(PG_private, &page->flags);
381 			set_page_private(page, 0);
382 			first_page = page;
383 			first_page->inuse = 0;
384 		}
385 		if (i == 1)
386 			first_page->private = (unsigned long)page;
387 		if (i >= 1)
388 			page->first_page = first_page;
389 		if (i >= 2)
390 			list_add(&page->lru, &prev_page->lru);
391 		if (i == class->zspage_order - 1)	/* last page */
392 			set_bit(PG_private_2, &page->flags);
393 
394 		prev_page = page;
395 	}
396 
397 	init_zspage(first_page, class);
398 
399 	first_page->freelist = obj_location_to_handle(first_page, 0);
400 	/* Maximum number of objects we can store in this zspage */
401 	first_page->objects = class->zspage_order * PAGE_SIZE / class->size;
402 
403 	error = 0; /* Success */
404 
405 cleanup:
406 	if (unlikely(error) && first_page) {
407 		free_zspage(first_page);
408 		first_page = NULL;
409 	}
410 
411 	return first_page;
412 }
413 
find_get_zspage(struct size_class * class)414 static struct page *find_get_zspage(struct size_class *class)
415 {
416 	int i;
417 	struct page *page;
418 
419 	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
420 		page = class->fullness_list[i];
421 		if (page)
422 			break;
423 	}
424 
425 	return page;
426 }
427 
428 
zs_cpu_notifier(struct notifier_block * nb,unsigned long action,void * pcpu)429 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
430 				void *pcpu)
431 {
432 	int cpu = (long)pcpu;
433 	struct mapping_area *area;
434 
435 	switch (action) {
436 	case CPU_UP_PREPARE:
437 		area = &per_cpu(zs_map_area, cpu);
438 		if (area->vm)
439 			break;
440 		area->vm = alloc_vm_area(2 * PAGE_SIZE, area->vm_ptes);
441 		if (!area->vm)
442 			return notifier_from_errno(-ENOMEM);
443 		break;
444 	case CPU_DEAD:
445 	case CPU_UP_CANCELED:
446 		area = &per_cpu(zs_map_area, cpu);
447 		if (area->vm)
448 			free_vm_area(area->vm);
449 		area->vm = NULL;
450 		break;
451 	}
452 
453 	return NOTIFY_OK;
454 }
455 
456 static struct notifier_block zs_cpu_nb = {
457 	.notifier_call = zs_cpu_notifier
458 };
459 
zs_exit(void)460 static void zs_exit(void)
461 {
462 	int cpu;
463 
464 	for_each_online_cpu(cpu)
465 		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
466 	unregister_cpu_notifier(&zs_cpu_nb);
467 }
468 
zs_init(void)469 static int zs_init(void)
470 {
471 	int cpu, ret;
472 
473 	register_cpu_notifier(&zs_cpu_nb);
474 	for_each_online_cpu(cpu) {
475 		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
476 		if (notifier_to_errno(ret))
477 			goto fail;
478 	}
479 	return 0;
480 fail:
481 	zs_exit();
482 	return notifier_to_errno(ret);
483 }
484 
zs_create_pool(const char * name,gfp_t flags)485 struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
486 {
487 	int i, ovhd_size;
488 	struct zs_pool *pool;
489 
490 	if (!name)
491 		return NULL;
492 
493 	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
494 	pool = kzalloc(ovhd_size, GFP_KERNEL);
495 	if (!pool)
496 		return NULL;
497 
498 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
499 		int size;
500 		struct size_class *class;
501 
502 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
503 		if (size > ZS_MAX_ALLOC_SIZE)
504 			size = ZS_MAX_ALLOC_SIZE;
505 
506 		class = &pool->size_class[i];
507 		class->size = size;
508 		class->index = i;
509 		spin_lock_init(&class->lock);
510 		class->zspage_order = get_zspage_order(size);
511 
512 	}
513 
514 	pool->flags = flags;
515 	pool->name = name;
516 
517 	return pool;
518 }
519 EXPORT_SYMBOL_GPL(zs_create_pool);
520 
zs_destroy_pool(struct zs_pool * pool)521 void zs_destroy_pool(struct zs_pool *pool)
522 {
523 	int i;
524 
525 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
526 		int fg;
527 		struct size_class *class = &pool->size_class[i];
528 
529 		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
530 			if (class->fullness_list[fg]) {
531 				pr_info("Freeing non-empty class with size "
532 					"%db, fullness group %d\n",
533 					class->size, fg);
534 			}
535 		}
536 	}
537 	kfree(pool);
538 }
539 EXPORT_SYMBOL_GPL(zs_destroy_pool);
540 
541 /**
542  * zs_malloc - Allocate block of given size from pool.
543  * @pool: pool to allocate from
544  * @size: size of block to allocate
545  * @page: page no. that holds the object
546  * @offset: location of object within page
547  *
548  * On success, <page, offset> identifies block allocated
549  * and 0 is returned. On failure, <page, offset> is set to
550  * 0 and -ENOMEM is returned.
551  *
552  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
553  */
zs_malloc(struct zs_pool * pool,size_t size)554 void *zs_malloc(struct zs_pool *pool, size_t size)
555 {
556 	void *obj;
557 	struct link_free *link;
558 	int class_idx;
559 	struct size_class *class;
560 
561 	struct page *first_page, *m_page;
562 	unsigned long m_objidx, m_offset;
563 
564 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
565 		return NULL;
566 
567 	class_idx = get_size_class_index(size);
568 	class = &pool->size_class[class_idx];
569 	BUG_ON(class_idx != class->index);
570 
571 	spin_lock(&class->lock);
572 	first_page = find_get_zspage(class);
573 
574 	if (!first_page) {
575 		spin_unlock(&class->lock);
576 		first_page = alloc_zspage(class, pool->flags);
577 		if (unlikely(!first_page))
578 			return NULL;
579 
580 		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
581 		spin_lock(&class->lock);
582 		class->pages_allocated += class->zspage_order;
583 	}
584 
585 	obj = first_page->freelist;
586 	obj_handle_to_location(obj, &m_page, &m_objidx);
587 	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
588 
589 	link = (struct link_free *)kmap_atomic(m_page) +
590 					m_offset / sizeof(*link);
591 	first_page->freelist = link->next;
592 	memset(link, POISON_INUSE, sizeof(*link));
593 	kunmap_atomic(link);
594 
595 	first_page->inuse++;
596 	/* Now move the zspage to another fullness group, if required */
597 	fix_fullness_group(pool, first_page);
598 	spin_unlock(&class->lock);
599 
600 	return obj;
601 }
602 EXPORT_SYMBOL_GPL(zs_malloc);
603 
zs_free(struct zs_pool * pool,void * obj)604 void zs_free(struct zs_pool *pool, void *obj)
605 {
606 	struct link_free *link;
607 	struct page *first_page, *f_page;
608 	unsigned long f_objidx, f_offset;
609 
610 	int class_idx;
611 	struct size_class *class;
612 	enum fullness_group fullness;
613 
614 	if (unlikely(!obj))
615 		return;
616 
617 	obj_handle_to_location(obj, &f_page, &f_objidx);
618 	first_page = get_first_page(f_page);
619 
620 	get_zspage_mapping(first_page, &class_idx, &fullness);
621 	class = &pool->size_class[class_idx];
622 	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
623 
624 	spin_lock(&class->lock);
625 
626 	/* Insert this object in containing zspage's freelist */
627 	link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
628 							+ f_offset);
629 	link->next = first_page->freelist;
630 	kunmap_atomic(link);
631 	first_page->freelist = obj;
632 
633 	first_page->inuse--;
634 	fullness = fix_fullness_group(pool, first_page);
635 
636 	if (fullness == ZS_EMPTY)
637 		class->pages_allocated -= class->zspage_order;
638 
639 	spin_unlock(&class->lock);
640 
641 	if (fullness == ZS_EMPTY)
642 		free_zspage(first_page);
643 }
644 EXPORT_SYMBOL_GPL(zs_free);
645 
zs_map_object(struct zs_pool * pool,void * handle)646 void *zs_map_object(struct zs_pool *pool, void *handle)
647 {
648 	struct page *page;
649 	unsigned long obj_idx, off;
650 
651 	unsigned int class_idx;
652 	enum fullness_group fg;
653 	struct size_class *class;
654 	struct mapping_area *area;
655 
656 	BUG_ON(!handle);
657 
658 	obj_handle_to_location(handle, &page, &obj_idx);
659 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
660 	class = &pool->size_class[class_idx];
661 	off = obj_idx_to_offset(page, obj_idx, class->size);
662 
663 	area = &get_cpu_var(zs_map_area);
664 	if (off + class->size <= PAGE_SIZE) {
665 		/* this object is contained entirely within a page */
666 		area->vm_addr = kmap_atomic(page);
667 	} else {
668 		/* this object spans two pages */
669 		struct page *nextp;
670 
671 		nextp = get_next_page(page);
672 		BUG_ON(!nextp);
673 
674 
675 		set_pte(area->vm_ptes[0], mk_pte(page, PAGE_KERNEL));
676 		set_pte(area->vm_ptes[1], mk_pte(nextp, PAGE_KERNEL));
677 
678 		/* We pre-allocated VM area so mapping can never fail */
679 		area->vm_addr = area->vm->addr;
680 	}
681 
682 	return area->vm_addr + off;
683 }
684 EXPORT_SYMBOL_GPL(zs_map_object);
685 
zs_unmap_object(struct zs_pool * pool,void * handle)686 void zs_unmap_object(struct zs_pool *pool, void *handle)
687 {
688 	struct page *page;
689 	unsigned long obj_idx, off;
690 
691 	unsigned int class_idx;
692 	enum fullness_group fg;
693 	struct size_class *class;
694 	struct mapping_area *area;
695 
696 	BUG_ON(!handle);
697 
698 	obj_handle_to_location(handle, &page, &obj_idx);
699 	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
700 	class = &pool->size_class[class_idx];
701 	off = obj_idx_to_offset(page, obj_idx, class->size);
702 
703 	area = &__get_cpu_var(zs_map_area);
704 	if (off + class->size <= PAGE_SIZE) {
705 		kunmap_atomic(area->vm_addr);
706 	} else {
707 		set_pte(area->vm_ptes[0], __pte(0));
708 		set_pte(area->vm_ptes[1], __pte(0));
709 		__flush_tlb_one((unsigned long)area->vm_addr);
710 		__flush_tlb_one((unsigned long)area->vm_addr + PAGE_SIZE);
711 	}
712 	put_cpu_var(zs_map_area);
713 }
714 EXPORT_SYMBOL_GPL(zs_unmap_object);
715 
zs_get_total_size_bytes(struct zs_pool * pool)716 u64 zs_get_total_size_bytes(struct zs_pool *pool)
717 {
718 	int i;
719 	u64 npages = 0;
720 
721 	for (i = 0; i < ZS_SIZE_CLASSES; i++)
722 		npages += pool->size_class[i].pages_allocated;
723 
724 	return npages << PAGE_SHIFT;
725 }
726 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
727 
728 module_init(zs_init);
729 module_exit(zs_exit);
730 
731 MODULE_LICENSE("Dual BSD/GPL");
732 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
733